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Abstract. We study the asymptotic behavior of individual eigenvalues of the
n-by-n truncations of certain infinite Hessenberg Toeplitz matrices as n goes
to infinity. The generating function of the Toeplitz matrices is supposed to be
of the form a(t) = t−1(1 − t)αf(t) (t ∈ T), where α is a positive real number
but not an integer and f is a smooth function in H∞. The classes of generating
functions considered here and in a recent paper by Dai, Geary, and Kadanoff
are overlapping, and in the overlapping cases, our results imply in particular
a rigorous justification of an asymptotic formula which was conjectured by
Dai, Geary, and Kadanoff on the basis of numerical computations.
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1. Introduction and main results

The n × n Toeplitz matrix generated by a complex-valued function a ∈ L1 on

the unit circle T is the matrix Tn(a) =
(

aj−k

)n−1

j,k=0
, where ak is the kth Fourier

coefficient of the function a, that is, ak =
∫ 2π

0 a
(

eiθ
)

e−ikθ dθ/2π, k ∈ Z. The
function a is referred to as the symbol of the matrices Tn(a).

If a is real-valued, then the matrices Tn(a) are all Hermitian, and in this case
a number of results on the asymptotics of the eigenvalues of Tn(a) is known; see,
for example, [6], [7], [13], [16], [18], [20], [21], [23], [24], [26], [27], [29], [30]. We here
consider genuinely complex-valued symbols, in which case the overall picture is less
complete. Papers [12], [15], [19] describe the limiting behavior of the eigenvalues
of Tn(a) if a is a rational function, while papers [1] and [28] are devoted to the
asymptotic eigenvalue distribution in the case of non-smooth symbols. In [25] and
[28], it is in particular shown that if a ∈ L∞ and the essential range R(a) does
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not separate the plane, then the eigenvalues of Tn(a) approximate R(a). Many of
the results of the papers cited above can also be found in the books [5], [8], [9].

Throughout what follows we assume that a is a complex-valued continuous
function on T. In that case R(a) = a(T). When the eigenvalues of Tn(a) approach
R(a) asymptotically in the sense that

lim
n→∞

traceϕ(Tn(a))

n
=

∫ 2π

0

ϕ(a(eiθ))
dθ

2π
(1.1)

for a sufficiently rich supply of test functions ϕ, one says that they have canonical
distribution. In 1990, Widom [28] showed that if R(a) is a Jordan curve and a is
smooth on T minus a single point but not smooth on all of T, then the spectrum of
Tn(a) has canonical distribution. He also raised the following intriguing conjecture,
which is still an open problem:

The eigenvalues of Tn(a) are canonically distributed except when

a extends analytically to an annulus r < |z| < 1 or 1 < |z| < R.

Results like (1.1) or of the type that the spectrum of Tn(a) converges to some
limiting set in the Hausdorff metric do not provide us with information on the
asymptotic behavior of individual eigenvalues. The asymptotic behavior of the
extreme eigenvalues of Hermitian Toeplitz matrices is fairly well understood; see
the references cited above. Paper [6] contains asymptotic expansions for individual
inner eigenvalues of certain banded Hermitian Toeplitz matrices. The recent papers
[11] and [17] concern asymptotic formulas for individual eigenvalues of Toeplitz
matrices whose symbols are complex-valued and have a so-called Fisher-Hartwig
singularity. These are special symbols that are smooth on T minus a single point
but not smooth on the entire circle T; see [8], [9].

To be more specific, Dai, Geary, and Kadanoff [11] considered symbols of the
form

a(t) =

(

2 − t −
1

t

)γ

(−t)β , t ∈ T,

where 0 < γ < −β < 1. They conjectured that the eigenvalues λj = λj,n satisfy

λj ≈ a

(

n(2γ+1)/n exp

(

−
2πi

n
j

))

, j = 0, . . . , n − 1, (1.2)

and confirmed this conjecture numerically.
Let H∞ be the usual Hardy space of (boundary values of) bounded analytic

functions in the unit disk D. Given a ∈ C(T), we denote by windλ(a) the winding
number of a about a point λ ∈ C \ R(a) and by D(a) the set of all λ ∈ C for
which windλ(a) 6= 0. In this paper we study the eigenvalues of Tn(a) for symbols
a(t) = t−1h(t) with the following properties:

1. h ∈ H∞ and h0 6= 0;
2. h(t) = (1 − t)αf(t), where α ∈ [0,∞) \ Z and f ∈ C∞(T);
3. h has an analytic extension to an open neighborhood W of T\{1} not con-

taining the point 1;
4. R(a) is a Jordan curve in C and windλ(a) = −1 for each λ ∈ D(a).
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According to [28], in our case the spectrum of Tn(a) has canonical distribution.
Note that when β = γ − 1 and f ≡ 1, our symbol coincides with the one of [11].

Let Dn(a) denote the determinant of Tn(a). Thus, the eigenvalues λ of Tn(a)
are the solutions of the equation Dn(a−λ) = 0. Our assumptions imply that Tn(a)
is a Hessenberg matrix, that is, it arises from a lower triangular matrix by adding
the superdiagonal. This circumstance together with the Baxter-Schmidt formula
for Toeplitz determinants allows us to express Dn(a−λ) as a Fourier integral. The
value of this integral mainly depends on λ and on the singularity of (1 − t)α at
the point 1. Let W0 be a small open neighborhood of zero in C. We show that for
every point λ ∈ D(a) ∩ (a(W ) \ W0) there exists a unique point tλ /∈ D such that
a(tλ) = λ. After exploring the contributions of λ and the singular point 1 to the
Fourier integral, we get the following asymptotic expansion for Dn(a − λ).

