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We describe and analyze a general framework for solving ill-posed operator
equations by minimizing Tikhonov-like functionals. The fitting functional
may be non-metric and the operator is allowed to be nonlinear and nons-
mooth. In comparision to former results on variational regularization with
non-metric fitting functionals we significantly weaken the assumptions for
proving convergence rates and, in addition, we extend the results to a wider
range of rates. Two examples, coming from imaging applications, show that
the developed theory is applicable to practically relevant problems.

1 Introduction

Mathematical models of practical problems usually are designed to fit into well-known
existing theory. At the same time new theoretical frameworks have to cope with criticism
for lacking in practical relevance. To avoid such criticism, new theoretical results should
come bundled with suggestions for improved mathematical models offered by the widened
theory. Delivering such a bundle is the objective of this article.

The fundamental aim is to solve ill-posed nonlinear equations F'(z) = y only having a
noisy measurement z of the exact right-hand side y at hand. Ill-posedness, here, mainly
concerns a non-continuous dependence of the solutions on the right-hand side; existence
of a solution will be assumed and uniqueness is not of interest.

The ill-posedness in connection with noisy data forces us to search for approximate but
stable solutions. One way for obtaining such stable approximate solutions is to minimize
a Tikhonov-type functional S(F(x),z) + af2(x) over x. Here, S is a fitting functional
and 2 stabilizes the problem. The concrete setting will be made precise in Section 2.
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For ill-posed linear equations there is a comprehensive theory on regularization, espe-
cially on Tikhonov regularization, described, e.g., in [6]. First successful convergence
rates results for ill-posed nonlinear equations in Hilbert spaces can be found in [7]
and [6, Chap. 10]. Results on linear and nonlinear equations in Banach spaces are
provided, e.g., in [2,4,13,14,20,22,24]. The cited publications, and almost all other
publications on Tikhonov regularization, focus on Hilbert or Banach space norms as
fitting functionals. But, mainly motivated by imaging applications (see, e.g., [1,19]), the
interest in non-metric fitting functionals is growing. Here, “non-metric” means that at
least one of the metric axioms, usually symmetry or the triangle inequality, is not satis-
fied by the fitting functional. Thus, there is the need to develop a theoretic framework
for generalized Tikhonov regularization. Such Tikhonov-type approaches are also called
variational regularization methods, emphasizing the demarcation to iterative methods.

In [25] and [17] quite general Tikhonov functionals are considered, but the authors
focus on convergence theorems for a-posteriori parameter choices. We will present con-
vergence rates results for a-priori parameter choices. A first result in this direction has
been obtained in [21] and an extension of that convergence rates result has been given
in [8]. The main question in deriving convergence rates for variational regularization
with non-metric fitting functionals is, which properties the fitting functional has to sat-
isfy. The assumptions posed in [21] and [8], particularly a triangle inequality, are too
strong to apply the convergence rates results to practically relevant examples.

Therefore, in this paper we weaken the assumptions on the fitting functional, which
allows us to provide examples of non-metric fitting functionals that on the one hand fit
into the theory and on the other hand seem to be of practical relevance.

The paper has two main sections, the Sections 2 and 3. In Section 2 we describe a
general theory for variational regularization with non-metric fitting functionals, i.e., we
discuss the assumptions on the fitting functional and we provide theorems on existence,
stability, and convergence, as well as on convergence rates. In Section 3 the theory
is applied to two examples motivated by imaging applications. In the final section,
Section 4, we summarize the results, discuss open questions and give an outlook on
future work.

2 A general theory

In this section we present a general framework for handling variational regularization
problems involving non-metric fitting functionals. At first we introduce notations and
discuss two sets of assumptions on the fitting functional. Then theorems on existence,
stability and convergence are given. The final subsection, containing the convergence
rates theorem, is the main contribution of this paper.

2.1 Setting and assumptions

Since our approach does not require the involved spaces to have a uniform structure, i.e.,
to provide the notion of completeness, or to bring any operations, as addition or multi-
plication by scalars, with them, we work with topological spaces and need not assume



that they are normed linear spaces or even Banach spaces. The notion of convergence is
the only feature we use; and topological spaces exactly provide this feature, neither less
nor more.

Let (X,7x), (Y,7y), and (Z,7z) be arbitrary topological spaces (convergence with
respect to the topologies 7x, Ty, and 7z will be denoted by “—”) and let F' : D(F) C
X — Y be any mapping from D(F') C X into Y. For approximately solving the ill-posed
equation

F(z)=y, =€ D(F), (2.1)
with right-hand side y € Y we consider the minimization of the Tikhonov-type functional
T:(x) == S(F(x),z) + afd(z), =€ D(F), (2.2)

over D(F). Here z € Z represents a noisy measurement of the unknown right-hand side
y. In this sense, X is the solution space, Y is the space of right-hand sides, and Z is the
data space. The functional S : Y x Z — [0, 00] will be referred to as fitting functional,
Q: X — (—o0,00| will be referred to as stabilizing functional, and a € (0,00) denotes
the regularization parameter.

Throughout this section we assume that the following assumptions are satisfied.

