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ABSTRACT. One of the fundamental results in the theory of localisation for discrete Schro-
dinger operators with random potentials is the exponential decay of Green’s function. In
this note we provide a new variant of this result in the one-dimensional situation for sign-
changing single-site potentials with arbitrary finite support using the fractional moment
method.

1. INTRODUCTION

Anderson models are discrete Schrodinger operators with random potentials. Such
models have been studied since a long time in computational and theoretical physics, as
well as in mathematics. One of the fundamental results for these models is the physical
phenomenon of localisation. There are various mathematical formulations of localisation:
almost sure absence of continuous spectrum, non-spreading of wave packets, exponential
decay of generalised eigensolutions or exponential decay of Green’s function. Such
properties have been established mainly by two different methods, the multiscale analysis
and the fractional moment method. The multiscale analysis (MSA) was invented by
Frohlich and Spencer in [FS83]. The fractional moment method (FMM) was introduced
by Aizenman and Molchanov [AM93], and further developed, e. g., in [Aiz94, Gra%4,
ASFHO1].

Here we focus our attention on correlated Anderson models. More precisely, we
consider models where the potential values at different sites need not be independent
random variables. Assuming certain abstract regularity assumptions on the (possibly
dependent) random potential localisation has been established using both methods, see e. g.
[VDK91, AM93, Aiz94, ASFHO1]. For continuous alloy-type models with sign-changing
single-site potential localisation has been derived via MSA, e. g. in [Kl095, Ves02, KV06,
Klo02], see also [Sto02]. To our knowledge, the FMM has not been applied to alloy-type
models with sign-changing single-site potential so far (neither in the continuous nor the
discrete setting).

In this paper we study a one-dimensional discrete alloy-type model using the FMM. In
this model, the potential at the lattice site x € Z is defined by a finite linear combination
Vo(x) = 2 wru(x — k) of i.1. d. random coupling constants wy. The function u(- — k) is
called single-site potential and may be interpreted as a finite interaction range potential
associated to the lattice site k € Z. In particular, the single-site potential is allowed to
change sign. For such models we prove in one space dimension and at all energies a
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so called fractional moment bound, i. e. exponential off-diagonal decay of an averaged
fractional power of Green’s function. The restriction to the one-dimensional case allows
an elegant and short proof in which the basic steps—decoupling and averaging—are
particularly transparent. Currently we are working on the extension of our result to the
multidimensional case.

2. MODEL AND RESULTS

We consider a one-dimensional Anderson model. This is the random discrete Schro-
dinger operator

H,=-A+V,, weQ, (D)

acting on £(Z), the space of all square-summable sequences indexed by Z with an inner
product {-,-). Here, A : £*>(Z) — ¢*(Z) denotes the discrete Laplace operator and V,, :
£? (Z) — ¢?(Z) is a random multiplication operator. They are defined by

A (x) = ) p(x+e) and (Vo) (x) := Vo (w(x)

lel=1

and represent the kinetic energy and the random potential energy, respectively. We
assume that the probability space has a product structure Q := X,z R and is equipped
with the probability measure dP(w) = []iez p(wi)dw; where p € L°(R) N L'(R) with
lloll.r = 1. Hence, each element w of 2 may be represented as a collection {wy}iez
of independent identically distributed (i.1.d.) random variables, each distributed with
the density p. The symbol E{-} denotes the expectation with respect to the probability
measure, i.e. E{-} = fQ(-)dP(a)). For a set I' C Z, Er{-} denotes the expectation with

respect to wy, k € I'. That is, Ep{-} := fgr(-) [ Tier p(wr)dw, where Qr = X;rR. Let

the single-site potential u : Z — R be a function with finite and non-empty support
® :=suppu = {k € Z : u(k) # 0}. We assume that the random potential

V(x) = Z wiu(x — k)

keZ

at a lattice site x € Z is a linear combination of the i.1. d. random variables wy, k € Z, with
coeflicients provided by the single-site potential. The function u(- — k) may be interpreted
as a finite range potential associated to the lattice site k € Z. The Hamiltonian (1) is
possibly unbounded, but self-adjoint on a dense subspace of £*(Z), see e.g. [Kir07].
Finally, for the operator H,, in (1) and z € C\ o(H,,) we define the corresponding resolvent
by G,(2) := (H,, — z)~". For the Green’s function, which assigns to each (x,y) € Z X Z the
corresponding matrix element of the resolvent, we use the notation

Gz %,y) = (6, (Hy = 2)7'6,). 2)

ForT" C Z, §; € *(T') denotes the Dirac function given by 6,(k) = 1 for k € I' and 5;(j) = 0
for j € '\ {k}. The quantities ||o||>' and (in the case that p is weakly differentiable) [[o’||/
may be understood as a measure of the disorder present in the model. Our results in the
case of strong disorder are the following two theorems.
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Theorem 2.1. Letn € N, ©® = {0,...,n— 1}, s € (0, 1), and ||p|| be sufficiently small.
Then there exist constants C,m € (0, o) such that for all x,y € Z with |x — y| > n and all
z€ C\R,

E{|G(z; X, )|} < Ce™™ 7, (3)

Theorem 2.2. Letn € N, ® C Z finite with min® = 0 and max® = n— 1, ras in Eq. (21)
(the width of the largest gap in ®), and s € (0,n/(n + r)). Assume

(@) p € WH(R) with |||\ sufficiently small, or
(b) supp p compact with ||pl|. sufficiently small.

Then there exist constants C,m € (0, 0o) such that the bound (3) holds true for all x,y € Z
with |x —y|>2(n+r)andallz € C\R.