Theorem 1.1. Let a(t) = t−1h(t) be a symbol with properties 1 to 4. Then for every

small open neighborhood W0 of zero in C and every λ ∈ D(a) ∩ (a(W ) \ W0),

Dn(a − λ) = (−h0)
n+1

[

1

tn+2
λ a′(tλ)

−
f(1)Γ(α + 1) sin(απ)

πλ2nα+1
+ R1(n, λ)

]

, (1.3)

where R1(n, λ) = O
(

n−α−α0−1
)

as n → ∞, uniformly in λ ∈ a(W ) \ W0. Here

α0 = min{α, 1} and h0 is the zeroth Fourier coefficient of h.

The first term in brackets is the contribution of λ, while the second is the
contribution of the point 1.

Here now are our main results. Let W0 be a small open neighborhood of the
origin in C and put ωj := exp (−2πij/n). For each n there exists integers n1 and
n2 such that ωn1

, ωn−n2
∈ a−1(W0) but ωn1+1, ωn−n2−1 /∈ a−1(W0). Recall that

a(tλ) = λ.

Theorem 1.2. Let a(t) = t−1h(t) be a symbol with properties 1 to 4. Then for every

small open neighborhood W0 of the origin in C and every j between n1 and n−n2,

tλj
= n(α+1)/nωj

[

1 +
1

n
log

(

a2(ωj)

c0(1)a′(ωj)ω2
j

)

+ R2(n, j)

]

, (1.4)

where R2(n, j) = O
(

n−α0−1
)

+ O
(

n−2 log n
)

as n → ∞, uniformly with respect

to j in (n1, n − n2). Here α0 = min{α, 1} and

c0(1) =
f(1)Γ(α + 1) sin(απ)

π
.

Formula (1.4) proves conjecture (1.2) in the special case β = γ − 1. It shows
that as n increases, the point tλj

is close to n(α+1)/nωj . Finally, we take the value
of a at the point (1.4) to obtain the following expression for λj .
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Theorem 1.3. Let a(t) = t−1h(t) be a symbol with properties 1 to 4. Then for every

small neighborhood W0 of zero in C and every j between n1 and n − n2,

λj = a(ωj) + (α + 1) ωja
′(ωj)

log n

n

+
ωja

′(ωj)

n
log

(

a2(ωj)

c0(1)a′(ωj)ω2
j

)

+ R3(n, j), (1.5)

where c0(1) is as in Theorem 1.2 and R3(n, j) = O
(

n−α0−1
)

+O
(

n−2(log n)2
)

as

n → ∞, uniformly with respect to j in (n1, n − n2).

In the case where f is identically 1, the previous three theorems are essentially
already in [3]. The idea to use just the singularity (1 − t)α in order to study
phenomena connected with eigenvalue asymptotics was also employed in [4].

We remark that we wrote down only the first few terms in our asymptotic
expansions but that our method is constructive and would allow us to get as many
terms as we desire. Clearly, conjecture (1.2) corresponds to the first term in our
asymptotic expansion (1.4). Figure 1 illustrates Theorem 1.3. In the last section,
we present another simulation graphic and error tables made with Matlab software
to show that incorporating the second term of our expansion (1.4) (= third term
in (1.5)) reduces the error to nearly one tenth.

2. Toeplitz determinant

Lemma 2.1. Let a(t) = t−1h(t) have properties 1 and 4. Then, for each λ ∈ D(a)
and every n ∈ N, and with [ ]n denoting the nth Fourier coefficient,

Dn(a − λ) = (−1)nhn+1
0

[

1

h(t) − λt

]

n

. (2.1)

Proof. This can be deduced from the Baxter-Schmidt formula [2], which is also in
[5, p. 37]. For the reader’s convenience, we include a direct proof of (2.1). Obviously,

Tn+1(h − λt) =



















h0 0 0 · · · 0 0
h1 − λ h0 0 · · · 0 0
h2 h1 − λ h0 · · · 0 0
...

...
...

. . .
...

...
hn−1 hn−2 hn−3 · · · h0 0
hn hn−1 hn−2 · · · h1 − λ h0



















(2.2)

and

Tn(a − λ) =















h1 − λ h0 0 · · · 0
h2 h1 − λ h0 · · · 0
...

...
...

. . .
...

hn−1 hn−2 hn−3 · · · h0

hn hn−1 hn−2 · · · h1 − λ















.
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Figure 1. The picture shows a piece of R(a) for the symbol
a(t) = t−1(1− t)3/4 (solid line) located “far” from zero. The dots
are sp T4096(a) calculated by Matlab. The crosses and the stars
are the approximations obtained by using 2 and 3 terms of (1.5),
respectively.

