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1 Introduction

Diffusion-reaction systems have proven to be a powerful tool for describing spatial dis-
persal processes. R.A. Fisher developed in 1937 the now classic Fisher model2 for the
spread of an advantageous mutation ([17]). Using a diffusion model that incorporated the
joint effect of selection and dispersal, Fisher showed that, after a gene was established
in a population there would be a wave of advance for which the velocity of the wave is
proportional to the selective advantage of the allele.

J.G. Skellam ([49]) used, in his pioneering paper ’Random dispersal in theoretical popula-
tions’, a similar framework for theoretical studies of population dispersal and introduced
the diffusion-reaction equation to ecology. He established the relationship between ran-
dom walks as a description of movement of individual members of biological species and
the diffusion equation as a description of dispersal of the population as a whole ([9]).
Skellam was particularly interested in diffusion-reaction models for the population den-
sity of species in a bounded habitat assuming Malthusian and logistic population growth
models. Among various other examples he presented in [49] a case study of the spread
of the muskrats in Central Europe which became one of the standard examples for a
wave-of-advance dispersal pattern. In 1905 several muskrats escaped into freedom near
the Moldau river. Radial dispersal and exponential growth was recorded afterwards3 (cf.
Figure 1 for the location of the dispersal front for the time period 1905-1927). It turned
out that Skellam’s wave-of-advance model predictions fitted the actual data very well.

Figure 1: Spread of muskrats in Central Europe, 1905-1927, from [49]

Subsequently this modelling framework has been applied to human dispersal and the
spread of innovations. One of the earliest studies was undertaken by Ammerman and
Cavalli-Sforza ([2],[3]) who analysed the spread of early farming in Europe. Agriculture
spread into geographical areas previously occupied by hunter-gatherers around 10,000

2Often the model is called Fisher-Kolmogorov-Petrovski-Piskunov model to acknowledge the contribu-
tion of the mathematicians A. Kolmogrov, I.Petrovski and N. Piskunov in developing the mathematical
theory of diffusion-reaction equation.(cf. [29])

3Although the muskrat has many natural predators, in this case there was no nature-imposed carrying
capacity during the first years.
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years ago. Ammerman and Cavalli-Sforza ([2]) applied a diffusion-reaction model to
interpret archaeological dating of the arrival of agriculture in various European locations.
They estimated that the spread of farming to Europe from the Middle East occurred at a
rate of about 1 kilometer per year which proves to be consistent with the spreading speed
predicted by the diffusion-reaction model with ethnographically derived values for the
model parameters. By studying geographical variation in gene frequencies over the same
area, Ammerman and Cavalli-Sforza ([3]) suggested that this spread was due to physical
migration of the farmers rather than to the spread of the cultural idea of farming. More
recent extensions of this analysis have involved more detailed models of demography
and rates of cultural conversion of hunter-gatherers to farmers ([4]), but the results are
qualitatively similar.

Young and Bettinger [55] and Steele and colleagues (e.g. [22],[51]) applied the diffusion-
reaction approach to Palaeolithic dispersal. Steele et al. considered in [51] hunter-gatherer
dispersal into North America south of the ice sheets using diffusion-reaction models. Un-
der simplified assumptions they modelled the archaeological signature of a dispersal pro-
cess using archaeological data (time-averaged artefact and site densities) as indicators.
They showed that where this dispersal process involved movement up gradients of car-
rying capacity (as in dispersal towards the southeast from a possible origin in Alberta),
the cumulated density of evidence for human occupation would be greatest in the more
productive environments and the initial pioneer gradient washed out when the indicator
artefact maps have been time-averaged over one thousand years or more (cf. Figure 2).

Figure 2: Cumulative occupancy of North America by a colonizing population over the
first 1000 years (left-hand maps) and over the first 2000 years (right-hand maps). From
[51].

Recent studies aim to determine the speed of the spread of anatomically modern human
into Europe before the last glacial maximum ([35]), the rate of subsequent late glacial
recolonisation of Northern Europe as the ice receded ([26],[18]) or the diffusion of Clovis
spear point technology in late glacial North America ([21]). A comprehensive overview
regarding diffusion-reaction models applied to human dispersal can be found in [50].

Further, diffusion-reaction equations have been applied to the field of diffusion of inno-
vations. Generally, the theory of diffusion of innovations is concerned with the how, why
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and at what rate new ideas and technologies spread through a population ([48]). Hen-
rich’s study ([23]) focuses on especially the early phase of the adoption of the hybrid corn
in U.S. using a social learning model which resembled a modified logistic growth model.
This model was generalised in [27] by adding a diffusion component and therefore adding
a spatial dimension to the model.

We can conclude that diffusion-reaction equations are now established in different life-
science disciplines and when applied to ’human questions’ are used to estimate the de-
mographic process involved in major human (or animal) dispersal episodes ([50]) or the
general spread pattern of new ideas or technologies through cultures. Our aim in the fol-
lowing is to give an introduction into the fundamentals of this modelling approach without
getting lost in technical details. So when writing this paper we had a non-mathematical
audience in mind and therefore lengthy algebraic exercises are left out wherever possible.
Nonetheless we have included sections marked with (?) and ’grey boxes’ on places in the
text were the mathematically interested reader might want to know a bit more about the
“how it is done mathematically”. However, for the general understanding of the paper
these sections and boxes are not necessary.

We start in section 2 by studying the fundamental features of random walks and derive,
based on the random walk theory, the general diffusion equation. Section 3 focuses on the
modelling of growth processes. We introduce four growth models (exponential growth,
logistic growth, confined exponential growth, Gompertz growth) and analyse the resulting
growth dynamic. Further, we discuss the applicability of these models to different real-
world situations. In section 4 we combine both, the dispersal and the growth components
and derive the main characteristics of the obtained diffusion-reaction models. In section 5
we focus on the impacts of population interactions on the spread behaviour of a particular
population. There we consider prey-predator and competition situations. In the last part
we introduce the open software package ’CultDiff’ which provides a solution tool for
diffusion-reaction systems.

The structure of the paper and many considerations are influenced by the wonderful
textbooks by [7],[41],[44] and [9].

The authors would like to acknowledge Dr. James Steele for helpful and encouraging dis-
cussions during the development of ’CultDiff’ and the process of writing this manuscript.
Further, we thank Charlotte Frearson for careful proofreading of the manuscript.

2 Diffusion

The concept of diffusion originates from physical sciences (Fick’s law is regarded as the
fundamental principle of diffusion, cf. box 1 for a more detailed consideration). In its
physical sense diffusion is defined as a phenomenon where a certain particle group as a
whole spreads according to the irregular motion of each particle. Thereby the spread is
always directed from regions of higher concentration to regions of lower concentration and
the time dependence of the distribution of the particles in space is given by the so called
diffusion equation which is the mathematical formulation of the described spread dynamic.
The diffusion theory seeks to explain the spread behaviour of a group of particles (rather
than spread behaviour of a single particle) and consequently the variable of interest is
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the proportion of the particle group which can be found in location x at time t. In this
way phenomena like the diffusion of an ink drop in water4 or diffusion of heat can be
described.

Excursus into the physical theory. The classical theory of diffusion was founded
in 1855 by the physiologist Adolf Fick ([16]). Fick’s law postulates that the transport
of matter, i.e. the flux, goes from regions of high concentration to regions of low
concentration, with a magnitude that is proportional to the concentration gradient
of the matter. It yields

∂C

∂t
= − Jx

∂x
=

∂

∂x

(

D
∂C

∂x

)

(1)

where the variable C describes the concentration of the matter at time t and location
x, ∂C

∂t
models the temporal change of the concentration, Jx the flux of C in x direction

across a unit normal area in a time unit and D stands for the diffusivity. If D is
constant equation (1) has the explicit solution (under the assumption that initially
M particles in a unit area are concentrated at x = 0)

C(t, x) =
M

2
√
πDt

exp

(

− x2

4Dt

)

(2)

([7]). If we compare equation (3) with the just derived solution (2) we see that
Fickian diffusion is only applicable to phenomena that are based on the random walk
hypothesis of the particle.

Applications of the diffusion theory outside physics were pioneered by the French math-
ematician Louis Bachelier who used a random walk model to describe price fluctuations
on financial markets ([6]). Amongst others the concept of diffusion is applied in biology
to describe processes of biodiffusion and to model population dynamics, or in a less quan-
titative way, in social sciences to describe the spread of ideas (diffusion of innovations,
lexical diffusion, trans-cultural diffusion).

In the following we understand diffusion as the dispersal mechanism of populations and
derive the model’s merits but also its limitations when applied to situations of human
dispersal. However, we stress that the theory is equally applicable to problems of the
spread of new ideas or technologies through spatially structured populations.

A crucial element of the diffusion theory is the assumption of the ’irregular’ motion
performed by each individual. Every individual is expected to move in random patterns
which we will specify as a random walk. However, the diffusion theory describes the
spread of a population on the population level by determining the frequency of individuals
of the dispersing population at every time t and location x. In order to understand the
implication of the assumed random walk hypothesis on the population dispersal pattern
we derive the fundamental diffusion equation from this random walk assumption.

4This short video clip (http://www.youtube.com/watch?v=H7QsDs8ZRMI&feature=related) illus-
trates the physical phenomenon of diffusion nicely.
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2.1 The random walk

As the name suggests random walks are based on the intuitive idea of taking successive
steps (of random or deterministic length), each in a random direction. Mathematically
a random walk is classified as a stochastic process5. We start with analysing the one-
dimensional random walk, a random walk along a line, and generalise the obtained results
in section 2.1.2 for the two-dimensional case.

Some historical remarks. The botanist Robert Brown is traditionally regarded
with the discovery of continuous ’jittery’ motion which was later called ’Brownian
motion’ in 1827. It is believed that Brown was studying pollen particles floating in
water under the microscope. He then observed minute particles within the vacuoles
of the pollen grains executing a jittery motion. By repeating the experiment with
particles of dust, he was able to rule out that the motion was due to pollen particles
being ’alive’. However, Brown did not provide a theory to explain the motion.
The first person to describe the mathematics behind Brownian motion was Thorvald
N. Thiele in 1880 in a paper on the method of least squares. This was followed
independently by Louis Bachelier in 1900 in his PhD thesis ’Théorie de la spéculation’,
in which he presented a stochastic analysis of the stock and option markets. However,
it was Albert Einstein ([14]) and Marian Smoluchowski ([53]) who independently
brought the solution of the problem to the attention of physicists, and presented it
as a way to indirectly confirm the existence of atoms and molecules.

2.1.1 1-Dimensional random walk

We assume an integer number line Z where the numbers are spaced apart equally (cf.
Figure 3).

p=0.5p=0.5

4321 −4 −3 −2 −1 0

Figure 3: Schematic illustration of a symmetric random walk along the number line

An elementary and concrete random walk starts at S0 = 0 and at each step moves one
unit either to the left or the right with equal probability. To define this walk formally, we
introduce independent random variables Z1, Z2, . . . . Each variable Zi identifies either a
move to the left or to the right (that means Zi = −1 for a move to the left and Zi = 1
for a move to the right) with a 50% probability for either value. Now we set

Sn :=
n
∑

j=1

Zj.