The difference between the two theorems is the following: In Theorem 2.1 we assume
that @ is finite and connected (cf. §3). The latter condition can be dropped if p is sufficiently
regular, cf. Theorem 2.2. Theorem 2.1 is proven in Section 3 and 4, compare also
Theorem 4.3. An explicit formula for the constants m and C can be inferred from (20), and
an explicit disorder requirement is given in Ineq. (19). A quantitative version of Theorem
2.2 is stated and proven in Section 5.

We can actually apply both theorems to arbitrary ® with max ® —min® = n — 1. In this
situation a translation of the indices of the random variables {wy}icz by min ® transforms
the model to the case min ® = 0 and max ® = n — 1. Note that min ® and max ® are well
defined since ® C R is finite.

Remark 2.3. Our proof give estimates about fractional moments of certain matrix elements
of the resolvent for somewhat more general models. Let us formulate this class of random
potentials next. Assume that V,, := VS ) + Vé,z) where Vé,l ), V((Uz): Z, — R are potentials
indexed by the random parameter w in some probability space Q2. Assume that u: Z — R
has support equal to {0,...,n — 1}, and that there exists a sequence A;: Q — R of
i.i.d. random variables indexed by k € nZ, each being distributed according to a density
p € L(R). Assume that VS )(x) = Y renz A(w)u(x — k) and that Vf) is uniformly bounded
on Q) X Z, but otherwise arbitrary. If F: Q — [0, ) is a random variable we denote its
average over all random variables A;, k € nZ by EV(F) := f F(w) [Tienz p(wi)dwy, where
the domain of integration is X;e,z R. It follows directly from the iterative application
of Lemma 3.3 that for all p € N and for the constant C,, defined in (11) the following
estimate holds

E?|Gu(z:x, x +np - DI}y < CP . )

A decomposition of the type V,, := V. + V2 is implicitly used in the proof of Theorem
2.2, given in Section 5. Note, that in this particular situation the two stochstic processes
Vful), Vfuz) are not independet from each other.

If Vf) = ( then the full potential V,, equals )¢,z Ax(w)u(x — k). Hence, in this case the
bound (4) also holds true.

In the following remark we state two complementary results which are explained in
detail in the appendix.
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Remark 2.4. (i) The statements of Theorems 2.1 and 2.2 concern only off-diagonal
elements. If we assume that p has compact support, E{|G,(E + i0; x, y)|*} is finite
for any x,y € Z and s > O sufficiently small. This implies in particular that
Yyez |Go(E +i0; 0, ) is finite almost surely for almost all E € R.

However, neither dynamical nor spectral localisation can be directly inferred
from the behaviour of the Green’s function using the existent methods ([SW86],
[Aiz94]). The reason is that the random variables V,(x), x € Z, are not independent,
while the dependence of H,, on the i.1.d. variables w,, x € Z, is not monotone.

(i1) If the polynomial p,(x) := ZZ;& u(k) x* does not vanish on [0, o) it is possible to
extract from V,, a positive single-site potential with certain additional properties.
In this situation the method of [AEN*06] applies and gives exponential decay of
the fractional moments of the Green’s function.

3. FRACTIONAL MOMENT BOUNDS FOR GREEN’S FUNCTION

In this section we present fractional moment bounds for Green’s function. A very useful
observation is that “important” matrix elements of the resolvent are given by the inverse of
a determinant. The latter can be controlled using the following spectral averaging lemma
for determinants.

Lemma 3.1. Letn € N and A,V € C*" be two matrices and assume that V is invertible.
Let further 0 < p € L'(R) N L*(R) and s € (0, 1). Then we have for all A > 0 the bound

—=s/n =s/n ) S 2SS_S
f (det(A + rV)™" p(r)dr < det VI loll*lolle T (5)
X .
—s/n -s 2/11_S
< Idet VI~ (7ol + T—llplls) (6)
- S

Proof. Since V is invertible, the function r - det(A + rV) is a polynomial of order n and
thus the set {r € R: A + rV is singular} is a discrete subset of R with Lebesgue measure
zero. We denote the roots of the polynomial by zj,...,z, € C. By multilinearity of the
determinant we have

det(A + rV)| = |det VI | [Ir =zl > Idet VI | | Ir - Rezjl
j=1 J=1
The Holder inequality implies for s € (0, 1) that

n 1/n
f det(A + rV)[""" p(r)dr < |det V" ]—[ ( f Ir— Rezjl_sp(r)dr) :
R R

=1
For arbitrary A > 0 and all z € R we have

f ! ~p(r)dr = f ! -p(r)dr + f ! -p(r)dr
r Ir =2 Ir -z Ir =z

[r—z|>4 |r—z]<4

1-s

1 -

< A7llpllzr + llplleo
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which gives Ineq. (6). We now choose 4 = s|p||;:1/(2||pll) (Which minimises the right
hand side of Ineq. (6)) and obtain Ineq. (5). [ |

In order to use the estimate of Lemma 3.1 for our infinite-dimensional operator G,,(z),
we will use a special case of the Schur complement formula (also known as Feshbach
formula or Grushin problem), see e.g. [BHSO07, appendix]. Before providing such a
formula, we will introduce some more notation. Let I'; C I', € Z. We define the operator
Pp: (A(T) — A(T)) by

PRy = ) y(k)o.
kel
Note that the adjoint (P%)* : 03(T}) — €3(I',) is given by (P?f)*qﬁ = Yer, Q)6 T, =Z
we will drop the upper index and write Pr, instead of P%l. For an arbitrary setI' C Z we
define the restricted operators Ar, Vr, Hr : 2T — 2D by
Ar = PFAPF, Vr = PrVwP; and Hr = PerPi‘: =—-Ar+ Vr.

