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Abstract. One of the fundamental results in the theory of localisation for discrete Schrö-
dinger operators with random potentials is the exponential decay of Green’s function. In
this note we provide a new variant of this result in the one-dimensional situation for sign-
changing single-site potentials with arbitrary finite support using the fractional moment
method.

1. Introduction

Anderson models are discrete Schrödinger operators with random potentials. Such
models have been studied since a long time in computational and theoretical physics, as
well as in mathematics. One of the fundamental results for these models is the physical
phenomenon of localisation. There are various mathematical formulations of localisation:
almost sure absence of continuous spectrum, non-spreading of wave packets, exponential
decay of generalised eigensolutions or exponential decay of Green’s function. Such
properties have been established mainly by two different methods, the multiscale analysis
and the fractional moment method. The multiscale analysis (MSA) was invented by
Fröhlich and Spencer in [FS83]. The fractional moment method (FMM) was introduced
by Aizenman and Molchanov [AM93], and further developed, e. g., in [Aiz94, Gra94,
ASFH01].

Here we focus our attention on correlated Anderson models. More precisely, we
consider models where the potential values at different sites need not be independent
random variables. Assuming certain abstract regularity assumptions on the (possibly
dependent) random potential localisation has been established using both methods, see e. g.
[vDK91, AM93, Aiz94, ASFH01]. For continuous alloy-type models with sign-changing
single-site potential localisation has been derived via MSA, e. g. in [Klo95, Ves02, KV06,
Klo02], see also [Sto02]. To our knowledge, the FMM has not been applied to alloy-type
models with sign-changing single-site potential so far (neither in the continuous nor the
discrete setting).

In this paper we study a one-dimensional discrete alloy-type model using the FMM. In
this model, the potential at the lattice site x ∈ Z is defined by a finite linear combination
Vω(x) =

∑
k ωku(x − k) of i. i. d. random coupling constants ωk. The function u(· − k) is

called single-site potential and may be interpreted as a finite interaction range potential
associated to the lattice site k ∈ Z. In particular, the single-site potential is allowed to
change sign. For such models we prove in one space dimension and at all energies a
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so called fractional moment bound, i. e. exponential off-diagonal decay of an averaged
fractional power of Green’s function. The restriction to the one-dimensional case allows
an elegant and short proof in which the basic steps—decoupling and averaging—are
particularly transparent. Currently we are working on the extension of our result to the
multidimensional case.

2. Model and results

We consider a one-dimensional Anderson model. This is the random discrete Schrö-
dinger operator

Hω B −∆ + Vω, ω ∈ Ω, (1)

acting on `2(Z), the space of all square-summable sequences indexed by Z with an inner
product 〈·, ·〉. Here, ∆ : `2 (Z) → `2 (Z) denotes the discrete Laplace operator and Vω :
`2 (Z)→ `2 (Z) is a random multiplication operator. They are defined by

(∆ψ) (x) B
∑
|e|=1

ψ(x + e) and (Vωψ) (x) := Vω(x)ψ(x)

and represent the kinetic energy and the random potential energy, respectively. We
assume that the probability space has a product structure Ω B ×k∈Z R and is equipped
with the probability measure dP(ω) B

∏
k∈Z ρ(ωk)dωk where ρ ∈ L∞(R) ∩ L1(R) with

‖ρ‖L1 = 1. Hence, each element ω of Ω may be represented as a collection {ωk}k∈Z
of independent identically distributed (i. i. d.) random variables, each distributed with
the density ρ. The symbol E{·} denotes the expectation with respect to the probability
measure, i. e. E{·} B

∫
Ω

(·)dP(ω). For a set Γ ⊂ Z, EΓ{·} denotes the expectation with
respect to ωk, k ∈ Γ. That is, EΓ{·} :=

∫
ΩΓ

(·)
∏

k∈Γ ρ(ωk)dωk where ΩΓ B ×k∈Γ R. Let
the single-site potential u : Z → R be a function with finite and non-empty support
Θ B supp u = {k ∈ Z : u(k) , 0}. We assume that the random potential

Vω(x) B
∑
k∈Z

ωku(x − k)

at a lattice site x ∈ Z is a linear combination of the i. i. d. random variables ωk, k ∈ Z, with
coefficients provided by the single-site potential. The function u(· − k) may be interpreted
as a finite range potential associated to the lattice site k ∈ Z. The Hamiltonian (1) is
possibly unbounded, but self-adjoint on a dense subspace of `2(Z), see e. g. [Kir07].
Finally, for the operator Hω in (1) and z ∈ C \σ(Hω) we define the corresponding resolvent
by Gω(z) B (Hω − z)−1. For the Green’s function, which assigns to each (x, y) ∈ Z × Z the
corresponding matrix element of the resolvent, we use the notation

Gω(z; x, y) B
〈
δx, (Hω − z)−1δy

〉
. (2)

For Γ ⊂ Z, δk ∈ `
2(Γ) denotes the Dirac function given by δk(k) = 1 for k ∈ Γ and δk( j) = 0

for j ∈ Γ \ {k}. The quantities ‖ρ‖−1
∞ and (in the case that ρ is weakly differentiable) ‖ρ′‖−1

L1

may be understood as a measure of the disorder present in the model. Our results in the
case of strong disorder are the following two theorems.
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Theorem 2.1. Let n ∈ N, Θ = {0, . . . , n − 1}, s ∈ (0, 1), and ‖ρ‖∞ be sufficiently small.
Then there exist constants C,m ∈ (0,∞) such that for all x, y ∈ Z with |x − y| ≥ n and all
z ∈ C \ R,

E
{
|Gω(z; x, y)|s/n

}
≤ Ce−m|x−y|. (3)

Theorem 2.2. Let n ∈ N, Θ ⊂ Z finite with min Θ = 0 and max Θ = n − 1, r as in Eq. (21)
(the width of the largest gap in Θ), and s ∈ (0, n/(n + r)). Assume

(a) ρ ∈ W1,1(R) with ‖ρ′‖L1 sufficiently small, or
(b) supp ρ compact with ‖ρ‖∞ sufficiently small.

Then there exist constants C,m ∈ (0,∞) such that the bound (3) holds true for all x, y ∈ Z
with |x − y| ≥ 2(n + r) and all z ∈ C \ R.

The difference between the two theorems is the following: In Theorem 2.1 we assume
that Θ is finite and connected (cf. §3). The latter condition can be dropped if ρ is sufficiently
regular, cf. Theorem 2.2. Theorem 2.1 is proven in Section 3 and 4, compare also
Theorem 4.3. An explicit formula for the constants m and C can be inferred from (20), and
an explicit disorder requirement is given in Ineq. (19). A quantitative version of Theorem
2.2 is stated and proven in Section 5.

We can actually apply both theorems to arbitrary Θ with max Θ −min Θ = n − 1. In this
situation a translation of the indices of the random variables {ωk}k∈Z by min Θ transforms
the model to the case min Θ = 0 and max Θ = n − 1. Note that min Θ and max Θ are well
defined since Θ ⊂ R is finite.