5A stochastic process describes the evolution of a random variable over time and space.
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The series {Sn} (the sum of the sequence of -1’s and 1’s) describes a simple random walk
on Z and characterises the position of the random walk after n time steps (if each part
of the walk has length one). In order to simulate such an one-dimensional symmetric6

random walk we simply follow the three steps listed below.

1. Place an individual at x = 0 on the line.

2. It moves with probability 0.5 one step either to the right or to the left.

• Flip a coin.

• If you get a head, move one step right, else move one step left.

3. Repeat step (2) a total of n times.

So, if we flip the coin 5 times and get HTHHH, then the movement will be:

0→ 1→ 0→ 1→ 2→ 3,

and we end up at 3. Of course, the ”reverse” sequence is possible: THTTT, and you end
up at -3. In fact, the only positions you can end up at with 5 tosses are 1, -1, 3, -3 ,5, and
-5. However, there are different probabilities for reaching these positions (cf. Figure 4):

• for position 1 (means 3 heads and 2 tails) 10 sequences are possible

• for position -1 (means 2 heads and 3 tails) 10 sequences are possible

• for position 3 (means 4 heads and 1 tail) 5 sequences are possible

• for position -3 (means 1 head and 4 tails) 5 sequences are possible

• for position 5 (means 5 heads) only 1 sequence is possible

• for position -5 (means 5 tails) only 1 sequence is possible

Due to the assumed symmetry of the random walk there are as many ways to be at 1 as
there are to be a -1; similarly for 3 and -3 and 5 and -5.

The position Sn of the random walk after n steps is random and therefore cannot be
predicted. However, we can say that in the long run, the most likely position of the
random walk would be at 0. In other words the expected value, ESn, of the random walk
is 0. Generally, to calculate the expected value of a stochastic process, multiply each
possible outcome of the process by its probability, and add up the results. In our case we
have

ES5 =
5
∑

i=1

xip(xi) = 1 ∗ 10
32

+ (−1) ∗ 10
32

+ 3 ∗ 5

32
+ (−3) ∗ 5

32
+ 5 ∗ 1

32
+ (−5) ∗ 1

32
= 0

6To generate an asymmetric random walk you need to choose the probabilities of moving to the right
or left not equally.
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Figure 4: Possible outcomes for a sequence of five coin flips.

where xi stands for the possible outcomes -5,-3,-1,1,3,5 and p(xi) for their probability.
There are 32 possible outcomes to a series of five subsequent coin tosses and therefore the
probability of being e.g. at 1 is 10/32.

We are not only interested in the expected position of the random walker but also in how
far the random walker has moved. So after five coin flips, what is the expected distance
from the origin 0? The ansatz for this computation in general is to find not the expected
value of the distance, but the expected value of the squared distance7.

E(S5)
2 =

5
∑

i=1

x2
i p(xi)

= 12 ∗ 10
32

+ (−1)2 ∗ 10
32

+ 32 ∗ 5

32
+ (−3)2 ∗ 5

32
+ 52 ∗ 1

32
+ (−5)2 ∗ 1

32
= 5.

The expected mean squared distance is 5, hence the expected root mean squared distance
from the origin after 5 coin flips is

√
5 and we can derive a very general theorem.

Theorem 1. The expected root-mean square distance from the origin after n steps
of a symmetric random walk with step length one is

√
n.

Figure 5 (left) shows several realisations of one-dimensional random walks. We clearly
see the random nature of the movements but also the increasing distance from the origin
0 as time progresses (what confirms theorem 1).

Remark 1. A random walk having a step size that varies according to a normal distri-
bution is used as a model for real-world time series data such as financial markets. The
Black-Scholes formula for modeling equity option prices, for example, uses a Gaussian
random walk as an underlying assumption.

Theorem 2. For step length distributed according to any distribution with a fi-
nite variance σ2 (not necessarily just a normal distribution), the root mean squared
expected distance after n steps is σ

√
n.

7The calculation of the variance follows the same principle.
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Figure 5: Seven realisations of a symmetric random walk with step length 1 (left Figure)
and normally distributed (with the parameter µ = 0 and σ2 = 4) step length (right
Figure).

2.1.2 2-Dimensional random walk

The two-dimensional random walk on a lattice is a straightforward generalisation of the
one-dimensional random walk. Instead of only moving to the left or to the right we allow
the random walker to move to one of the four neighbouring lattice points with probability
0.25 (cf. Figure 6).

(−1,1)

(−1,−1) (1,−1)

(1,1)

(0,0)(−1,0)

(0,−1)

(1,0)

(0,1)
p=0.25

p=0.25

p=0.25

p=0.25

Figure 6: Schematic illustration of a symmetric random walk along the lattice

In order to simulate a two-dimensional symmetric random walk on a lattice we simply
perform the following 4 steps

1. Start at the origin (0,0).

2. Choose a direction randomly from the set {1, 2, 3, 4} where 1 means step to the left,
2 to the right, 3 to the bottom and 4 to the top (cf. Figure 6)

3. Take one step in the chosen direction.

4. Repeat steps (2) and (3) a total of n times.
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Figure 7 (left) shows realisations of such a random walk. It can be proven that on a
two-dimensional lattice, a random walk has probability 1 of reaching any point (including
the starting point) as the number of steps approaches infinity.

More generally, two-dimensional random walks do not need to follow the lattice structure.
Steps 2. and 3. in the simulation procedure can be replaced by:

2. Choose an angle randomly from 0 to 360 degrees (0 to 2*pi radians)8.

3. Take one step in the direction of the angle (measured from the horizontal direction).

Figure 7 shows realisations for both two-dimensional random walk constructions. Again
we observe the random nature of the spread process.
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Figure 7: Seven realisations of a symmetric random walk with step length 1 on the lattice
(left figure) and with randomly chosen directions (right figure).

It turns out that the theorem 1 is true for 2-dimensional random walks. So, the ex-
pected root-mean square distance from the origin (0,0) after n steps of a symmetric
two-dimensional random walk with step length one is

√
n.
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Figure 8: Seven realisations of a symmetric random walk with normal distributed step
length (with the parameter µ = 0 and σ2 = 4) on the lattice (left Figure) and with
randomly chosen directions (right Figure).

8In order to choose the angle randomly we need a random number generator.
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Analogous to Remark 1 we can generalise the two-dimensional random walk to a Gaussian
two-dimensional random walk by assuming normal distributed step lengths. Figure 8
shows realisation of those Gaussian random walks on a lattice (left Figure) and with
randomly chosen direction (right Figure).

2.1.3 Applications

Random walks have been applied to numerous and also very different fields of research.

• Traditionally random walks are used in physics as simplified models of Brownian
motion and the random movement of molecules in liquids and gases.

• Applied to mathematical ecology, random walks are used to describe individual (an-
imal or even human) movements to model processes of biodiffusion and population
dynamics.

• In the finance sector, the random walk model is used to describe the fluctuating
movements of stock prices and other financial factors (However, empirical studies
found evidence for deviations from this theoretical model, especially due to the
existence of short and long term correlations).

• In population genetics the random walk hypothesis is used to analyse genetic drift.

• Probability models in lotteries and Las Vegas casinos use random walk models in
slot machines and to catch cheaters

• Google uses a random walk model in its search engine to provide the most relevant
search results

• The steel sections of Antony Gormley’s Quantum Cloud were arranged using a
computer model with a random walk algorithm starting from points on the surface
of an enlarged figure based on Gormley’s body that forms a residual outline at the
centre of the sculpture.

Figure 9: Antony Gormley’s Quantum Cloud
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• During World War II a random walk was used to model the distance that an escaped
prisoner of war would travel in a given time.

2.2 Diffusion model

Based on our gained insights from the theory of random walk we now develop the gen-
eral diffusion theory. We are especially interested in deriving spatial distribution results
of the dispersing population. In other words we assume a population with a sufficient
high number of individuals situated at x = 0 at time t = 0 and are interested in the
spatial distribution of this population as time progresses. That means we determine the
proportion of the population at any location x and time t under the assumption that
all individuals perform a random walk. This proportion is expressed by the continuous
variable u(t, x). Here we carry out the transition from discrete considerations in time and
space to continuous considerations in time and space9.

Figure 11 shows temporal change of the population distribution under the assumption
that every individual performs a random walk along a line.
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Figure 10: Spatial distribution of the population initially located at x = 0 for different
times t. This Figure shows the relative population density, so u(t, x) ∈ [0, 1].

Two effects are immediately obvious.

• With progressing time the population is averaged out over space. We observe a
dispersal behaviour which is directed from highly populated areas to less populated
areas and the system reaches its equilibrium10 if there are the same number of
individuals in every location x.

• The frequency distributions at times t of the population consisting ofM individuals

9This fact implies that the diffusion approach is only suited for large populations.
10Equilibrium means in this case that the proportion of the population u does not change over time

any more.
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follows a normal distribution. It yields

u(x, t) =
M

2
√
πDt

exp

(

− x2

4Dt

)

(3)

which is the solution of the diffusion equation

∂u

∂t
(t, x) = D4u(t, x). (4)

The mathematical symbol4 defines the Laplacian operator, which is the mathemat-
ical description of the process of moving the population from local spatial regions
of high density to those of a lower density and D is the diffusivity affecting the rate
at which the population moves down these gradients. The higher D the faster the
dispersal occurs.

Mathematical derivation of the diffusion equation. We derive the recursion
equation for the probability p(t, x) that a single particle is at time t at point x or
equivalently the fraction of a population of individuals that are at location x at time
t. This equivalence is given due to the independence of the individual motions in this
simple model. Given the spatial and temporal step lengths ∆x and ∆t the recursion
equation on p takes the form

p(t, x) =
1

2
p(t−∆t, x+∆x) +

1

2
p(t−∆t, x−∆x)

because of the assumption that all individuals move every time step. Expanding the
right hand side into a Taylor series we obtain

∂p

∂t
=

(

(∆x)2

2∆t

)

∂2p

∂x2
+

(

∆t

2

)

∂2p

∂t2
+ . . .

To derive a continuous approximation of this formulation ∆x and ∆t must tend to
zero in a manner that the limit

D = lim
λ,τ→0

λ2

2τ

exists. We obtain
∂p

∂t
= D

∂2p

∂x2
.

If the total number of released particles is M then the concentration of particles is
given by u(t, x) =Mp(t, x).

Summarising we can say, that the diffusion model is built on the random walk hypothesis
for the individual’s movement, however, its strength lies in the macro-level description
of the populations dispersal pattern in time and space. Equation (4) establishes the
relationship between random walks as a description of movement of individual members of
some theoretical biological species and the diffusion equation as a description of dispersal
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of the population as a whole ([9]). We have seen that the dispersal is always directed
from regions of high population density to regions of low density and the speed of this
dispersal is determined by the diffusivity D.

2.2.1 Applications

The diffusion equation arises in the modeling of a number of different phenomena.

• The classical application in physics of equation (4) is to model heat transfer. Often
the diffusion equation is also called the heat equation.

• The diffusion equation is often used in financial mathematics to model the behaviour
of options. The famous Black – Scholes option pricing formula can be transformed
into the diffusion equation.