Furthermore, we define Gr(z) := (Hr—2z)™' and Gr(z; x,y) := {6, Gr(2)d,) for z € C\o(Hr)
and x,y € I'. For an operator T : ¢>(I') — ¢*(') the symbol [T] denotes the matrix
representation of 7" with respect to the basis {0;}rcr. By I we denote the interior vertex
boundary of the setI',i.e. ' :={k e I' : #{j € I" : |j —k| = 1} < 2}. For finite sets
I' c Z, |I'| denotes the number of elements of I'. A set I' C Z is called connected if
OI' C {infI', sup I'}. In particular, Z is a connected set.

Lemma 3.2. LetI" c Z and A C T be finite and connected. Then we have the identity
Gr(z;%,y) = {6, (Ha — Bf = 2)7'6,)

forall z € C\ o(Hr) and all x,y € A, where B> : (*(A) — (*(A) is specified in Eq. (7).
Moreover, the operator B is diagonal and does not depend on V,(k), k € A.

An analogous statement for arbitrary dimension was established in [EG].
Proof. Since A is finite, H, is bounded and the Schur complement formula gives
* * — * -1
Py(Hr =2 (P})" = |(Hx = 2) = PRAr(PL)" (Hra =27 PLAARPY)|

—-RA
_'BT

It is straightforward to calculate that the matrix elements of Bf* are given by

)y <6k» (Hr\a — Z)_16k> if x = y and x € A,

(6, BRoy) = 340 (7)
0 else.
Here we have used that A is connected. [

Lemma3.3. LetneN,®={0,...,n—1}, s €(0,1), and " C Z be connected. Then,
(1) for every pair x,x +n—1 €Tl and all z € C\ R we have

E{IGr(z; x, x + n— D"} < C,C, =: C,,. (8)
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(11) if 1 < |I'| £ n, we have for all z € C\ R the bound
EpoflGr(z: 0. )"} < CiCh =2 C ©)

where yo = min[ and y; = maxT.
(i) fr={x,x+1,..}andy € T withO <y—x <n—1, we have for all z € C\ R the
bound
Epy-niy{IGr(z; x, y)I"} < CuiCy = Cups- (10)
The constants C,, C,, Cy, C; and C, . are given in Eq. (11), (12) and (13).

Proof. We start with the first statement of the lemma. By assumption x,x +n—1 €. We
apply Lemma 3.2 with A :=={x,x+ 1,...,x+n — 1} C I" (since I is connected) and obtain
forall x,y € A
Gr(z; x,y) = (0., (Hx — By —2)7'6,),

where the operator B is given by Eq. (7). Set D = H, — B — z. By Cramer’s rule we
have Gr(z; x,y) = detC,,/ det[D]. Here, C;; = (—1)*/M; ; and M, ; is obtained from the
tridiagonal matrix [D] by deleting row i and column j. Thus C,,,_; . is a lower triangular
matrix with determinant +1. Hence,

1
|det[D]|"
Since ® = suppu = {0,...,n — 1}, every potential value V,(k), k € A, depends on the

random variable w,, while the operator B{_‘ is independent of w,. Thus we may write [D]
as a sum of two matrices

|Gr(z; x, x+n—1)| =

[D] = A+ w,V,
where V € R™" is diagonal with the elements u(k — x), k = x,...,x+n—1,and A :=
[D] — w,V. Since A is independent of w, we may apply Lemma 3.1 and obtain for all
s € (0, 1) the estimate (8) with

Cu=|[uto| ™" and ¢, =022

ke®

(11)

The proof of Ineq. (9) is similar but does not require Lemma 3.2. We have the decomposi-
tion [Hy — z] = A + w,,V, where d := y; — y,, V € R4*DX@*D 5 diagonal with elements
u(k = ¥0), k = ¥o,...,y1, and A := [Hr — z] — w,,V is independent of w,,. By Cramer’s
rule and Lemma 3.1 we obtain

~t/(d+1) 20
IIpllf

d
E o IGr(z; yo, y)I"@*V} < “_[ u(k)

—t

for all ¢ € (0, 1). We choose t = <! and obtain Ineq. (9) with the constants

2SS—S

— (12)

= max\]_[ u(k>1 and €, = max{lloll%, lol12")
In the final step we have used s > f and the monotonicity of (0, 1) 3 x — 2*x7*/(1 — x).
For the proof of the third statement we apply Lemma 3.2 with A = {x,...,y} and obtain
using Cramer’s rule |Gr(z; x,y)| = |1/ det[H, — B} — z]|. Set d := y — x. Notice that B is
independent of w,_,.1, while every potential value V,(k), k € A, depends on w,_,;. Thus



ANDERSON MODELS ON Z WITH SINGLE-SITE POTENTIALS OF FINITE SUPPORT 7

we have the decomposition [H — B} —z] = A+ w41V, where V € R4DX@+D g diagonal
with the elements u(k), k =n—-1-d,...,n—1,and A = [Hy — BI’§ — 2] = wy_p41 V. Since
A is independent of w,_,.; we may apply Lemma 3.1 and obtain for all 7 € (0, 1)

n—1
del ~t/(d+1) 20t
TEN T ww] T el T

k=n—1-d 1 -1

E{y—n+1}“Gr(Z; X, y)

We choose ¢ = sd—:l and obtain Ineq (10) with

n-1 "
Cus = %x‘k [1 u(k)‘_“/ : (13)

=n-1-i

In the final step we have used s > ¢ and the monotonicity of (0,1) 3 x — 2*x™/(1-x). =

4. EXPONENTIAL DECAY OF GREEN’S FUNCTION

In this section we use so called “depleted” Hamiltonians to formulate a geometric
resolvent formula. Such Hamiltonians are obtained by setting to zero the “hopping terms”
of the Laplacian along a collection of bonds. More precisely, let A € I C Z be arbitrary
sets. We define the depleted Laplace operator A™ : £2(I') — ¢*(I') by

(6., A26,) = 0 ifxeA,yel\Aorye A, xel\A,
’ <6x’ Ar5y> else.