Remark 2.3. Our proof give estimates about fractional moments of certain matrix elements
of the resolvent for somewhat more general models. Let us formulate this class of random
potentials next. Assume that Vω := V (1)

ω + V (2)
ω where V (1)

ω ,V (2)
ω : Z → R are potentials

indexed by the random parameter ω in some probability space Ω. Assume that u : Z→ R
has support equal to {0, . . . , n − 1}, and that there exists a sequence λk : Ω → R of
i.i.d. random variables indexed by k ∈ nZ, each being distributed according to a density
ρ ∈ L∞(R). Assume that V (1)

ω (x) =
∑

k∈nZ λk(ω)u(x − k) and that V (2)
ω is uniformly bounded

on Ω × Z, but otherwise arbitrary. If F : Ω → [0,∞) is a random variable we denote its
average over all random variables λk, k ∈ nZ by E(1)(F) :=

∫
F(ω)

∏
k∈nZ ρ(ωk)dωk, where

the domain of integration is ×k∈nZ R. It follows directly from the iterative application
of Lemma 3.3 that for all p ∈ N and for the constant Cu,ρ defined in (11) the following
estimate holds

E(2){|Gω(z; x, x + np − 1)|s/n
}
≤ Cp

u,ρ. (4)

A decomposition of the type Vω := V (1)
ω + V (2)

ω is implicitly used in the proof of Theorem
2.2, given in Section 5. Note, that in this particular situation the two stochstic processes
V (1)
ω ,V (2)

ω are not independet from each other.
If V (2)

ω ≡ 0 then the full potential Vω equals
∑

k∈nZ λk(ω)u(x − k). Hence, in this case the
bound (4) also holds true.

In the following remark we state two complementary results which are explained in
detail in the appendix.
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Remark 2.4. (i) The statements of Theorems 2.1 and 2.2 concern only off-diagonal
elements. If we assume that ρ has compact support, E

{
|Gω(E + i0; x, y)|s

}
is finite

for any x, y ∈ Z and s > 0 sufficiently small. This implies in particular that∑
y∈Z |Gω(E + i0; 0, y)|2 is finite almost surely for almost all E ∈ R.
However, neither dynamical nor spectral localisation can be directly inferred

from the behaviour of the Green’s function using the existent methods ([SW86],
[Aiz94]). The reason is that the random variables V•(x), x ∈ Z, are not independent,
while the dependence of Hω on the i. i. d. variables ωx, x ∈ Z, is not monotone.

(ii) If the polynomial pu(x) :=
∑n−1

k=0 u(k) xk does not vanish on [0,∞) it is possible to
extract from Vω a positive single-site potential with certain additional properties.
In this situation the method of [AEN+06] applies and gives exponential decay of
the fractional moments of the Green’s function.

3. Fractional moment bounds for Green’s function

In this section we present fractional moment bounds for Green’s function. A very useful
observation is that “important” matrix elements of the resolvent are given by the inverse of
a determinant. The latter can be controlled using the following spectral averaging lemma
for determinants.

Lemma 3.1. Let n ∈ N and A,V ∈ Cn×n be two matrices and assume that V is invertible.
Let further 0 ≤ ρ ∈ L1(R) ∩ L∞(R) and s ∈ (0, 1). Then we have for all λ > 0 the bound∫

R

|det(A + rV)|−s/n ρ(r)dr ≤ |det V |−s/n
‖ρ‖1−s

L1 ‖ρ‖
s
∞

2ss−s

1 − s
(5)

≤ |det V |−s/n
(
λ−s‖ρ‖L1 +

2λ1−s

1 − s
‖ρ‖∞

)
. (6)

Proof. Since V is invertible, the function r 7→ det(A + rV) is a polynomial of order n and
thus the set {r ∈ R : A + rV is singular} is a discrete subset of R with Lebesgue measure
zero. We denote the roots of the polynomial by z1, . . . , zn ∈ C. By multilinearity of the
determinant we have

|det(A + rV)| = |det V |
n∏

j=1

|r − z j| ≥ |det V |
n∏

j=1

|r − Re z j|.

The Hölder inequality implies for s ∈ (0, 1) that∫
R

|det(A + rV)|−s/n ρ(r)dr ≤ |det V |−s/n
n∏

j=1

(∫
R

|r − Re z j|
−sρ(r)dr

)1/n

.

For arbitrary λ > 0 and all z ∈ R we have∫
R

1
|r − z|s

ρ(r)dr =

∫
|r−z|≥λ

1
|r − z|s

ρ(r)dr +

∫
|r−z|≤λ

1
|r − z|s

ρ(r)dr

≤ λ−s‖ρ‖L1 + ‖ρ‖∞
2λ1−s

1 − s
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which gives Ineq. (6). We now choose λ = s‖ρ‖L1/(2‖ρ‖∞) (which minimises the right
hand side of Ineq. (6)) and obtain Ineq. (5). �

In order to use the estimate of Lemma 3.1 for our infinite-dimensional operator Gω(z),
we will use a special case of the Schur complement formula (also known as Feshbach
formula or Grushin problem), see e. g. [BHS07, appendix]. Before providing such a
formula, we will introduce some more notation. Let Γ1 ⊂ Γ2 ⊂ Z. We define the operator
PΓ2

Γ1
: `2(Γ2)→ `2(Γ1) by

PΓ2
Γ1
ψ B

∑
k∈Γ1

ψ(k)δk.

Note that the adjoint (PΓ2
Γ1

)∗ : `2(Γ1)→ `2(Γ2) is given by (PΓ2
Γ1

)∗φ =
∑

k∈Γ1
φ(k)δk. If Γ2 = Z

we will drop the upper index and write PΓ1 instead of PZ
Γ1

. For an arbitrary set Γ ⊂ Z we
define the restricted operators ∆Γ,VΓ,HΓ : `2(Γ)→ `2(Γ) by

∆Γ B PΓ∆P∗Γ, VΓ B PΓVωP∗Γ and HΓ B PΓHωP∗Γ = −∆Γ + VΓ.

Furthermore, we define GΓ(z) B (HΓ−z)−1 and GΓ(z; x, y) B
〈
δx,GΓ(z)δy

〉
for z ∈ C\σ(HΓ)

and x, y ∈ Γ. For an operator T : `2(Γ) → `2(Γ) the symbol [T ] denotes the matrix
representation of T with respect to the basis {δk}k∈Γ. By ∂Γ we denote the interior vertex
boundary of the set Γ, i. e. ∂Γ B {k ∈ Γ : #{ j ∈ Γ : | j − k| = 1} < 2}. For finite sets
Γ ⊂ Z, |Γ| denotes the number of elements of Γ. A set Γ ⊂ Z is called connected if
∂Γ ⊂ {inf Γ, sup Γ}. In particular, Z is a connected set.

Lemma 3.2. Let Γ ⊂ Z and Λ ⊂ Γ be finite and connected. Then we have the identity

GΓ(z; x, y) =
〈
δx, (HΛ − BΛ

Γ − z)−1δy
〉

for all z ∈ C \ σ(HΓ) and all x, y ∈ Λ, where BΛ
Γ

: `2(Λ) → `2(Λ) is specified in Eq. (7).
Moreover, the operator BΛ

Γ
is diagonal and does not depend on Vω(k), k ∈ Λ.

An analogous statement for arbitrary dimension was established in [EG].

Proof. Since Λ is finite, HΛ is bounded and the Schur complement formula gives

PΓ
Λ(HΓ − z)−1(PΓ

Λ

)∗
=

[
(HΛ − z) − PΓ

Λ∆Γ

(
PΓ

Γ\Λ

)∗ (HΓ\Λ − z)−1 PΓ
Γ\Λ∆Γ

(
PΓ

Λ

)∗︸                                                ︷︷                                                ︸
CBΛ

Γ

]−1
.