Applying Cramer’s rule to (2.2) we obtain

[

T−1
n+1(h − λt)

]

(n+1,1)
= (−1)n+2 Dn(a − λ)

Dn+1(h − λt)
. (2.3)

We claim that h(t) − λt is invertible in H∞. To see this, we must show that
h(t) 6= λt for all t ∈ D and each λ ∈ D(a). Let λ be a point in D(a). For each t ∈ T

we have h(t) 6= λt because λ /∈ ∂D(a) = R(a). By assumption, windλ(a) = −1
and thus

−1 = wind0(a − λ) = wind0(t
−1h(t) − λ) = wind0(t

−1(h(t) − λt))

= wind0(t
−1) + wind0(h(t) − λt) = −1 + wind0(h(t) − λt).
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It follows that wind0(h(t)− λt) = 0, which means that the origin does not belong
to the inside domain of the curve {h(t)−λt : t ∈ T} (see [10, p. 204]). As h ∈ H∞,
this shows that h(t) 6= λt for all t ∈ D and proves our claim.

If b is invertible in H∞, then T−1
n+1(b) = Tn+1(1/b). Thus, the (n+1, 1) entry

of the matrix T−1
n+1(h(t)−λt) is in fact the nth Fourier coefficient of (h(t)−λt)−1,

[

T−1
n+1(h(t) − λt)

]

(n+1,1)
=

[

1

h(t) − λt

]

n

.

Inserting this in (2.3) we get

Dn(a − λ) = (−1)n+2Dn+1(h(t) − λt)

[

1

h(t) − λt

]

n

= (−1)nhn+1
0

[

1

h(t) − λt

]

n

,

which completes the proof. �

Expression (2.1) says that the determinant Dn(a − λ) can be expressed as
the Fourier integral

Dn(a − λ) = (−1)nhn+1
0

∫ π

−π

e−inθ

h
(

eiθ
)

− λeiθ

dθ

2π
,

which is our starting point to find an asymptotic expansion for the eigenvalues of
Tn(a). There are two major contributions to this integral. The first comes from λ,
when it is close to R(a), and the second results from the singularity at the point
1. We will analyze them in separate sections.

3. Contribution of λ to the asymptotic behavior of Dn

Defining

b(z, λ) :=
1

h(z) − λz
,

we have

bn(λ) =

∫ π

−π

b
(

eiθ, λ
)

e−inθ dθ

2π
. (3.1)

From (2.1) we conclude that

Dn(a − λ) = (−1)nhn+1
0 bn(λ). (3.2)

Lemma 3.1. Let a(t) = t−1h(t) be a symbol such that R(a) is a Jordan curve in C.

Let W0 be a small open neighborhood of zero in C. Assume that h has an analytic

extension to an open neighborhood W of T \ {1} in C not containing the point 1.
Then, for each λ ∈ D(a)\W0 sufficiently close to R(a), there exists a unique point

tλ in W \ D such that a(tλ) = λ. Moreover, the point tλ is a simple pole for b.
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Proof. Without loss of generality, we may assume that the extension of a to W is
bounded. As h ∈ H∞, this extension must map W \ D to D(a) ∩ a(W ). As the
range of a has no loops, we have a′(t) 6= 0 for all t ∈ T. Consider the compact
set S := {t ∈ T : a(t) /∈ W0}. For every t ∈ S, there exists an open neighborhood
Vt of t in C with Vt ⊂ W such that a′(t) 6= 0 for each t ∈ Vt. Thus, there is an
open set Ut such that t ∈ Ut ⊂ Vt and a is a conformal map (and hence bijective)
from Ut to a(Ut). As S is compact, we can take a finite sub-cover from {Ut}t∈S ,
say U := ∪M

i=1Uti
. It follows that a is a conformal map (and hence bijective)

from U ⊃ S to a(U) ⊃ a(S); see Figure 2. The lemma then holds for every
λ ∈ a(U) ∩ (D(a) \ W0). Finally, since a′(tλ) 6= 0, the point tλ must be a simple
pole of b. �

�

����

� �

��

� ������
�
�������

�

��

�

������

Figure 2. The map a(t) over the unit circle.

Now using that tλ is a simple pole of b, we split b as follows:

b(z, λ) =
1

z(a(z) − λ)
=

1

tλa′(tλ)(z − tλ)
+ f0(z, λ). (3.3)

Here f0 is analytic with respect to z in W and uniformly bounded with respect
to λ in a(W ) \ W0. We calculate the Fourier coefficients of the first term in (3.3)
directly and integrate the second term to get

bn(λ) =
−1

tn+2
λ a′(tλ)

+ I, (3.4)

where

I :=

∫ π

−π

f0

(

eiθ, λ
)

e−inθ dθ

2π
.

The first term in (3.4) times (−1)nhn+1
0 is the contribution of tλ to the asymptotic

expansion of Dn(a − λ); see (3.2). The function f0 has a singularity at z = 1 and
we use this fact to expand I in the following section.
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4. Contribution of 1 to the asymptotic behavior of Dn

In this section, we will show that the value of I in (3.4) depends mainly on the
singularity at the point 1. Let us write b(θ, λ) and f0(θ, λ) instead of b

(

eiθ, λ
)

and f0

(

eiθ, λ
)

, respectively. Let {φ1, φ2} be a smooth partition of unity over the
segment [−π, π], which means that φ1, φ2 ∈ C∞[−π, π], φ1(θ) + φ2(θ) = 1 for all
θ ∈ [−π, π], the support of φ1 is contained in [−π,−ε] ∪ [ε, π], and the support of
φ2 is in [−δ, δ], where 0 < ε < δ are small constants. By pasting segments [−π, π]
in both directions, we can continue φ1 and φ2 to the entire real line R, and we will
think of these two functions in that way.

