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Abstract

We are concerned with kernel density estimation on the rotation group SO(3) and the
corresponding mean integrated squared error. We give lower and upper bounds for different
function classes and derive optimal kernel functions. Furthermore, we consider approxi-
mations to the mean integrated squared error that depend on certain Sobolev norms of the
density function and analyze them with respect to asymptotic behavior and optimal kernel
functions. We compare our optimal kernels functions to families of kernel functions com-
monly used for kernel density estimation on the rotation group. Finally, we give a fast
algorithm for the computation of the kernel density estimator for large sampling sets and
verify our theoretical findings by numerical experiments.

1 Introduction
Kernel density estimation has been proven to be a powerful and flexible technique to estimate
the underlying probability density function of a given random sample. While for Euclidean
domains and for directional and spherical data there exists a rich literature (see [9, 18, 17] and
the references therein), the statistical properties of the kernel density estimator for more specific
domains where investigated in less detail, e.g. in [2, 11, 1].

In this paper we are concerned with kernel density estimation on the rotation group SO(3).
Our major motivation to consider this specific domain comes from crystallographic texture anal-
ysis, where kernel density estimation on the rotation group is used to determine the orientation
density function of a specimen from electron back scattering diffraction (EBSD) data [8, 13].
Furthermore, recently algorithms have been developed that allow for the fast evaluation of the
kernel density estimator on the rotation group for very large sampling sets [4].

Let λ be the Haar measure on SO(3) and let X1, . . . , XN ∈ SO(3) be a random sample
corresponding to a square integrable, probability density function f ∈ L2(SO(3)) with respect
to λ. Then for any square integrable, zonal function ψ ∈ L2(SO(3)) the kernel density estimator
f ∗ψ : SO(3)→ R of f given the random sample X1, . . . , XN ∈ SO(3) is defined as

f ∗ψ(x) =
1

N

N∑

n=1

ψ(X−1
n x), x ∈ SO(3). (1)

1
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In our paper we are interested in the mean integrated squared error (MISE),

MISE(f ∗ψ) = E ‖f − f ∗ψ‖2 = E
∫

SO(3)

|f(x)− f ∗(x)|2 dλ(x)

as a measure for the mean discrepancy between the probability density function f and the kernel
density estimator f ∗ψ.

In the groundbreaking papers of Hendriks [2] and Pelletier [11] the authors gave asymptotic
upper bounds for the MISE for specific kernel functions ψ in a much more general setting of
d–dimensional Riemannian manifolds. More specifically, it was shown by Hendriks that the
Dirichlet kernel ψL(x) =

∑L
`=0D`(x), where D` denote an eigenbasis of the Laplace–Beltrami

operator on the manifold, yields the estimate

inf
L∈N

MISE(f ∗ψL) ≤ CN−
2s

2s+d ,

where the density function f is assumed to be s > d/2 times differentiable with square integrable
derivatives and the constant C is independent of N . This result was extended by Pelletier to
nonnegative kernel functions ψα(x,Xn) = ψ(d(x,Xn)

α
) that are derived from a nonnegative kernel

functions ψ : R+ → R+ with vanishing first moment, finite second moment and supremum at 0
by dilating it according to the Rimannian distance. Assuming, furthermore, that f is two times
differentiable with square integrable derivatives Pelletier proved the estimate

inf
α∈R

MISE(f ∗ψα) ≤ CN−
4

4+d .

The purpose of this paper is specialize and extend these results to the specific domain of the
rotation group SO(3), i.e., we want to provide lower and upper bounds with explicite constants
for a broader class of kernel functions. The findings of our paper are twofold. As a first result
we show in Theorem 6 that under the very mild condition f ∈ L2(SO(3)) it exists a well defined
optimal zonal kernel function ψopt such that the corresponding MISE is minimal and satisfies

MISE(f ∗ψopt
)→ 0

as the number of random samples N tends to infinity. For the case of bandlimited density func-
tions f we prove in Theorem 7 the existence of a constant C > 0 such that

CN−1 < MISE(f ∗ψopt
) ≤ (L+ 1)(1 + 2L)(3 + 2L)

3(1 +
√
N)2

.

In the case that the Fourier coefficients of f decay polynomial with order s > 1
2

we prove in
Theorem 8 for the optimal MISE the upper bound

MISE(f ∗ψopt
) ≤

(
44

3
‖f‖

6
2s+2∞,s +

π

2 + 2s

)
N−

2s−1
2s+2 .

Unfortunately, the optimal kernel function ψopt is given in terms the Fourier coefficients of
the unknown density function f . Consequently, it is of limited interest for practical applications.
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Therefore, one considers asymptotically strict upper bounds of the MISE that depend on some
Sobolev norm of the density function f and looks for optimal kernel functions with respect to
these upper bounds. In our paper we generalize in Theorem 9 the notion of the asymptotic
mean integrated squared error (AMISE) known from the Euclidean setting and extend it in
Theorem 10 to general Sobolev spaces. More precisely, we prove for s > 0 times weakly
differentiable functions f an upper bound AMISE2,s(f

∗
ψopt

) of the MISE and show in Theorem 11
that it possesses an optimal kernel functions ψopt which satisfies

MISE(f ∗ψopt
) ≤ AMISE2,s(f

∗
ψopt

) = C ‖f‖
6

2s+3
s N−

2s
2s+3 +O(N−

2s+1
2s+3 )

with constant C =
(

(2s
3

)−
2s

2s+3 + (2s
3

)
3

2s+3

) (
4
3
− 8

s+3
+ 4

2s+3

) 2s
2s+3 . For the case that the Fourier

coefficients of f decay polynomially of order s > 1
2

we find an upper bound AMISE∞,s(f ∗ψ) of
the MISE and derive in Theorem 12 an optimal kernel function ψopt which satisfies

MISE(f ∗ψopt
) ≤ AMISE∞,s(f ∗ψopt

) =
2

2−s
s+1π

(s+ 1) sin 3π
2s+2

‖f‖
2

2s+2∞,s N
− 2s−1

2s+2 +O(N−
2s

2s+2 ).

We consider also some important families of zonal functions on the rotation group: the
Dirichlet kernel, the Jackson kernel, the Abel Poisson kernel, the de la Valle’e Poussin kernel,
which are commonly used in practical applications. For these families we compute the AMISE -
optimal parameters and compare the corresponding asymptotic behavior of the AMISE with our
optimal kernel functions.

We complete our paper with some numerical experiments to verify our theoretical findings.
In order to evaluate the kernel sum (1) for large sampling sets, i.e., for N ≈ 107, and to compute
its Fourier coefficients we apply the nonequispaced fast Fourier transform on SO(3), [12] and
follow the ideas in [4].

Most of our results we derived by extending the approaches in [2] and [6] and making ex-
tensively use of harmonic analysis on the rotation group. In particular, we proved in Lemma 5
an inequality for the Fourier coefficients of nonnegative functions on SO(3) and generalized in
Theorem 4 an approximation result for the convolution with nonnegative functions from [19] for
the rotation group. The authors are optimistic that the applied techniques might be useful for
other domains then the rotation group SO(3) as well.