It is straightforward to calculate that the matrix elements of BΛ
Γ

are given by

〈
δx, BΛ

Γ δy

〉
=


∑

k∈Γ\Λ:
|k−x|=1

〈
δk, (HΓ\Λ − z)−1δk

〉
if x = y and x ∈ ∂Λ,

0 else.
(7)

Here we have used that Λ is connected. �

Lemma 3.3. Let n ∈ N, Θ = {0, . . . , n − 1}, s ∈ (0, 1), and Γ ⊂ Z be connected. Then,
(i) for every pair x, x + n − 1 ∈ Γ and all z ∈ C \ R we have

E{x}
{
|GΓ(z; x, x + n − 1)|s/n

}
≤ CuCρ =: Cu,ρ. (8)
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(ii) if 1 ≤ |Γ| ≤ n, we have for all z ∈ C \ R the bound

E{γ0}

{
|GΓ(z; γ0, γ1)|s/n

}
≤ C+

u C+
ρ =: C+

u,ρ (9)

where γ0 = min Γ and γ1 = max Γ.
(iii) if Γ = {x, x + 1, ...} and y ∈ Γ with 0 ≤ y − x ≤ n − 1, we have for all z ∈ C \ R the

bound
E{y−n+1}

{
|GΓ(z; x, y)|s/n

}
≤ Cu,+C+

ρ C Cu,ρ,+. (10)
The constants Cu, Cρ, C+

u , C+
ρ and Cu,+ are given in Eq. (11), (12) and (13).

Proof. We start with the first statement of the lemma. By assumption x, x + n − 1 ∈ Γ. We
apply Lemma 3.2 with Λ B {x, x + 1, . . . , x + n − 1} ⊂ Γ (since Γ is connected) and obtain
for all x, y ∈ Λ

GΓ(z; x, y) =
〈
δx, (HΛ − BΛ

Γ − z)−1δy
〉
,

where the operator BΛ
Γ

is given by Eq. (7). Set D = HΛ − BΛ
Γ
− z. By Cramer’s rule we

have GΓ(z; x, y) = det Cy,x/ det[D]. Here, Ci, j = (−1)i+ jMi, j and Mi, j is obtained from the
tridiagonal matrix [D] by deleting row i and column j. Thus Cx+n−1,x is a lower triangular
matrix with determinant ±1. Hence,

|GΓ(z; x, x + n − 1)| =
1

|det[D]|
.

Since Θ = supp u = {0, . . . , n − 1}, every potential value Vω(k), k ∈ Λ, depends on the
random variable ωx, while the operator BΛ

Γ
is independent of ωx. Thus we may write [D]

as a sum of two matrices
[D] = A + ωxV,

where V ∈ Rn×n is diagonal with the elements u(k − x), k = x, . . . , x + n − 1, and A :=
[D] − ωxV . Since A is independent of ωx we may apply Lemma 3.1 and obtain for all
s ∈ (0, 1) the estimate (8) with

Cu =
∣∣∣∣∏

k∈Θ

u(k)
∣∣∣∣−s/n

and Cρ = ‖ρ‖s∞
2ss−s

1 − s
. (11)

The proof of Ineq. (9) is similar but does not require Lemma 3.2. We have the decomposi-
tion [HΓ − z] = Ã + ωγ0Ṽ , where d := γ1 − γ0, Ṽ ∈ R(d+1)×(d+1) is diagonal with elements
u(k − γ0), k = γ0, . . . , γ1, and Ã := [HΓ − z] − ωγ0Ṽ is independent of ωγ0 . By Cramer’s
rule and Lemma 3.1 we obtain

E{γ0}

{
|GΓ(z; γ0, γ1)|t/(d+1)} ≤ ∣∣∣∣ d∏

k=0

u(k)
∣∣∣∣−t/(d+1)

‖ρ‖t∞
2tt−t

1 − t

for all t ∈ (0, 1). We choose t = sd+1
n and obtain Ineq. (9) with the constants

C+
u = max

i∈Θ

∣∣∣∣ i∏
k=0

u(k)
∣∣∣∣−s/n

and C+
ρ = max

{
‖ρ‖s∞, ‖ρ‖

s/n
∞

}2ss−s

1 − s
. (12)

In the final step we have used s ≥ t and the monotonicity of (0, 1) 3 x 7→ 2xx−x/(1 − x).
For the proof of the third statement we apply Lemma 3.2 with Λ = {x, . . . , y} and obtain
using Cramer’s rule |GΓ(z; x, y)| = |1/ det[HΛ − BΛ

Γ
− z]|. Set d B y − x. Notice that BΛ

Γ
is

independent of ωy−n+1, while every potential value Vω(k), k ∈ Λ, depends on ωy−n+1. Thus
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we have the decomposition [HΛ−BΛ
Γ
− z] = A+ωy−n+1V , where V ∈ R(d+1)×(d+1) is diagonal

with the elements u(k), k = n − 1 − d, . . . , n − 1, and A B [HΛ − BΛ
Γ
− z] − ωy−n+1V . Since

A is independent of ωy−n+1 we may apply Lemma 3.1 and obtain for all t ∈ (0, 1)

E{y−n+1}

{∣∣∣GΓ(z; x, y)
∣∣∣s/(d+1)}

≤

∣∣∣∣ n−1∏
k=n−1−d

u(k)
∣∣∣∣−t/(d+1)

‖ρ‖t∞
2tt−t

1 − t
.

We choose t = sd+1
n and obtain Ineq (10) with

Cu,+ B max
i∈Θ

∣∣∣∣ n−1∏
k=n−1−i

u(k)
∣∣∣∣−s/n

. (13)

In the final step we have used s ≥ t and the monotonicity of (0, 1) 3 x 7→ 2xx−x/(1− x). �

4. Exponential decay of Green’s function

In this section we use so called “depleted” Hamiltonians to formulate a geometric
resolvent formula. Such Hamiltonians are obtained by setting to zero the “hopping terms”
of the Laplacian along a collection of bonds. More precisely, let Λ ⊂ Γ ⊂ Z be arbitrary
sets. We define the depleted Laplace operator ∆Λ

Γ
: `2(Γ)→ `2(Γ) by〈

δx,∆
Λ
Γ δy

〉
B

0 if x ∈ Λ, y ∈ Γ \ Λ or y ∈ Λ, x ∈ Γ \ Λ,〈
δx,∆Γδy

〉
else.

In other words, the hopping terms which connect Λ with Γ \ Λ or vice versa are deleted.
The depleted Hamiltonian HΛ

Γ
: `2(Γ)→ `2(Γ) is then defined by

HΛ
Γ B −∆Λ

Γ + VΓ.

Let further T Λ
Γ
B ∆Γ−∆Λ

Γ
be the difference between the the “full” Laplace operator and the

depleted Laplace operator. Analogously to Eq. (2) we use the notation GΛ
Γ

(z) B (HΛ
Γ
− z)−1

and GΛ
Γ

(z; x, y) B
〈
δx,GΛ

Γ
(z)δy

〉
. The second resolvent identity yields for arbitrary sets

Λ ⊂ Γ ⊂ Z

GΓ(z) = GΛ
Γ (z) + GΓ(z)T Λ

Γ GΛ
Γ (z) (14)

= GΛ
Γ (z) + GΛ

Γ (z)T Λ
Γ GΓ(z). (15)

In the following we will use that GΛ
Γ

(z; x, y) = GΛ(z; x, y) for all x, y ∈ Λ, since HΛ
Γ

is
block-diagonal, and that GΛ

Γ
(z; x, y) = 0 if x ∈ Λ and y < Λ or vice versa.