Lemma 4.1. For every sufficiently small positive δ, we have

I =

∫ δ

−δ

φ2(θ)b(θ, λ)e−inθ dθ

2π
+ Q1(n, λ), (4.1)

where Q1(n, λ) = O (n−∞) as n → ∞, uniformly with respect to λ in a(W ) \ W0.

Proof. Using the partition of unity {φ1, φ2}, we write I = I1 + I2 where

I1 :=

∫ 2π−ε

ε

φ1(θ)f0(θ, λ)e−inθ dθ

2π

and

I2 :=

∫ δ

−δ

φ2(θ)f0(θ, λ)e−inθ dθ

2π
.

The function φ1(θ)f0(θ, λ) belongs to C∞[ε, 2π−ε]. Thus by [10, p. 22], we obtain
that I1 = O (n−∞) as n → ∞, uniformly with respect to λ in a(W ) \ W0.

Using (3.3) and writing h(θ) instead of h
(

eiθ
)

, we arrive at I2 = I21 + I22

where

I21 :=

∫ δ

−δ

φ2(θ)e
−inθ

h(θ) − λeiθ

dθ

2π
(4.2)

and

I22 :=
−1

tλa′(tλ)

∫ δ

−δ

φ2(θ)e
−inθ

eiθ − tλ

dθ

2π
.

Once more, the function φ2(θ)/
(

eiθ − tλ
)

belongs to C∞[−δ, δ], we thus conclude
that I22 = O (n−∞) as n → ∞, uniformly with respect to λ in a(W ) \W0. �

Expression (4.1) says that the value of I basically depends on the integrand
b(θ, λ)e−inθ at θ = 0. As we can take δ as small as we desire, we can assume
that θ is arbitrarily close to zero. Keeping this idea in mind, we will develop an
asymptotic expansion for b. For future reference, we rewrite (4.1) as

I = I21 + Q1(n, λ), (4.3)

where Q1(n, λ) = O (n−∞) as n → ∞, uniformly with respect to λ in a(W ) \W0.
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Lemma 4.2. For every sufficiently small positive δ,

I21 = −

∞
∑

s=0

1

λs+1

∫ δ

−δ

φ2(θ)h
s(θ)e−inθ

eiθ(s+1)

dθ

2π
. (4.4)

Proof. From (4.2) we have

I21 =

∫ δ

−δ

φ2(θ)b(θ, λ)e−inθ dθ

2π
. (4.5)

Note that

b(θ, λ) =
1

h(θ) − λeiθ
=

−1

λeiθ
·

1

1 − λ−1e−iθh(θ)
.

As |h(θ)| → 0 when θ → 0, there exists a small positive constant δ such that
∣

∣λ−1e−iθh(θ)
∣

∣ < 1

for every |θ| < δ. Thus,

b(θ, λ) =
−1

λeiθ

∞
∑

s=0

(

λ−1e−iθh(θ)
)s

= −

∞
∑

s=0

hs(θ)

λs+1eiθ(s+1)
(4.6)

for every |θ| < δ. Inserting (4.6) in (4.5) finishes the proof. �

We will use the notation

I21s :=
1

λs+1

∫ δ

−δ

φ2(θ)h
s(θ)e−inθ

eiθ(s+1)

dθ

2π
.

Because φ2(θ)e
−iθ ∈ C∞[−δ, δ], we have I21s|s=0 = O (n−∞) as n → ∞, uniformly

with respect to λ in a(W ) \W0. With the previous notation, we can rewrite (4.4)
as

I21 = −

∞
∑

s=1

I21s + Q2(n, λ), (4.7)

where Q2(n, λ) = O (n−∞) as n → ∞, uniformly with respect to λ in a(W ) \W0.

Finally we will work with I21s and for this purpose we need the following
well known result, which is, for example, in [14, p. 97].

Theorem 4.3. Let β > 0, δ > 0, v(θ) ∈ C∞[0, δ], v(s)(δ) = 0 for all s ≥ 0. Then,

as n → ∞,
∫ δ

0

θβ−1v(θ)einθdθ ∼

∞
∑

s=0

as

ns+β
,

where

as =
v(s)(0)

s!
Γ(s + β)is+β (4.8)

and Γ(z) =
∫

∞

0
tz−1e−tdt is Euler’s Gamma function.
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Lemma 4.4. Let h(t) = (1 − t)αf(t) with α ∈ R+ \ Z and f ∈ C∞(T). Then

I21 =
f(1)Γ(α + 1) sin(απ)

πλ2nα+1
+ R1(n, λ), (4.9)

where R1(n, λ) = O
(

n−α−α0−1
)

with α0 = min{α, 1} as n → ∞, uniformly with

respect to λ in a(W ) \ W0.