2 Harmonic Analysis on the Rotation Group
We start by giving some basic notations and results on harmonic analysis on the rotation group
SO(3). By the rotation group SO(3) we denote the set of all orthogonal, three by three matrices
with determinant one. Any such matrix x ∈ SO(3) can be interpreted as a rotation in the three
dimensional Euclidean space about a certain axis of rotation ξ ∈ S2 and a certain rotational angle
ω = ω(x) = arccos 1

2
(Tr x − 1), where Tr x denotes the trace of x. Conversely, we denote for

every unit vector ξ ∈ S2 and every angle ω ∈ [0, 2π] the matrix that acts as a rotation about ξ
with angle ω by Rξ,ω ∈ SO(3).
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Let e2 = (0, 1, 0)t , e3 = (0, 0, 1)t and let α, γ ∈ [0, 2π), β ∈ [0, π] be three angles. Then we
define the Euler angle parametrization of the rotation group by the surjective mapping

(α, β, γ) 7→ x(α, β, γ), x(α, β, γ) = Re3,αRe2,β Re3,γ.

Since, SO(3) is a compact topological group it possesses a unique Haar measure λ such that
λ(SO(3)) = 1. In terms of Euler angles the Haar measure has the representation

λ(A) =

∫

SO(3)

1A(x) dλ(x) =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

o

1A(x(α, β, γ)) dα sin β dβ dγ

where A is an open subset of SO(3) and 1A denotes the corresponding indicator function.

2.1 Harmonic Functions
Our major function space will be the space of square integrable functions L2(SO(3)) on the
rotation group endowed with the inner product

〈f1, f2〉 =

∫

SO(3)

f1(x)f2(x) dλ(x)

and the corresponding norm ‖f‖ =
√
〈f, f〉. An important function system on the rotation group

is formed by the so called Wigner-D functions (cf. [15])

Dk,k′

` (x(α, β, γ)) = e−ikαe−ik′γdk,k
′

` (cos β), ` ∈ N, k, k′ = −`, . . . , `, (2)

with Wigner-d functions

dk,k
′

` (x) =
(−1)`−k

2`

√
(`+ k)!

(`− k′)!(`+ k′)!(`− k)!

√
(1− x)k′−k

(1 + x)k+k′
d`−k

dx`−k
(1 + x)k

′+`

(1− x)k′−`
. (3)

The Wigner-D functions can be characterized as the matrix elements of the left regular rep-
resentation of the group SO(3) in L2(S2), i.e., they satisfy the representation property

Dk,k′

` (xy) =
∑̀

j=−`
Dk,j
` (x)Dj,k′

` (y). (4)

As a consequence of the Peter - Weyl Theorem [16, Sect. 3.3] the Wigner-D functions are
orthogonal, i.e.,

〈
D
k1,k′1
`1

, D
k2,k′2
`2

〉
=

1

8π2

∫

SO(3)

D
k1,k′1
`1

(x)D
k2,k′2
`2

(x) dλ(x) =
1

2`+ 1
δk1k2δk′1k′2δ`1`2 , (5)

` ∈ N, k, k′ = −`, . . . , `, and form a basis of L2(SO(3)). In particular, any function f ∈
L2(SO(3)) has a unique series expansion in terms of Wigner-D functions

f =
∞∑

`=0

∑̀

k=−`

∑̀

k′=−`
f̂(`, k, k′)

√
2`+ 1Dk,k′

` (6)
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with Fourier coefficients f̂(`, k, k′) given by the integral

f̂(`, k, k′) =
〈
f,
√

2`+ 1Dk,k′

`

〉
. (7)

The Parsevall identity yields

‖f‖2 =
∞∑

`=0

∑̀

k,k′=−`

∣∣∣f̂(l, k, k′)
∣∣∣
2

. (8)

Additionally, a complete system of rotational invariant and irreducible subspaces is given by

Harm`(SO(3)) = span
{
Dk,k′

` | k, k′ = −`, . . . , `
}

which satisfy

L2(SO(3)) = clos
∞⊕

`=0

Harm`(SO(3)).

Let f, h ∈ L2(SO(3)) be two square integrable functions on SO(3). Then their convolution

f ∗ h(x) =
1

8π2

∫

SO(3)

f(y)h(y−1x) dy

defines a function in L2(SO(3)) and we have the well known identity of its Fourier coefficients
[7]

f̂ ∗ h(`, k, k′) =
1√

2`+ 1

l∑

j=−`
f̂(`, k, j)ĥ(`, j, k′), ` ∈ N, k, k′ = −`, . . . , `. (9)

2.2 Zonal Functions
A function ψ : SO(3)→ C is called zonal if and only if it satisfies for all x, y ∈ SO(3)

ψ(x) = ψ(yxy−1).

Since, for any x ∈ SO(3) the set of rotations { yxy−1 | y ∈ SO(3) } can be identified with the
set of all rotations y ∈ SO(3) having rotation angle ω(y) = ω(x), a zonal function ψ can be
written as a function of t = cos ω(x)

2
. As long as it does not cause any confusion we write for the

latter function
ψ(t) = ψ(x),

where x is an arbitrary rotation with cos ω(x)
2

= t. Moreover, we have for ψ ∈ L2(SO(3))

‖ψ‖2 =
1

8π2

∫

SO(3)

|ψ(x)|2 dλ(x) =
2

π

∫ 1

−1

|ψ(t)|2
√

1− t2 dt, (10)
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i.e., t 7→ ψ(t) is a function in L2([−1, 1],
√

1− t2 dt).
By the Peter – Weyl Theorem the subspace of zonal functions in L2(SO(3)) is spanned by

the characters χ`, ` ∈ N,

χ`(x) =
∑̀

k=−`
Dk,k
` (x) = U2`(cos ω(x)

2
) =

sin 2`+1
2
ω(x)

sin ω(x)
2

,

where U` denotes the Chebyshev polynomials of second kind and degree ` ∈ N. In particular,
the subspace of zonal functions in Harm`(SO(3)) is one dimensional and any zonal function
ψ ∈ L2(SO(3)) has a Chebyshev expansion of the form

ψ(x) ∼
∞∑

`=0

ψ̂(`)(2`+ 1)U2`

(
cos ω(x)

2

)
,

where ∼ indicates that the convergence of the series is meant in the L2–norm. The Chebyshev
coefficients ψ̂(`) are given by

ψ̂(`) =
2

π

1

2`+ 1

∫ 1

−1

ψ(t)U2`(t)
√

1− t2 dt (11)

and satisfy the Parsevall identity

‖ψ‖2 =
∞∑

`=0

(2`+ 1)2 |ψ̂(`)|2. (12)

As a special case of the convolution formulae (9) the convolution of a function f ∈ L2(SO(3))
with a zonal function ψ ∈ L2(SO(3)) has the Fourier coefficients

f̂ ∗ ψ(`, k, k′) = f̂(`, k, k′)ψ̂(`), ` ∈ N, k, k′ = −`, . . . , `. (13)

We will need also the following estimate on the Fourier coefficients of nonnegative functions
on the rotation group.

Lemma 1. Let f ∈ L2(SO(3)) be an almost everywhere nonnegative function with f̂(0) > 0.
Then we have for all ` ∈ N\{0},

1

(2`+ 1)2

∑̀

k,k′=−`

∣∣∣f̂(`, k, k′)
∣∣∣
2

< f̂(0).

Proof. Since the characters χ`(x) = U2`(cos ω(x)
2

), ` = 1, . . . ,∞ are not constant at any open
subset of SO(3) we have for all f ≥ 0, f̂(0) > 0 and all x ∈ SO(3),

0 <

∫

SO(3)

(
f ∗ χ`(x)− χ`(xy−1)

)2
f(y) dλ(y) = (χ2

` ∗ f)(x)− (χ` ∗ f)2(x).
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Integration over SO(3) results in

0 <

∫

SO(3)

(χ2
` ∗ f)(x)− (χ` ∗ f)2(x) dλ(x)

=

∫

SO(3)

∫

SO(3)

χ`(xy
−1)2f(y) dλ(y) dλ(x)− ‖χ` ∗ f‖2

= f̂(0) ‖χ`‖2 − ‖χ` ∗ f‖2

= f̂(0)− (2`+ 1)−2
∑̀

k,k′=−`

∣∣∣f̂(`, k, k′)
∣∣∣
2

.