Lemma 4.1. Let n ∈ N, Θ = {0, . . . , n − 1}, Γ ⊂ Z be connected, and s ∈ (0, 1). Then we
have for all x, y ∈ Γ with y − x ≥ n, Λ := {x + n, x + n + 1, . . . } ∩ Γ and all z ∈ C \ R the
bound

E{x}
{
|GΓ(z; x, y)|s/n

}
≤ Cu,ρ · |GΛ(z; x + n, y)|s/n.

In particular,
E
{
|GΓ(z; x, y)|s/n

}
≤ Cu,ρ · E

{
|GΛ(z; x + n, y)|s/n

}
. (16)
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Proof. Our starting point is Eq. (14). Taking the matrix element (x, y) yields

GΓ(z; x, y) = GΛ
Γ (z; x, y) +

〈
δx,GΓ(z)T Λ

Γ GΛ
Γ (z)δy

〉
.

Since x < Λ and y ∈ Λ, the first summand on the right vanishes as the depleted Green’s
function GΛ

Γ
(z; x, y) decouples x and y. For the second summand we calculate

GΓ(z; x, y) = GΓ(z; x, x + n − 1)GΛ(z; x + n, y). (17)

The second factor is independent of ωx. Thus, taking expectation with respect to ωx bounds
the first factor using Ineq. (8) and the proof is complete. �

Lemma 4.2. Let n ∈ N, Θ = {0, . . . , n − 1}, Γ = {x, x + 1, ...}, y ∈ Γ with n ≤ y − x < 2n,
and s ∈ (0, 1). Then we have for all z ∈ C \ R the bound

E{y−n+1,x}
{
|GΓ(z; x, y)|s/n

}
≤ C+

u,ρCu,ρ. (18)

Proof. The starting point is Eq. (15). Choosing Λ = {x, . . . , y − n} gives

GΓ(z; x, y) = GΛ(z; x, y − n)GΓ(z; y − n + 1, y).

Since GΛ(z; x, y − n) depends only on the potential values at lattice sites in Λ it is indepen-
dent of ωy−n+1. We take expectation with respect to ωy−n+1 to bound the second factor of
the above identity using Ineq. (8). Since 1 ≤ |Λ| ≤ n by assumption, we may apply Ineq.
(9) to GΛ(z; x, y − n) which ends the proof. �

The proof of the following theorem will serve as a basis to complete the proof of
(i) Theorem 2.1 at the end of this section,

(ii) Theorem 2.2 in Section 5.
The difference between the proof of Theorem 2.1 and Theorem 4.3 is, that the latter is
better suited for a generalisation to single-site potentials with disconnected support.

Theorem 4.3. Let Θ = {0, . . . , n − 1} and s ∈ (0, 1). Assume

‖ρ‖∞ <
(1 − s)1/s

2s−1

∣∣∣∣ n−1∏
k=0

u(k)
∣∣∣∣1/n. (19)

Then m = − ln Cu,ρ is strictly positive and

E
{
|Gω(z; x, y)|s/n

}
≤ C+

u,ρ exp
{
−m

⌊
|x − y|

n

⌋}
for all x, y ∈ Z with |x − y| ≥ 2n and all z ∈ C \ R. Here, b·c is defined by bzc B max{k ∈
Z|k ≤ z}.

Proof. The constant m is larger than zero since Cu,ρ < 1 by assumption. By symmetry we
assume without loss of generality y − x ≥ 2n. In order to estimate E

{
|Gω(z; x, y)|s/n

}
, we

iterate Eq. (16) of Lemma 4.1 and finally use Eq. (18) of Lemma 4.2 for the last step.
Figure 1 shows this procedure schematically. We choose p B b(y − x)/nc − 1 ∈ N such
that y − 2n < x + pn ≤ y − n. We iterate Eq. (16) exactly p times, starting with Γ = Z, and
obtain

E
{
|Gω(z; x, y)|s/n

}
≤ Cp

u,ρ · E
{
|GΛp(z; x + pn, y)|s/n

}
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x yx + n x + 2n y − ny − 2n x + pnx + (p − 1)n

Lemma 4.1 Lemma 4.2

Figure 1. Illustration to the proof of Theorem 4.3

where Λp = {x + pn, x + pn + 1, . . . }. Now the first p jumps of Fig. 1 are done and
it remains to estimate E

{
|GΛp(z; x + pn, y)|s/n

}
. Since n ≤ y − (x + pn) < 2n and Λp =

{x + pn, x + pn + 1, . . . } we may apply Lemma 4.2 and get

E
{
|Gω(z; x, y)|s/n

}
≤ Cp+1

u,ρ C+
u,ρ = C+

u,ρ e(p+1) ln Cu,ρ . �

Proof of Theorem 2.1. Without loss of generality we assume y− x ≥ n. We iterate Eq. (16)
exactly q B b(y − x)/nc ∈ N times, starting with Γ = Z, and obtain E

{
|Gω(z; x, y)|s/n

}
≤

Cp
u,ρ·E

{
|GΛq(z; x+qn, y)|s/n

}
, where Λq = {x+pn, x+pn+1, . . . }. Since 0 ≤ y−(x+qn) ≤ n−1

by construction, we may apply part (iii) of Lemma 3.3 and obtain

E
{
|Gω(z; x, y)|s/n

}
≤ Cq

u,ρCu,ρ,+ = Cu,ρ,+ exp
{
−m

⌊y − x
n

⌋}
(20)

where m = − ln Cu,ρ. In particular, m > 0 if Ineq. (19) holds. �

5. Single-site potentials with arbitrary finite support

In this section we consider the case in which the support Θ of the single-site potential is
an arbitrary finite subset of Z. By translation, we assume without loss of generality that
min Θ = 0 and max Θ = n − 1 for some n ∈ N. Furthermore, we define

r B max
{
b − a | [a, b] ⊂ {0, . . . , n − 1}, [a, b] ∩ Θ = ∅

}
. (21)

Thus r is the width of the largest gap in Θ. In order to handle arbitrary finite supports
of the single-site potential, we need one of the following additional assumptions on the
density ρ ∈ L∞(R):

A1 : ρ ∈ W1,1(R) A2 : supp ρ ⊂ [−R,R] for some R > 0. (22)

To illustrate the difficulties arising for non-connected supports Θ we consider an example.
Suppose Θ = {0, 2, 3, . . . , n − 1} so that r = 1. If we set Λ = {0, . . . , n − 1} there is no
decomposition HΛ − BΛ

Γ
= A +ω0V with an invertible V . If we set Λ = {0, . . . , n− 1 + r} =

{0, . . . , n} we observe that every diagonal element of HΛ depends at least on one of the
variables ω0 and ω1 = ωr, while the elements of BΛ

Γ
(which appear after applying Lemma

3.2) are independent of ωk, k ∈ {0, . . . , r} = {0, 1}. Thus we have a decomposition
HΛ − BΛ

Γ
= A + ω0V0 + ω1V1, where A is independent of ωk, k ∈ {0, 1}, and for all i ∈ Λ

either V0(i) or V1(i) is not zero. As a consequence there is an α ∈ R such that V0 + αV1 is
invertible on `2(Λ). Motivated by this observation, we prove the following lemma.

Lemma 5.1. Let N, d ∈ N and A,V0,V1, . . . ,VN ∈ C
d×d be matrices. Let (αk)N

k=0 ∈ R
N+1

with α0 , 0. Assume that
∑N

k=0 αkVk is invertible. Let further 0 ≤ ρ ∈ L1(R) ∩ L∞(R) with
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‖ρ‖L1 = 1, t ∈ (0, 1), and A1,A2 be as in (22). Then, if the condition A1 is satisfied, we
have the bound

I B
∫
RN+1

∣∣∣∣det
(
A +

N∑
i=0

riVi

)∣∣∣∣t/d N∏
i=0

ρ(ri)dri ≤

∣∣∣∣det
( N∑

k=0

αkVk

)∣∣∣∣−t/d( N∑
k=0

|αk|
)t t−t

1 − t
‖ρ′‖tL1 .