• The diffusion equation is also used to describe the spread of pollutants in water and
air.

2.3 Criticisms of the diffusion model∗

The main criticism of the diffusion model can be summarised by the model’s implica-
tion that individuals proceed with infinite velocity along completely random paths ([25]).
However, these in the literature often cited objections sound misleadingly drastic. The
infinite velocity is caused by a positive, although infinitesimally small, probability of an
individual moving an infinite distance from its present position. The complete random
paths are caused by deriving the spatial dispersal behaviour of the population based on
the assumption that each individual performs a symmetric random walk. This means
the individual’s movement becomes unpredictable even on the shortest scale ([25]). In
section 2.3.1 we address these problems by replacing the random walk hypothesis with a
correlated random walk model.

Further, we have seen that the resulting spatial distribution of the dispersal of a diffusive
population is normal (cf. equation (3)). But this hypothesis is partly disproved by
empirical consideration. There are a number of examples where the dispersal distribution
shows no normal but rather a leptokurtic pattern.

In the following we briefly introduce two generalisations of the diffusion theory which
address the listed problems.

2.3.1 Correlated random walk

Various statistical analysis, especially for the movements of animals, have shown that
their motions during a certain period of time have a tendency to proceed in the same
direction as in the period before (e.g. [44]). This leads to successive movements which are
not mutually independent. The random walk model, however, includes the assumption
that all successive movements are independent. Goldstein [20] proposed a random walk
model with correlated steps. The idea is that individuals are more likely to proceed in
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the direction of the previous movement. The correlation coefficient γ, a measure for the
strength of this ’following’ tendency between successive steps, is introduced.

If we now replace in the derivation of the diffusion equation the random walk hypothesis
by a random walk with correlated steps then the result is a slightly different equation,
the so called telegraph equation. The telegraph equation possesses elements from the
diffusion and wave motion and has properties which seem to be more realistic than those
of the diffusion equation to describe animal motion (cp. [44]). In particular, the dispersal
velocity is finite and the random paths become predictable on shorter scales.

Mathematical derivation of the telegraph equation. The derivation of the tele-
graph equation from a discrete correlated random walk is analogous to the derivation
of the diffusion equation from a random walk (see [44],[25] for details). We obtain

∂p

∂t
= −T

2

∂2p

∂t2
+
v2T

2

∂2p

∂x2
(5)

where v is the individuals finite velocity and T is the duration of the walk correlation.
The telegraph equation possesses both diffusion and wave motions. However for
t >> T the telegraph equation (5) can be approximated by a diffusion equation of
the form

∂p

∂t
=
v2T

2

∂2p

∂x2

where the diffusivity is expressed by v2T/2 [44].

However, if we are interested in time periods which are much longer than the duration of
the walk correlation the differences between the solutions of the diffusion and telegraph
equation (that means the obtained population dispersal under the random walk and the
correlated random walk hypothesis, respectively) are negligible (see Figure 11 and [25] for
a discussion).

2.3.2 Leptokurtic distribution of dispersal

The diffusion model (4) predicts that the dispersal pattern of the population can be
described by a normal distribution. However, this hypothesis is challenged by empir-
ical results. Drobzhansky and Wright found that the spatial dispersal distribution of
Drosophila does not show a normal but rather a leptokurtic shape ([12]). In terms of
shape, a leptokurtic distribution has a more acute peak around the mean (meaning a
higher probability than a normally distributed variable of values near the mean) and fat-
ter tails (meaning a higher probability than a normally distributed variable of extreme
values) (cf. Figure 12 where the blue lines represents a normal distribution and the red
and green lines two leptokurtic distributions). This finding has been confirmed by a num-
ber of statistical analyses for different dispersal patterns (e.g. dispersal of ringed birds
in England and Ireland [46], dispersal of freshwater killifish [19]). Interestingly, data on
human dispersal also challenges the normal distribution assumption.
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Figure 11: Spatial distribution of a population at different times t1 (Figure A) and t2
(Figure B) with t1 < t2 under the random walk assumption resulting in the diffusion
equation and the correlated random walk assumption resulting in the telegraph equation.
From [25]

In general, human migration can be described by distributions of the distances between
birthplaces of paired persons. If the pairs are spouses, the distribution of matrimonial
distances which gives information on the distance of uniting gametes is obtained. If each
pair consist of parent and offspring, the distribution of parent-offspring distances which is
pertinent for the description of gene migration per generation is derived ([54]). Another
possibility is given by the analysis of the exploration range (that is the geographical area
which an individual has some probability of visiting in their life time (cf. [24])). Different
studies on marriage distances (e.g. [10],[11],[38],[45]) have shown that human dispersal
also shows a leptokurtic pattern.

In order to account for the fact of leptokurtic dispersal pattern we generalise our diffusion
model (4) by modifying the step length assumption of the random walk model. So far
individuals are only allowed to migrate within their neighbourhood and therefore the
diffusion model (4) cannot replicate long-range dispersal with plausible values for human
mobility. In order to explore the effects of long-range dispersal we allow for step lengths
which follow a ’heavy tailed’ distribution as shown in Figure 12. In doing so we replace the
mathematical description of the diffusion process (the Laplace operator 4) by a so called
dispersal kernel formulation which results (under suitable parameterisation) in leptokurtic
dispersal patterns of the population.
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Figure 12: Different distribution functions. The blue line shows the normal distribution
(N (0, 2)) and the red and green lines Cauchy distributions (which belong to the class of
leptokurtic distributions) with the variances 2 and 4 respectively.

Dispersal kernel formulation. So far we assumed that human dispersal can be
described by a diffusion process using the locally acting Laplace operator 4. This
implies that individuals interact only within their neighbourhood and therefore the
standard diffusion approach (4) cannot replicate very fast demic expansion or long-
range dispersal with plausible values for human mobility and reproduction. In order
to explore the effects of long-range dispersal on the dispersal dynamic of the popula-
tion we replace the diffusion term D4u by the integral formulation

λ





∫

D

u(t, x+ δ)ϕ(δ)dδ − u(t, x)



 .

The variable u represents again the space- and time-dependent proportion of the pop-
ulation. The kernel function ϕ(δ) defines the probability distribution of the dispersal
lengths δ. Figure 12 shows examples of such kernels. It is obvious that large dis-
persal lengths δ are rare but occur with positive probabilities. The coefficient λ can
be interpreted as a measure of the dispersal rate. A detailed mathematical review of
such dispersal models can be found e.g. in [36],[15].

3 Reaction

After modelling dispersal phenomena we turn our attention to growth processes. Here we
understand growth as the increase or decrease of the variable of interest (e.g. population
size, number of individuals who use a new technology) due to intrinsic birth-death pro-
cesses. Similar to diffusion dynamics, where Fick’s law provided the fundamental principle
growth behaviour can be characterised by a very small number of basic concepts such as
the Malthusian or the logistic growth model. The Malthusian law of growth proposes that
the human population of a nation grows exponentially (at least for a while). Contrarily,
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the logistic law postulates that the rate of growth is proportional to both the present
population size and the amount of available resources and is therefore bounded if the
amount of resources are limited.

In the following we introduce four fundamental growth models

• the exponential growth,

• the logistic growth,

• the confined exponential growth,

• the Gompertz growth

and discuss their mathematical formulation, properties and applicability to different
growth situations. The considerations are based on the textbook by Robert B. Banks
([7]).

3.1 Exponential growth function

Thomas R. Malthus (who published one of the earliest and most influential books on
population growth: ’An Essay on the Principle of Population’) proposed a population
growth model which is essentially exponential growth. This means that the growth rate
is proportional to the population’s current size11. The mathematical formulation of the
exponential growth model has the form

∂u

∂t
(t) = au(t) (6)

where the growth rate ∂u
∂t

describes the temporal change of the population size and a
stands for the intrinsic growth coefficient which represents the proportional increase of
the population size u per unit of time. The solution of this differential equation is given
by

u(t) = u0e
at (7)

which describes the growth process of the population over time starting from the initial
population size u0. If the growth coefficient a is positive we observe an increase in pop-
ulation size whereas a negative a implies a decrease in population size. Further, we can
derive that for positive growth coefficients a model (6) results in unbounded growth. The
growth rate (or in other words the increase of the population size from one time step to
the other) is always positive and therefore after a finite time period the magnitude of the
population size u goes towards infinity (cf. red dashed line in Figure 14).

This unbounded growth property reduces the applicability of model (6) in practise. Ex-
ponential growth models of physical phenomena only apply within limited periods, as
unbounded growth is not physically realistic.

11Very generally the growth rate can be determined from empirical data by calculating the quotient

population size at the end of the period− population size at the beginning of the period

population size at the beginning of the period
.
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3.1.1 Applications

• The exponential function is a good model for the growth of the population of the
United States in the time period from 1790-1870. After this time period (following
the end of the civil war) a crowding effect began to be felt so that there were no
circumstances for unbounded growth. This decelerated growth is well described by
the logistic equation which we consider in the next section.

• There are many other examples for exponential growth during a short period of
time. But because of the property of unboundedness we can not describe a whole
growth process with this function.

• A virus (for example SARS, West Nile or smallpox) will typically spread exponen-
tially at first, if no artificial immunization is available. Each infected person can
infect multiple new people.

• Nuclear chain reaction (the concept behind nuclear weapons). Each uranium nu-
cleus that undergoes fission produces multiple neutrons, each of which can be ab-
sorbed by adjacent uranium atoms, causing them to fission in turn. ”Due to the
exponential rate of increase, at any point in the chain reaction 99% of the en-
ergy will have been released in the last 4.6 generations. It is a reasonable ap-
proximation to think of the first 53 generations as a latency period leading up
to the actual explosion, which only takes 34 generations.” (Sublette, Carey. ”In-
troduction to Nuclear Weapon Physics and Design”. Nuclear Weapons Archive.
http://nuclearweaponarchive.org/Nwfaq/Nfaq2.html. Retrieved 2010-08-09.)

3.1.2 Gompertz model*

One possibility to construct a more realistic approach is to consider a temporally varying
growth rate

a(t) = a0e
−kt

where a0 is a chosen initial value and k > 0 the decay coefficient. This results in the well-
known Gompertz model which is defined by equation (6) with a exponential decreasing
growth rate a(t)12

∂u

∂t
(t) = a(t)u(t) = a0e

−ktu(t). (8)

In this case the growth dynamic is determined by

u(t) = u0e
(a0

k
(1−e−kt)). (9)

From this equation we can derive the following relationship

u(t) = u? = u0e
a0

k for t→∞. (10)

The term u? represents the asymptotic value of the population size u for sufficiently long
times t and can be seen as a carrying capacity (which can be interpreted as an upper

12Note, that for k = 0 equation (9) reduces to the exponential function (6).
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boundary of the population size) but it is not a result of a crowding effect rather than the
result of opposite growth directions of both, the growth coefficient a and the population
size u. Figure 13 shows the growth dynamic for different values of the coefficient k. It is
obvious that the smaller k the higher is u? and the more the Gompertz growth resembles
the exponential growth model.
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Figure 13: Gompertz curves with u0 = 20, a0 = 0.5

3.2 Logistic growth function

Pierre Franois Verhulst suggested in 1844 a different growth model where the rate of
growth is proportional to both the present population size and the amount of available
resources. In this way the growth is bounded due to limitation of resources (such as food
resources, living space, etc.). The resulting model, the so called logistic growth model, is
self-limiting if the population becomes too large. It balances the competing dynamics of
exponential growth and environmental limitation.