In other words, the hopping terms which connect A with I"\ A or vice versa are deleted.
The depleted Hamiltonian HY : ¢*(I') — ¢*(T') is then defined by

HY == —AM + V.

Let further T := Ar — A% be the difference between the the “full” Laplace operator and the
depleted Laplace operator. Analogously to Eq. (2) we use the notation G2(z) = (H> —z)™!

and G?(z; x,y) = {6, G‘r\(z)éy). The second resolvent identity yields for arbitrary sets
Acl'cZ

Gr(z) = GR(2) + Gr()TEGR(2) (14)
= GP(2) + Gr ()T Gr(2). (15)

In the following we will use that G>(z; x,y) = Ga(z; x,y) for all x,y € A, since H{ is
block-diagonal, and that G‘F\(Z; x,y)=0if x € Aand y ¢ A or vice versa.

Lemmad.l. LetneN, O ={0,...,n— 1}, I' € Z be connected, and s € (0, 1). Then we
have for all x,y e U'withy—x>n A:={x+nx+n+1,...}NTandall z € C\R the
bound

Eo{lGr(z; x, )"} < Cup - IGa(zs x + 0, y)I¥".
In particular,
E{|Gr(z; x, y)I"""} < Cup - B{IGA(z; x + 0, y)I"). (16)
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Proof. Our starting point is Eq. (14). Taking the matrix element (x, y) yields
Gr(z x,y) = GE (5., ) + {6, Gr(D T G (2)6,)-

Since x ¢ A and y € A, the first summand on the right vanishes as the depleted Green’s
function G{(z; x, y) decouples x and y. For the second summand we calculate

Gr(z;x,y) = Gr(z; x, x + n — GA(z; x + n, y). (17)
The second factor is independent of w,. Thus, taking expectation with respect to w, bounds
the first factor using Ineq. (8) and the proof is complete. [

Lemmad4.2. LetneN,®={0,...,n—1}, ' ={x,x+1,..}, yeT'withn <y—x < 2n,
and s € (0, 1). Then we have for all z € C \ R the bound

Ey-ns10{lGr(z: x, )"} < C} ,Cop- (18)
Proof. The starting point is Eq. (15). Choosing A = {x, ...,y — n} gives
Gr(z; x,y) = Ga(z; X,y = n)Gr(z;y —n + 1, y).

Since GA(z; x,y — n) depends only on the potential values at lattice sites in A it is indepen-

dent of w,_,.;. We take expectation with respect to w,_,; to bound the second factor of

the above identity using Ineq. (8). Since 1 < |A| < n by assumption, we may apply Ineq.

(9) to GA(z; x,y — n) which ends the proof. [ |
The proof of the following theorem will serve as a basis to complete the proof of

(i) Theorem 2.1 at the end of this section,
(ii) Theorem 2.2 in Section 5.

The difference between the proof of Theorem 2.1 and Theorem 4.3 is, that the latter is
better suited for a generalisation to single-site potentials with disconnected support.

Theorem 4.3. Let ® ={0,...,n— 1} and s € (0,1). Assume

loll < 5= )mj]_[ k| " (19)

Thenm = —1nC,,, is strictly positive and

BlIGGix ) < €, expfon] 21}

n

forall x,y € Z with |x —y| > 2nand all z € C\ R. Here, |-] is defined by | z] := max{k €
Zlk < z}.

Proof. The constant m is larger than zero since C,,, < 1 by assumption. By symmetry we
assume without loss of generality y — x > 2n. In order to estimate E{|G,(z; x, y)|*’"}, we
iterate Eq. (16) of Lemma 4.1 and finally use Eq. (18) of Lemma 4.2 for the last step.
Figure 1 shows this procedure schematically. We choose p = [(y — x)/n] — 1 € N such
that y — 2n < x + pn <y — n. We iterate Eq. (16) exactly p times, starting with I' = Z, and
obtain

E{|Gu(z: x, y)I""} < C8 - EB{|Ga, (z: x + pn,y)I*'")
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Lemma 4.1 Lemma 4.2
X x+n X+ 2n x+(p-Dn y-2n x+pn y—-n y

Ficure 1. Illustration to the proof of Theorem 4.3

where A, = {x + pn,x + pn + 1,...}. Now the first p jumps of Fig. 1 are done and
it remains to estimate E{|G, (z; x + pn, ™). Sincen <y —(x+ pn) <2nand A, =
{x+ pn,x+ pn+1,...} we may apply Lemma 4.2 and get

E{IGu(z: x, )"y < CPHICy = Cyr ) et D NG, =

Proof of Theorem 2.1. Without loss of generality we assume y — x > n. We iterate Eq. (16)
exactly ¢ := [(y — x)/n] € N times, starting with I’ = Z, and obtain E{|G,(z; x, y)|*"} <
CipBlIGA, (z; x+qn, I}, where A, = {x+pn, x+pn+1,...}. Since 0 < y—(x+gn) < n—1
by construction, we may apply part (ii1) of Lemma 3.3 and obtain

- x
E{Go(z; x, I} < CZ Cups = Cups exp{—m{y p J} (20)

where m = —InC,,,. In particular, m > 0 if Ineq. (19) holds. [

5. SINGLE-SITE POTENTIALS WITH ARBITRARY FINITE SUPPORT

In this section we consider the case in which the support ® of the single-site potential is
an arbitrary finite subset of Z. By translation, we assume without loss of generality that
min® = 0 and max ® = n — 1 for some n € N. Furthermore, we define

ri=max{b—a |[a,b] C{0,...,n—1},[a,b] N O = 0}. 21)

Thus r is the width of the largest gap in ®. In order to handle arbitrary finite supports
of the single-site potential, we need one of the following additional assumptions on the
density p € L*(R):

A pe WHR) A, : suppp C [-R, R] for some R > 0. (22)

To illustrate the difficulties arising for non-connected supports ® we consider an example.
Suppose ® = {0,2,3,...,n— 1} sothat r = 1. If we set A = {0,...,n — 1} there is no
decomposition Hy — B’r‘ = A + woV with an invertible V. If weset A ={0,...,n—1+r} =
{0,...,n} we observe that every diagonal element of H, depends at least on one of the
variables wy and w; = w,, while the elements of B (which appear after applying Lemma
3.2) are independent of wy, k € {0,...,r} = {0,1}. Thus we have a decomposition
Hy - B/r\ = A + wyVy + wVy, where A is independent of wy, k € {0, 1}, and for all i € A
either V(i) or V(i) is not zero. As a consequence there is an @ € R such that V, + aV| is
invertible on £2(A). Motivated by this observation, we prove the following lemma.