If the conditionA2 is satisfied, we have the bound

I ≤
∣∣∣∣det

( N∑
k=0

αkVk

)∣∣∣∣−t/d
|α0|

t
(
1 + max

i∈{1,...,N}

|αi|

|α0|

)Nt 2tt−t

1 − t
(2R)Nt‖ρ‖(N+1)t

∞ .

Proof. Substituting

r0

r1
...
...

rN


= T



x0

x1
...
...

xN


=



α0 0 · · · · · · 0

α1 α0 0
...

α2 0 α0
. . .

...
...

...
. . . α0 0

αN 0 . . . 0 α0





x0

x1
...
...

xN


=



α0x0

α1x0 + α0x1

α2x0 + α0x2

...

αN x0 + α0xN


we get

I =

∫
RN

∫
R

∣∣∣∣det
(
Ã + x0

N∑
i=0

αiVi

)∣∣∣∣−t/d
g(x0, . . . , xN)dx0

 |α0|
N+1dx1 . . . dxN

where Ã = A + α0
∑N

i=1 xiVi and g(x0, . . . , xN) = ρ(α0x0)
∏N

i=1 ρ(αix0 + α0xi). Since x0 7→

g(x0, . . . , xN) is an element of L1(R) ∩ L∞(R) we may apply Lemma 3.1 and obtain for all
λ > 0

I ≤
∣∣∣∣det

( N∑
i=0

αiVi

)∣∣∣∣−t/d
∫
RN

(
λ−t

∫
R

g(x0, . . . , xN)dx0 +
2λ1−t

1 − t
sup
x0∈R

g(x0, . . . , xN)
)
|α0|

N+1dx

=
∣∣∣∣det

( N∑
i=0

αiVi

)∣∣∣∣−t/d(
λ−t +

2λ1−t

1 − t

∫
RN

sup
x0∈R

g(x0, . . . , xN)|α0|
N+1dx1 . . . dxN

)
where dx = dx1 . . . dxN . In the case ofA1 we use supx0∈R

g ≤ 1
2

∫
R
|∂g/∂x0|dx0, substitute

back into the original coordinates and finally choose λ = t/(‖ρ′‖L1
∑N

k=0 |αk|). To end
the proof if the condition A2 is satisfied, we use supp ρ ⊂ [−R,R] and see that if |x j| >
R ‖T−1‖∞ for some j = 0, . . . ,N, then g(x0, . . . , xN) = 0. Thus it is sufficient to integrate
over the cube [−R‖T−1‖∞,R‖T−1‖∞]N . We estimate supx0∈R

g(x0, . . . , xN) ≤ ‖ρ‖N+1
∞ and

choose λ = t/(2‖ρ‖N+1
∞ |α

N+1
0 |(2R‖T−1

∞ ‖)
N). The row-sum norm of T−1 equals ‖T−1‖∞ =

maxi∈{1,...,N} (|α0|
−1 + |αi/α

2
0|) = (1 + maxi∈{1,...,N} |αi/α0|)/|α0|. �

With the help of Lemma 5.1 we prove the following analogues of Lemma 3.3 and
Theorem 4.3.

Lemma 5.2. Let n ∈ N, Θ ⊂ Z with min Θ = 0, max Θ = n − 1, and Γ ⊂ Z be connected.
Let further r be as in Eq. (21), A1,A2 as in (22), and s ∈ (0, 1). Then there exists a
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constant D such that for all x, x + n − 1 + r ∈ Γ and z ∈ C \ R

E{x,...,x+r}
{
|GΓ(z; x, x + n − 1 + r)|s/(n+r)} ≤ D . (23)

The constant D is characterised in Eq. (25) and estimated in Ineq. (27). If 1 ≤ |Γ| ≤ n + r
with γ0 = min Γ and γ1 = max Γ there exists a constant D+ such that for all z ∈ C \ R

E{γ0,...,γ0+r}
{
|GΓ(z; γ0, γ1)|s/(n+r)} ≤ D+. (24)

The constant D+ is characterised in Eq. (28) and estimated in Ineq. (29).

Proof. The proof is similar to the proof of Lemma 3.3. Apply Lemma 3.2 with Λ =

{x, x + 1, . . . , x + n − 1 + r} and Cramer’s rule to get |GΓ(z; x, x + n − 1 + r)| = 1/ |det[D]|
where D = HΛ − BΛ

Γ
− z. Note that BΛ

Γ
is independent of ωk, k ∈ {x, . . . , x + r}. We have

the decomposition [D] = A +
∑r

k=0 ωx+kVk where the elements of the diagonal matrices
Vk ∈ R

(n+r)×(n+r), k = 0, . . . , r, are given by Vk(i) = u(i − k), i = 0, . . . , n − 1 + r, and
A = D −

∑r
k=0 ωkVk is independent of ωk, k ∈ {x, . . . , x + r}. We apply Lemma 5.1 and

obtain for all α = (αk)r
k=0 ∈ M := {α ∈ Rr+1 : α0 , 0,

∑r
k=0 αkVk is invertible} the bound

E{x,...,x+r}
{
|GΓ(z; x, x + n − 1 + r)|s/(n+r)} ≤ Dα where

Dα = ‖ρ′‖sL1

s−s

1 − s

( r∑
k=0

|αk|
)s

n−1+r∏
i=0

∣∣∣∣ r∑
k=0

αku(i − k)
∣∣∣∣−s/(n+r)

ifA1 is satisfied and

Dα = ‖ρ‖(r+1)s
∞ (2R)rs 2ss−s

1 − s
|α0|

s

(
1 + max

i∈{1,...,r}

|αi|

|α0|

)rs n−1+r∏
i=0

∣∣∣∣ r∑
k=0

αku(i − k)
∣∣∣∣−s/(n+r)

if A2 is satisfied. The set M is non-empty and equal to the set {α ∈ Rr+1 : α0 ,
0,Dα is finite}. Thus Ineq. (23) holds with the constant

D B inf
α∈M

Dα. (25)

In the following we establish an upper bound for D. Using a volume comparison criterion
we can find a vector α′ = (α′k)r

k=0 ∈ [0, 1]r+1 which has to each hyperplane
∑r

k=0 αku(i−k) =

0, i = 0, . . . , n − 1 + r, at least the Euclidean distance (2(n + r)(r + 1)r/2)−1, as outlined in
Fig. 2. This implies α′0 ≥ (2(n + r)(r + 1)r/2)−1 since the hyperplane for i = 0 is α0 = 0.
With this choice of α and the notation ui = (u(i − k))r

k=0, i ∈ {0, . . . , n − 1 + r}, we have

n−1+r∏
i=0

∣∣∣∣ r∑
k=0

α′ku(i−k)
∣∣∣∣− s

n+r
=

n−1+r∏
i=0

∣∣∣∣‖ui‖ 〈α
′, ui/‖ui‖〉2

∣∣∣∣− s
n+r
≤

[
2(n + r)(r + 1)r/2]s∣∣∣∣∏n−1+r

i=0

(∑r
k=0 u(i − k)2

)∣∣∣∣ s
2(n+r)