2.3 Sobolev Spaces and Integral Means
In order to quantify the smoothness of functions on the rotation group we define weighted
Sobolev spaces. Let s ∈ R, s ≥ 0, L ∈ N and let

f =
L∑

`=0

∑̀

k,k′=−`
f̂(`, k, k′)

√
2`+ 1Dk,k′

`

be a band-limited function with Fourier coefficients f̂(l, k, k′) ∈ C. Then we define weighted
Sobolev semi–norms of f by

‖f‖22,s =
L∑

`=1

∑̀

k,k′=−`
`s(`+ 1)s

∣∣∣f̂(`, k, k′)
∣∣∣
2

,

‖f‖2∞,s = sup
`∈N\{0}

∑̀

k,k′=−`
`s(`+ 1)s

∣∣∣f̂(`, k, k′)
∣∣∣
2

,

and denote by F`2,s(SO(3)) and F`∞,s(SO(3)) the closure of the space of band-limited functions
in L2(SO(3)) with respect to the corresponding Sobolev semi–norm. Since for any s ≥ 1

2
and

ε > 0,

sup
`∈N\{0}

∑̀

k,k′=−`
`s−

1
2 (`+ 1)s−

1
2

∣∣∣f̂(`, k, k′)
∣∣∣
2

≤
L∑

`=1

∑̀

k,k′=−`
`s−

1
2 (`+ 1)s−

1
2

∣∣∣f̂(`, k, k′)
∣∣∣
2

≤
(

L∑

`=1

`−
1
2
−ε(`+ 1)−

1
2
−ε
)

sup
`∈N\{0}

∑̀

k,k′=−`
`s+ε(`+ 1)s+ε

∣∣∣f̂(`, k, k′)
∣∣∣
2
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we have
F`∞,s+ε(SO(3)) ⊂ F`2,s− 1

2
(SO(3)) ⊂ F`∞,s− 1

2
(SO(3)). (14)

The final goal of this section is to derive an estimate for the approximation error ‖f − f ∗ ψ‖2
for functions f ∈ F`2,s(SO(3)) or f ∈ F`∞,s(SO(3)) and a radially symmetric kernel function
ψ ∈ L2(SO(3)). To this end we consider the integral means

τtf(x) =
1

4π

∫

S2

f(xRξ,2 arccos t) dσ(ξ), t ∈ [−1, 1], x ∈ SO(3),

where Rξ,2 arccos t ∈ SO(3) is the rotation about ξ ∈ S2 with angle arccos t ∈ [0, 2π) and σ is
the spherical surface measure. The value τtf(x) represents the mean of the function f along all
rotations y that are at distance t from x. In analogy to the spherical Funck Hecke formula (cf.
[10, Theorem 6]) we have the following result on integral means of the Wigner-D functions.

Lemma 2. Let t ∈ [0, 1], ` ∈ N, and k, k′ = −`, . . . , `. Then we have

τtD
k,k′

` =
1

2`+ 1
U2`(t)D

k,k′

` .

Proof. First of all we recognize that τtD
k,k′

` may be rewritten by using (4) as

τtD
k,k′

` (x) =
1

4π

∫

S2

Dk,k′

` (xRξ,2 arccos t) dσ(ξ)

=
∑̀

j=−`
Dk,j
` (x)

1

4π

∫

S2

Dj,k′

` (Rξ,2 arccos t) dσ(ξ)

=
∑̀

j=−`
Dk,j
` (x)

1

8π2

∫

SO(3)

Dj,k′

` (Ryξ,2 arccos t) dλ(y)

=
∑̀

j=−`
Dk,j
` (x)

1

8π2

∫

SO(3)

Dj,k′

` (yRξ,2 arccos ty
−1) dλ(y)

where the last two terms are independent from the specific choice of ξ ∈ S2. Since the last
integral defines a zonal function with respect to Rξ,2 arccos t that is contained in Harm`(SO(3)) we
obtain

1

8π2

∫

SO(3)

Dj,k′

` (yRξ,2 arccos ty
−1) dλ(y) =

{
1

2`+1
U2`(t), if j = k′,

0, if j 6= k′

and consequently

τtD
k,k′

` (x) =
1

2`+ 1
U2`(t)D

k,k′

` (x).

Next we proceed as in [19] and show that the family of integral means τt, t ∈ (−1, 1) defines
an approximation process as t→ 1.
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Lemma 3. Let f ∈ F`2,2(SO(3)) and t ∈ [−1, 1]. Then

‖f − τtf‖ ≤
2

3
(1− t2) ‖f‖2,2 .

Proof. For f ∈ F`2,2(SO(3)) and t ∈ [−1, 1] we have

‖f − τtf‖2 =
∞∑

`=0

∑̀

k,k′=−`

(
1− U2`(t)

2`+ 1

)2 ∣∣∣f̂(`, k, k′)
∣∣∣
2

≤
(

sup
l∈N\{0}

(2`+ 1)− U2`(t)

`(`+ 1)(2`+ 1)

)2
∞∑

`=1

∑̀

k,k′=−`
`2(`+ 1)2

∣∣∣f̂(`, k, k′)
∣∣∣
2

=

(
3− U2(t)

6

)2 ∞∑

`=1

∑̀

k,k′=−`
`2(`+ 1)2

∣∣∣f̂(`, k, k′)
∣∣∣
2

.

We conclude our remarks on the harmonic analysis on the rotation group by giving the
promised approximation result on ‖f − f ∗ ψ‖2.

Theorem 4. Let ψ ∈ L2(SO(3)) be a zonal function with the Chebyshev expansion

ψ(x) = 1 +
∞∑

`=1

(2`+ 1)ψ̂(`)U2`

(
cos

ω(x)

2

)
.

Then we have for any s > 0, f ∈ F`2,s(SO(3)) the inequality

‖f − f ∗ ψ‖2 ≤ sup
`∈N\{0}

|1− ψ̂(`)|2
`s(`+ 1)s

‖f‖22,s ,

and for any s > 1
2
, f ∈ F`∞,s(SO(3)) the inequality

‖f − f ∗ ψ‖2 ≤
∑

`∈N\{0}

|1− ψ̂(`)|2
`s(`+ 1)s

‖f‖2∞,s .

If f ∈ F`2,2(SO(3)) and ψ ≥ 0. Then the above estimate simplifies to

‖f − f ∗ ψ‖2 ≤ 1

4

∣∣∣1− ψ̂(1)
∣∣∣
2

‖f‖22,2 . (15)

Proof. By (13) the convolution f ∗ ψ has the Fourier expansion

f ∗ ψ =
∞∑

`=0

∑̀

k,k′=−`
ψ̂(`)f̂(`, k, k′)

√
2`+ 1Dk,k′

` .
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Hence, we obtain for the approximation error

‖f − f ∗ ψ‖2 =
∞∑

`=0

∑̀

k,k′=−`
|1− ψ(`)|2

∣∣∣f̂(`, k, k′)
∣∣∣
2

=
∞∑

`=1

∑̀

k,k′=−`

|1− ψ̂(`)|2
`s(`+ 1)s

`s(`+ 1)s
∣∣∣f̂(`, k, k′)

∣∣∣
2

≤ sup
`∈N\{0}

|1− ψ̂(`)|2
`s(`+ 1)s

‖f‖22,s .

and analogously

‖f − f ∗ ψ‖2 ≤
∑

`∈N\{0}

|1− ψ̂(`)|2
`s(`+ 1)s

‖f‖2∞,s .