Lemma 5.1. Let N,d € N and A, Vy, Vy,...,Vy € C* be matrices. Let (ay)Y_, € RV*!
with ag # 0. Assume that Zg:o @, Vy is invertible. Let further 0 < p € L'(R) N L*(R) with
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llollzr = 1, t € (0, 1), and Ay, A, be as in (22). Then, if the condition A, is satisfied, we
have the bound

N _
I = V[RNH det(A + Z ' np(r,)dr, < ‘det Zakvk ‘ t/d(z |6Yk|)t 1t—_lt||P/||tLl
k=0

If the condition A, is satisfied, we have the bound

N —t/d |a,| 2[
I< 'det Za/kvk ‘ |CY()|Z 1+ max — (ZR)NZH ||(N+l)t
( — ) ( { ..... N} | Ol) 1 p
Proof. Substituting

ro xo ao O e ... 0 xo aoxo
r X1 a ay O IR a1 Xp + apX,
=T =, 0 @ — | @2Xo + @pXx>

: Qo 0

Y XN ay 0 ... 0 ay)\xy anXo + Qoxy

we get

N 1/d
f [f‘det A+ xo Z a,V, ' g(xo, ... ,xN)dxo) laolMdx, ... dxy
i=0

where A = A + a Zfil x;V; and g(xo, ..., xy) = plapxo) Hﬁl p(a;xo + apx;). Since xy —
g(xo,...,xy)is an element of L'(R) N L*(R) we may apply Lemma 3.1 and obtain for all
A>0

N

I< ‘det(z Q;
i=0
N

= ‘det(z a;
i=0

where dx = dx; ...dxy. In the case of A; we use sup, & < % fR |0g/0x|dxo, substitute
back into the original coordinates and finally choose 4 = #/(|[o’||.: ZkN:O |a]). To end
the proof if the condition A, is satisfied, we use suppp C [-R, R] and see that if |x;| >
R||IT " for some j = 0,...,N, then g(xo, ..., xy) = 0. Thus it is sufficient to integrate

—t/d —t 2/ll_t N+1
V,) (/l g(xq, ..., xy)dxg + sup g(xg, - - -, xN))laol dx
RN R 1—1¢

xXp€R

~t/d 241
V,-) (/l_’ + f sup g(xo, - . ., xy)laoMdx, .. .de)
R

l_t NXQGR

over the cube [—R||T [, RIT 'l ]. We estimate sup, ., g(xo,...,xy) < [loll¥"" and
choose 1 = #/QllplIX e I2RITZ'DY). The row-sum norm of 7! equals |77l =
maXie(1,...N} (|le0|_1 + |a’i/CY(2J|) = (1 + maxjeqi,...n lai/aol)/laol. u

With the help of Lemma 5.1 we prove the following analogues of Lemma 3.3 and
Theorem 4.3.

Lemma5.2. LetneN, @ cCcZwithmin® =0, max® =n— 1, and " C Z be connected.
Let further r be as in Eq. (21), A, A, as in (22), and s € (0,1). Then there exists a
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constant D such that for all x,x +n—1+relandz€ C\R

Ei...conllGrzx, x +n—1+ )™} < D. (23)

.....

The constant D is characterised in Eq. (25) and estimated in Ineq. (27). If 1 <|I'|<n+r
with yo = minI and y; = max[T there exists a constant D* such that for all z € C\ R

Eiyo....p0+IGr(z; y0, YOI "7} < D*. (24)

.....

The constant D* is characterised in Eq. (28) and estimated in Ineq. (29).

Proof. The proof is similar to the proof of Lemma 3.3. Apply Lemma 3.2 with A =
{x,x+1,...,x+n—1+r}and Cramer’s rule to get |Gr(z; x, x + n — 1 + r)| = 1/ |det[D]|
where D = H, — B} — z. Note that B? is independent of wy, k € {x,...,x + r}. We have
the decomposition [D] = A + };_, w.« Vi where the elements of the diagonal matrices
Vi € ROEDX0Hn f =0, ..., r, are given by V;(i) = u(i—k),i =0,...,n— 1+ r, and
A =D -3, ,wiVyis independent of wy, k € {x,...,x + r}. We apply Lemma 5.1 and
obtain for all @ = (ap);_, € M := {a € R @y # 0, Yi_oai Vs is invertible} the bound

Epr...oonllGr(z; x, x + n — 1 + r)]’™*} < D, where
n—l+r r —s/(n+7)
Do = o/l 7— Z ) [ ]| enauti = o)
i=0 k=0

if A, is satisfied and

25 ¢ | | rs n—=1+r r —s/(n+7)
= Pl Ry T—laol {1+ max =2} ] \Z (i = k)
i=0

i€fl,..., |(}’0|

if A, is satisfied. The set M is non-empty and equal to the set {@ € R™*! : a #
0, D,, is finite}. Thus Ineq. (23) holds with the constant