(26)

where 〈·, ·〉2 denotes the standard Euclidian scalar product. Now, in both casesA1 andA2

we choose α = α′ and obtain

D ≤ ‖ρ′‖sL1

s−s

1 − s
(r + 1)s[2(n + r)(r + 1)r/2]s∣∣∣∣∏n−1+r

i=0

(∑r
k=0 u(i − k)2

)∣∣∣∣ s
2(n+r)

(27a)
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εHε
0

Hε
1

Hε
n−1+r

α′

Vol(W) = 1

Vol(∪iHε
i ) ≤ (n + r)(r + 1)r/2ε

Vol(W \ ∪iHε
i ) ≥ 1 − (n + r)(r + 1)r/2ε

Figure 2. Sketch of the existence of a vector α′ ∈ W = [0, 1]r+1 with the
desired properties: Let Hε

i denote the ε-neighbourhood of the hyperplane
Hi := {α ∈ W |

∑r
k=0 αku(i − k) = 0} for i ∈ {0, . . . , n − 1 + r}. Since the

volume of W \ ∪iHε
i is positive if ε is smaller than (n + r)−1(r + 1)−r/2 = d0,

we conclude (using continuity) that there is a vector α′ whose distance to
each hyperplane Hi, i ∈ {0, . . . , n − 1 + r}, is at least d0/2.

ifA1 is satisfied and

D ≤ ‖ρ‖(r+1)s
∞ (2R)rs 2ss−s

1 − s
(
1 + 2(n + r)(r + 1)r/2)rs

[
2(n + r)(r + 1)r/2]s∣∣∣∣∏n−1+r

i=0

(∑r
k=0 u(i − k)2

)∣∣∣∣ s
2(n+r)

(27b)

ifA2 is satisfied.
The proof of the second statement is similar but without use of Lemma 3.2. By Cramer’s

rule we get |GΓ(z; γ0, γ1)| = 1/| det[HΓ − z]|. Set d = γ1 − γ0. We have the decomposition
[HΓ − z] = Ã +

∑r
k=0 ωγ0+kṼk, where the elements of the diagonal matrices Ṽk ∈ R

(d+1)×(d+1),
k = 0, . . . , r, are given by Ṽk(i) = u(i − k), i ∈ {0, . . . , d}, and Ã := [HΓ − z] −

∑r
k=0 ωkṼk

is independent of ωk, k ∈ {x, . . . , x + r}. We apply Lemma 5.1 with t = sd+1
n+r and obtain

(using s ≥ t) for all α = (αk)r
k=0 ∈ M̃ B {α ∈ Rr+1 : α0 , 0,

∑r
k=0 αkṼk is invertible} that

E{γ0,...,γ0+r}
{
|GΓ(z; γ0, γ1)|s/(n+r)} ≤ D+

α(d) where

D+
α(d) = ‖ρ′‖

s d+1
n+r

L1

s−s

1 − s

( r∑
k=0

|αk|
)s d+1

n+r
d∏

i=0

∣∣∣∣ r∑
k=0

αku(i − k)
∣∣∣∣−s/(n+r)

ifA1 is satisfied and

D+
α(d) = ‖ρ‖

s (r+1)(d+1)
n+r

∞ (2R)s r(d+1)
n+r

2ss−s

1 − s
|α0|

s d+1
n+r

(
1 + max

i∈{1,...,r}

|αi|

|α0|

)sr d∏
i=0

∣∣∣∣ r∑
k=0

αku(i − k)
∣∣∣∣ s

n+r

ifA2 is satisfied. Since M̃ ⊃ M for each d ∈ 0, . . . n − 1 + r the set M̃ is non-empty. Thus
Ineq. (24) holds with the constant

D+ B max
d∈{0,...,n−1+r}

inf
α∈M̃

D+
α(d). (28)
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We again choose α = α′ as in Fig. 2, use α′k ∈ [0, 1] and α′0 ≥ (2(n+ r)(r +1)r/2)−1, estimate
D+
α′(d) similar to Ineq. (26), and obtain

D+ ≤ max
d∈{0,...,n−1+r}

‖ρ′‖s
d+1
n+r

L1

s−s

1 − s
(r + 1)s[2(d + 1)(r + 1)r/2]s∣∣∣∣∏d

i=0
∑r

k=0 u(i − k)2
∣∣∣∣s/(2(n+r))

 (29a)

ifA1 is satisfied and

D+ ≤ max
d∈{0,...,n−1+r}

‖ρ‖s
(r+1)(d+1)

n+r
∞ (2R)s r(d+1)

n+r

[
1 + 2(d + 1)(r + 1)r/2]sr[2(d + 1)(r + 1)r/2]s

2−sss(1 − s)
∣∣∣∣∏d

i=0
∑r

k=0 u(i − k)
∣∣∣∣ s

2(n+r)


(29b)

ifA2 is satisfied. �

Theorem 5.3. Let n ∈ N, Θ ⊂ Z, min Θ = 0, max Θ = n − 1, s ∈ (0, 1), r as in Eq. (21), D
the constant from Lemma 5.2, and let ρ satisfy one of the assumptionsA1 orA2 from (22).
Assume D < 1. Then m = − ln D is strictly positive and we have the bound

E
{
|Gω(z; x, y)|s/(n+r)} ≤ D+ e−m

⌊
|x−y|
n+r

⌋
for all x, y ∈ Z with |x − y| ≥ 2(n + r) and all z ∈ C \ R, where b·c is defined by
bzc := max{k ∈ Z|k ≤ z}.

Proof. The proof is similar to the proof of Theorem 4.3. We again assume y > x. Let
Γ1 ⊂ Z be connected. Using Eq. (14) with Λ := {x + n + r, . . . } ∩ Γ1 and Lemma 5.2 we
have for all pairs x, y ∈ Γ1 with y − x ≥ n + r

E
{
|GΓ1(z; x, y)|s/(n+r)} ≤ D E

{
|GΛ(z; x + n + r, y)|s/(n+r)} (30)

which is the analogue to Lemma 4.1. Now, let Γ2 = {x, x + 1, . . . } and y ∈ Γ2 with
n + r ≤ y− x < 2(n + r). By Eq. (15) with Λ = {x, . . . , y− (n + r)} and Lemma 5.2 we have

E
{
|GΓ2(z; x, y)|s/(n+r)} ≤ DD+ (31)

which is the analogue of Lemma 4.2. Iterating Eq. (30) exactly p = b(y − x)/(n + r)c − 1
times, starting with Γ1 = Z, and finally using Eq. (31) once gives the statement of the
theorem. �

6. Appendix

Here we prove and discuss the two results which have been stated in Remark 2.4. In
the appendix we assume throughout that assumptionA2 holds, i. e. there is an R ∈ (0,∞)
such that supp ρ ⊂ [−R,R]. We use the notation u j(x) = u(x − j), for all j, x ∈ Z, for the
translated function as well as for the corresponding multiplication operator.

The following theorem concerns the first part of Remark 2.4. It gives a global uniform
bound on (x, y) 7→ E{|Gω(z; x, y)|s} for s > 0 sufficiently small.