Assumption 2.1. Assumptions on F': D(F) C X — Y=

(i) F is sequentially continuous with respect to 7x and 7y, i.e., 2 — z for z,z) €
D(F) implies F(x) — F(x).

(ii) D(F) is sequentially closed with respect to 7x, i.e., xx — z for x; € D(F) and
x € X implies x € D(F).
Assumptions on S : Y x Z — [0, 00] (for arbitrary yx,y € Y and 2z, z € Z):

(iii) S is sequentially lower semi-continuous with respect to 7y X 7z, i.e., if yp — y and
zi, — z then S(y, z) <liminfx_ S(yk, 2x).

(iv) If S(y, zx) — O then there exists some z € Z such that z — z.
(v) If 2z = z and S(y, z) < oo then S(y, zx) — S(y, 2).
Assumptions on Q : X — (—o0, 0]
(vi) Q is sequentially lower semi-continuous with respect to 7x, i.e., zx — x for z, xy, €
X implies Q(x) < liminfg o Q(xg).

(vii) The sets Mq(c) := {x € X : Q(x) < ¢} are sequentially pre-compact with respect
to 7x for all ¢ € R, i.e., each sequence in Mq(c) has a Tx-convergent subsequence.

Note, that Assumption 2.1 allows €2 to attain negative values. But due to the pre-
compactness of the sublevel sets Mq(c) and to the lower semi-continuity of 2 we know
that Q is bounded below.

Since in general Y # Z, the fitting functional S provides no direct way to check
whether two elements y; € Y and y2 € Y are equal. Thus, we have to introduce a notion
of weak equality.



Definition 2.2. If for two elements y1,y2 € Y there exists some z € Z such that
S(y1,2) = 0 and S(y2,z) = 0, we say that y; and yy are S-equivalent with respect to z.
Further, we say that z1, 29 € X are S-equivalent if F'(z1) and F(z2) are S-equivalent.

Assumption 2.1 can be simplified if Y = Z.

Proposition 2.3. Assume thatY = Z and that S : Y XY — [0, 00| satisfies the following
properties (for arbitrary yi,y,y € Y ):

(i) S(y,y) =0 if and only if y = 3.

(ii) S is sequentially lower semi-continuous with respect to Ty X Ty .
(ii) S(y,yr) — 0 implies y, — y.
() If S(y,yx) — 0 and S(§,y) < oo then S(g,yr) — S(7,y)-

Then S satisfies Assumption 2.1 if Tz is the topology induced by S, i.e., yp X vy if and
only if S(y,yr) — 0, and two elements y1,y2 € Y are S-equivalent if and only if y1 = yo.

Proof. Obviously the items of Assumption 2.1 concerning S are satisfied. If y1,ys are
S-equivalent with respect to some z € Z then the first property implies y; = z = ys.
The converse implication is trivially true (take z := y1). O

The following example shows that our general framework covers the standard setting
for variational regularization.

Example 2.4. Assume that X and Y are Banach spaces and that 7x and 7y are the
corresponding weak topologies. Then for S(y1,y2) := ||y1 — y2||”, p > 0, the assumptions
of Proposition 2.3 are satisfied.

2.2 Existence, stability, convergence

In the sequel we make use of the notion of Q-minimizing solutions, which is introduced
by the following proposition.

Proposition 2.5. If for y € Y there exists an element T € D(F') with F(z) = y and
Q(Z) < oo then there exists an Q-minimizing solution of F(x) =y, i.e., there exists an
element ¥ € D(F) which satisfies Q(z') = inf{Q(x) : * € D(F), F(z) = y}.

Proof. The assertion is a direct consequence of Assumption 2.1. O

The proofs of the following three theorems use standard techniques and are quite
similar to the corresponding proofs given in [14] or [21]. Therefore we do not repeat
them here.

Theorem 2.6 (existence). For all z € Z and all o« > 0 the minimization problem

TZ(x) — min  has a solution.
z€D(F)



Theorem 2.7 (stability). Fiz z € Z and o € (0,00) and assume that (zi)ken is a
sequence in Z satisfying zp — z. Further assume that there exists an element T €
D(F) with S(F(Z),z) < oo and Q(Z) < oo. Then each sequence (xy)keny with x) €
argming e p gy T3* (x) has a Tx-convergent subsequence and for sufficiently large k the
elements xy, satisfy Tk (x1) < oo. Fach limit T of a Tx -convergent subsequence (xy,)ien
is a minimizer of T? and we have T (x,) — TZ(Z), Q) — QUT), and thus also
S(F(:Ekz)?'zkz) — S(F(2),2).

Theorem 2.8 (convergence). Assume that y € Y, that (zi)ken 5 a sequence in Z
satisfying S(y, zr) — 0, that (ax)ken @s a sequence in (0,00) satisfying o — 0 and
S(Zi’:k) — 0, and that there exists an element T € D(F) with F(z) = y and Q(Z) <
co. Then each sequence (Tx)ken with x € argmingepp) T3k (z) has a Tx-convergent
subsequence and T3k (zy) — 0. Each limit of a Tx-convergent subsequence (T, )ien s
S-equivalent (cf. Definition 2.2) to each solution of F(x) = y. In addition, each such
limit & satisfies Q(Z) < Q(x*) for all solutions x* of F(x) =y. If T is a solution then it
is an Q2-minimizing solution and Q(T) = limy_oc Q(xy,).