The proof for the more specific case that ψ is nonnegative we adapted from [19]. By (11) and
Lemma 3 we have

‖f − f ∗ ψ‖ =

∥∥∥∥
2

π

∫ 1

−1

(f − τtf)ψ(t)
√

1− t2 dt

∥∥∥∥

≤ 2

π

∫

−1

‖f − τtf‖ψ(t)
√

1− t2 dt

≤ 2

π

∫ 1

−1

‖f‖2,2
∣∣∣∣
1

2
− 1

6
U2(t)

∣∣∣∣ψ(t)
√

1− t2 dt

=
1

2

∣∣∣1− ψ̂(1)
∣∣∣ ‖f‖2,2 .

3 Direct MISE Estimates
Let f ∈ L2(SO(3)) be a probability density function and let Ω be an arbitrary probability
space. We consider a list of N ∈ N, independently, identically distributed random variables
X1, . . . , XN : Ω → SO(3) which share the same distribution as the probability density function
f , i.e., for any fixed ω ∈ Ω the list Xn(ω) ∈ SO(3), n = 1, . . . , N is a random sample of
the probability distribution corresponding to f . Our objective is to estimate f from the random
sample Xn(ω), n = 1, . . . , N .

Let ψ : SO(3) → R be a zonal function with ψ̂(0) = 1. Then the kernel density estimator
of the probability density function f given the family of random variables Xn, n = 1, . . . , N is
defined as

f ∗ψ(x) = N−1

N∑

n=1

ψ(X−1
n x).
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Since the kernel density estimator f ∗ψ is a function of the random sample Xn, n = 1, . . . , N
it is a random variable on Ω and one can ask for the mean integrated squared error

MISE = E ‖f − f ∗ψ‖2 = E
∫

SO(3)

|f(x)− f ∗(x)|2 dλ(x)

between the probability density function f and the kernel density estimator f ∗ψ. The following
well known decomposition result of the MISE into a bias term and a variance term (see e.g. [14])
actually holds true for the much more general setting of locally compact groups.

Lemma 5. Let ψ ∈ L2(SO(3)) be a zonal function, f ∈ L2(SO(3)) a density function on SO(3),
and f ∗ψ ∈ L2(SO(3)) its kernels density estimator. Then the mean squared integrated error
allows for the decomposition

E ‖f − f ∗ψ‖2 = E ‖f − Ef ∗ψ‖2 + E ‖f ∗ψ − Ef ∗ψ‖2 (16)

into a bias term
E ‖f − Ef ∗ψ‖2 = ‖f − f ∗ ψ‖2 (17)

and a variance term
E ‖f ∗ψ − Ef ∗ψ‖2 = N−1

(
‖ψ‖2 − ‖f ∗ ψ‖2

)
. (18)

In particular, we have with respect to L2 – convergence

lim
N→∞

f ∗ψ = f ∗ ψ. (19)

Proof. First of all, we note that the mean of the kernel density estimator f ∗ψ may be written as

Ef ∗ψ(x) = N−1

N∑

n=1

Eψ(X−1
n x) =

∫

SO(3)

f(y)ψ(y−1x) dλ(y) = f ∗ ψ(x).

Inserting the mean of the kernel density estimator f ∗ψ into the definition of the MISE we obtain

E ‖f − f ∗‖2 =

∫

SO(3)

E(f(x)− f ∗(x))2 dλ(x)

=

∫

SO(3)

E(f(x)− Ef ∗(x))2 + E(Ef ∗(x)− f ∗(x))2 dλ(x)

=

∫

SO(3)

(f(x)− Ef ∗(x))2 + E(Ef ∗(x)− f ∗(x))2 dλ(x).

The bias term on the left hand side of the sum elaborates to
∫

SO(3)

(f(x)− Ef ∗(x))2 dλ(x) =

∫

SO(3)

(f − f ∗ ψ(x))2 dλ(x) = ‖f − f ∗ ψ‖2 .
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Using the independence of the random sample Xn, we calculate for the right hand side

E(Ef ∗(x)− f ∗(x))2 =
N∑

n=1

N−2E(Eψ(X−1
n x)− ψ(X−1

n x))2

= N−2

N∑

n=1

E(ψ(X−1
n x)2 − (Eψ(X−1

n x))2)

= N−1(f ∗ ψ2)(x)−N−1(f ∗ ψ)2(x).

Hence, the variation term on the right hand side of the sum yields
∫

SO(3)

E(Ef ∗(x)− f ∗(x))2 dλ(x)

= N−1

∫

SO(3)

(f ∗ ψ2)(x)− (f ∗ ψ)2(x) dλ(x)

= N−1

∫

SO(3)

∫

SO(3)

ψ2(y−1x)f(y) dλ(y) dλ(x)−N−1 ‖f ∗ ψ‖2

= N−1 ‖ψ‖2 −N−1 ‖f ∗ ψ‖2 .

Next we follow the idea of [2] and consider the MISE in terms of the Fourier coefficients of
the density function f and the Chebyshev coefficients of the kernel function ψ. Therefore, we
abbreviate the Fourier coefficients of the function f ∈ L2(SO(3)),

f = 1 +
∞∑

`=1

∑̀

k,k′=−`
f̂(`, k, k′)Dk,k′

` ,

by

f̂ 2
` =

1

(2`+ 1)2

∑̀

k,k′=−`

∣∣∣f̂(`, k, k′)
∣∣∣
2

,

and write the kernel function ψ ∈ L2(SO(3)) as its Chebyshev series

ψ(x) ∼ 1 +
∞∑

`=1

(2`+ 1)ψ̂(`)U2`(
ω(x)

2
).

Applying the Parseval identities (8), (12) and the convolution formula (13) we obtain the follow-
ing representation of the mean integrated squared error

MISE =
∞∑

`=1

(2`+ 1)2f̂ 2
` (1− ψ̂(`))2 +

(2`+ 1)2

N
ψ̂(`)2

(
1− f̂ 2

`

)
. (20)

Since the MISE completely decomposes with respect to the rotational invariant subspaces in
L2(SO(3)) we can find an optimal kernel by minimizing each summand with respect to ψ̂(`),
separately.
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Theorem 6. Let f ∈ L2(SO(3)) be a probability density function and N ∈ N the size of a
corresponding random sample. Then the MISE of the kernel density estimator f ∗ψopt

with respect
to the zonal function

ψopt(x) ∼
∞∑

`=0

(2`+ 1)
Nf̂ 2

`

(N − 1)f̂ 2
` + 1

U2`(cos ω(x)
2

),

is optimal compare to the MISE of the kernel density estimator f ∗ψ with respect to any other zonal
function ψ ∈ L2(SO(3)), i.e.,

MISE(f ∗ψopt
) ≤ MISE(f ∗ψ),

and we have

MISE(f ∗ψopt
) =

∞∑

`=0

(2`+ 1)2 f̂ 2
` (1− f̂ 2

` )

(N − 1)f̂ 2
` + 1

. (21)

In particular, we have for N →∞

lim
N→∞

MISE(f ∗ψ(opt)) = 0.