Theorem 6.1. Let s ∈ (0, 1), Θ ⊂ Z with min Θ = 0 and max Θ = n − 1 for some n ∈ N,
and supp ρ be compact. Then there is a positive constant C such that for all x, y ∈ Z and
all z ∈ C \ R we have

E
{
|Gω(z; x, y)|s/(4n)} ≤ C.
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For the proof we will need

Lemma 6.2. Let n ∈ N, R ∈ R, A ∈ Cn×n an arbitrary matrix, V ∈ Cn×n an invertible
matrix and s ∈ (0, 1). Then we have the bounds

‖V−1‖ ≤
‖V‖n−1

|det V |
(32)

and ∫ R

−R

∥∥∥(A + rV)−1
∥∥∥s/n

dr ≤
2R1−s(‖A‖ + R‖V‖)s(n−1)/n

ss(1 − s) |det V |s/n
. (33)

Proof. To prove Ineq. (32) let 0 < s1 ≤ s2 ≤ . . . ≤ sn be the singular values of V . Then we
have

∏n
i=1 si ≤ s1sn−1

n , that is,
1
s1
≤

sn−1
n∏n
i=1 si

. (34)

For the norm we have ‖V−1‖ = 1/s1 and ‖V‖ = sn. For the determinant of V there holds
|det V | =

∏n
i=1 si. Hence, Ineq. (32) follows from Ineq. (34). To prove Ineq. (33) recall

that, since V is invertible, the set {r ∈ R : A + rV is singular} is a discrete set. Thus, for
almost all r ∈ [−R,R] we may apply Ineq. (32) to the matrix A + rV and obtain∥∥∥(A + rV)−1

∥∥∥s/n
≤

(‖A‖ + R‖V‖)s(n−1)/n

|det(A + rV)|s/n
.

Inequality (33) now follows from Lemma 3.1. �

Proof of Theorem 6.1. Since supp ρ ⊂ [−R,R], Hω is a bounded operator. Set m = ‖Hω‖+1.
If |z| ≥ m, we use ‖Gω(z)‖ = supλ∈σ(Hω)|λ− z|−1 ≤ 1 and obtain the statement of the theorem.
Thus it is sufficient to consider |z| ≤ m. If |x − y| ≥ 4n Theorem 5.2 applies, since r ≤ n.
We thus only consider the case |x − y| ≤ 4n − 1. By translation we assume x = 0 and by
symmetry y ≥ 0. Set Λ+ = {−1, . . . , 4n} and Λ = {0, . . . , 4n − 1}. Lemma 3.2 gives

PΛ+
Gω(z)P∗Λ+

= (HΛ+
− BΛ+

Z − z)−1

where 〈δx, B
Λ+

Γ
δy〉 =

∑
k∈Γ\Λ+,|k−x|=1〈δk, (HΓ\Λ+

− z)−1δk〉 if x = y and x ∈ ∂Λ+ = {−1, 4n},
and zero else. Similarly, by another application of the Schur complement formula

PΛ(HΛ+
−BΛ+

Z − z)−1P∗Λ =
(
HΛ− z−PΛ∆P∗∂Λ+

(
PΛ+

∂Λ+
(HΛ+

−BΛ+

Z )
(
PΛ
∂Λ+

)∗
− z

)−1
P∂Λ+

∆P∗Λ
)−1
,

and consequently

PΛGω(z)P∗Λ =
(
HΛ − z − PΛ∆P∗∂Λ+

(K − z)−1 P∂Λ+
∆P∗Λ

)−1
(35)

where
K = PΛ+

∂Λ+
(HΛ+

− BΛ+

Z )
(
PΛ+

∂Λ+

)∗
.

Note that BΛ+

Z is independent of ωk, k ∈ {−1, . . . , 3n + 1}, and K is independent of ωk,
k ∈ {0, . . . , 3n}. Thus, in matrix representation with respect to the canonical basis, the
operator K : `2(∂Λ+)→ `2(∂Λ+) may be decomposed as

[K] =

(
ω−1u(0) 0

0 ω3n+1u(n − 1)

)
−

(
f1 0
0 f2

)
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where f1 B
∑

k∈Z\{−1} ωku(−1 − k) − 〈δ−1BΛ+

Z δ−1〉 and f2 B
∑

k∈Z\{3n+1} ωku(4n − k) −
〈δ4nBΛ+

Z δ4n〉 are independent of ω−1 and ω3n+1. Standard spectral averaging or Lemma 3.1
gives for all t ∈ (0, 1)

E{−1,3n+1}

{∥∥∥(K − z)−1
∥∥∥t}
≤

(
|u(0)|−t + |u(n − 1)|−t) ‖ρ‖t∞ 2tt−t

1 − t
. (36)

Now, the operator HΛ can be decomposed as HΛ = A +
∑3n

k=0 ωkuk where A B HΛ −∑3n
k=0 ωkuk is independent of ωk, k ∈ {0, . . . , 3n}. Let α B (αk)3n

k=0 ∈ [0, 1]3n+1 with α0 , 0.
Similarly to the proof of Lemma 5.2, we use the substitution ω0 = α0ζ0 and ωi = αiζ0 +α0ζi

for i ∈ {1, . . . , 3n} and obtain from Eq. (35)

E B E{0,...,3n}

{∥∥∥PΛGω(z)P∗Λ
∥∥∥s/(4n)}

≤ ‖ρ‖3n+1
∞

∫
[−R,R]3n+1

∥∥∥∥(A +

3n∑
k=0

ωkuk − z − PΛ∆P∗∂Λ+
(K − z)−1 PΛ

∂Λ+
∆P∗Λ

)−1∥∥∥∥s/(4n)
dω0 . . . dω3n

≤ ‖ρ‖3n+1
∞

∫
[−S ,S ]3n+1

∥∥∥∥(A′ + ζ0

3n∑
k=0

αkuk

)−1∥∥∥∥s/(4n)
|α0|

3n+rdζ0 . . . dζ3n

where A′ = A + α0
∑3n

k=1 ζkuk − z− PΛ∆P∗∂Λ+
(K − z)−1 P∂Λ+

∆P∗
Λ

and S = R(1 + maxi∈{1,...,3n}

|αi/α0|)/|α0|. Since
⋃3n

i=0 supp ui = Λ, there exists an α ∈ [0, 1]3n+1 such that
∑3n

k=0 αkuk is
invertible on `2(Λ), compare the proof of Lemma 5.2 and Figure 2. Thus we may apply
Lemma 6.2 and obtain

E ≤ ‖ρ‖3n+1
∞

∫
[−S ,S ]3n

2s−sS 1−s

1 − s

(
‖A′‖ + S

∥∥∥∑3n
k=0 αkuk

∥∥∥)s(4n−1)/(4n)∣∣∣det
(∑3n

k=0 αkuk
)∣∣∣s/(4n) dζ1 . . . dζ3n (37)

Using ζk ∈ [−S , S ] for k ∈ {1, . . . , 3n}, ωk ∈ [−R,R] for k ∈ Z \ {0, . . . , 3n} and αk ∈ [0, 1]
for k ∈ {0, . . . , 3n}, the norm of A′ can be estimated as

‖A′‖ =
∥∥∥∥HΛ −

3n∑
k=0

ωkuk + α0

3n∑
k=1

ζkuk − z − PΛ∆P∗∂Λ+
(K − z)−1 P∂Λ+

∆P∗Λ
∥∥∥∥

≤ 2 + (n − 1)R ‖u‖∞ + 3S n‖u‖∞ + m + 4
∥∥∥(K − z)−1

∥∥∥ . (38)

All terms in the sum (38) are independent of ζk, k ∈ {0, . . . , 3n}. Using (
∑
|ai|)t ≤

∑
|ai|

t

for t < 1 we see from Ineq. (37) and (38) that there are constants C1 and C2 such that
E ≤ C1 + C2‖(K − z)−1‖s(4n−1)/(4n). If we average over ω−1 and ω3n+1, Ineq. (36) gives the
desired result. �

Next we turn to the second part of Remark 2.4. First we discuss a criterion which
ensures that an appropriate one-parameter family of positive potentials can be extracted
from the random potential Vω.