= f D 9
In the following we establish an upper bound for D. Using a volume comparison criterion
we can find a vector @’ = (a;);_, € [0, 177*! which has to each hyperplane Do Qu(i—k) =
0,i=0,...,n—1+r, at least the Euclidean distance (2(n + r)(r + 1)’/?)™!, as outlined in
Fig. 2. This implies @, > (2(n + r)(r + 1)"/*)7" since the hyperplane for i = 0 is ¢ = 0.
With this choice of @ and the notation u; = (u(i — k));_,, i € {0,...,n— 1 + r}, we have

il /218
n ‘Z Cl’kbl(l—k)’ e 1—[ '”M [ {a’, u;/||u; ||)2 [2(n + r)(r+ 1) /2] o
‘Hn (S uti - K)?) )

where (-, -), denotes the standard Euclidian scalar product. Now, in both cases A; and A,
we choose @ = @’ and obtain

s (r+ D20+ )@+ 1)7?)

D <|ip'lly,
L1 = 'Hn 1+r(zk Ou(l _ k)z)

(27a)

2(n+r)
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© HE Vol(W) =1
Vol(U;H?) < (n+ r)(r + 1)%e

HS

n—1+r

Vol(W \ UiH?) > 1 = (n+ r)(r + 1)%e

Ficure 2. Sketch of the existence of a vector @’ € W = [0, 1]"*! with the
desired properties: Let H? denote the e-neighbourhood of the hyperplane
H ={eeW]| Y au@i—-k) =0}forief{0,...,n—1+r}. Since the
volume of W \ U;H? is positive if ¢ is smaller than (n + r)~'(r + 1)™/? = d,
we conclude (using continuity) that there is a vector @’ whose distance to
each hyperplane H;,i € {0,...,n — 1 + r}, is at least dy/2.

if A; is satisfied and

—s r/218
D < [pllC R 2's (14 200+ D+ 1Y) Ra+ne+ DT oy

|Hn * Zk ou(i— k)z) w

if A, is satisfied.

The proof of the second statement is similar but without use of Lemma 3.2. By Cramer’s
rule we get |Gr(z; yo, Y1)l = 1/|det[Hr — z]|. Set d = v, — yo. We have the decomposition
[Hr — 2] = A + Xj_o Wy,+x Vi, Where the elements of the diagonal matrices V; € R@+Dx@+D)
k=0,...,r, are given by V(i) = u(i — k), i € {0,...,d}, and A := [Hr — z] - D okak
is independent of wy, k € {x,...,x + r}. We apply Lemma 5.1 with ¢t = sdJrl and obtain
(using s > 1) for all @ = (@), _, € M={adecR*:qy#0, ko  Vy is 1nvert1ble} that

.....

—s/(n+r)

D;(d) = ||’ ||

S i

i=0 k=0

if A, is satisfied and

st d r
PGEANCEDN] n25s~S il |ai| .
+ n+r ’l+r s’l+r — —_—
Di(d) = llplls ™ QR Tl (1 + max ) [ 1> awuti - k)
if A, is satisfied. Since M > M foreachd € 0,...n — 1 + r the set M is non-empty. Thus

Ineq. (24) holds with the constant

Dt = max  inf D} (d). (28)

def{o,...n—1+r} aeM
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We again choose @ = o’ as in Fig. 2, use @, € [0, 1] and @), > (2(n+r)(r+1)"/?)7!, estimate
D7, (d) similar to Ineq. (26), and obtain

st s (e 1)5[2(d + D)(r+ 1)72)°
D' < max o "Il ™ s 5/2n+)
‘Hi:O Do u(i — k)?

(29a)

if A, is satisfied and

D@D san [1+2(d + D(r + D727 [2(d + D(r + 172
D" < de{Omi)—(Hrl ||P||oo " (ZR) " [ ] [ ) ]
..... 2_SSS(1 _ S)'I—I?’:O Z]::O Lt(l _ k)' (n+r)
(29b)
if A, is satisfied. [ ]

Theorem 5.3. LetneN,® CcZ min® =0, max®=n—-1,s € (0,1), rasin Eq. (21), D
the constant from Lemma 5.2, and let p satisfy one of the assumptions A, or A, from (22).
Assume D < 1. Then m = —1n D is strictly positive and we have the bound

E{le(Z, X, y)ls/(n+r)} < D+ e—m\"i;}:w

for all x,y € Z with |x —y| > 2(n + r) and all z € C\ R, where |-] is defined by
lz] := max{k € Z|k < z}.

Proof. The proof is similar to the proof of Theorem 4.3. We again assume y > x. Let
I'y € Z be connected. Using Eq. (14) with A :={x+n+r,...} NI} and Lemma 5.2 we
have for all pairs x,y e I'y withy —x>n+r

E{|Gr, (z; x, )"} < D B{|Ga(z; x + n + 1, )"} (30)

which is the analogue to Lemma 4.1. Now, let I, = {x,x+ 1,...} and y € I, with
n+r<y-x<2n+r). By Eq. (15)with A = {x,...,y—(n+r)} and Lemma 5.2 we have

E{|Gr,(z; x, y)I'*"} < DD* (31)

which is the analogue of Lemma 4.2. Iterating Eq. (30) exactly p = [(y —x)/(n+r)] — 1
times, starting with Iy = Z, and finally using Eq. (31) once gives the statement of the
theorem. [

6. APPENDIX

Here we prove and discuss the two results which have been stated in Remark 2.4. In
the appendix we assume throughout that assumption (A, holds, i. e. there is an R € (0, o)
such that suppp C [-R, R]. We use the notation u;(x) = u(x — j), for all j, x € Z, for the
translated function as well as for the corresponding multiplication operator.

The following theorem concerns the first part of Remark 2.4. It gives a global uniform
bound on (x,y) — E{|G,(z; x,y)|’} for s > 0 sufficiently small.