Proof. Since f ≥ 0, we have by Lemma 1 for all ` ∈ N the inequality 0 ≤ f̂ 2
` ≤ 1. Hence, each

summand in (20) is a quadratic polynomial with respect to ψ̂(`) with minimum at

ψ̂opt(`) =
Nf̂ 2

`

(N − 1)f̂ 2
` + 1

.

From f ∈ L2(SO(3)) we know by the Parseval identity (8)

∞∑

`=0

(2`+ 1)2f̂ 2
` =

∞∑

`=0

∑̀

k,k′=−`
f̂ 2
` = ‖f‖2 <∞,

and, hence,
∞∑

`=0

(2`+ 1)
Nf̂ 2

`

(N − 1)f̂ 2
` + 1

≤ ∞.

Using the Parseval identity for zonal functions (12) we conclude that the Chebyshev coefficients
ψ̂opt(`), ` = 0, 1, . . . define a zonal function ψopt ∈ L2(SO(3)) such that the MISE of the corre-
sponding kernel density estimator is optimal. Direct calculation of MISE(f ∗ψopt

) shows (21).

It should be noted that the optimal kernel is in general not applicable in real world applica-
tions since it requires the Fourier coefficients of the unknown density function f . However, the
optimal kernel provides a useful tool to analyze best possible convergence rates of any kernel
density estimator. The next Theorem shows, that the best possible convergence rate of the MISE
for density functions f 6= 1 is O(N−1). Moreover, this convergence rate is attained if f is a
bandlimited function.
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Theorem 7. Let f ∈ L2(SO(3)) be a not constant, probability density function. Then there is a
constant C > 0 such that

CN−1 ≤ MISE(f ∗ψopt
).

Let f be furthermore bandlimited, i.e., there is a L ∈ N such that f̂` = 0 for all ` > L. Then

MISE(f ∗ψopt
) ≤ (L+ 1)(1 + 2L)(3 + 2L)

3(1 +
√
N)2

.

Proof. Again we apply Lemma 1 and observe that because of f ∈ L2(SO(3)) is nonnegative
almost everywhere and not constant, there is a polynomial degree `0 ∈ N\{0} such that 0 <
f̂ 2
`0
< 1. Hence, there is a C > 0 such that

MISE(f ∗ψopt
) ≥ (2`0 + 1)2 f̂ 2

`0
(1− f̂ 2

`0
)

(N − 1)f̂ 2
`0

+ 1
= (2`0 + 1)2 f̂ 2

`0
(1− f̂ 2

`0
)

N−1
N
f̂ 2
`0

+N−1
N−1 ≥ CN−1.

In order to prove the upper bound we consider the summands in (21) and look for their maximizer
f̂`,max. Direct computation shows

f̂`,max =
1√

1 +
√
N
.

Inserting this into (21) we arrive at

MISE(f ∗ψopt
) =

L∑

`=0

(2`+1)2
f̂ 2
`,max(1− f̂ 2

`,max)

(N − 1)f̂ 2
`,max + 1

=
L∑

`=0

(2`+ 1)2

(1 +
√
N)2

=
(L+ 1)(1 + 2L)(3 + 2L)

3(1 +
√
N)2

.

In the case of not bandlimited functions f the decay rate of the MISE depends on the decay
rate of the Fourier coefficients of f .

Theorem 8. Let s > 1
2

and f ∈ F`∞,s. Then

MISE(f ∗ψopt
) ≤

(
44

3
‖f‖

6
2s+2∞,s +

π

2 + 2s

)
N−

2s−1
2s+2 .

Proof. First of all we note that because of f ∈ F`∞,s we have

f̂ 2
` ≤ `−s(`+ 1)−s(2`+ 1)−2 ‖f‖2∞,s ≤

1

4
(`+ 1)−(2s+2) ‖f‖2∞,s .

Let L0 = 4
(
‖f‖2∞,s

√
1 +
√
N
)1/(2s+2)

− 1 be the smallest polynomial degree ` such that

1

4
(`+ 1)−(2s+2) ‖f‖2∞,s ≤

1√
1 +
√
N
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for all ` > L0. Then the MISE with respect to the optimal kernel function ψopt is

MISE(f ∗ψopt
) =

L0∑

`=0

(2`+ 1)2 f̂ 2
` (1− f̂ 2

` )

(N − 1)f̂ 2
` + 1

+
∞∑

`=L0+1

(2`+ 1)2 f̂ 2
` (1− f̂ 2

` )

(N − 1)f̂ 2
` + 1

≤
L0∑

`=0

(2`+ 1)2

(1 +
√
N)2

+
∞∑

`=L0+1

(2`+ 1)2
1
4
(`+ 1)−(2s+2)

1
4
(N − 1)(`+ 1)−(2s+2) + 1

≤
L0∑

`=0

(2`+ 1)2

(1 +
√
N)2

+
∞∑

`=L0

(`+ 1)2

1
4
(N − 1) + (`+ 1)2s+2

≤ 4

3

(L0 + 1)3

(1 +
√
N)2

+

∫ ∞

0

`2

1
4
(N − 1) + `2s+2

≤ 44

3
‖f‖

6
2s+2∞,s

√
1 +
√
N

3/(2s+2)

(1 +
√
N)2

+
π

sin( 3π
2+2s

)(2 + 2s)
N−

2s−1
2s+2

≤
(

44

3
‖f‖

6
2s+2∞,s +

π

2 + 2s

)
N−

2s−1
2s+2 .

4 AMISE Estimates
As we have already mentioned in the previous section the MISE, and in particular, the MISE
optimal kernel function are not feasible for practical applications of kernel density estimation
since they require to know the Fourier coefficients of the unknown density function f . Hence,
one is interested in asymptotically strict upper bounds of the MISE that depend only on some
Sobolev norm of the unknown density function f that can be estimated from the data. Those
upper bounds are commonly called asymptotic mean integrated squared error (AMISE) (cf.
[17]). In the Euclidean setting, i.e., f : Rd → R they are of the form

AMISE(f ∗ψ) = µ2(ψ)2 ‖4f‖2 +N−1 ‖ψ‖2 (22)

where f : Rd → R is assumed to be a twice continuous differentiable function and

µ2(ψ) =

∫

Rd
‖x‖2 ψ(x) dx

denotes the second moment of the kernel function ψ.
As a generalization of the AMISE for the Euclidean setting we define the asymptotic mean

integrated squared error (AMISE) on the rotation group for a density function f ∈ F`2,2(SO(3))
and a nonnegative zonal function ψ ∈ L2(SO(3)) as

AMISE(f ∗ψ) = µ2(ψ)2 ‖4̃f‖2 +N−1 ‖ψ‖2 , (23)
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with

µ2(ψ) =
4

3π

∫ 1

−1

(1− t2)ψ(t)
√

1− t2 dt

and with 4̃ denoting the Laplace–Beltrami operator on SO(3). According to (10) the weight√
1− t2 is the canonical weight when working with zonal functions on the rotation group SO(3).

Next we show that the AMISE is indeed an upper bound for the MISE.

Theorem 9. Let f ∈ F`2,2(SO(3)) and let ψ ∈ L2(SO(3)) be a nonnegative, zonal kernel
function with Chebyshev coefficients ψ̂(`), ` ∈ N. Then we have

MISE(f ∗ψ) ≤ 1

4

∣∣∣1− ψ̂(1)
∣∣∣
2

‖f‖22,2 +N−1 ‖ψ‖2 = AMISE(f ∗ψ).