Proof. It is easy to verify that h(θ) = (−iθ)αv(θ)f
(

eiθ
)

as θ → 0, where v(θ) =
(

iθ−1
(

1 − eiθ
))α

, the branch of the αth power being the one corresponding to
the argument in (−π, π]; note that for every sufficiently small positive δ we have
v ∈ C∞[−δ, δ] and v(0) = 1. Thus,

I21s =
1

λs+1

∫ δ

−δ

φ2(θ)h
s(θ)e−iθ(n+s+1) dθ

2π

=
(−i)αs

λs+1

∫ δ

−δ

φ2(θ)θ
αsvs(θ)fs

(

eiθ
)

e−iθ(n+s+1) dθ

2π

when θ → 0. The last integral can be written as

I21s =

∫ δ

−δ

θβ−1w(θ)e−inθdθ

=

∫ 0

−δ

θβ−1w(θ)e−inθdθ +

∫ δ

0

θβ−1w(θ)e−inθdθ

=

∫ δ

0

(−τ)β−1w(−τ)einτ dτ +

∫ δ

0

θβ−1w(θ)e−inθdθ

=I21s1 + I21s2, (4.10)

where

β := αs + 1,

w(θ) :=
(−i)αs

2πλs+1
φ2(θ)v

s(θ)fs
(

eiθ
)

e−iθ(s+1), θ → 0,

and

I21s1 := (−1)β−1

∫ δ

0

θβ−1w(−θ)einθdθ, I21s2 :=

∫ δ

0

θβ−1w(θ)e−inθdθ.

Note that w(±θ) ∈ C∞[0, δ] and w(s)(±δ) = 0 for all s ∈ N because φ2(θ) ≡ 0 in
a small neighborhood of ±δ. Applying (4.8) to I21s1 and I21s2, we obtain

I21s1 =
(−1)αsw(0)Γ(αs + 1)iαs+1

nαs+1
+ Q3(s, n, λ)

and

I21s2 =
w(0)Γ(αs + 1)i−αs−1

nαs+1
+ Q4(s, n, λ), (4.11)
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where Q3(s, n, λ) and Q4(s, n, λ) areO
(

n−αs−2
)

as n → ∞, uniformly with respect
to λ in a(W ) \ W0. Substitution of (4.11) in (4.10) yields

I21s =
w(0)Γ(αs + 1)

nαs+1

[

i−αs−1 + (−1)αsiαs+1
]

+ Q5(s, n, λ)

=
−c0(s)

λs+1nαs+1
+ Q5(s, n, λ) (4.12)

where

c0(s) :=
fs(1)Γ(αs + 1) sin(απs)

π
(4.13)

and Q5(s, n, λ) = O
(

n−αs−2
)

as n → ∞, uniformly in λ ∈ a(W ) \W0. From (4.7)
and (4.12) we obtain

I21 =
c0(1)

λ2nα+1
+ R1(n, λ),

where R1(n, λ) = O
(

n−α−α0−1
)

as n → ∞, uniformly in λ ∈ a(W ) \ W0. Here
α0 := min{α, 1}. �

The previous calculation gives us the main asymptotic term for I21. If more
terms are needed, say m, we must expand I21 from I21s|s=1 to I21s|s=m and
expand each I21s to m terms, after which, according to the value of α, we need to
select the first m principal terms.

Finally we put all the lemmas together to prove Theorem 1.1.

Proof of Theorem 1.1. The proof of this theorem is a direct application of equa-
tions (3.2), (3.4), (4.3) and (4.9). �

5. Individual eigenvalues

In order to find the eigenvalues of the matrices Tn(a), we need to solve the equa-
tions Dn(a − λ) = 0. We start this section by locating the zeros of Dn(a − λ).

Let W0 be a small open neighborhood of zero in C and ωj := exp(−2πij/n).
For each n there exists integers n1 and n2 such that ωn1

, ωn−n2
∈ a−1(W0) but

ωn1+1, ωn−n2−1 /∈ a−1(W0). Recall that λ = a(tλ). Take an integer j satisfying
n1 < j < n − n2. Using the relations

1

t2λa′(tλ)
=

1

ω2
j a′(ωj)

+ O (|tλ − ωj |)

and
1

a2(tλ)
=

1

a2(ωj)
+ O (|tλ − ωj |) ,
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where tλ belongs to a small neighborhood of ωj , we see that the determinant
Dn(a − λ) in (1.3) equals

(−h0)
n+1

[

T1 − T2 +
1

tnλ
O (|tλ − ωj |) +

1

nα+1
O (|tλ − ωj |) + Q6(n, tλ)

]

= (−h0)
n+1

[

T1 − T2 + O

(∣

∣

∣

∣

tλ − ωj

tnλ

∣

∣

∣

∣

)

+ O

(

|tλ − ωj |

nα+1

)

+ Q6(n, tλ)

]

, (5.1)

where Q6(n, tλ) = O
(

n−α−α0−1
)

as n → ∞, uniformly with respect to tλ in

W \ a−1(W0), and where tλ belongs to a small neighborhood of ωj . Here

T1 :=
1

tnλω2
j a

′(ωj)
, T2 :=

c0(1)

a2(ωj)nα+1
,

and α0 := min{α, 1}. Recall c0(1) from (4.13). Expression (5.1) makes sense only
when tλ is sufficiently “close” to ωj and thus, it is necessary to know whether there
exists a zero of Dn(a − λ) “close” to ωj . Let

tλ = (1 + ρ) exp(iθ).