2.3 Convergence rates

We consider equation (2.1) with a fixed right-hand side y := 4° € Y. By 27 € X we
denote one fixed Q-minimizing solution of (2.1), where we assume that there exists a
solution £ € D(F) with Q(Z) < oo (then Proposition 2.5 guarantees the existence of
Q-minimizing solutions).

Convergence rates results describe the dependence of the solution error on the data
error if the data error is small. So at first we have to decide how to measure these
errors. For this purpose we introduce a functional Dy : Z — [0,00] measuring the
distance between the right-hand side 3° and a data element z € Z. On the solution
space X we introduce a functional E_; : X — [0, oo] measuring the distance between the
Q-minimizing solution z! and an approximate solution z € X.

Because we are not interested in Dy at a fixed point, but we want to bound this
functional, in the following by 2° € Z with § € (0,00) we denote an arbitrary data
element satisfying

Dy(2%) <6 (2.3)

(6 is called noise level). To guarantee the existence of some 29 for each § > 0, we
assume that there is some z € Z with D,o(z) = 0. A connection between S and D, is
established by the following assumption.

Assumption 2.9. There exists a monotonically increasing function v : [0, 00) — [0, 00)
satisfying ¢ (0) = 0 if and only if 6 = 0, ¥(6) — 0 if § — 0, and

Sy, 2) < Y(Dyo(z)) forall z € Z with Dyo(2) < co. (2.4)
This assumption provides the estimate

S(F(z1),2°) = S(4°,2°) < (Dyo(2")) < 9(6) < oo (2.5)



If we take a sequence (0 )ren With 6, — 0 we get S(y°, 2%) < () — 0. Thus, setting
2 := 2%, the assumptions of Theorem 2.8 are satisfied if we choose the sequence () gen
in such a way that %i’“) — 0 and ap — 0.
Of course, we also need a connection between E_; and the terms of the Tikhonov

functional (2.2) to prove convergence rates for F_; (1‘26(5)) with respect to §, where mfj((s) €

argminp g Tjga) and « depends on §. This connection will be described by a variational
inequality holding on a certain set M C D(F'). The technique of variational inequalities
was introduced in [14] and has been extended in [13] and [2,8,21].

To formulate a variational inequality in our general setting we have to introduce an
additional functional Syo : Y — [0,00], which measures the distance of some element
y € Y toy°. Note that using S(y°, ) : Z — [0, 00| in sufficient conditions for convergence
rates is quite difficult because such a condition then would depend on data elements
z € Z. A connection between S0 and S has to be given by

Syo(y) < S(y,z) +S(y°,z) forallz€ Zandally€eY. (2.6)

As noted above, a variational inequality is connected to a set M C D(F'), on which
the inequality shall hold. The only property such a set has to satisfy is that, given a
parameter choice § — a(J),

for all sufficiently small § > 0 all minimizers 1:36( 5) belong to M. (2.7)

The following proposition provides an example for such a set (next to the trivial choice

M := D(F)).

Proposition 2.10. Let & > 0 and o > Q(z'). Further let § — a(5) be a parameter
choice satisfying a(6) — 0 and % — 0 as 6 — 0, and let 1‘26(5) € argminpp Tazzs).

Then there exists some 6 > 0 such that

225 € M == {z € D(F) : Sp(F(x)) + aQ(x) < oa} (2.8)
for all § € (0,46].
Proof. The proof is similar to the corresponding one given in [§]. O

Definition 2.11. We say that the Q-minimizing solution z' satisfies a variational in-
equality if there exist some constant § € (0,00), a monotonically increasing function
¢ :[0,00) — [0,00) with ¢(0) = 0, and a set M C D(F') with property (2.7) such that
Syo(F(z)) < oo for all z € M and

E,i(z) < B(Qz) — Q(xT)) +¢(S,0(F(x))) forall z € M. (2.9)

For future reference we formulate the following properties of the function ¢ appearing
in Definition 2.11.



Assumption 2.12. The function ¢ : [0,00) — [0, 00) satisfies:
(i) ¢ is monotonically increasing and ¢(0) = 0;

(ii) there exists a constant v > 0 such that ¢ is concave and strictly monotonically
increasing on [0,7];

(iii) the inequality

o) <<P(7)+< inf W) (t—)

T€[0,7) YT

is satisfied for all ¢ >

If o satisfies items (i) and (ii) of Assumption 2.12 and if ¢ is differentiable in v, then
item (iii) is equivalent to

o(t) < p(7) + @' (Y)(t —7v) forall t > 1.
For example, p(t) = t*, u € (0, 1], satisfies Assumption 2.12 for each v > 0. The function
(—In(t))~*, t<er L
SD(t) = 1 \M e \ut+l " —u—1 1
(m) +M(u+1) ( —¢ )7 else

with © > 0 has a sharper cusp at zero than monomials and satisfies Assumption 2.12 for
v € (0,07,

Example 2.13. Consider the Banach space setting of Example 2.4, i.e., Z = Y and
S(y1,y2) = |ly1 — y2||P for some p € (0,00). Setting Dyo(y) := |y — Y0 and 9(8) := 67
Assumption 2.9 is satisfied and estimate (2.5) coincides with the standard assumption
ly® =37l < 6.