As in the previous section the variable u describes the population size and the logistic
growth model is formalised by the following equation

∂u

∂t
= a

(

1− u

K

)

u (11)

where a is the growth coefficient and K describes the carrying capacity of the environment
(an upper boundary for population size ([13]), which is usually determined by the given
sustaining resources).

The population dynamic given by the logistic growth model (11) is given by

u(t) =
u0Ke

at

K + u0(eat − 1)
with the initial population size u(0) = u0. (12)

Consequently for positive growth coefficients a the population size, whose temporal dy-
namic is described by equation (12), converges against K for sufficiently large times t.
This means the growth is bounded by the carrying capacity K13.

13Note that for K → ∞ equation (12) reduces to the case of exponential growth.

23



If we examine equation (11) more closely we find that in early unimpeded periods where
u ¿ K holds the growth rate ∂u/∂t is mainly determined by the first term +au. The
value of the growth coefficient a represents the proportional increase of the population
size u per unit of time. As time progresses and the population size increases, the second
term, which multiplied out is −au2/K, becomes more dominant because some members
of the population interfere with each other by competing for some critical resource, such
as food or living space. This antagonistic effect is called bottleneck, and its strength is
modelled by the value of the carrying capacity K. The competition for resources between
the members of the population diminishes the growth rate, until the population size u
ceases to grow (what is called maturity of the population).

These effects are clearly shown in Figure 14. For every small initial population size
0 < u0 ¿ K the population grows initially similar to an exponential growth model (cf.
solid and dashed red lines), however, if the population size gets larger the growth rate
becomes smaller resulting in a much slower growth. Finally the population size reaches
the carrying capacity K and the growth is ceased off. If the initial value u0 is larger then
K the sign of the term

(

1− u
K

)

changes and the population size decreases until it has
reached the size K (cf. the case u0 = 150 in Figure 14).
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Figure 14: Logistic functions with jajajajajaja
u0 = 0.1; 10; 50; 150
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Figure 15: Logistic functions with jajajajajaja
a = 0.01; 0.1; 0.5; 1; 2

Figure 15 shows the influence of the growth coefficient a (assuming a > 0) on the growth
dynamic. As stated above a represents the proportional increase of the population size
u per unit of time and is consequently a measure of how fast the carrying capacity K is
reached. It is obvious that the greater the growth coefficient a the faster the equilibrium
K is reached.

3.2.1 Applications

In the following we list a number of important applications of the logistic growth model.

• As mentioned in section 3.1 the logistic growth function can be used for describing
certain time periods of the development of different human or animal populations.
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• Another application of the logistic curve is in medicine, where the logistic differential
equation is used to model the growth of tumors.

• In the social learning theory the adoption curve of the spread of an innovation
through a population by social learning shows a logistic growth pattern.

• In linguistics, the logistic function is supposed to model language change. An in-
novation which is marginal at first begins to spread quickly with time and by the
end of this process there remains only a very small number of items that did not
undergo the change in question.

• The logistic equation (12) can provide an appropriate framework for the analysis
and display of data concerning technology substitutions. In terms of the theory of
innovation diffusion it can be said: The transfer rate (growth rate) ∂u

∂t
is treated

solely as a function of interpersonal communication or social interaction between
prior adopters and potential adopters in a social system (cp. [33]). It is a basis for
personal, pure interaction mechanism for transfer.

3.3 Confined exponential growth function

We have seen that the logistic growth model is an appropriate framework to describe
personal, pure interaction mechanism for the transmission of information. In this context
a different growth model, the confined exponential growth, has been proposed to model
pure impersonal transmission of information.

The confined exponential growth model is a bounded growth process which can be de-
scribed by the following equation

∂u

∂t
(t) = a(K − u(t)) = aK − au(t) (13)

where a is the growth (or transfer) coefficient and K the carrying capacity. The solution
of the equation above, the magnitude of population size at any given point in time, is
given by

u(t) = K − (K − u0)e
−at with the initial population size u(0) = u0 (14)

where the population size u approaches K for sufficient long times t. This simple type of
exponential growth is always confined to a region bounded by K. The growth dynamic
given by equation (14) is illustrated in Figure 16 (solid lines) for different initial population
sizes u0 = 0.1; 10; 50; 150, a carrying capacity K = 100 and a growth coefficient a = 1.0.
It is obvious that as time progresses the population size converges toward the carrying
capacity K. Figure 17 shows the influence of the coefficient a on the growth dynamic.
As in the case of logistic growth we obtain that the greater the growth coefficient a the
faster the equilibrium K is reached. However, if we compare the logistic growth dynamic
given by equation (12) with the dynamic of the confined exponential growth given by
equation (14) (cf. dotted and dashed red lines). While the logistic growth resembles
exponential growth for small population sizes u (which is characterised by small growth
rates for small population size due to assumed proportionality between growth rate and
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current population size) confined exponential growth has its maximum growth rates for
small population sizes u. It is often stated in the literature that logistic growth leads
to an S-shaped growth curve whereas confined exponential growth leads to a r-shaped
growth curve.
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3.3.1 Applications

• In contrast to the logistic equation (12) the considered confined exponential equation
can be a model for a impersonal, pure source mechanism for transfer of innovations.
In that context the constant a is defined as a measure of external influence emanating
from outside the social system, e.g. the effect on mass media communication (cp.
[33]). The model does not contribute to any interactions within the population and
therefore it is only applicable if e.g. adequate information about the innovation is
only available from a source external to the social system.

• In the social learning theory adoption curves of the spread of an innovation through
the population resulting from asocial learning are mainly r-shaped.

4 Diffusion-reaction systems

After considering different approaches for describing dispersal and growth phenomena sep-
arately we now study the population dynamic obtained by combining both mechanisms.
We allow the population to grow and to disperse at the same time and are interested in
the temporal and spatial behaviour of the population size under different growth models
(exponential growth, logistic growth, confined exponential growth, Gompertz growth).
We analyse so called diffusion-reaction systems of the form

∂u

∂t
(t, x) = D4 u(t, x) + f(u). (15)

where the time- and space dependent function u again describes the population size at any
location x and time t. The temporal change of the population size at location x is given
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by the diffusion component D4u(t, x) and the growth component f(u). We will see that
depending on the chosen growth model we obtain very different population dynamics.

For the solution (that means an analytic expression of the function u(t, x) which
describes the population size at every location x and time t) of such partial differential
equations we need to specify initial and boundary conditions. We assume that we
are only interested in the behaviour of the population in a bounded domain D and
therefore define equation (15) only over the domain D. The considered domain can
be of almost any shape. We set the following initial condition

u(0, x) = u0, x ∈ D

which defines the population size at time t = 0 in the considered domain and the
boundary condition

u(t, x) = 0, x ∈ ∂D

which defines the behaviour of the population at the boundary. In this case we assume
that no member of the population can occupy the boundary ∂D, the population size
is zero at all times t. There are other possibilities for defining boundary conditions.
E.g. we can assume

∂u

∂n
(t, x) = 0, x ∈ ∂D

what means there is no diffusion possible beyond the boundary ∂D. This assumption
would be fulfilled if we imagine D as isolated by natural barriers, preventing exchange
with the wider world.

4.1 Diffusion-reaction system with exponential growth

In the case of the exponential growth model the population dynamic is described by

∂u

∂t
(t, x) = D4 u(t, x) + au(t, x). (16)

In the following we will consider the population dynamic on a rectangular area D but for
the sake of better visualisation we will only analyse the spread and growth process along
a cut through the area, that means along a line.

Figure 18 shows the spatial distribution of the population (based on equation (16 with
the parameters D = 10 and a = 1.0) along the line for different times.

At time t = 0 the population is assumed to be uniformly distributed in a small area (cf.
Figure 18a). Then time progresses, growth and dispersal occurs and Figures 18b-d show
the population dynamic at different times t1 < t2 < t3. Remembering the properties of
the exponential growth function it is not surprising that the density grows unboundedly
and after a finite time the whole domain D is occupied (cf. Figures 18b-d). However, we
see that due to the chosen boundary condition the population size is always zero at the
boundaries.
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Figure 18: Population density at different times t0, t1, t2 t3

4.2 Diffusion-reaction system with logistic growth

By far the most widely used dispersal-growth model is obtained by modelling the growth
component in equation (15) as a logistic growth process. We obtain

∂u

∂t
(t, x) = D4 u(t, x) + au(t, x)

(

1− u(t, x)

K

)

. (17)

Analogous to the case of exponential growth consider the obtained population dynamics
(for the same parameter values D = 10 and a = 1.0) at the times t0 < t1 < t2 < t3.
Further, the carrying capacity (the upper limit of the population size) K is set to be 100.
Initially the population is uniformly distributed in a small area (cf. Figure 19a). Now
time progresses and diffusion and growth occurs. As the initial population size is smaller
than the carrying capacity the population grows until the K is reached which happens
roughly at time t1 (cf. Figure 19b). Now the spatial spread pattern of the population can
be described as a travelling wave (cf. grey boxes in Figures 19b-d). We see that once the
wave front is formed it does not change its shape as time progresses.
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Figure 19: Population density at different times t0, t1, t2 t3

It can be shown that the wave front (the grey boxes in Figures 19b-d), over which the
population changes from a high to a low density is dependent on the diffusivity D and
the growth coefficient a and it holds the following relationship for the wave width

ξ ∼
√

D/a.

We can immediately derive that small values of a relative to those of D correspond to large
transition regions (or wave widths), and contrary small values of D relative to those of a
correspond to small transition regions (or wave widths). Another important characteristic
for describing population dispersal is the speed with which the wave travels. It can be
shown that the wave speed ν is also dependent on a and D. It holds

ν = 2
√
Da.

The higher the diffusivity D and/or the growth coefficient a the faster the wave travels.
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Estimation of the parameter D and a. If applied to human dispersal the dif-
fusivity D represents the degree of mobility of an individual (e.g. [3]). In general
individuals will move from their birthplace a distance λ during their generation time
τ . The square of this distance will in general be proportional to the time available;
the constant of proportionality is the diffusion constant D

D = λ2/4τ.

A good proxy of this distance λ is the marriage distance. The growth coefficient a is
comparable easy to estimate. The quotient

population size at the end of the period− population size at the beginning of the period

population size at the beginning of the period

gives us an estimate for au/K. By adjusting for u/K we obtain the desired growth
rate a.

4.2.1 Applications

• Equation (17) is also known as the Fisher-Kolmogoroff equation. Fisher suggested
this model in [17] as a model for the spatial spread of a favored gene in a population.
In this context the coefficient a is a measure for the benefit induced by this gene.

• Many human dispersal phenomena are described using equation (17) (cf. the spread
of hunter-gatherers into North America, spread of agriculture)

4.3 Diffusion-reaction system with confined exponential growth

In this section we assume the confined exponential growth model and describe the dispersal-
growth process of the population by

∂u

∂t
(t, x) = D4 u(t, x) + a (K − u(t, x)) .