Theorem 6.1. Let s € (0,1), ® C Z with min® = 0 and max® = n — 1 for some n € N,
and supp p be compact. Then there is a positive constant C such that for all x,y € Z and
all z € C\ R we have

E{IGo(z; 6, )"} < C.
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For the proof we will need

Lemma 6.2. Letn € N, R € R, A € C™ an arbitrary matrix, V € C"" an invertible
matrix and s € (0, 1). Then we have the bounds
vt

V< —— 32
I ”_ldetVl (32)

and
_ 2R AIL + RV

R
f |4+ rv)™! <
R s5(1 = s) |[det V|*/"

Proof. To prove Ineq. (32) let 0 < s; < 5, < ... < s, be the singular values of V. Then we
have [T, s; < s;577!, that is,

S/ndr

(33)

1 Sn—l
— < I’: . (34)
S [Tz si

For the norm we have ||[V~!|| = 1/s; and ||V|| = s,. For the determinant of V there holds
|det V| = [];, s;- Hence, Ineq. (32) follows from Ineq. (34). To prove Ineq. (33) recall
that, since V is invertible, the set {r € R: A + rV is singular} is a discrete set. Thus, for
almost all r € [-R, R] we may apply Ineq. (32) to the matrix A + rV and obtain
sin (Al + R|[V|])* D/

T |det(A + rV)Pm
Inequality (33) now follows from Lemma 3.1. [

A+ V)

Proof of Theorem 6.1. Since supp p C [-R, R], H,, is a bounded operator. Setm = ||H,||+]1.
If |z] > m, we use [|G (2] = SUp ey, 4 — z™! < 1 and obtain the statement of the theorem.
Thus it is sufficient to consider |z| < m. If |x — y| > 4n Theorem 5.2 applies, since r < n.
We thus only consider the case |[x — y| < 4n — 1. By translation we assume x = 0 and by
symmetry y > 0. Set A, ={-1,...,4n}and A = {0,...,4n — 1}. Lemma 3.2 gives

Pr.Gu(2)Py, = (Ha, — B -2

where (6,, B’r\*dy) = Dken\A, k-xi=1$0k> (Hp\a, — 270 if x = yand x € A, = {—1,4n},
and zero else. Similarly, by another application of the Schur complement formula

JN e
PA(I{AJr —Bg+ _Z)_IP*/\ = (HA_Z_PAAP2A+ (Pé\/L(HAJr _B£+)(P:9\A+ —Z) P3A+APA) s

and consequently

PAGu(P) = (Ha = 2= PAAP) (K —2)"' Par AP} (35)
where
K = Pj; (Ha, - B2*)(Py; )"
Note that Bg* is independent of wy, k € {—1,...,3n + 1}, and K is independent of wy,
k € {0,...,3n}. Thus, in matrix representation with respect to the canonical basis, the

operator K : £2(0A,) — (*(0A.) may be decomposed as

_[(w-1u(0) 0 fi 0
[K] - ( 1() 0.)3,,_,,114(” - 1)) - (01 fz)
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where f; = ZkeZ\{—l}wku(_l - k) - (5—13275—1) and f, = ZkeZ\{3n+l} wiu(dn — k) —
((54,1312\+ d4n) are independent of w_; and ws,,;. Standard spectral averaging or Lemma 3.1
gives for all £ € (0, 1)

t4—t

- _ _ 2
Epanen{[|(K = 27!} < (O + Jutn = DI lolles T—- (36)
Now, the operator H, can be decomposed as Hy = A + Z}Zo wily where A = Hy —
Sto Wity is independent of wy, k € {0, ..., 3n}. Let @ = (ap)", € [0, 11*"*! with g # 0,

Similarly to the proof of Lemma 5.2, we use the substitution wy = @y{y and w; = @;{p+ap{;
fori € {1,...,3n} and obtain from Eq. (35)

PAGu P[]

.....

)—1 HS/(4n)

3n
< [lolP™! f H(A + 3w — 2= PAAP), (K —2)' Py AP, dwp ... dws,
k=0

[,R’R]3n+1

3n+1
< ol f
[—S,SP’”I

|avi /o)) /|aol. Since | ", supp u; = A, there exists an @ € [0, 113**! such that 3", gy is
invertible on £2(A), compare the proof of Lemma 5.2 and Figure 2. Thus we may apply
Lemma 6.2 and obtain

s/(4n)

|a/0|3”+rd§0 “e d§3n

3n
(A’ + 4o Z a’kuk)_l
k=0

. s(dn—1)/(4n)
» 2551 (1411 + S {22 awe))
E <|lpll< f 1 ; T d¢; ... dgs, (37)
[=s.spr LTS |det(2kio @ilx)
Using ¢, € [-S,S]fork € {1,...,3n}, wy € [-R,R] fork € Z\ {0, ...,3n} and o, € [0, 1]
for k € {0,...,3n}, the norm of A’ can be estimated as

3n 3n
||A,|| = HHA - Z Wil + Qg Z {kuk -Z- PAAPSA+ (K - Z)_l P3A+AP>;\
k=0 k=1

<2+ (n = DRullw + 3Snllullo +m +4||(K —2)7|. (38)

All terms in the sum (38) are independent of , k € {0,...,3n}. Using (3 |a;])’ < Y |a;ff
for t < 1 we see from Ineq. (37) and (38) that there are constants C; and C, such that
E < Cy + Gy||(K — )71 @n=D/4n If we average over w_; and w3, , Ineq. (36) gives the
desired result. [ |

Next we turn to the second part of Remark 2.4. First we discuss a criterion which
ensures that an appropriate one-parameter family of positive potentials can be extracted
from the random potential V.

Lemma 6.3. Let u = Z;(l) u(k)oy: Z — R. Then the following statements are equivalent.