It is easy to verify that T1 − T2 = 0 if and only if

ρ =

(

|a(ωj)|
2nα+1

|c0(1)a′(ωj)|

)1/n

− 1 (5.2)

and

θ = θj =
1

n
arg

[

a2(ωj)

c0(1)ω2
j a′(ωj)

]

−
2π

n

for some j ∈ {0, . . . , n − 1}. When n tends to infinity, (5.2) shows that ρ remains
positive and ρ → 0. The function T1 − T2 has n zeros with respect to λ ∈ D(a)
given by

a
(

(1 + ρ)eiθ0

)

, . . . , a
(

(1 + ρ)eiθn−1

)

.

As Lemma 3.1 establishes a 1-1 correspondence between λ and tλ, the function
Dn(a−λ) is analytic with respect to λ in a(W )\W0, that is, analytic with respect
to tλ in W \ a−1(W0). We can therefore suppose that T1 − T2 has n zeros with
respect to tλ in the exterior of D given by

t0 := (1 + ρ)eiθ0 , . . . , tn−1 := (1 + ρ)eiθn−1 .

We take the function “arg” in the interval (−π, π]. Thus, tj = (1 + ρ)eiθj is the
nearest zero to ωj . Consider the neighborhood Ej of tj sketched in Figure 3.

The boundary of Ej is Γ := Γ1∪Γ2∪Γ3∪Γ4. We have chosen radial segments
Γ2 and Γ4 so that their length is 1/nε with ε ∈ (0, α0) and all the points in Γ2 have
the common argument (θj+1 + θj)/2, while all the points in Γ4 have the common
argument (θj−1 + θj)/2. As we can see in Figure 3, these points run from the unit
circle T to (1 + 1/nε)T. Note also that Γ1 ⊂ (1 + 1/nε)T and Γ3 ⊂ T.
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Figure 3. The neighborhood Ej of tj in the complex plane.

Theorem 5.1. Suppose a(t) = t−1h(t) is a symbol with properties 1 to 4. Let

ε ∈ (0, α0) be a constant. Then there exists a family of sets {Ej}
n−n2−1
j=n1+1 in C such

that

1. {Ej}
n−n2−1
j=n1+1 is a family of pairwise disjoint open sets,

2. diam(Ej) ≤
2
nε ,

3. ωj ∈ ∂Ej ,

4. Dn(a − a(tλ)) = Dn(a − λ) has exactly one zero in each Ej .

Here α0 := min{α, 1} and diam(Ej) := sup{|z1 − z2| : z1, z2 ∈ Ej}.

Proof. Assertions 1, 2, and 3 can be deduced from the above construction. We
prove assertion 4 by studying the behavior of |Dn(a−λ)| in dependence on tλ ∈ Γ.
For tλ ∈ Γ1 we have, as n → ∞,

|T1|Γ1
=

1

|a′(ωj)|
·

(

1 +
1

nε

)−n

=
exp(−n1−ε)

|a′(ωj)|
+ O

(

exp(−n1−ε)

n2ε−1

)

,

|T2|Γ1
=

1

nα+1
·

∣

∣

∣

∣

c0(1)

a2(ωj)

∣

∣

∣

∣

,

∣

∣

∣

∣

O

(
∣

∣

∣

∣

tλ − ωj

tnλ

∣

∣

∣

∣

)
∣

∣

∣

∣

Γ1

= O

(

exp(−n1−ε)

nε

)

,

∣

∣

∣

∣

O

(

|tλ − ωj |

nα+1

)
∣

∣

∣

∣

Γ1

= O

(

1

nα+ε+1

)

,

and

|Q6(n, tλ)|Γ1
= O

(

1

nα+α0+1

)

.
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When n goes to infinity, the absolute value of T2 decreases at polynomial speed
over Γ1, while the absolute values of the remaining terms in (5.1) are smaller over
Γ1. Thus,

∣

∣

∣

∣

Dn(a − λ)

hn+1
0

∣

∣

∣

∣

Γ1

=
1

nα+1
·

∣

∣

∣

∣

c0(1)

a2(ωj)

∣

∣

∣

∣

+ O

(

1

nα+ε+1

)

as n → ∞.

For tλ ∈ Γ3 we get, as n → ∞,

|T1|Γ3
=

1

|a′(ωj)|
, |T2|Γ3

=
1

nα+1
·

∣

∣

∣

∣

c0(1)

a2(ωj)

∣

∣

∣

∣

,

∣

∣

∣

∣

O

(∣

∣

∣

∣

tλ − ωj

tnλ

∣

∣

∣

∣

)∣

∣

∣

∣

Γ3

= O

(

1

n

)

,

∣

∣

∣

∣

O

(

|tλ − ωj |

nα+1

)∣

∣

∣

∣

Γ3

= O

(

1

nα+2

)

,

and

|Q6(n, tλ)|Γ3
= O

(

1

nα+α0+1

)

.

When n goes to infinity, the modulus of T1 remains constant over Γ3, while the
moduli of the remaining terms in (5.1) are smaller there. Consequently,

∣

∣

∣

∣

Dn(a − λ)

hn+1
0

∣

∣

∣

∣

Γ3

=
1

|a′(ωj)|
+ O

(

1

n

)

as n → ∞.