We assume the same model parameter as before (D = 10, a = 1, K = 100) and again
start with a population which is uniformly distributed over an small area at time t = 0 (cf.
Figure 20a). With the first time step the part aK of the reaction term a(K−u(t, x)) acts
on the whole domain D and causes the population size to be instantaneously increased over
the whole domain (cp. Figures 20b-d). Due to the properties of the confined exponential
growth the population grows until the carrying capacity K is reached.
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Figure 20: Population density at different times t0, t1, t2 t3

These Figures illustrate nicely that the confined exponential growth function is a model
for impersonal, pure source mechanism for transfer of innovations and is not a model for
any interactions within the population.

4.4 Diffusion-reaction system with Gompertz growth

Lastly we consider the impacts of the Gompertz model on the population dynamic by
analysing the equation

∂u

∂t
(t, x) = D4 u(t, x) + a0e

−ktu(t, x).

Again we use the same parameter constellation (D = 10, a = 1) as in the previous
sections and set k = 0.3107, so according to equation (10) the intrinsic carrying capacity
of the Gompertz growth function has the value 100. Starting off with a population initially
uniformly distributed over a small area (cp. Figure 21a) we obtain an interesting dynamic
as time progresses (cf. Figures 21b-d).

The population grows but the growth coefficient a(t) = a0e
−0.3107t decreases exponentially

and at a certain time t the diffusion is “stronger” than the reaction. The diffusion causes
dispersal of the population and that’s why the intrinsic carrying capacity u? = 100 (cp.
equation (10)) for the Gompertz growth function will not be reached (see Figure 21b).
After the time t the effect of the diffusion is obvious - the population spreads out and the
reaction or growth term is negligibly small (see Figure 21d).
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Figure 21: Population density at different times t0, t1, t2 t3

5 Interaction between dispersing populations

So far we focused on describing the dispersal pattern of a single population in an unoc-
cupied habitat. But what happens if the dispersing population comes into contact with
other populations? Depending on the kind of interaction one would expect significant
changes in the dispersal patterns. Very generally interactions can be divided into three
groups ([41])

• Prey-predator interactions: If the growth rate of one population is increased
but decreased for the other then we are in a predator-prey situation.

• Competition: If the presence of the other population decreases the growth rate
for both populations then we are in a competition situation.

• Mutualism: If each population’s growth rate is enhanced then it’s called mutual-
ism.

In this section we study how those interactions can be modelled and describe their in-
fluence on the population dispersal dynamic. The first and very influential approaches
of modelling population interactions go back to V. Volterra and A. Lotka who indepen-
dently derived equations to describe the dynamics of interacting species in an ecological
context14. They showed that the simplest of ecosystems, involving only a predator and

14While Volterra ([52]) derived this model to explain the oscillatory levels of certain fish catches in
the Adriatic Lotka ([31]) derived the equations from a hypothetical chemical reaction which exhibited
periodic behaviour in the chemical concentration ([41]).
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prey species, could go through endless cycles of changing population size as the growth
of the prey population produces an increase in the predator population. That in turn
leads to a decline in the prey population, which is followed by a decline in the predator
population. Interestingly S. Levin quotes that “Volterra’s greatest contribution was not
his specific equations, but rather in the heterodox idea that sophisticated mathematical
methods could be used to understand the dynamics of natural systems”([30]).

In the following we analyse the prey-predator and competition situation in more detail.
For consideration of mutualism we refer to [41].

5.1 Prey-Predator models

When predators are successful at catching prey they will reproduce more reliably and
their species will increase in numbers whereas the numbers of their prey will fall. However,
the larger predators population will struggle to find enough food to support them and
their numbers will fall because of the reduced population of prey species. Eventually the
situation will reverse itself as the number of prey increase due to less predation. If the
ecosystem is large enough and other factors do not have an excessive effect, this can result
in a situation in which populations of predator and prey rise and fall at regular intervals,
with a small time lag between them. This dynamic is described mathematically by the
following Lotka-Volterra system

∂N

∂t
= N(a− bP ) (18)

∂P

∂t
= P (cN − d).

The time-dependent variables N and P stand for the population sizes of the prey and
predator population, respectively, and the terms ∂N/∂t and ∂P/∂t define the temporal
change in frequency of both populations. In the absence of any predators (that means
P = 0) the prey grows exponentially, modelled by the term aN (a > 0). So the coefficient
a is the intrinsic growth rate of the prey population if no interactions with the predator
population occur. The effect of predation is to reduce the growth aN by the term −bPN
(b > 0) which is proportional to both, the prey and the predator population. In the
absence of any prey (that means N = 0) the predator population is reduced exponentially
which is modelled by the term −dP (d > 0). Lastly the predators growth is dependent
on the availability of prey and therefore is modelled by the term cPN (c > 0). Figure 22
shows exemplified a solution of system (18). We see clearly the described cyclic pattern in
the prey and predator population over time and the small time gap between both cycles.
Naturally the prey reaches its peak first.

Figure 23 shows a real-life example of prey-predator interactions. It illustrates data on
Canadian lynx-snowshoe hare interactions in the fur catch records of the Hudson Bay
Company from about 1845 until the 1930s. It is assumed that the numbers reflect a
fixed proportion of the total population of these animals. Although this assumption is
questionable the data represent one of the few long term records available. We clearly see
the periodic behaviour of both population sizes and also the time gap between the cycles.
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Figure 22: Example of the time course of a prey and predator interaction.

Figure 23: (left) Changes of the abundance of the lynx and the snowshoe hare, as indicated
by the number of pelts received by the Hudson’s Bay company. Redrawn from [43] (right)
Prey-predator interaction (www.nationalforestlawblog.com)

However, the introduced Lotka-Volterra model has some serious shortcomings that reduce
its applicability. The solutions of system (18) (as exemplarily shown in Figure 22) are
not structurally stable meaning that very small perturbations of the system can result
in a significant change at least in the amplitude of the oscillations. The solution is not
robust against small changes/uncertainties in the model parameters. This is caused by
unrealistic assumptions (such as the unbounded prey growth in absence of predators).
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Generalisation of the Lotka-Volterra system. To address the mentioned short-
coming and to obtain a structurally stable solution we follow [41] and generalise
approach (18) to

∂N

∂t
= NF (N,P )

∂P

∂t
= PG(N,P )

where the particular form of the functions F and G depends on various factors such
as the kind of interactions, the interacting species, etc. A reasonable choice for F is

r

(

1− N

K

)

− PR(N)

where the growth of the prey population in absence of predators shows a logistic
pattern and is therefore bounded by the carrying capacity K. Further, the predation
term PR(N) which is a functional response of the predators to changes in the prey
density is assumed to be bounded, too ([41]). Hence we replaced the predation term
bNP in the Lotka-Volterra model (18) by the bounded expression PNR(N). The
function G can be modelled by

G(P,N) = k

(

1− hP
N

)

.

Here the carrying capacity (a measure for the maximum population size) of the
predators is directly proportional to the prey density ([41]).

5.2 Competition models

Not all populations show a prey-predator relationship. In this section we consider situa-
tions where two or more species compete for some limiting resource. This limiting resource
can be food or nutrients, space, mates, nesting sites, in general anything for which de-
mand is greater than supply. The pure presence of a competitor, or even more extreme
if the competitor has an advantage in exploiting the resources, will negatively affect the
growth rate of the population. This naturally influences the population dynamics of the
competitor, too.

The competition dynamic between two populations can be described by the following
model

∂u1

∂t
= d14u1 + a1u1

(

1− u1

K1

− c1
u2

K1

)

(19)

∂u2

∂t
= d24u2 + a2u2

(

1− u2

K2

− c2
u1

K2

)

where u1 and u2 stand for the frequencies of population 1 and 2, respectively. Spatial
dispersal is modelled by the diffusion processes di4ui where di describes the diffusivity
of both populations (meaning the rate at which both populations move to areas which
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are not occupied by this population). In the absence of the other population (either
u1 = 0 or u2 = 0 in the whole considered area) system (19) reduces to equation (17).
The interactions between the populations are defined by the competition terms c1u2/K1

and c2u1/K2. The constants ci, i = 1, 2 define the competition coefficients representing
the influence of the competitor on the growth of each population i. The higher the
competition coefficient ci the more is the growth of population i restricted by the presence
of the other population. The outcome of the competition is either coexistence between
the two populations or competitive exclusion (which means that one population will go
extinct in the long run). Which of both possible outcomes is reached is determined by
the carrying capacities Ki (defining the upper boundary of the respective population size)
and the competition coefficients ci. We obtain coexistence if it yields

c1 < K1/K2 and c2 < K2/K1

([42]). Figure 24 shows an example of the coexistence situation where population 1 (red
lines) has a slight competitive advantage. We start with a spatial distribution of both
populations as illustrated in Figure 24a, so both populations are initially separated. Now
time goes on, dispersal and growth occurs and both populations come into contact. They
interact and due to the competitive advantage of population 1 it is able to establish itself
at a higher frequency, however both populations coexist (cf. Figure 24d).
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Figure 24: Densities at different times t0, t1, t2 t3 for population 1 (red lines) and popu-
lation 2 (blue lines)

Contrary, competitive exclusion is reached if it holds

cj > Kj/Ki and ci < Ki/Kj

(with population j going extinct). Further, if it yields

c1 > K1/K2 and c2 > K2/K1,
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then eventually one population will go extinct, but which one depends on the initial
frequencies ([42]). Figure 25 shows an example of the extinction situation. We assume
the same situation as in Figure 24 but increase the competitive advantage of population
1 (that means decrease c1 and/or increase c2). We observe that now coexistence is no
longer possible. The presence of population 1 in the same domain drives population 2 to
extinction (cf. Figure 25d).
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Figure 25: Densities at different times t0, t1, t2 t3 for population 1 (red lines) and popu-
lation 2 (blue lines)

Remark 2. In many-real world applications (especially if we consider the spread of
competing cultural traits) the competition terms are actually shift terms c1u1u1/K1 =
cu1u2/K and c2u1u1/K2 = −cu1u2/K. That means the gain of one population is the loss
of the other. Further, we assumed so far that both populations have their own carrying
capacity K1 and K2 which is a realistic assumption when we consider the interactions
between different species. In this context the carrying capacities represent the maximum
population sizes of species that an area can support without reducing its ability to support
the same species in the future ([13]). But in the cases where we consider the competition
between two populations of the same species that happen to carry two different cultural
traits (examples of those traits are language, life style, ethnicity, etc.) the assumption
of two separate carrying capacities is not appropriate. So unless socioeconomic factors
create entirely separate niches for each cultural trait and its speakers, there should be
only one upper boundary for population size, the maximum number of individuals which
is supported by a given area, regardless of the carried cultural trait. Here we introduce the
concept of a common carrying capacity K. That means that the frequencies of individuals
carrying cultural trait 1 (our population 1) and cultural trait 2 (our population 2) have
to fulfill the condition

u1 + u2 ≤ K,

where K stands for the common carrying capacity. This condition changes the growth
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dynamics of both languages even in the absence of competition. Assuming u2 is fixed then
the frequency of population 1 must be less than or equal to K − u2 so that the condition
u1 + u2 ≤ K is met. In other words, the population sizes u1 and u2 can grow only until
(respectively) K − u2 and K − u1 are reached. That leads to modified logistic growth
functions of the form

a1u1

(

1− u1

K − u2

)

and a2u2

(

1− u2

K − u1

)

.