(A) There existsan N € N and real Ay, ..., Ay suchthatw = ux A := Adgug +- - - + Ayuy
is a non-negative function and w(0) > 0, w(N + n — 1) > 0 hold.
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(B) There exists an M € N and real yy, . .., yy such that v = ux7y = youg+- - - +yyy
is a non-negative function and suppv = {0, ..., M + n — 1} holds.
(C) The polynomial C 3 z — p,(z) = Z;(l) u(k)z* has no roots in [0, o).

Note, if u(0) # 0 and u(n — 1) # 0, then {0, ..., M + n — 1} is the union of the supports
of ug, ..., uy. If (A) or (B) hold we may assume that ||, respectively |yo|, equals one.

Proof. If (A) holds, one may choose v(x) = Z?’:JE)”_Z w(x — j) to conclude (B). Thus it

is sufficient to show (B)<(C). Using Fourier transform and the identity theorem for
holomorphic functions one sees that (B) is equivalent to

(D) There exists an M € N and real vy, ..., ¥y such that all coefficients of the polyno-
mial p,(2) - Zjﬁio y;z! are strictly positive.

If (D) holds, p,(x) - Zjﬁio y;x! is strictly positive for x € [0, o). Thus its divisor p, has

no root in [0, co) and one concludes (C). Assuming (C), one infers from Corrolary 2.7 of

[MS69] that there exists a polynomial p such that p, - p has strictly positive coefficients.
Choosing M = deg(p) and vy, ..., yu to be the coefficients of p leads to (D). [ |

If the random potential V,, contains a positive building block w as in (A) of the previous
lemma, one obtains Theorems 2.2 with [AEN*06], as we outline now. The crucial tool is
Proposition 3.2 of [AEN*06]. Here are two direct consequences of the latter:

Lemma 6.4. Let H be bounded, selfadjoint on (*(Z), ¢, : Z — [0, o) bounded, 7 € C
withImz > 0, and t,S € (0, 0). Then there is a universal constant Cy, € (0, 00) such that
forall x,y € Z

S
(1) VW) L{vi,va € [=S,8]1: Kbx (H + 2= vip — vath) ' 6,) > 1} < 4CW7

where L denotes Lebesgue measure.
(ii) If p(xy(y) # 0 and s € (0, 1):

o + Cw | s
(6., (H + 2 — — o) o) dv dv, < ( ] 5275,
f[_mz R BN W 70)

To obtain statement (i) from (i) use the layer cake representation

f i |f(vi, v)I'dvidy, = f L{vil, vl £ 8 2 1f i, vo)l* > thde
[-S.5] 0

and decompose the integration domain into [0, ] and [, o) where k = (C,,/S o) (y))’.

Proposition 6.5. Let I' C N be connected, ® Cc N with min® = 0 and max® =n — 1
Jor some n € N. Assume that u satisfies condition (A) in Lemma 6.3 and that supp p is
compact. Set Ay ={x,...,.x+ Nyand Aj={j—n+1-N,...,j—n+1}. Then we have
forall x, je U with|j— x| >2(N+n)—1andall z€ Cwithlmz >0

EA{lGr(z; x, I} < C
where C is defined in Eq. (39) and A = A, UA;.
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Proof. Without loss of generality we assume j—x > 2(N+n)—1 and 4y = 1. By assumption
I' > {x,x+1,...,j}. Note that the operator A" := Hr — Z — Yten, Wkllk — Diken, Wik 18
independent of wy, k € A. To estimate the expectation

E = B{|Gr(z x. )|} = f (60 (4 + > wan+ ) wkuk)‘l(sj)"‘ [ Tot@ode
[=R.RIN keAy keA ke

we use the substitutions

Wy I Wj-n+1-N ¢ j-n+1-N
Wy+1 §x+1 Wji—p42-N gj—n+2—N
=T| : and : =T :
WyN N Wi ps1 Ljns1
where the matrix 7 is the same as in Lemma 5.1 with «; replaced by A, k = 0, ..., N. This

gives the bound

A
E < IIPII'OO'f
B

"¢y

<5x, (A + 4 Z Ak—xttie + Ljonr1-n Z /lk—(j—n+l—N)uk)_15j>

ke keA

.....

A=A+ Z ey + Z Stk

keA\{x} keA\{j-n+1-N}

is independent of ¢ and ;_,,1-y. By assumption the functions ¢ = 3};cn A1 and
Y = Yien, A—(j-n+1-mix are bounded and non-negative, with ¢(x) = u(0) > 0 and
Y(j) = Ayu(n — 1) > 0. Using Lemma 6.4 we obtain

E = f[ . (60 (A+ L+ gj_n+I_Nw)‘ldjwdgxdgj_nﬂw

< 4[ Cw ]SSZ“".
— =S pou())

Thus the original integral is estimated by

4 C ’
E <ol (28)"7 ( = ) 52
-

VEO())

s . 1
) @S lpll, Y™V — = C. (39)

4 Cw
= o

I = s\ Vu(®)Ayun —1)
||

The last proposition and a formula analogous to (17) now give for j = x + 2(N + n) — 1
and x+2(N +n) <y

EA“GFO(Z; X, y)|s} = EA“GrO(z; X, x+2(N+n)-— 1)|S}|Gr1(z; x+2(N + n),y)|s
< ClGr,(z x + 2(N +n),y)|’



18 ALEXANDER ELGART, MARTIN TAUTENHAHN, AND IVAN VESELIC

where 'y = Zand I'y = {x+2(N+n), x+2(N +n)+1,...}. In an appropriate large disorder
regime, where the constant C in (39) is smaller than one, exponential decay now follows
by iteration, similarly as in Theorem 4.3.

Acknowledgement: It is a pleasure to thank G. Stolz for stimulating discussions.
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