As for the radial segments Γ2 and Γ4, we start by showing that T1 and −T2 have
the same argument there. Since tj is a zero of T1 − T2, we deduce that

arg

[

1

tnj0ω
2
j a′(ωj)

]

= arg

[

c0(1)

a2(ωj)nα+1

]

and thus

−nθj + arg

[

1

ω2
j a

′(ωj)

]

= arg

[

c0(1)

a2(ωj)

]

. (5.3)

For tλ ∈ Γ2 we have

arg (T1) = arg

[

1

tnλω2
j a

′(ωj)

]

= −
n

2
(θj−1 + θj) + arg

[

1

ω2
j a′(ωj)

]

=
n

2
(θj − θj−1) + arg

[

c0(1)

a2(ωj)

]

=π + arg

[

c0(1)

a2(ωj)

]

= arg (−T2).
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Here, the third line is due to (5.3). In addition, as n → ∞,
∣

∣

∣

∣

O

(
∣

∣

∣

∣

tλ − ωj

tnλ

∣

∣

∣

∣

)
∣

∣

∣

∣

Γ2

= O

(

1

nε|tλ|n

)

,

∣

∣

∣

∣

O

(

|tλ − ωj |

nα+1

)
∣

∣

∣

∣

Γ2

= O

(

1

nα+ε+1

)

,

and

|Q6(n, tλ)|Γ2
= O

(

1

nα+α0+1

)

.

Furthermore,
∣

∣

∣

∣

Dn(a − λ)

hn+1
0

∣

∣

∣

∣

Γ2

=
1

|tnλa′(ωj)|
+ O

(

1

nε|tλ|n

)

+
1

nα+1
·

∣

∣

∣

∣

c0(1)

a2(ωj)

∣

∣

∣

∣

+ O

(

1

nα+ε+1

)

over Γ2 when n → ∞. The situation is similar for the segment Γ4.
From the previous analysis of |Dn(a − λ)| over Γ we infer that for every

sufficiently large n we have

|T1 − T2|Γ ≥
1

2nα+1

∣

∣

∣

∣

c0(1)

a2(ωj)

∣

∣

∣

∣

and
∣

∣

∣

∣

O

(∣

∣

∣

∣

tλ − ωj

tnλ

∣

∣

∣

∣

)

+ O

(

|tλ − ωj |

nα+1

)

+ Q6(n, tλ)

∣

∣

∣

∣

Γ

≤ O

(

1

nα+ε+1

)

.

Hence by Rouché’s theorem, Dn(a − λ)/(−h0)
n+1 and T1 − T2 have the same

number of zeros in Ej , that is, a unique zero. �

As a consequence of Theorem 5.1, we can iterate the variable tλ in the equa-
tion Dn(a− λ) = 0, where Dn(a− λ) is given by (1.3). In this fashion we find the
unique eigenvalue of Tn(a) which is located “close” to each ωj . We thus rewrite
the equation Dn(a − λ) = 0 in a small neighborhood of ωj as

tλj
= n(α+1)/nωj

[

a2(tλj
)

c0(1)a′(tλj
)t2λj

]
1

n

·
[

1 + Q7(n, j)
]−

1

n

; (5.4)

recall c0(1) from (4.13). Here the function z1/n takes its principal branch, specified
by the argument in (−π, π]. Also notice that Q7(n, j) = O (n−α0) as n → ∞,
uniformly in j ∈ (n1, n − n2), with n1, n2 as in Theorem 5.1.

Proof of Theorem 1.2. Equation (5.4) is an implicit expression for tλj
. We ma-

nipulate it to obtain two asymptotic terms for tλj
. Remember that λ belongs to

D(a) \ W0; see Figure 2. We can choose W so thin that λj = a(tλj
), a′(tλj

), and
tλj

are bounded and not too close to zero. After expanding and multiplying the
terms in brackets in (5.4), we obtain

tλj
= n(α+1)/nωj

[

1 +
1

n
log

(

a2(tλj
)

c0(1)a′(tλj
)t2λj

)

+ Q8(n, j)

]

, (5.5)



16 Bogoya, Böttcher and Grudsky

where Q8(n, j) = O
(

n−α0−1
)

as n → ∞, uniformly with respect to j in (n1, n−n2).
Our first approximation for tλj

is

tλj
= n(α+1)/nωj

[

1 + Q9(n, j)
]

,

where Q9(n, j) = O
(

n−1
)

as n → ∞, uniformly in j from (n1, n − n2). Replacing

tλj
by this approximation in (5.5) shows that tλj

equals n(α+1)/nωj times

1 +
1

n
log

(

a2
(

n(α+1)/nωj

[

1 + Q9(n, j)
])

c0(1)a′
(

n(α+1)/nωj

[

1 + Q9(n, j)
])(

n(α+1)/nωj

[

1 + Q9(n, j)
])2

)

,

plus Q10(n, j), where Q10(n, j) = O
(

n−α0−1
)

as n → ∞, uniformly with respect
to j in (n1, n − n2). Now we use the analyticity of a and a′ in W to obtain that
tλj

is n(α+1)/nωj times

1 +
1

n
log

(

a2
(

n(α+1)/nωj

)

c0(1)a′
(

n(α+1)/nωj

)(

n(α+1)/nωj

)2

)

+ Q11(n, j),

where Q11(n, j) = O
(

n−α0−1
)

as n → ∞, uniformly in j ∈ (n1, n − n2). Taking
into account that

a2
(

n(α+1)/nωj

)

c0(1)a′
(

n(α+1)/nωj

)(

n(α+1)/nωj

)2 =
a2(ωj)

c0(1)a′(ωj)ω2
j

+ O

(

log n

n

)

as n → ∞,

we can simplify the expression for tλj
to

tλj
= n(α+1)/nωj

[

1 +
1

n
log

(

a2(ωj)

c0(1)a′(ωj)ω2
j

)