Generalisations of this model have been applied e.g. to problems of language shift (e.g.[1],
[47],[37],[28]) or to model the interactions between Neolithic farmers and mesolithic hunter-
gatherers ([4],[5]).

5.2.1 Language shift

In this section we briefly demonstrate how competition models are applied to describe
the phenomenon of language shift. We define language shift as the process where mem-
bers of a community in which more than one language is spoken abandon their original
vernacular language in favour of another. Membership of a community defined by its lan-
guage selectively facilitates and inhibits interaction, enables entry into social contracts and
co-operative exchange, and gives access to a reservoir of accumulated and linguistically-
encoded knowledge. In cases of language contact, therefore, people are inevitably con-
fronted with difficult choices about which language they wish or need to speak. The major
driver of language shift is the decision to abandon a more local or less prestigious lan-
guage, typically because the target of the shift is a language seen as more modern, useful,
or giving access to greater social mobility and economic opportunities ([34],[8],[39]).

In [28] we model the dynamics of language shift as a competition process in which the
numbers of speakers of each language vary as a function both of internal recruitment (as
the net outcome of birth, death, immigration and emigration rates of native speakers),
and of gains and losses due to language shift. That means we examine the dynamics of
language shift as a spatially-dependent competitive process using the reaction-diffusion
system

∂u1

∂t
= d14 u1 + a1u1

(

1− u1

K − (u2 + u3)

)

−c13u1u3+c12u1u2 (20)

∂u2

∂t
= d24 u2 + a2u2

(

1− u2

K − (u1 + u3)

)

+c13u1u3+c31u1u3

−c12u1u2−c32u2u3

∂u3

∂t
= d34 u3 + a3u3

(

1− u3

K − (u1 + u2)

)

−c31u1u3+c32u2u3

with the boundary conditions ∂ui/∂n = 0, x ∈ ∂D, i = 1, 2, 3 where ∂/∂n is the outer
normal derivation. The time- and space-dependent variables u1 and u3 stand for the
frequencies of monolingual speakers of Language A and Language B respectively, whereas
u2 describes the frequency of bilingual speakers of both languages. The terms ∂ui/∂t,
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i = 1, 2, 3 indicate the rate of change in these frequencies over time. The terms on the
right hand side of the equations in system (20) describe the changes in frequency of
speakers in each of the three subpopulations u1, u2 and u3. The components aiui(1 −
ui/(K−(uj+uk)) define the internal reproductive rates, which represent coupled biological
and cultural reproduction within each sub-population. This is usually modelled (as shown
here) as a logistic process with intrinsic rate of increase ai. The variable K stands for the
carrying capacity of the environment and defines an upper limit to the size of the whole
population regardless of the languages spoken, which imposes the condition u1+u2+u3 ≤
K for any time t (i.e. we assume that our human sub-populations must compete for
a common resource base). The mobility of speakers of each sub-population in space
within the modelled region is modelled by the diffusion terms di4ui. The language shift
dynamic is modelled in system (20) by the frequency-dependent conversion term cijuiuj.
The coefficients c13 and c31 represent the likelihood of language shift causing speakers to
become bilingual based on the differential prestige or attractiveness of the two competing
languages. Following ([37]) we assume c13 = c̃13(1− s) and c31 = c̃31s where the variable
s describes the social status differences between the two languages on a scale from 0 to
1. The higher the status of a language the higher is the likelihood of being the preferred
target of shifting. The coefficients c̃13 and c̃31 model the likelihood that monolinguals will
respond to these status differences by learning the other language. Language shift cannot
happen by passing directly from being monolingual in one language to being monolingual
in the other language, but must involve a bilingual transition state (cf. Figure 26).
The bilingual sub-population therefore recruits from both monolingual sub-populations
at a rate (c13 + c31)u1u3. In turn, bilinguals shift to being monolingual in one or other
language at a rate c12u1u2 (representing the loss to monolingualism in Language A) and
c32u3u2 (representing the loss to monolingualism in Language B). The coefficients c12 and
c32 represent the likelihood of bilingual speakers then becoming monolingual in each of
the two languages. In real life this transition back to monolingualism happens when
bilingual parents choose to raise their children monolingually, or when speakers reared as
bilinguals in bilingual households abandon one of their languages during their lifetime.
We define the overall balance of competitive advantage to speaking each language on the
base of the conversion rates: for example, fluency in Language A can be assumed to be
more advantageous if it holds that c31 < c13 and c12 > c32. This implies that when the
monolingual sub-populations are compared, monolinguals of Language A are less likely
to become bilingual, and bilinguals are more likely to shift to speaking only Language A.

Model (20) shift leads inevitably to the extinction of one or other monolingual sub-
population, followed by the extinction of the language itself in the bilingual commu-
nity. However, extinction may not always be the fate of the lower-status language. The
lower-status language can prevail, provided that its speakers have an initial numerical
advantage that outweighs their languages intrinsic status disadvantage. In formal terms,
and if overall population size is stable, this outcome requires that there are initially few
enough monolinguals in the high-status language, and enough pressure on them to become
bilingual, for it to always hold that c12u2 > c31u3.

This model has been successfully applied to the Gaelic-English competition in Western
Scotland (cf. [28]). The historical shift to English by Gaelic speakers of Scotland is a
particularly well-studied example of language competition, for which good census data
exists for the most recent 100-120. Figure 27 (solid lines) shows the change in the pro-
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Figure 26: Scheme of the assumed language shift dynamic.

portions of monolingual English- and Gaelic-speakers and bilinguals for the counties of
Argyll, Inverness, Ross & Cromarty and Sutherland during the time period 1891-1971.
These four counties are seen as the ’core land’ of the Gaelic language (’Gaidhealtachd’):
in 1891 73% of all Scotland’s Gaelic speakers were located among the 8% of Scotland’s
population that lived in these ’Highland Counties’, covering the mainland Highlands and
the Western Isles. It is obvious (cf. dashed lines in Figure 27) that our basic model
(20) captures the general dynamic of the past language shift process well (the decrease of
the Gaelic- and Welsh-monolingual and bilingual sub-populations and the increase of the
English-monolingual sub-population).

In order to use model (20) to make predictions about the future shift pattern we need to
assume that the cultural environment is unchanged. However, this has not been true in
the Gaelic-English competition situation. Recent revitalisation efforts have included the
establishing of Gaelic-medium pre-school and primary school units ([32]) and the devel-
opment of Gaelic-medium broadcasting ([40]). In 2005 the Gaelic Language (Scotland)
Act was passed by the Scottish Parliament, providing a planning framework for a number
of additional shift reversal measures, while Comhairle nan Eilean Siar, the Western Isles
Council, has adopted Gaelic as its primary language. Summarising, interventions have
been undertaken in order to improve the status and the presence of the Gaelic language
in Scotland and therefore the competition environment has been altered. To model the
effects of planned interventions we generalise in [28] the basic language shift model (20)
by incorporating a simplified concept of (extended) diglossia. While in the majority of
social domains the shift mechanisms of the basic model apply, diglossia pertains to some
restricted social domain in which the balance of competitive advantage differs from that
which drives the main shift process. Analysis of our diglossia model has shown (cf. [28])
that the key language planning issues for maintenance of an endangered language are

• to create or support social domains in which the endangered language is the preferred
or only acceptable medium of communication, and

• to increase the rate of intergenerational transmission of the endangered language.

Other important dimensions of language maintenance are the creation of economic in-
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Figure 27: . Frequencies of the three sub-populations in the four Scottish Highland
counties for the time period 1891-2010. Empirical data (solid lines) and predictions of
model (1) under the assumptions c31 = c32 and c13 = c12 (dotted lines) and c31 6= c32 and
c13 6= c12 (dashed lines) of the frequencies of Gaelic (blue), bilingual (green) and English
(red) speakers in Argyll (a), Inverness (b), Ross & Cromarty (c), Sutherland (d) over
time.

centives (e.g. jobs created to implement language planning-related initiatives and which
themselves require skills in the endangered language), and the establishment of corpora
of written texts in the endangered language as a cultural archive and as a medium of
continuing cultural self-expression. Without stabilizing a sustainable level of intergen-
erational transmission, language planners will have to rely on constant interventions in
formal public domains (e.g. in the school curriculum) to counter the continuing outflux
from bilingualism by individual households. An indication of one cause of this background
outflux from Gaelic-speaking bilingualism can be found in the 2001 Scottish census data
(Registrar General for Scotland (2005)): 70% of children aged 3-15 years speak Gaelic in
households in which a married or co-habiting couple both speak Gaelic, while the per-
centages are only 18% if the male partner alone speaks Gaelic, and 27% if the female
partner alone speaks Gaelic. This is the current reality of intergenerational transmission
in an environment where languages compete with very unequal external advantages.
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6 Documentation of the ’CultDiff’ software package

We have seen in the last sections that diffusion-reaction models are powerful tools for
modelling dispersal processes. However, we have also seen that in order to apply this
framework we need to solve a differential equation or even a system of differential equa-
tions. So contrary to agent-based simulations the application of the diffusion-reaction
approach requires some advanced mathematical knowledge.

To make this approach useable to a broader audience we started the open software project
’CultDiff’. The aim of this software package is to determine the solution of problems such
as e.g. (17) or (19) under specific assumptions for the model parameter or the shape of
the considered domain. ’CultDiff’ uses GNU Octave (a free software primarily intended
for numerical calculations which can be downloaded under
www.gnu.org/software/octave/download.html)15, however, the implementation of the math-
ematical solution technique itself is done in C++. A flow chart (cf. Figure 28) demon-
strates the succession of the various program steps. The red squares stand for Oc-
tave/MatLab parts which can be manipulated by the user, the green square characterises
the ’CultDiff’ core program (which carries out all necessary calculation step) and the blue
squares indicate the data flow between both parts.

Mesh , Data 

CultDiff out/*.txt 

Matlab/
Octave

Post−
processing

Matlab/Octave−
functions

Transferfile

Figure 28: ’CultDiff’ - Workflow

The heart of ’CultDiff’ is the implementation of the Finite Element Method (FEM) which
is a numerical procedure that enables us to find approximate solutions of partial differ-
ential equations or systems of partial differential equations. The Finite Element Method
envisions the considered domain D as built up of many small, interconnected subregions
or finite elements (such as triangles) and the basic idea of the method is that a considered
domain D can be approximated by replacing it with an assemblage of finite elements. So
a finite element solution gives a piecewise approximation to the original problem.