Proof. By Lemma 5 we have

MISE(f ∗ψ) = E ‖f − f ∗ψ‖2 = ‖f − f ∗ ψ‖2 +N−1
(
‖ψ‖2 − ‖f ∗ ψ‖2

)
(24)

and the left hand side inequality becomes a direct consequence of Theorem 4.
For the right hand side equality we observe that for any nonnegative kernel function ψ with

ψ̂(0) = 1 we have

1− ψ̂(1) =
2

π

∫ 1

−1

ψ(t)(1− 1

3
U2`(t))

√
1− t2 dt =

8

3π

∫ 1

−1

ψ(t)(1− t2)
√

1− t2 dt

and, furthermore, that
‖f‖22,2 = ‖4̃f‖2 .

Next we generalize the AMISE to nonnegative kernel functions and other smoothness classes
of f . Applying again Theorem 4 to (24) we end up with the following estimates.

Theorem 10. Let s > 0, f ∈ F`2,s(SO(3)) and let ψ ∈ L2(SO(3)) be a zonal kernel function
with Chebyshev coefficients ψ̂(`), ` ∈ N. Then we have

MISE(f ∗ψ) ≤ sup
`∈N\{0}

|1− ψ̂(`)|2
`s(`+ 1)s

‖f‖22,s +N−1 ‖ψ‖2 =: AMISE2,s(f
∗
ψ).

For s > 1
2

and f ∈ F`∞,s(SO(3)) we have

MISE(f ∗ψ) ≤
∑

`∈N\{0}

|1− ψ̂(`)|2
`s(`+ 1)s

‖f‖2∞,s +N−1 ‖ψ‖2 =: AMISE∞,s(f ∗ψ).

For these generalized AMISE we now prove the existence of optimal kernel functions and
give asymptotic lower and upper bounds. Let us start with the AMISE2,s.
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Theorem 11. Let s > 0, f ∈ F`2,s(SO(3)) a probability density function, and N ∈ N the size
of a corresponding random sample. Then the AMISE2,s of the kernel density estimator f ∗ψL with
respect to the Jackson type kernel φL : SO(3)→ R, L ∈ R, L > 0,

φL = 1 +

bLc∑

`=1

(2`+ 1)

(
1− `s/2(`+ 1)s/2

Ls/2(L+ 1)s/2

)
U2` (25)

is optimal compared to the AMISE2,s of the kernel density estimator f ∗ψ with respect to any other
zonal function ψ, i.e.,

AMISE2,s(f
∗
ψ) ≥ min

L∈R+

AMISE2,s(f
∗
ψL

).

The optimal bandwidth L∗ of the Jackson type kernel is approximately

L2s+3
∗ =

2s

3
C−1N ‖f‖22,s , (26)

which satisfies

A ‖f‖
6

2s+3
s N−

2s
2s+3 +O(N−

2s+1
2s+3 ) = min

L∈R+

AMISE2,s(f
∗
φL

)

≤ AMISE2,s(f
∗
φL∗

) = A ‖f‖
6

2s+3
s N−

2s
2s+3 +O(N−

2s+1
2s+3 )

with constants C =
(

4
3
− 8

s+3
+ 4

2s+3

)
and A =

(
(2s

3
)−

2s
2s+3 + (2s

3
)

3
2s+3

)
C

2s
2s+3 .

Proof. First of all we may assume that for an optimal kernel function ψ the Chebyshev coeffi-
cients satisfy 0 ≤ ψ̂(`) ≤ 1 for all l ∈ N. Let L ∈ R, L > 0 such that

L−s/2(L+ 1)−s/2 = sup
`∈N\{0}

|1− ψ̂(`)|
`s/2(`+ 1)s/2

.

Then, the zonal function φL ∈ L2(SO(3)) given by

φ̂L(`) = max

{
0, 1− `s/2(`+ 1)s/2

Ls/2(L+ 1)s/2

}

satisfies ‖ψ‖2 ≥ ‖φL‖2 and

sup
`∈N\{0}

|1− ψ̂(`)|
`s/2(`+ 1)s/2

= L−s/2(L+ 1)−s/2 = sup
`∈N\{0}

|1− φ̂L(`)|
`s/2(`+ 1)s/2

.

Consequently,
AMISE2,s(f

∗
ψ) ≥ AMISE2,s(f

∗
φL

).

Next we are going to find estimates for the AMISE for the Jackson kernel φL. In order to
compute the L2 - norm of the Jackson kernel we need that there is a nonnegative number α ∈ R
such that
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bLc∑

`=0

`s+1(`+ 1)s+1

Ls(L+ 1)s
≤
bLc∑

`=0

(`+ 1)2s+2

(L+ 1)2s
≤
∫ bLc+1

0

(`+ 1)2s+2

(L+ 1)2s
d` ≤ 1

2s+ 3
(L+ α)3

and

bLc∑

`=0

`s+1(`+ 1)s+1

Ls(L+ 1)s
≥
bLc∑

`=0

`2s+2

L2s
≥
∫ bLc

0

`2s+2

L2s
d` ≥ 1

2s+ 3
(L− α)3.

As a result we obtain that there is a constant β > 0 such that for all integer L ∈ N,

‖φL‖2 =

bLc∑

`=0

(2`+ 1)2

(
1− `s/2(`+ 1)s/2

Ls/2(L+ 1)s/2

)2

≥ 4

bLc∑

`=0

(
`(`+ 1)− 2

`s/2+1(`+ 1)s/2+1

Ls/2(L+ 1)s/2
+
`s+1(`+ 1)s+1

Ls(L+ 1)s

)

≥ 4

(
1

3
(L− α)3 − 2

s+ 3
(L+ α)3 +

1

2s+ 1
(L− α)3

)

≥ 4

(
1

3
− 2

s+ 3
+

1

2s+ 3

)
(L− β)3

and, analogously,

‖φL‖2 ≤ 4

(
1

3
− 2

s+ 3
+

1

2s+ 3

)
(L+ β)3.

Hence, we have for the AMISE

(L+ 1)−2s ‖f‖2s + C(L− β)3N−1 ≤ AMISE2,s(f
∗
φL

) ≤ L−2s ‖f‖2s + C(L+ β)3N−1,

with C = 4
(

1
3
− 2

s+3
+ 1

2s+3

)
. An approximate minimizer of the left and the right hand side is

L2s+3
∗ =

2s

3
C−1N ‖f‖2 .

Moreover, the true minimizer of the left and ride hand sides are contained in the interval [L∗ −
β, L∗ + β]. For the corresponding AMISE we obtain

A ‖f‖
6

2s+3
s N−

2s
2s+3 +O(N−

2s+1
2s+3 ) ≤ min

L∈R+

AMISE2,s(f
∗
φL

)

≤ AMISE2,s(f
∗
φL∗

) = A ‖f‖
6

2s+3
s N−

2s
2s+3 +O(N−

2s+1
2s+3 )

with constant A =
(

(2s
3

)−
2s

2s+3 + (2s
3

)
3

2s+3

)
C

2s
2s+3 .
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Next we consider the AMISE∞,s.

Theorem 12. Let s > 1
2
, f ∈ F`∞,s and N the size of the random sample. Then the AMISE∞,s

optimal kernel function is given by

ψopt(x) =
∞∑

`=0

(2`+ 1)
N ‖f‖2∞,s

N ‖f‖2∞,s + (2`+ 1)2`s(`+ 1)s
U2`

(
cos

ω(x)

2

)
, (27)

i.e., for any kernel function φ we have

AMISE∞,s(f ∗φ) ≥ AMISE∞,s(f ∗ψopt
).