+ R2(n, j)

]

,

where R2(n, j) = O
(

n−α0−1
)

+ O
(

n−2 log n
)

as n → ∞, uniformly with respect
to j in (n1, n − n2). �

Proof of Theorem 1.3. Note that

n(α+1)/n = exp

[

(α + 1)
log n

n

]

= 1+(α+1)
log n

n
+O

(

log n

n

)2

as n → ∞. (5.6)

Inserting (5.6) in (1.4) we obtain

tλj
= ωj

[

1 + (α + 1)
log n

n
+

1

n
log

(

a2(ωj)

c0(1)a′(ωj)ω2
j

)

+ Q12(n, j)

]

, (5.7)

where Q12(n, j) = O
(

n−α0−1
)

as n → ∞, uniformly in j ∈ (n1, n− n2). Applying
the symbol a to (5.7), we see that, as n → ∞,

λj = a
(

ωj

)

+ (α + 1)ωja
′(ωj)

log n

n
+

ωja
′(ωj)

n
log

(

a2(ωj)

c0(1)a′(ωj)ω2
j

)

+ a′(ωj)Q12(n, j) + O

(

log n

n

)2

. �
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6. An example

The symbol studied by Dai, Geary, and Kadanoff [11] is

a(t) =

(

2 − t −
1

t

)γ

(−t)β = (−1)3γ+βtβ−γ(1 − t)2γ ,

where 0 < γ < −β < 1. In the case β = γ − 1, this function a becomes our symbol
with h(t) = (−1)4γ−1(1 − t)2γ . We omit the constant (−1)4γ−1, because it is just
a rotation. The conjecture of [11] is that tλj

∼ n(2γ+1)/n exp(−2πij/n). Expan-
sions (1.4) and (1.5) prove this result, giving us an error bound and a mathematical
justification.

Our results are valid outside a small open neighborhood W0 of the origin.
Let W0 = B1/5(0) be the disk of radius 1/5 centered at zero. Table 1 shows the
data of numerical computations. It reveals that the maximum error of (1.4) with
one term is reduced by nearly 10 times when considering the second term; see also
Figure 1.

n 256 512 1024 2048 4096

(1.4) with one term 15.041 7.698 3.900 1.964 0.986
(1.4) with two terms 1.890 0.823 0.394 0.197 0.099
(1.5) with one term 49.374 27.373 14.983 8.126 4.376
(1.5) with two terms 14.655 7.574 3.861 1.952 0.983
(1.5) with three terms 2.633 1.052 0.479 0.226 0.109

Table 1. The table shows the maximum error ×103, obtained
with our different formulas for the eigenvalues of Tn(t−1(1−t)3/4)
for different values of n. The data was obtained by comparison
with the solutions given by Matlab, taking into account only the
eigenvalues with absolute value greater than or equal to 1/5.

We also performed calculations with our expansions inside W0 = B1/5(0),
and although the error is nearly 8 times the one of outside, the approximation is
still valid there because the distance between two consecutive eigenvalues is bigger
than the one between an eigenvalue and the respective approximation given by
(1.4) with two terms; compare Tables 1 and 2 and see Figure 4. Clearly, to describe
the asymptotic behavior of the eigenvalues of Tn(a) completely with mathematical
rigor, we need an expression valid inside W0. We hope to do this in future work.

We remark that if λ is an eigenvalue of Tn(a) and bj(λ) is defined by (3.1),

then (bj(λ))n−1
j=0 is an eigenvector for λ provided bn−1(λ) 6= 0. In a forthcoming

paper we will employ this observation to study the asymptotics of the eigenvectors.
We finally want to emphasize that the results of this paper can be easily

translated to the case where the symbol is a(t) = t(1 − t−1)αf(t).
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n 256 512 1024 2048 4096

(1.4) with one term 29.719 22.395 16.050 11.123 7.528
(1.4) with two terms 6.229 3.756 2.247 1.340 0.797
(1.5) with one term 37.328 22.423 13.406 7.993 4.760
(1.5) with two terms 35.062 25.994 18.573 12.914 8.796
(1.5) with three terms 3.178 1.867 1.107 0.658 0.391

Table 2. The same as in Table 1, only now considering eigenval-
ues with absolute value less than 1/5.

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025

−0.08
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−0.04

−0.02

0

0.02

0.04

0.06

0.08

 

 

Figure 4. The picture shows a piece of R(a) for the symbol
a(t) = t−1(1− t)3/4 (solid line), located “close” to zero. The dots
are sp T4096(a) calculated by Matlab. The crosses and the stars
are the approximations obtained by using 2 and 3 terms of (1.5),
respectively.
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[13] U. Grenander and G. Szegő, Toeplitz Forms and Their Applications. University of
California Press, Berkeley and Los Angeles, 1958.

[14] M. V. Fedoryuk, The Saddle-Point Method. Nauka, Moscow, 1977 [Russian].

[15] I. I. Hirschman, Jr., The spectra of certain Toeplitz matrices. Illinois J. Math. 11

(1967), 145–159.
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