As error measure E_+ in Banach spaces one usually uses the Bregman distance (cf. [4])

E,i(z) = Bgi(z,27) == Q) — Q") — (€T, 2 — ") x+ x

T

with respect to some subgradient

et e a0l = {¢ e X*: Qx) > Q@h) + (€, — 2T x- x}.
Other choices for E + can be found in [3, Lemmas 4.4 and 4.6] and a whole class of very
interesting error measures is proposed in [11].

For Syo(y) := max{1,2P"1} 7|y — 4°||P the triangle-type inequality (2.6) is satisfied
and with o(t) := at®/? for x € (0,p] and some a > 0 the variational inequality (2.9)
attains the form

Bei (x,2") < B(Qz) — Qat)) + ¢ F(z) — F(ah)|*
with ¢ > 0. This variational inequality is equivalent to

— (& @ —al)x+ x < B1Bei (x,21) + Bof|F () — F ()"

for appropriate constants §; < 1 and 8 > 0. The last inequality is of the type introduced
in [13,14].



The following main result of this paper is an adaption of Theorem 4.3 in [2] to our
generalized setting. A similar result can be found in [11]. Unlike the corresponding proofs
given in [2] and [11] our proof avoids the use of Young-type inequalities. Therefore it
works also for non-differentiable functions ¢ in the variational inequality (2.9).

Theorem 2.14 (convergence rates). Let 2 satisfy a variational inequality (2.9) such
that the associated function ¢ satisfies Assumption 2.12 and let § — «(0) be a parameter
choice such that

L p0) - ¢(n)

S e(1) — (¥ (9))
rey(6)  ¥(d)

sup

>
T ald) T ey T ¥(9)

with 7y from Assumption 2.12. Then

B, (225) = O(p(4(8)) if § — 0.

Remark 2.15. Note that by item (ii) of Assumption 2.12 a parameter choice as proposed
in the theorem exists, i.e.,

e PO =00 S oo e —el)
T€[0,t) t—T Tt T—1
for all ¢t € (0,7). One easily checks
$(0) _ ¢(¥(9)) :
< —0 ifd—0
ad) = B
and if sup ¢ ] w — o0 if t — 0 then «(d) — 0 if 6 — 0. Thus, the parameter

choice satisfies the assumptions of Proposition 2.10.
If ¢ is differentiable in (0,~) then the proposed parameter choice is equivalent to

Proof. In the sequel we write « instead of «(d).
For sufficiently small § > 0, using T§6 (xfj) < Tjé (z1), (2.6), and (2.5), the variational
inequality (2.9) implies
Bpi(ay) < §(T3 () = afa®) = S(F(Z).2") + oSy (F(a2))
<25y, 2%) = £S(F(a),2°) + o(S(F(x), 2°) + S(4°, 2%)) (2.10)
< 200(0) + 9(S(F(2Z).2°) + ¥(9) = Z(S(F @), 2°) +4(9))

and therefore

E,: (xff) < 2§¢(5) + S[lolp )(cp(v') — gT)
7€(0,00

If we can show, for sufficiently small § and « as proposed in the theorem, that

o(1) — Br < o((8)) — Bp(8)  for all 7 > 0, (2.11)

[0}



then we obtain

p(¥(9)) — ¢(0)

$(9)

Thus, it remains to show (2.11).
First we note that for fixed ¢t € (0,7) and all 7 > ~ item (iii) of Assumption 2.12

implies
Pl —ot) _ 1 (m) +< o w(v)—@(ff)) (T_y)_@(w)

T—1 T—1 o€[0,7) Y—0

< = (v + 2=y ppr)) - 2220

Using this estimate with ¢ = 1(d) we can extend the supremum in the upper bound for
a from 7 € (1(6),7] to 7 € (¢(d), 00), that is,

(P(9) —p(r) _ B a2 = e(w(9)
Te[oﬁf@) P(o) — 7 Zazfew(g,m) T —1(9)
or, equivalently,
AW —e(r) B o
w0) —r Za for all 7 € [0,4(d)) d
o(r) = (W) _ B N
Lo S forall T € (6(3),00)

These two inequalities together are equivalent to

g(w@) —7) < p(d)) —p(r) forallT>0

and simple rearrangements yield (2.11). O

Remark 2.16. Let ¢ be differentiable in (0, c0) and continuous on [0, c0) with ¢'(t) < ¢
for some ¢ > 0 and all t > 0, e.g. ¢(t) = at with a constant @ > 0. Fixing ¢ > 0, by
the mean value theorem for each 7 > 0 there is some 7 € (7,t) such that p(t) — p(7) =
O (7)(t — 7). If we use ¢/(7) < c and let 7 tend to zero we get p(t) < ct for all ¢t > 0.
From the proof of Theorem 2.14 we now see (cf. estimate (2.10)) that if we have a

variational inequality with such a function ¢ then for any constant a* € (0, BY we get
C

E,+ (:L'éi) = O(®(9)). This singular case corresponds to the exact penalization situation

described in [4] for the Banach space setting of Example 2.13 with k = p = 1.