The corresponding AMISE is asymptotically

AMISE∞,s(f ∗ψopt
) =

2
2−s
s+1π

(s+ 1) sin 3π
2s+2

‖f‖
2

2s+2∞,s N
− 2s−1

2s+2 +O(N−
2s

2s+2 ). (28)

Proof. Using once again the Parsevals identities (8) and (12) we obtain for the AMISE∞,s the
Fourier space representation

AMISE∞,s(f ∗ψ) =
∞∑

`=1

(1− ψ̂(`))2

`s(`+ 1)s
‖f‖2∞,s + (2`+ 1)2ψ̂(`)2N−1.

Setting the partial derivative for each Chebyshev coefficient ψ̂(`), ` ∈ N to zero we obtain, that
the optimal kernel function ψopt is defined by the Chebyshev coefficients

ψ̂opt(`) =
N ‖f‖2∞,s

N ‖f‖2∞,s + (2`+ 1)2`s(`+ 1)s
, ` ∈ N.

Given s > 1
2

the corresponding Chebyshev series converges in L2(SO(3)).
For the optimal AMISE we obtain the upper bound

AMISE∞,s(f ∗ψopt
) =

∞∑

`=0

(1− ψ̂opt(`))
2

`s(`+ 1)s
‖f‖2∞,s + (2`+ 1)2ψ̂opt(`)

2N−1

=
∞∑

`=0

(2`+ 1)4`s(`+ 1)s ‖f‖2∞,s + (2`+ 1)2N ‖f‖4∞,s(
N ‖f‖2∞,s + (2`+ 1)2`s(`+ 1)s

)2

≤
∫ ∞

0

16(`+ 1)2s+4 ‖f‖2∞,s + 4(`+ 1)2N ‖f‖4∞,s(
N ‖f‖2∞,s + 4`2s+2

)2 dl +O(N−1)

=
2

2−s
s+1π

(s+ 1) sin 3π
2s+2

‖f‖
6

2s+2∞,s N
− 2s−1

2s+2 +O(N−
2s

2s+2 )

and analogously the lower bound.
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The results of Theorem 11 and Theorem 12 compare well with the inclusions (14) in the sense
that for f ∈ F`∞,s+ε(SO(3)) ⊂ F`2,s− 1

2
(SO(3)) we have for both generalized asymptotic mean

squared errors AMISE∞,s(f ∗ψopt
) = O(N−

2s−1
2s+2 ) and ˜AMISE2,s− 1

2
(f ∗ψopt

) = O(N−
2s−1
2s+2 ), each with

respect to the corresponding optimal kernel function.
Next we review some important zonal functions on the rotation group according to their

feasibility for kernel density estimation. In particular, we derive formulas for the optimal kernel
parameter depending on the smoothness of the function f and the number of random samples
and investigate the behavior of the asymptotic mean integrated error as the number of random
samplesN tends to infinity. Some more zonal functions which might be useful for kernel density
estimation on the rotation group can be found in [3]. Because of its practical relevance we restrict
ourselves to two times differentiable functions, i.e., to the case s = 2.

4.1 The Dirichlet Kernel
Let us start with the Dirichlet kernel which was already studied in [2] for the more general setting
of Riemannian manifolds. On the rotation group SO(3) the Dirichlet kernel ψL ∈ L2(SO(3)) is
defined by its Chebyshev series

ψL(t) =
L∑

`=0

(2`+ 1)U2`(t).

The AMISE2,2 of the kernel density estimator f ∗ψL corresponding to the Dirichlet kernel computes
to

AMISE2,2(f
∗
ψL

) = (L+ 1)−2(L+ 2)−2 ‖f‖22,2 +
L∑

`=0

(2`+ 1)2N−1

= (L+ 1)−2(L+ 2)−2 ‖f‖22,2 +
1

3
(L+ 1)(2L+ 1)(2L+ 3)N−1

≈ L−4 ‖f‖22,2 +
4

3
L3N−1.

From this we obtain an approximately AMISE optimal parameter L∗

L7
∗ ≈ N ‖f‖22,2 (29)

which leads to the AMISE

AMISE2,2(f
∗
ψL∗

) ≈ 7

3
‖f‖6/72,2 N

−4/7.

Comparing the convergence rate of the kernel density estimator using the Dirichlet kernel
with the convergence rates derived in Theorem 11 we conclude that the Dirichlet kernel has an
asymptotically optimal convergence rate. However, the constant involved is approximately two
times larger compared to the constant for the optimal Jackson type kernel.
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4.2 The de la Vallee Poussin Kernel
The de la Vallee Poussin kernel ψκ is a nonnegative zonal function depending on a parameter
κ ∈ N\{0} that has the finite Chebyshev expansion

ψκ(t) =
(κ+ 1)22κ−1

(
2κ−1
κ

) t2κ =

(
2κ+ 1

κ

)−1 κ∑

`=0

(2`+ 1)

(
2κ+ 1

κ− `

)
U2`(t).

The L2–norm of the de la Vallee Poussin kernel computes to

‖ψκ‖2 =
2

π

∫ 1

−1

ψκ(t)
2
√

1− t2 dt =
2

π

(κ+ 1)22κ−1

(
2κ−1
κ

)
∫ 1

−1

t4κ
√

1− t2 dt

=
√
π

Γ(κ+ 2)2Γ(2κ+ 1
2
)

Γ(κ+ 1
2
)2Γ(2κ+ 2)

.

Since we have asymptotically by the Stirling formula

Γ(κ+ 2)

Γ(κ+ 1
2
)

=
Γ(κ+ 2)Γ(κ)22κ−1

Γ(2κ)
√
π

= 22κκ+ 1√
π

Γ(κ+ 1)2

Γ(2κ+ 1)
≈ (κ+ 1)

√
κ

we obtain for the L2–norm of the de la Vallee Poussin kernel the approximation

‖ψκ‖2 =
√
π

Γ(κ+ 2)2Γ(2κ+ 1
2
)

Γ(κ+ 1
2
)2Γ(2κ+ 2)

≈
√
π

2

√
κ(κ+ 1)2

2κ+ 1
≈
√
π

8
κ3/2.

Since

1− ψ̂(1) = 1−
(
2κ+1
κ−1

)
(
2κ+1
κ−1

) = 1− κ!(κ+ 1)!

(κ− 1)!(κ+ 2)!
= 1− κ

κ+ 2
=

2

κ+ 2

the AMISE(f ∗(ψκ)) is approximately

AMISE(f ∗ψκ) ≈ (κ+ 2)−2 ‖f‖22,2 +
π

8
κ3/2N−1.

An approximation of the optimal parameter is

κ7
∗ ≈

27

9π
‖f‖42,2N2. (30)

The corresponding optimal AMISE is

AMISE(f ∗ψκ∗ ) ≈ 3.8 ‖f‖6/72,2 N
−4/7.

As we have seen in Theorem 11 this is the optimal decay rate of the AMISE error we can expect
for s = 2.
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4.3 The Abel Poisson Kernel
The Abel Poisson kernel ψκ ∈ L2(SO(3)) is a nonnegative zonal function depending on a pa-
rameter κ ∈ (0, 1) which is defined by its Chebyshev series

ψκ(t) =
∞∑

`=0

(2`+ 1)κ2`U2`(t),

and has L2-norm

‖ψκ‖2 =
∞∑

`=0

(2`+ 1)2κ4l =
1 + 6κ4 + κ8

(1− κ4)3
.