The discretisation of the domain D into finite elements is one crucial element of the theory.
Figure 29 shows exemplarily the discretisation of a rectangular domain into triangles.
The starting point is always the description of the domain geometry (in our case simply
the rectangle) and the coarsest triangulation of the domain (in our case two triangles, cf.
Figure 29 (left)). In every discretisation or refinement step each triangle will be subdivided
into four triangles and after four refinement steps the rectangle possesses a discretisation
as shown in Figure 29 (right). The discretisation procedure is automated in ’CultDiff’.
The user only needs to provide the description of the domain geometry and its coarse

15Of course if MatLab is available ’CultDiff’ can be used in exactly the same way.
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discretisation. It is important to note at this point that the finer the discretisation the
more accurate is the solution. However, a higher level of refinement of course increases
the calculation effort and therewith the calculation time. So the trick is to find a balance
between fast computation and accurate results.
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Figure 29: (left) The initial discretisation of a rectangle (right) and the obtained discreti-
sation after four refinement steps.

6.1 Dispersal of one population

We demonstrate now the use of ’CultDiff’ step by step on the following reaction-diffusion
problem with logistic growth (cf. section 4.2)

∂u

∂t
(t, x) = D4 u(t, x) + au(t, x)

(

1− u(t, x)

K

)

x ∈ D := [0, 1]× [0, 1]

with the boundary condition

∂u

∂n
(t, x) = 0, x ∈ ∂D

and the initial condition (that means the distribution of the population at time t = 0)

u(0, x) = u0(x) :=

{

0.9 if
√

x2
1 + x2

2 < 0.2

0.0 otherwise.

Further, the model parameters are set as follows

D = 10−5, a = 0.01, K = 1.

With the setting K = 1 the variable u(t, x) can be interpreted as the proportion of the
carrying capacity K which has been ’used’ by the population at time t and in location x.
In order to pass these parameter values on to the ’CultDiff’ program we need to modify
four m-files which handle the definition of the model parameter:
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• get initialcondition.m for defining the initial condition,

• get diffusion.m for defining the diffusivity D,

• get growth coefficient.m for defining the growth coefficient a,

• get competition.m for defining logistic growth and the carrying capacity.

6.1.1 Get initialcondition.m

The function get initialcondition.m defines the spatial distribution of the population
at the beginning of the consideration. In our example was assume a spatial distribution
as shown in Figure 30.

Figure 30: Spatial distribution of the population at time t = 0

We assume that the population is present in a circular area with the center point (xm, ym)
and the radius r. These values and the actual population size u0 at time t = 0 must be
chosen by the user (see red lines below).

%--------------------------------------------------------------

%Population 1

%--------------------------------------------------------------

%Definition of the region where the population 1 is present initially

%Circle with midpoint xm,ym and radius r

xm = 0.0;

ym = 0.0;

r = 0.2;

ftest = (x− xm)2 + (y − ym)2 − r2;

if ( (p==1) & (ftest <0 ) )

u0=0.5;

end;
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6.1.2 Get diffusion.m

In this file the values of the diffusivity D of the population over the whole domain D are
defined. In our case we assume that D has the constant value of 10−5 over the whole
domain. All we need to do is to input the desired value for D in the red highlighted line.

%--------------------------------------------------------------

%Population 1

%--------------------------------------------------------------

% set the default diffusivity for population 1

if ( p==1 )

D=1.0e-5;

end;

However, some applications may require that the diffusivity varies across the considered
domain (e.g. populations will spread slower in mountain regions than in lowlands). ’Cult-
Diff’ enables the user to define regions where the diffusivity D differs from the value set
as the default value (cf. red line above). If we assume e.g. that in an elliptic region the
diffusivity is reduced to 10−6 then we need to define the region where the diffusivity differs
and set D accordingly. This can be easily done by uncommenting (that means deleting
the % sign) and modifying the already prepared code:

% the center points

xm = 0.6

ym = 0.4

% the half axes, a in x direction, b in y-direction

a = 0.4

b = 0.2

% rotating angle

phi = 30

% Computation of the ellipse

x1=x-xm;

y1=y-ym;

%Rotation

c=cos( phi*pi/180);

s=sin( phi*pi/180);

x= c*x1 + s* y1;

y= -s*x1 +c* y1;

ftest = x*x/(a*a) + y*y/(b*b) -1; if ( (p==1) & (ftest <0 ) )

D=1.0e-6;

end;

Thereby the parameter (xm, ym) define the center point of the ellipse and a, b the length
of the half axes (cf. Figure 31). The angle ϕ defines how much the ellipse is inclined to
the right (cf. Figure 31).

Additional shapes (such as circle or rectangle) are pre-defined in Get diffusion.m and
can be used in a similar way. The definition of multiple areas is of course also possible.
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Figure 31: Positioning of the ellipse

6.1.3 Get growth coefficient.m

The file get growth coefficient.m defines the growth coefficient over the whole domain
D. Here we assume a = 0.01 (see red line below).

%--------------------------------------------------------------

%Population 1

%--------------------------------------------------------------

%set default growth coefficient population 1

if ( (pi==pj) & (pi==1) )

a=0.01;

end;

Spatially variable growth coefficients can be defined in a similar manner as described in
section 6.1.2 and examples are already included in the file.

6.1.4 Get competition coefficient.m

Here we define whether we assume logistic or exponential growth and the carrying capac-
ity. If we set the variable log growth to 1 we assume logistic growth and contrary for 0
we assume exponential growth.

% log growth = 1 for logistic growth and log growth = 0 for exponential growth

log growth = 1;

%Definition of the carrying capacity

K=1;
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6.1.5 Running ’CultDiff’

After we have set the parameter values the only thing left to do is to specify the finite
element parameter. To do that we modify the file param.txt.

% Model Parameters

%

1 % number of populations

1.0 % time step length tau

900 % maximal number of time steps

4 % number of domain refinement steps

We consider the spread of one population only and therefore the number of populations is
1. The time-step size τ determines the step size of the numerical time-step-method. The
default value is 1 so that we can interpret all results as per one month, year, generation,
etc. The definition of this time step length has implication for the model parameter
estimation. They always have to estimated per time step length. The maximal number
of time steps defines the total time period of the simulation (in our case 900 years). And
lastly the number of domain refinements define the level of discretisation of our domain
(cf. Figure 29).

Now we are finally ready to go. To run the ’CultDiff’ please follow the following steps.

1. Open Octave/MatLab.

2. Change into the subdirectory Example.

3. Type cultdiff run into the Octave/MatLab command window.

During the run of the programm all output-information will be written to the subdi-
rectory out. For each time step a txt-file containing the values of u(t, x) in discrete
locations/nodes xi (the finer the chosen discretisation the shorter is the distance be-
tween neighbouring nodes xi) is produced. For a visualisation of the solution we use the
file cultdiff post (simply type cultdiff post into the Octave command window)
which creates a plot of the solution u(t, x) at a given time step over the whole domain D.
In order to set the time step: open the file cultdiff post.m and set the variable step

at the desired value

% the timestep to plot

step=100;

Figure 32 shows the solution of our diffusion-reaction system with logistic growth at time
t = 900 for two different refinement levels. It is obvious the finer is the discretisation the
smoother is the solution.

With the help of Octave/MatLab much more postprocessing steps, like time-dependent
plots, animations, parameter estimations for wave speeds are possible. The only needed
input are the values of u(t, x) at times t and locations x (which are saved in the corre-
sponding data files in the output-directory).
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Figure 32: (left) The solution u(t, x) at time t = 900 if the domain has been discretised
three time (512 elements) and (right) the solution u(t, x) at times t = 900 if the domain
has been discretised five times (32768 elements)

6.1.6 Definition of the geometry

So far we used a simple rectangular domain for our considerations. However, the do-
main D can be of almost any geometric structure. This structure is defined in the files
mesh-nodes.txt and mesh-elements.txt . The node file mesh-nodes.txt contains
the geometric information about the domain D by defining appropriate nodes (which are
given by their x- and y-coordinate and their node number). The element connectivity file
mesh-elements.txt defines the coarse triangulation of the considered domain D. Each
triangle is determined by its three corner points. For a good approximation these trian-
gles must fulfill some conditions, especially they must cover the whole domain D and the
triangles must not overlap. For the rectangular domain both files are defined as follows

mesh-nodes.txt

% nodelist for rectangle [0,1]x[0,1]

% x - y coordinates of node 1..N

0.0 0.0 (point 1 in Figure 29 (left))
1.0 0.0 (point 2 in Figure 29 (left))
1.0 1.0 (point 3 in Figure 29 (left))
0.0 1.0 (point 4 in Figure 29 (left))

mesh-elements.txt

% element-connectivity table for rectangle [0,1]x[0,1]

% every line stands for the 3 node numbers which define the triangle

1 2 3 (triangle 1 in Figure 29 (left))
1 3 4 (triangle 2 in Figure 29 (left))

For more complex geometries we must adjust these two files. Exemplarily we show this
for the domain shown in Figure 33.
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Figure 33: A triangular finite element mesh

In order to obtain a triangulation of the domain we add two points (4 and 5 in Figure
33) to the ’corner’ points {1, 2, 3, 4, 7, 8}. This is necessary because otherwise we cannot
describe the whole considered domain by non-overlapping triangles. The geometry files
read like follows:

mesh-nodes.txt

% nodelist

% x - y coordinates of node 1..N

0.0 0.0 (point 1 in Figure 33 )
1.0 0.2 (point 2 in Figure 33 )
2.0 0.8 (point 3 in Figure 33 )
-0.1 1 (point 4 in Figure 33 )
0.9 0.7 (point 5 in Figure 33 )
0.6 1.2 (point 6 in Figure 33 )
1.7 1.8 (point 7 in Figure 33 )
0.4 2.0 (point 8 in Figure 33 )

mesh-elements.txt

% element-connectivity table

% every line stands for the 3 node numbers which define the triangle

1 2 5 (triangle 1 in Figure 33 )
2 3 5 (triangle 2 in Figure 33 )
1 5 4 (triangle 3 in Figure 33 )
4 5 6 (triangle 4 in Figure 33 )
5 6 7 (triangle 5 in Figure 33 )
5 3 7 (triangle 6 in Figure 33 )
4 6 8 (triangle 7 in Figure 33 )
6 7 8 (triangle 8 in Figure 33 )
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6.2 Dispersal of and competition between two populations

In this section we demonstrate the use of ’CultDiff’ for competition models (cf. section
5.2)

∂u1

∂t
= d14u1 + a1u1

(

1− u1

K1

− c1
u2

K1

)

∂u2

∂t
= d24u2 + a2u2

(

1− u2

K2

− c2
u1

K2

)

with the boundary conditions

∂ui

∂n
(t, x) = 0 i = 1, 2, x ∈ ∂D

and the initial conditions (that means the distribution of the populations at time t = 0)

u1(0, x) = u1,0(x) :=

{

0.9 if
√

x2
1 + x2

2 < 0.2

0.0 otherwise

and

u2(0, x) = u2,0(x) :=

{

0.9 if
√

(x1 − 1)2 + (x2 − 1)2 < 0.2

0.0 otherwise.

Further, the model parameters are set as follows

D1 = 10−5, D2 = 10−4, a1 = 0.02, a2 = 0.01, c12 = 0.01, c21 = 0.02, K = 1.