3 Examples

To convince the reader of the necessity to investigate non-metric fitting functionals we
give two illustrative examples. One exploiting all the features of the general theory
described in Section 2, especially the distinction between the space Y of right-hand
sides and the data space Z. And the other contenting itself with the Y = Z setting of
Proposition 2.3.

First, two fitting functionals are motivated in a more or less heuristic fashion. But in
the second and third subsection we make their definitions precise and we show that the
theorems of Section 2 apply. Variational inequalities are derived in the fourth subsection.

3.1 MAP estimation

An elegant way for motivating the minimization of various Tikhonov-like functionals
comes from statistical inversion theory (see [18]). The basic idea is to regard all relevant
variables, in our case z and z (y plays only a minor role), as random variables, here
& and (, respectively, over a common probability space. Exploiting Bayes’ formula for
probability densities

pe(2]€ = )pe ()
pe(?)

pe(zl( = 2) = , v€X,2€7, pe(z) >0, (3.1)
and appropriately modelling the probability densities on its right-hand side, we seek for
maximizers € X of the conditional density p¢(«|¢ = 2) of £ conditioned on ¢ = 2. In
other words: We maximize the probability that z is observed if z has been observed.
Such a maximization problem can be reformulated as the minimization of a Tikhonov-
like functional. The described approach often is refered to as mazimum a-posteriori
probability estimation (MAP estimation).

Note, that conditional probability densities of topological space valued random vari-
ables are a highly non-trivial topic (see [9]). Thus, at this point we have to be very
careful in interpreting the terms in Bayes’ formula (3.1). Since the MAP approach only
shall motivate the examples we consider in this section, we avoid the technical details
necessary to get reasoning bulletproof (the author has verified that a bulletproof version
exists).

Now we have two tasks: modelling the densities p¢(2|§ = x) and p¢(x) (since p¢(z)
is independent of x we do not care about this term), and deriving the corresponding
minimization problem.

Consider the typical setting of imaging applications: We are interested in some quan-
tity x € X which is not directly observable, but which can be made accessible through
an energy density y € Y := LY(T, ) arising from = via y = F(z). Here T C R? is a
bounded set representing the surface of an image sensor, p is a multiple (for scaling pur-
poses) of the Lebesgue measure on 7', and L'(T, ;1) is the Banach space of all real-valued
p-integrable functions. The image sensor, e.g. a CCD image sensor as used for ordinary
digital cameras, does not provide us with this density function, but it counts the num-
ber of particles (e.g. photons) impinging on the mutually disjoint pixels Ty, ...,T, C T,
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n € N, of the sensor during a fixed time interval. The number of particles arriving at T;
is, up to noise related fluctuations, determined by the energy density y on 7;. Instead
of y, we only get a vector z = (21,...,2,) € Z := Nf.

To model p¢(z|§ = x) we have to make assumptions on the nature of the noise.
Restricting our attention to applications where the number of impinging particles is
very small (e.g. astronomy, medical imaging by PET or SPECT), it is sensible to assume
that ¢; follows a Poisson distribution with mean fTi F(x)dp. Additionally assuming that

(1,...,C, are mutually independent this Poisson approach leads to
(Jq, F(x)du)™
(el = a) = [ exo (- [ re )an) (32)
=1 v

as a density with respect to the counting measure on N{j. Here we assume that the
fTi F(z)dp are strictly positive and, for simplicity, that D(F') = X is satisfied.

Furthermore, we have to model the probability density p¢, which allows us to incorpo-
rate a-priori knowledge about the solutions of F'(x) = y or to prescribe desired properties
of the solutions. A widely used model (see, e.g., [1]) is p¢(z) = cexp(—af2(x)) as a den-
sity with respect to a suitable measure on X. Here ¢ > 0 is a normalizing factor, o > 0
is a shape parameter, and 2 : X — R determines the basic structure of pe.

Finally, we reformulate the maximization of

cexp(—af(x)) — AdeZi
¢ ()¢ = z) = WH <W exp (— /T F(z) du))

i=1

over z € X as the minimization of a Tikhonov-like functional. Taking the negative
logarithm and adding Inc — pc(z) + > (ziInz; — z; — In 2;!), which is independent of
x, gives the equivalent minimization problem

Z: (Zz‘ In m + /T F(z)dp — zi> + afd(z) — ;Iél)r(l (3.3)

i=1 i g
The functional in (3.3) serves as one of the two announced example for variational
regularization with non-metric fitting functionals and will be refered to as the semi-
discrete model.