Lemma 6.3. Let u =
∑n−1

k=0 u(k)δk : Z→ R. Then the following statements are equivalent.
(A) There exists an N ∈ N and real λ0, . . . , λN such that w B u ∗λ B λ0u0 + · · ·+λNuN

is a non-negative function and w(0) > 0, w(N + n − 1) > 0 hold.
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(B) There exists an M ∈ N and real γ0, . . . , γM such that v B u∗γ B γ0u0 + · · ·+γMuM

is a non-negative function and supp v = {0, . . . ,M + n − 1} holds.
(C) The polynomial C 3 z 7→ pu(z) B

∑n−1
k=0 u(k)zk has no roots in [0,∞).

Note, if u(0) , 0 and u(n − 1) , 0, then {0, . . . ,M + n − 1} is the union of the supports
of u0, . . . , uM. If (A) or (B) hold we may assume that |λ0|, respectively |γ0|, equals one.

Proof. If (A) holds, one may choose v(x) =
∑N+n−2

j=0 w(x − j) to conclude (B). Thus it
is sufficient to show (B)⇔(C). Using Fourier transform and the identity theorem for
holomorphic functions one sees that (B) is equivalent to

(D) There exists an M ∈ N and real γ0, . . . , γM such that all coefficients of the polyno-
mial pu(z) ·

∑M
j=0 γ jz j are strictly positive.

If (D) holds, pu(x) ·
∑M

j=0 γ jx j is strictly positive for x ∈ [0,∞). Thus its divisor pu has
no root in [0,∞) and one concludes (C). Assuming (C), one infers from Corrolary 2.7 of
[MS69] that there exists a polynomial p such that pu · p has strictly positive coefficients.
Choosing M = deg(p) and γ0, . . . , γM to be the coefficients of p leads to (D). �

If the random potential Vω contains a positive building block w as in (A) of the previous
lemma, one obtains Theorems 2.2 with [AEN+06], as we outline now. The crucial tool is
Proposition 3.2 of [AEN+06]. Here are two direct consequences of the latter:

Lemma 6.4. Let H be bounded, selfadjoint on `2(Z), φ, ψ : Z → [0,∞) bounded, z ∈ C
with Im z > 0, and t, S ∈ (0,∞). Then there is a universal constant CW ∈ (0,∞) such that
for all x, y ∈ Z

(i)
√
φ(x)ψ(y)L

{
v1, v2 ∈ [−S , S ] : |〈δx, (H + z − v1φ − v2ψ)−1δy〉| > t

}
≤ 4CW

S
t

where L denotes Lebesgue measure.
(ii) If φ(x)ψ(y) , 0 and s ∈ (0, 1):∫

[−S ,S ]2
|〈δx, (H + z − v1φ − v2ψ)−1δy〉|

sdv1dv2 ≤
4

1 − s

 CW√
φ(x)ψ(y)

s

S 2−s .

To obtain statement (ii) from (i) use the layer cake representation∫
[−S ,S ]2

| f (v1, v2)|sdv1dv2 =

∫ ∞

0
L{|v1|, |v2| ≤ S : | f (v1, v2)|s > t}dt

and decompose the integration domain into [0, κ] and [κ,∞) where κ =
(
Cw/S

√
φ(x)ψ(y)

)s.

Proposition 6.5. Let Γ ⊂ N be connected, Θ ⊂ N with min Θ = 0 and max Θ = n − 1
for some n ∈ N. Assume that u satisfies condition (A) in Lemma 6.3 and that supp ρ is
compact. Set Λx = {x, . . . , x + N} and Λ j = { j − n + 1 − N, . . . , j − n + 1}. Then we have
for all x, j ∈ Γ with | j − x| ≥ 2(N + n) − 1 and all z ∈ C with Im z > 0

EΛ

{
|GΓ(z; x, j)|s

}
≤ C

where C is defined in Eq. (39) and Λ = Λx ∪ Λ j.
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Proof. Without loss of generality we assume j−x ≥ 2(N+n)−1 and λ0 = 1. By assumption
Γ ⊃ {x, x + 1, . . . , j}. Note that the operator A′ B HΓ − z −

∑
k∈Λx

ωkuk −
∑

k∈Λ j
ωkuk is

independent of ωk, k ∈ Λ. To estimate the expectation

E B EΛ

{∣∣∣GΓ(z; x, j)
∣∣∣s} =

∫
[−R,R]|Λ|

∣∣∣∣〈δx,
(
A′ +

∑
k∈Λx

ωkuk +
∑
k∈Λ j

ωkuk

)−1
δ j

〉∣∣∣∣s ∏
k∈Λ

ρ(ωk)dωk

we use the substitutions

ωx

ωx+1
...
...

ωx+N


= T



ζx

ζx+1
...
...

ζx+N


and



ω j−n+1−N

ω j−n+2−N
...
...

ω j−n+1


= T



ζ j−n+1−N

ζ j−n+2−N
...
...

ζ j−n+1


where the matrix T is the same as in Lemma 5.1 with αk replaced by λk, k = 0, . . . ,N. This
gives the bound

E ≤ ‖ρ‖|Λ|∞

∫
[−S ,S ]|Λ|

∣∣∣∣〈δx,
(
A + ζx

∑
k∈Λx

λk−xuk + ζ j−n+1−N

∑
k∈Λ j

λk−( j−n+1−N)uk

)−1
δ j

〉∣∣∣∣sdζΛ.

where dζΛ =
∏

k∈Λ dζk, S = R(1 + maxi∈{1,...,N} |λi|), and

A B A′ +
∑

k∈Λx\{x}

ζkuk +
∑

k∈Λ j\{ j−n+1−N}

ζkuk

is independent of ζx and ζ j−n+1−N . By assumption the functions φ B
∑

k∈Λx
λk−xuk and

ψ B
∑

k∈Λ j
λk−( j−n+1−N)uk are bounded and non-negative, with φ(x) = u(0) > 0 and

ψ( j) = λNu(n − 1) > 0. Using Lemma 6.4 we obtain

E′ B
∫

[−S ,S ]2

∣∣∣∣〈δx,
(
A + ζxφ + ζ j−n+1−Nψ

)−1
δ j

〉∣∣∣∣sdζxdζ j−n+1−N

≤
4

1 − s

 CW√
φ(x)ψ( j)

s

S 2−s.

Thus the original integral is estimated by

E ≤ ‖ρ‖|Λ|∞ (2S )|Λ|−2 4
1 − s

 CW√
φ(x)ψ( j)

s

S 2−s

=
4

1 − s

(
CW

√
u(0)λNu(n − 1)

)s (
2S ‖ρ‖∞

)2(N+1) 1
S s =: C . (39)

�

The last proposition and a formula analogous to (17) now give for j = x + 2(N + n) − 1
and x + 2(N + n) ≤ y

EΛ

{∣∣∣GΓ0(z; x, y)
∣∣∣s} = EΛ

{∣∣∣GΓ0(z; x, x + 2(N + n) − 1)
∣∣∣s}∣∣∣GΓ1(z; x + 2(N + n), y)

∣∣∣s
≤ C

∣∣∣GΓ1(z; x + 2(N + n), y)
∣∣∣s
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where Γ0 = Z and Γ1 = {x + 2(N + n), x + 2(N + n) + 1, . . . }. In an appropriate large disorder
regime, where the constant C in (39) is smaller than one, exponential decay now follows
by iteration, similarly as in Theorem 4.3.

Acknowledgement: It is a pleasure to thank G. Stolz for stimulating discussions.
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