Since the Abel Poisson kernel is nonnegative we compute for f ∈ F`2,2(SO(3)) the AMISE(f ∗(ψκ))
approximately for κ→ 1,

AMISE(f ∗ψκ) =
(1− κ2)2

4
‖f‖22,2 +

1 + 6κ4 + κ8

(1− κ4)3
N−1

≈ (1− κ)2 ‖f‖22,2 +
1

8
(1− κ)−3N−1.

The corresponding optimal parameter κ∗ is approximately

(1− κ∗)5 ≈ 48N−1 ‖f‖−2
2,2 (31)

which yields the AMISE
AMISE(f ∗ψκ∗ ) ≈ 0.37 ‖f‖6/52,2 N

−2/5.

Comparing the convergence rate of the kernel density estimator using the Abel Poisson kernel
with the convergence rates derived in Theorem 11 we conclude that the Abel Poisson kernel is
not well suited for kernel density estimation, except for small values of N .

5 Numerical Experiments
In this section we are going to verify our theoretical findings by numerical experiments. The
general concept of our numerical experiments is as follows:

1. Choose a test density function f ∈ L2(SO(3)).

2. Fix a kernel function ψ ∈ L2(SO(3)).

3. Draw a random sample from the distribution given by f of size N ∈ N.

4. Compute the kernel density estimator f ∗ψ.

5. Compute the integrated squared error ‖f − f ∗ψ‖2.
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6. Compute an estimate of the MISE by repeating M times the steps 2 to 4 and taking the
mean value of the integrated squared errors.

As the test density function f we chose a linear combination of de la Vallee Poussin kernels
ψL translated to two arbitrarily chosen locations of the rotation group,

f(x) = 0.2 + 0.7ψ90(Re2,30◦x) + 0.1ψ350(Re1,80◦x). (32)

The advantage of choosing this specific test function is that drawing a random sample and com-
puting the kernel density estimator becomes numerical feasible as we explain in the subsequent
sections. Our Numerical experiments showed, that increasing the number or changing type of
the kernel functions ψL has only minor influence to our numerical results.

5.1 Drawing a random sample from a distribution on SO(3)
Let ψ > 0 be a strictly positive density function on [0, 1]. Then the corresponding cumulative
distribution function

Ψ(y) =

∫ y

0

ψ(x) dx

defines a diffeomorphism
Ψ: [0, 1]→ [0, 1]

and by the transformation rule we have for any integrable function h : [0, 1]→ R,
∫ 1

0

h(y) dy =

∫ 1

0

h(Ψ(x))ψ(x) dx.

Hence, the distribution of ψ under Ψ becomes the uniform distribution and we can draw a random
sample from the distribution given by ψ by drawing a random sample of the uniform distribution
on [0, 1] and applying Ψ−1 to it.

Let us now consider a zonal function ψ on the rotation group SO(3). Then ψ depends only
on the rotational angle ω of a rotation Rξ.ω about an arbitrary axis ξ and we will write φ(ω) =
ψ(Rξ,ω). Using the parameterization of the rotational group by axis and angle the integral of an
integrable function h : SO(3)→ R with respect to ψ may be decomposed as

∫

SO(3)

h(x)ψ(x) dλ(x) =

∫ π

0

∫

S2

h(Rξ,ω) dσ(ξ)ψ(ω) sin2 ω

2
dω.

Hence, we can draw a random sample Xn ∈ SO(3), n = 1, . . . , N of the distribution given by
ψ by drawing a random sample ξn ∈ S2, n = 1, . . . , N of the uniform distribution on the unit
sphere and drawing a random sample ωn ∈ [0, π], n = 1, . . . , N of the distribution given by the
density ψ(ω) sin2 ω

2
and setting Xn = Rξn,ωn .
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5.2 Numerical computation of the kernel density estimator
Since, we want to check our results for large sample sizes, i.e., up to N = 107, we have to apply
fast algorithms to compute the kernel density estimator. An algorithm that allows to evaluate
the kernel density estimator (1) corresponding to N random samples at M arbitrarily chosen
nodes with the numerical complexity O(N + M) is described in [4]. However, as we are only
interested in the L2–error ‖f ∗ψ − f‖ we rest at computing the Fourier coefficients of f and f ∗ψ up
to a sufficient large order and applying Parsevals identity.

Let ψ ∈ L2(SO(3)) be a zonal function with finite Chebyshev expansion

ψ(x) =
L∑

`=0

(2`+ 1)ψ̂(`)U2`(cos
ω(x)

2
)

and let Xn ∈ SO(3), n = 1, . . . , N be a random sample. Then the kernel density estimator has
the representation

f ∗ψ(x) = N−1

N∑

n=1

L∑

`=0

(2`+ 1)ψ̂(`)U2`(cos
ω(x−1Xn)

2
)

= N−1

N∑

n=1

L∑

`=0

(2`+ 1)ψ̂(`)
∑

k,k′

Dk,k′
l (Xn)Dk,k′

l (x).

Hence, the Fourier coefficients of the kernel density estimator f ∗ψ are given by the sum

f̂ ∗ψ(l, k, k′) = N−1

N∑

n=1

ψ̂(`)
√

2`+ 1Dk,k′
l (Xn)

which is essentially an adjoined Fourier transform on the rotation group SO(3). Algorithms for
the fast Fourier transform on the rotation group at arbitrary nodes as well as for its adjoined
transform has been described in [12] and are available as part of the NFFT library [5].

5.3 Numerical Results
In our numerical experiments we estimated the MISE for sample sizes N = 101 up to N = 107.
For a fixed sample size we considered different kernel functions. On the one hand we applied the
MISE optimal kernel function as defined in Theorem 6 and compared the numerical estimated
MISE with the theoretical expression found in (21). On the other hand we used the formulae
(26), (27), (29), (30), and (31) for the optimal parameters of the AMISE2,2 optimal kernel, the
AMISE∞,2.5 optimal kernel, the Dirichlet kernel, the Abel Poisson kernel, and the de la Valleé
Poussin kernel and computed the MISE for the kernel density estimator with respect to these
kernel functions. Figure 1 shows the Chebyshev coefficients of the kernel functions mentioned
above with optimal kernel parameter for the specific choice of N = 104 random samples. In
Figure 2 the relative MISE

MISErel(f
∗
ψ) =

MISE(f ∗ψ)

‖f‖2
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Figure 1: This plot shows the Chebyshev coefficients of the kernel functions investigated
throughout the numerical experiments. The kernel parameter has been chosen to be optimal
with respect to the test function (32) and N = 104.

is plotted for the different kernel functions ψ.
Our numerical experiments show, that the MISE for the optimal kernel almost perfectly fits

our theoretical findings. This indicates that our approaches for generating the random sample
and estimating the MISE work satisfactory. Furthermore, we observe for the AMISE2,2 optimal,
the AMISE∞,2.5 optimal, the Dirichlet kernel, and the de la Valleé Poussin kernel the predicted
convergence rate N−4/7 with a slightly better constant for the AMISE∞,2.5 optimal kernel func-
tion. As predicted we observe for the Abel Poisson kernel the convergence rate N−2/5. The
more rapid convergence for the Dirichlet kernel starting with N = 106 is due to the fact that we
worked with bandlimited functions.
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Figure 2: This plot shows the MISE as a function of the number of random samples N and the
kernel used for kernel density estimation. The theoretical bound as well as the MISE optimal
kernel where computed according to Theorem 6. The parameters for the other kernel functions
where chosen AMISE optimal as specified in the formulae (26), (27), (29), (30), and (31).
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