If we had chosen 7' = {1,...,n} C N and u to be the counting measure on this set then

we would have Y = L}(T, u) R™ and T; := {i} would lead to fT z)dp = [F(z)];.
Thus the minimization problem would reduce to

; (Zi In [F(Z;)]l + [F(x)]; — zi> + aQ(z) — Eél)? (3.4)

which motivates the infinite dimensional analogue

/Tzln Fl) + F(z) — zdp + aQ(z) — gél)l(l (3.5)

with T C R? and Y = Z = L}(T, ). The functional in (3.5) is the other example we
will discuss in detail. It will be refered to as continuous model.
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3.2 Continuous model

At first we analyze the continuous model formally given in (3.5); the analysis of the
semi-discrete model will make use of the notations and results of this subsection.

To make the definition of the fitting functional in (3.5) precise we have to handle the
cases where the quotient or the logarithm are not defined. For this purpose we need two
auxiliary functions f and g. Define f : [0,00) — R by

ulnu+1—u, ue€(0,00),
Fu) = (0, 00) (3.6)
1, u=20
and ¢ : [0,00) X [0, 00) — (—00, 00| by
Uf(%), u,v € (0700)7
u, u € (0,00), v=0,
g(u,v) := (0,00) (3.7)
00, u=0, ve0,o0),
0, u=uv=0.

The function f is convex and continuous, and for (a,?) # (0,0) and u,v € (0,00) we
have uf (%) — g(a,0) if (u,v) — (@, ?).

Lemma 3.1. The function g defined by (3.7) is nonnegative, g(u,v) = 0 if and only if
u =0, g 1S convex, and g is lower semi-continuous.

Proof. For u,v € (0,00) and w := 2 € (0,00) consider

uf(%)z() & f(%)ZO < f(w)>20 & whw>w-1.

Since the last inequality is satisfied for all w € (0,00) and equality holds if and only if
w = 1, this proves the first two assertions. Convexity and lower semi-continuity follow
from the fact that g can be expressed as a supremum of affine functions (see [12, p. 10]
for details). O

Let Y := 7 :={yc LYT,p) : y > 0ae} and for 0 < a < b < oo set Y :={y €
LY T, p) : a <y < ba.e}. Further, let 7y be the topology on Y induced by the weak
topology on L'(T, 11). We define

ng(ylva) d}uv Y1,Y2 € Yab>
S(ylva) =140, Y1 =92 ¢ ch]a (38)
o, else.

Since g is lower semi-continuous g(yi,42) : T — [0,00] (y1,%2 € Y;) is measurable
and thus the integral in the definition of S exists (but may be infinite). If we neglect
the bounds a, b and assume that y; and y, are probability densities then S is the
Kullback-Leibler divergence. In this case the properties shown below are well known
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(see, e.g., [1,10,21]). For settings not restricted to probability densities the functional S
is studied in [5,15,21,23].

We now show that S satisfies the assumptions of Proposition 2.3 and thus, it fulfills
Assumption 2.1. That S is nonnegative and S(y,y) = 0 if and only if y = ¢ is a direct
consequence of Lemma 3.1. The following propositions show that S also satisfies the
other properties listed in Proposition 2.3.

Proposition 3.2. For all y1,y2 € Y the functional S defined by (3.8) satisfies
lyt = w2ll7s 7, < 46(T)S (Y1, y2).

Proof. Let y1,y2 € Y (otherwise the assertion is trivially true). If yo # y; = 0 on
aset T C T with u(T) > 0 then g(y1,y2) = 0o on T and thus S(y,y2) = oo, i.e.,
the assertion is true. So in the remaining part of the proof we assume y; # 0 almost
everythere. Following the main ideas in [10] and choosing T C T such that y; # 1o a.e.
on T and y; =y a.e. on T\ T we have

/’yl Yol dp = o el \/ (y1,y2) dp
\/ y17y2

\// ylyh \// 9l 42)

> 0 and noticing that this function is bounded above

Setting h(u) := (ulnu(f:l 111)(u+1)
by 2 for u € (0, 00), we conclude

SS(ylaQZ)/T (ggjzy;?ljz)) du = S(y1,92 /f — )(y1+y2)du

< S(yl,yz)/ 20h(%2) dp < 4bu(T)S(y1,y2)-
T
O

Proposition 3.3. Let S be defined as in (3.8) and let y,yi, g € Y such that S(y,yx) — 0
and S(§,y) < oo. With the additional assumption a > 0 we then have S(g,yx) — S(7,y).

Proof. For y = §j the asserion is trivial, so assume y # 7. S(¢,y) < oo implies 7,y € Y
and analogously S(y,yx) — 0 implies 3 € Y for sufficiently large k. Hence, we have

1S(@, 1) = S y)| =

Yk y
ykln~—yk—yln~+ydu‘
T Yy Yy

Yk Y
ykln+y—yk+(y—yk)1ndu‘
T Yy )

b
< S(y,yr) + (111 g) ly — ykllLr () — 0

by Proposition 3.2. ]
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Proposition 3.4. S defined by (3.8) is weakly lower semi-continuous on' Y XY and
hence weakly sequentially lower semi-continuous.