Again we need to pass these parameter values on to the ’CultDiff’ program and therefore
modify the four m-files:

• get initialcondition.m for defining the initial conditions,

• get diffusion.m for defining the diffusivities D1 and D2,

• get growth coefficient.m for defining the growth coefficients a1 and a2,

• get competition.m for defining logistic growth, carrying capacities and the com-
petition coefficients c12 and c21.

We follow the same procedures as described in the previous section with the only difference
that we need to define the initial condition, diffusivity and growth coefficient for the second
population, too. But that is already pre-defined in the four files.

6.2.1 Get competition coefficient.m

Beside the decision between logistic and exponential growth and the definition of the
carrying capacity the file get competition coefficient.m defines also the coefficient
coefficients c12 and c12. All we need to do is to insert the desired values for the competition
coefficients (see the red lines below).
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% Definition of the competition coefficients

c12 = 0.01;

c21 = 0.02;

if ( (e==1 ) & ( pi==1 ) & ( pj ==2 ) ) gamma = -c12; end;

if ( (e==2 ) & ( pi==1 ) & ( pj ==2 ) ) gamma = -c21; end;

Spatially variable competition coefficients can be defined in a similar manner as described
in section 6.1.2 and examples are already included in the file.

6.2.2 Run ’CultDiff’

The last step is to modify param.txt to

% Model Parameters

%

2 % number of populations

1.0 % time step length tau

900 % maximal number of time steps

4 % number of domain refinement steps

and then we can run ’CultDiff’ and plot the solutions u(t, x) in the already described way.

Finally, if you use ’CultDiff’ (in the current form or your own personal modified form) in
an academic publication, please cite this manuscript.
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7 Appendix A

So far we based all considerations on constant, not-changing environmental conditions
which are expressed by constant model parameters (such as the growth coefficient a and
the carrying capacityK). However, this assumption is not always realistic. In fact changes
in environmental conditions are rather the norm than the exception. We can account for
such changes by allowing the model parameter to be time-dependent.

The aim of this appendix is to illustrate the effects of different temporal change patterns
of the model parameters a and K on the population’s growth behaviour. Thereby we
assume the following temporal change patterns

1. linear model: a(t) = a0(1− ct),

2. exponential model: a(t) = a0e
ct respectively K(t) = K0e

ct,

3. sinusoidal model: a(t) = a0 + am sinωt respectively K(t) = K0 +Km sinωt
where am and Km describe the amplitudes, ω = 2π

T
the frequency and T the period

of the sinus wave.

To understand the impacts of temporal varying a(t) and K(t) in detail we investigate the
effects of changes in the model parameter separately. That means we assume that one
coefficient is constant and the other is changing over time.

Logistic growth

We start with the bounded logistic growth process and generalise the logistic model (11)
by allowing for variable growth rate a(t) and carrying capacity K(t)

∂u

∂t
(t) = a(t)

(

1− u

K(t)
(t)

)

u(t). (21)

Figures 34-36 show the resulting growth behaviour of the population under the assump-
tions 1-3 for the growth coefficient a and contrary, Figures 37 and 38 illustrate the growth
dynamic under varying carrying capacities according to assumptions 2 and 3.

Figure 34 shows the population’s growth behaviour for a linearly varying growth coefficient
a(t) = a0(1 + ct) with different slopes c. For c = −0.5 the growth parameter a decreases
so strongly over time (in fact even becomes negative) that the population goes extinct.
For c = −0.1 the growth parameter decreases, too, however the population size tends to
a certain threshold 0 < u? < K which is smaller then the carrying capacity. The value
c = 0 coincides with the situation of constant coefficients and for c = 0.1; 0.5 the growth
parameter a are increasing what results in a faster convergence toward K.

A similar behaviour can be seen in Figure 35 where an exponential change pattern a(t) =
a0e

ct is assumed. Here the case c = −0.5 does not result in the population extinction (cf.
red line in Figure 35).
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Figure 34: Population growth under the as-
sumption of linear temporal changes of the
growth coefficient: a(t) = a0(1 + ct) with
a0 = 1 and c = −0.5;−0.1; 0; 0.1; 0.5.
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Figure 35: Population growth under the as-
sumption of exponential temporal changes
of the growth coefficient: a(t) = a0e

ct with
a0 = 1 and c = −0.5;−0.1; 0; 0.1; 0.5.

Figure 36 shows the impact of a cyclic behaviour a(t) = a0 + am sinωt, a0 = 0.2, T = 5 of
the growths coefficient. The population size over time reflects these cycles and we observe
a non-steady population growth.
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Figure 36: Population growth under the assumption of sinusoidal temporal changes of the
growth coefficient: a(t) = a0 + am sinωt with a0 = 0.2, T = 5 and am = 0; 1; 2; 5; 10

Now we turn to analysing the impacts of temporal varying carrying capacitiesK(t). Figure
37 shows exponential carrying capacities (dashed lines) K(t) = K0e

ct for different param-
eters c and the resulting population’s growth dynamic (solid lines). For c = −0.5;−0.1
the carrying capacity tends to zero, that means there is no possibility for populations
to survive (cf. red and blue lines). Contrary, for increasing carrying capacities (cf. yel-
low and green lines) we see a sharp increase in population size. If the carrying capacity
possesses a cyclic behavior of the form K(t) = K0 +Km sinωt then we also see a cyclic
pattern in the population size (cp. figure 44). Interestingly, Figure 39 shows that the
response of the population size to changes in the carrying capacity has a time delay.
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Figure 37: Population growth under the as-
sumption of exponential temporal change
K(t) = K0e

ct with K0 = 100 and c =
−0.5;−0.1; 0; 0.1; 0.5
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Figure 38: Population growth under the
assumption of sinusoidal temporal change
K(t) = K0 + Km sinωt with K0 = 100,
Km = 0; 10; 20; 50; 100 and T = 5

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

time

u

K
m

=0
K

m
=50

carrying cap.

Figure 39: Population growth under the assumption of sinusoidal temporal changeK(t) =
K0 +Km sinωt (dashed line) with K0 = 100, Km = 0; 50 and T = 5 (solid lines)

Confined exponential growth

In this section we generalise model (13) by assuming different temporal change patterns
for the growth coefficient a and the carrying capacity K.

Figure 40 illustrates the confined exponential growth assuming a linear temporal change
of the growth coefficient a(t) = a0(1 + ct with different slopes c. The growth behaviours
are similar to the logistic case (cp. Figure 34). For c = −0.5;−0.1 the growth coefficient
a(t) is decreasing with time (it even becomes negative) and consequently the population
goes extinct (cf. red and blue lines). The value c = 0 coincides with the case of constant
coefficients and for c = 0.1; 0.5 the growth coefficient increases over time which results in
a fast convergence toward K.

A similar behavior can be seen in Figure 41 where the confined exponential growth with
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a(t) = a0e
ct is illustrated. However, for c = −0.5;−0.1 the populations size converges to

a stable equilibrium u? = K − (K − u0)e
a0

c < K.
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Figure 40: Population growth under the as-
sumption of linear temporal changes of the
growth coefficient: a(t) = a0(1 + ct) with
a0 = 1 and c = −0.5;−0.1; 0; 0.1; 0.5.
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Figure 41: Population growth under the as-
sumption of exponential temporal changes
of the growth coefficient: a(t) = a0e

ct with
a0 = 1 and c = −0.5;−0.1; 0; 0.1; 0.5.

Further, if we assume a cyclic temporal change pattern for the growth coefficient a(t) =
a0 + am sinωt we obtain a cyclic but generally increasing population size (cf. Figure 42).
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Figure 42: Population growth under the assumption of sinusoidal temporal changes of the
growth coefficient: a(t) = a0 + am sinωt with a0 = 0.2, T = 5 and am = 0; 0.1; 0.2; 0.5; 1

Lastly we consider the effects of temporally changing carrying capacities on the growth
dynamic. Figure 43 shows the exponential carrying capacities (dashed lines) K(t) =
K(t) = K0e

ct and the corresponding confined exponential growth (solid lines). For c =
−0.5;−0.1 the carrying capacity tend to zero, and consequently the population goes
extinct. If the carrying capacity possesses a cyclic behavior of the form K(t) = K0 +
Km sinωt then this behavior is reflected in the growth behaviour of the population (cp.
Figure 44).
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Figure 43: Population growth under the as-
sumption of exponential temporal change
K(t) = K0e

ct with K0 = 100 and c =
−0.5;−0.1; 0; 0.1; 0.5
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Figure 44: Population growth under the
assumption of sinusoidal temporal change
K(t) = K0 +Km sinωt with K0 = 100 and
Km = 0; 10; 20; 50; 100
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8 Appendix B

Not only temporal also spatial variation in the environmental conditions will impact the
spread dynamic of a population. We would e.g. expect that populations spread/grow
faster in lowlands compared to mountain regions or in hospitable habitats compared to
inhospitable habitats. In order to account for environmental heterogeneities we need to
allow for spatially variable model parameters a = a(x), D = D(x) and K = K(x) which
reflect those changing environmental conditions. Exemplarily the diffusion-reaction model
with logistic growth is in this way generalised to

∂u

∂t
(t, x) = D(x)4 u(t, x) + a(x)u(t, x)

(

1− u(t, x)

K(x)

)

.

Also the interaction dynamic between different populations will be influenced by spatial
environmental heterogeneities significantly. One population may e.g. be well-adopted to
a particular habitat whereas the other population is well-adapted to another, different,
habitat. Consequently both populations have a competitive advantage in their preferred
habitats.

To model those spatial differences we assume that the domain D is divided into two
sub-domains D1 and D2 and it holds for the competition coefficients c12 and c21

c12(x) =

{

b1 if x ∈ D1

b2 if x ∈ D2

and c21(x) =

{

b2 if x ∈ D1

b1 if x ∈ D2

with b1 < b2.

Summarising we can generalise our competition approach (19) by allowing the model
parameter to be spatially dependent

∂u1

∂t
= d1(x)4u1 + a1(x)u1

(

1− u1

K1(x)
− c1(x)

u2

K1(x)

)

∂u2

∂t
= d2(x)4u2 + a2(x)u2

(

1− u2

K2(x)
− c2(x)

u1

K2(x)

)

.

Due to the assumed dominance of each population in its core area (D1 and D2), each
population is immune to extinction in its own core area. But the diffusion mechanism
is able to produce a stable interaction or coexistence zone between the two core areas.
Figure 45 shows the stable long-term frequencies of both populations for different values
of the diffusion coefficients Di, the measure of the tendency to spread in space. It is
obvious that the equilibria are not spatially constant. The larger the diffusivity, i.e., the
further the individuals of one population are able to spread into the core area of the
other population, the wider is the stable coexistence zone (cf. Figure 45). Spatial spread
can even mix both populations in such a way that they are both present over the whole
considered area D (cf. Figure 45 (left)). Therefore, the inclusion of spatial heterogeneity
to model (19) in the form of spatial varying competition behavior leads to more complex
situations, where, due to the assumed dominance of both populations in their core areas,
coexistence is possible. The width of the interaction zone depends on the tendency of
individuals of both populations to be spatially mobile outside their own core areas.
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Figure 45: Stable long term frequencies of both populations under (left) low diffusivities
and (left) high diffusivities.
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