Proof. The proof is an adaption of the corresponding proofs in [21] and [12]. We have
to show that the level-sets Mg(c) := {(y1,42) € Y xY : S(y1,y2) < ¢} are weakly closed
for all ¢ € R. For ¢ < 0 these sets are empty. For ¢ > 0 we have Mg(c) = {(y,y) : y €
Y} U Mg(c) with

Mc(c) = {(yl,yz) EYIxY!: /Tg(yl,yz)du < c}.

Because the limit of weakly convergent sequences in Banach spaces is uniquely deter-
mined one immediately sees that {(y,y) : y € Y} is weakly closed.

So it remains to show that the sets Mq(c) are weakly closed, too. Since the Mg(c) are
convex (g is convex) and convex sets in Banach spaces are weakly closed if and only if they
are closed it, suffices to show the closedness of Mg(c) for ¢ > 0. So let (y¥,y%) € Ma(c)
and (y1,2) € Y x Y such that y¥ — y; and y§ — yo in LY(T, ). Then yy,y2 € Y2
and there exist subsequences (¥ ),en and (45" )nen of (y¥) and (y§) converging almost
everywhere pointwise to y; and ys, respectively. By the lower semi-continuity of g and
Fatou’s lemma we now get

/g(yl,ya)du < / lim inf g(y}", y5") du Sliminf/ gy, v5) du < c,
Le., (y17y2) € MG(C)' O

3.3 Semi-discrete model

For the semi-discrete example (3.3) we use the same setting as for the continuous one
(ie., Y, 7y, Y2, f, and g are defined as in subsection 3.2), but we set Z := R = [0, 00)"
and

o du, z;), € Yb7

S(y, Z) — {Zl—l g(le ydap zl) Y a (39)
oo, else.

The sets T1,...,T, C T are mutually disjoint measurable sets satisfying u(7;) > 0 for

i =1,...,n and the topology 7z shall be the usual topology on R’}. Our aim is to show
that S satifies Assumption 2.1.

Proposition 3.5. Let S be defined as in (3.9) and let y € Y and z,z, € Z such
that zi, — z and S(y,z) < oco. With the additional assumption a > 0 we then have

Sy, z) = S(y, 2).
Proof. S(y,z) < oo implies y € Y. Hence, we have

n

[Zk‘]z 25
S(y,zr) — Sy, z)| = Zk]; In — [zk]; — zsIn —— +
1S(y, 1) — S(y, 2)| ;1[ k] Ty v i (2] Tr v

if all components of z and zj are nonzero. And this expression goes to zero if [z;]; — 2;.
If for some k some of the [z;]; or z; are zero, the same can be shown. O

2
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Proposition 3.6. S defined by (3.9) is weakly lower semi-continuous on Y X Z and
hence weakly sequentially lower semi-continuous.

Proof. The proof is a simplified version of the proof of Proposition 3.4. 0

Proposition 3.7. Assume that S is defined by (3.9). If S(y,zx) — 0 fory € Y and
zi € Z then there exists some z € Z such that z, — z.

Proof. S(y, z;) — 0 implies S(y, z) < oo for large k and thus y € Y, ie., S(y,z) =
Yoy g(le_ ydu, [2k]i). Hence, defining z; := fTi ydufori=1,...,nwehave g(z;, [21];) —
0. If, for fixed ¢, z; = 0 then this convergence together with the definition of g implies
[z]i = 0 for all sufficiently large k. If z; > 0 then [z]; > 0 has to hold for all sufficiently
large k, since if this would not be true there would exist a subsequence ([zg, |i)nen With
[2k,]i = 0 and this would give g(z;, [#k,]i) = 2 > 0, which contradicts g(z;, [2x]i) — 0.
So we have g(z;, [zk]i) = zzf(%) — 0 for : =1,...,n and this is the case if and only if
[Zk]i — Z;. ]

The following technical proposition will be of use in the next subsection.

Proposition 3.8. For ally € Y withy >0 a.e. and all z € Z the functional S defined
by (3.9) satisfies
2

< 4bu(T)S(y, 2),
LY(T\u)

ZZZfT yd M

where x, is one on T; and zero on T '\ T;.

Proof. Only the case y € Y is of interest. Then, with § := > T yd,uXTZ’ by Propo-

sition 3.2 and under the assumption z; > 0 for i =1,...,n we have

I = ey < 400(D) | o) = au(D)S | glo )
=1 i

Zq y
= 4bu( /zZ zi————d
2 Z Ir, ydu fT ydu Y- Jr v dp a

n

= 4bu(T) ) (Zi In HZ(M + /T ydu— Zi) = 4bu(T)S(y, 2)-

i=1
If some of the z; equal zero then the analog calculation with g(y,9) = y on T; would
lead to the desired result. O
3.4 Variational inequalities

In this subsection we derive variational inequalities for both the continuous and the semi-
discrete example by assuming that a source condition is satisfied. In fact, we only give a
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quite simple variant. But more sophisticated ways for obtaining variational inequalities
are also applicable. For a detailed discussion on the interplay of source conditions and
variational inequalities we refer to [16,24].

Let (X, 7x) be a topological vector space and let Y := {y € L}(T, 1) : y > 0 a.e.} as in
subsection 3.2. Further, assume that F'= A : D(A) C X — Y is a linear operator with
adjoint A* : Y* — X* where Y* = L*°(T, u) and X* is the set of all 7x-continuous linear
functionals on X (we assume X* # (). By 0Q(Z) :={£ € X*: Q(z) > Q)+ &(x — T)}
we denote the subdifferential of 2 at £ € X and we define the Bregman distance with
respect to Q, Z, and & € d0(&) by

Be(x, @) == Qx) - QT) —&{(x —2), ze€X. (3.10)

In this subsection we assume that  is convex. Then Bz (s, ) > 0.
The following proposition provides a preliminary form of a variational inequality.

Proposition 3.9. Let 2t be an Q-minimizing solution of Az = y° such that there exists
some & € 00 (a1 satisfying € = A*n for some n € Y*. Then

Bei(z,2) < Q(a) = Q(al) + [0 || Az — Azl 1 (3.11)
holds for all x € D(A).
Proof. We have
—&l(@ —al) = ~(A") (2 — ") = —n(Ax — A2") < |nl| e[| Az — x| 1,
which proves the assertion. ]

It remains to verify the triangle-type inequality (2.6) with the L'-norm on its left side
and the fitting functional S on the right side.

Proposition 3.10. Let S be the continuous fitting functional defined by (3.8). Then
sy =907 < S(y,2) + S(y°,2) forallz€Y.
Proof. For z € Y by the triangle inequality for norms and by Proposition 3.2 we have
sy = 917 < gy (ly = 2150+ 118° = 217,) < S(y,2) + SG°, 2).
(]
Proposition 3.11. Let S be the semi-discrete fitting functional defined by (3.9). Then
ﬁm”y — 13 < S(y,2) + S(y°,2) for all z € RY.
Proof. For z = (z1,...,2,) € Rl andy € Ysety:= ) ", %XT“ where 7 is one on

T; and zero on T'\ T;. Then by the triangle inequality for norms and by Proposition 3.8
we have

g v — 917 < gy (ly = 9ll7: + 19° = 3l7:) < S(y,2) + S 2).
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Thus, setting E,i(z) := Bei(z,2') and Syo(y) = ﬁmﬂy — yol|3., for both the
continuous and the semi-discrete example, by Proposition 3.9 the source condition ¢7 =
A*n implies a variational inequality

E,i(2) < Q(x) — Qal) + /Bbu(T) 0] 1 Syo (F ()2 (3.12)

for all z € D(A). For Dyo(z) := S(y° 2), i.e., S(y°, 2°) < 6, Theorem 2.14 now provides
the convergence rate

Byt (25, 21) = O(V5) (3.13)

for a parameter choice satisfying

1) 1)
Vo) = =\ 27

for some ¢ € (0, 1]. In case of the continuous example, this rate also has been obtained
in [1] for the symmetric Bregman distance.

4 Conclusions and open questions

We have seen that convergence rates results can be stated also for very general frame-
works of variational regularization. Here, generality addresses different points: non-
metric fitting functionals S, noise measures D,o which are only weakly connected with
S, a wide range of convergence rates expressed by the function ¢, and the freedom to
choose an arbitrary error measure F_;.

Former results on variational regularization with non-metric fitting functionals, in
particular those presented in [8,21], were based on the standard Banach space setting
where S is a power of the norm. This led to unsatisfactory results concerning the
assumptions imposed on S. Distinguishing between the space Y of right-hand sides and
the data space Z we forced ourselves to develop new proofs instead of, exaggerating a
bit, replacing all the norms in the Banach space proofs by S, as done before. This led
to useful results as the examples have shown.

The next steps in the near future should include numerical experiments to compare
the quality of solutions obtained with non-metric approaches to the quality of solutions
obtained by standard Tikhonov regularization. And, since we have a new theoretic
framework, we should look for further practical examples profiting from the extended
theory.

As we have seen, the technique of variational inequalities for proving convergence
rates turns out to be flexible enough to be applied to non-norm settings. Concerning
variational inequalities there remain different open questions: In [16] and [8] it is shown
that, using Bregman distances to measure the solution error, variational inequalities are
limited to low-order convergence rates, i.e., there are higher convergence rates, provided
by other techniques (see, e.g., [20]), that cannot be obtained via variational inequalities.
Now, that we have the freedom to choose other error measures E,:, e.g. ||+ — zT|3/2
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instead of ||« —x'||? in Hilbert spaces, it is not clear whether the restriction to low-order
rates persists further.

Another open questions concerns the existence of converse results, i.e., assertions about
the validity of variational inequalities if convergence rates are known. A first attempt in
this direction is presented in [16], but making a detour via source conditions. Is there
a direct way from convergence rates to variational inequalities, at least in some special
cases?

Deducing source conditions from variational inequalities is a second step of the reverse
direction. The interplay between source conditions and variational inequalities in Banach
spaces is described in [16]. But, as stated there, answers to “converse questions” are
missing for nonlinear operators. Thus, variational inequalities will remain an object of
active research.
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