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Abstract. In this paper, we discuss the numerical solution of two nonlinear approximation

problems. Many applications in electrical engineering, signal processing, and mathematical physics
lead to the following problem: Let h be a linear combination of exponentials with real frequencies.
Determine all frequencies, all coefficients, and the number of summands, if finitely many perturbed,
uniformly sampled data of h are given. We solve this problem by an approximate Prony method
(APM) and prove the stability of the solution in the square and uniform norm. Further, an APM
for nonuniformly sampled data is proposed too.
The second approximation problem is related to the first one and reads as follows: Let f be a
linear combination of translates of a 1–periodic window function. Determine all shift parameters, all
coefficients, and the number of translates, if finitely many perturbed, uniformly sampled data of f
are given. Using Fourier technique, this problem is transferred into the above parameter estimation
problem for an exponential sum which is solved by APM. The stability of the solution is discussed in
the square and uniform norm too. Numerical experiments show the performance of our approximation
methods.
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1. Introduction. The recovery of signal parameters from noisy sampled data is
a fundamental problem in signal processing which can be considered as a nonlinear
approximation problem. In this paper, we discuss the numerical solution of two
nonlinear approximation problems. These problems arise for example in electrical
engineering, signal processing, or mathematical physics and reads as follows:

1. Recover the pairwise different frequencies fj ∈ (−π, π), the complex coeffi-
cients cj 6= 0, and the number M ∈ N in the exponential sum

h(x) :=
M∑
j=1

cj eifjx (x ∈ R) , (1.1)

if perturbed sampled data h̃k := h(k) + ek (k = 0, . . . , 2N) are given, where ek are
small error terms.
The second problem is related to the first one:

2. Let ϕ ∈ C(R) be a 1–periodic window function. Recover the pairwise different
shift parameters sj ∈ (− 1

2 ,
1
2 ), the complex coefficients cj 6= 0, and the number M ∈ N

in the sum of translates

f(x) :=
M∑
j=1

cj ϕ(x+ sj) (x ∈ R) , (1.2)
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if perturbed sampled data f̃k := f(k/n)+ek (k = −n/2, . . . , n/2−1) are given, where
n is a power of 2 and ek are small error terms.

The first problem can be solved by an approximate Prony method (APM). The APM
is based on ideas of G. Beylkin and L. Monzón [3]. Recently, the two last named
authors have investigated the properties and the numerical behavior of APM in [24],
where only real–valued exponential sums (1.1) were considered. Further, the APM
was generalized to the parameter estimation for a sum of nonincreasing exponentials
in [25].
The first part of APM recovers the frequencies fj of (1.1). Here we solve a singular
value problem of the rectangular Hankel matrix H̃ := (h̃k+l)

2N−L,L
k,l=0 and find fj via

zeros of a convenient polynomial of degree L, where L denotes an a priori known
upper bound of M . Note that there exists a variety of further algorithms to recover
the exponents fj like ESPRIT or least squares Prony method, see e.g. [13, 20, 22] and
the references therein. The second part uses the obtained frequencies and computes
the coefficients cj of (1.1) by solving an overdetermined linear Vandermonde–type
system in a weighted least squares sense. Therefore, the second part of APM is
closely related to the theory of nonequispaced fast Fourier transform (NFFT).
In contrast to [3], we prefer an approach to the APM by the perturbation theory for a
singular value decomposition of H̃ (see [24]). In this paper, we investigate the stability
of the approximation of (1.1) in the square and uniform norm for the first time. It
is a known fact that clustered frequencies fj make some troubles for the nonlinear
approximation. Therefore, the strong relation between the separation distance of fj
and the number T = 2N is very interesting in Section 3. Furthermore we prove the
simultaneous approximation property of the suggested method. More precisely we
show that the derivative of h in (1.1) is also very well approximated, see the estimate
(3.5) in Theorem 3.4.
The second approximation problem is transferred into the first one with the help of
Fourier technique. We use oversampling and present a new APM–algorithm of a sum
(1.2) of translates. Corresponding error estimates between the original function f
and its reconstruction are given in the square and uniform norm. The critical case
of clustered shift parameters sj is discussed too. We show a relation between the
separation distance of sj and the number n of sampled data.
Further, an APM for nonuniformly sampled data is presented too. We overcome the
uniform sampling in the first problem by using results from the theory of NFFT.
Finally, numerical experiments show the performance of our approximation methods.
This paper is organized as follows. In Section 2, we sketch the classical Prony method
and present the APM. In Section 3, we consider the stability of the exponential sum
and estimate the error between the original exponential sum h and its reconstruction
in the square norm (see Lemma 3.3) and more important in the uniform norm (see
Theorem 3.4). The nonlinear approximation problem for a sum (1.2) of translates is
discussed in Section 4. We present the Algorithm 4.8 in order to compute all shift
parameters and all coefficients of a sum f of translates as given in (1.2). The stability
for sums of translates is handled in Section 5, see Lemma 5.2 for an estimate in the
square norm and Theorem 5.3 for an estimate in the uniform norm. In Section 6,
we generalize the APM to a new parameter estimation for an exponential sum from
nonuniform sampling. Finally, various numerical examples are presented in Section 7.

2. Nonlinear approximation by exponential sums. We consider a linear
combination (1.1) of complex exponentials with complex coefficients cj 6= 0 and pair-
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wise different, ordered frequencies fj ∈ (−π, π), i.e.

−π < f1 < . . . < fM < π .

Then h is infinitely differentiable, bounded and almost periodic on R (see [7, pp. 9 –
23]). We introduce the separation distance q of these frequencies by

q := min
j=1,...,M−1

(fj+1 − fj) .

Hence q (M−1) < 2π. Let N ∈ N with N ≥ 2M+1 be given. Assume that perturbed
sampled data

h̃k := h(k) + ek, |ek| ≤ ε1 (k = 0, . . . , 2N)

are known, where the error terms ek ∈ C are bounded by certain accuracy ε1 > 0.
Furthermore we suppose that |cj | � ε1 (j = 1, . . . ,M).
Then we consider the following nonlinear approximation problem for an exponential
sum (1.1): Recover the pairwise different frequencies fj ∈ (−π, π) and the complex
coefficients cj in such a way that

∣∣h̃k − M∑
j=1

cj eifjk
∣∣ ≤ ε (k = 0, . . . , 2N) (2.1)

for very small accuracy ε > 0 and for minimal number M of nontrivial summands.
With other words, we are interested in approximate representations of h̃k ∈ C by
uniformly sampled data h(k) (k = 0, . . . , 2N) of an exponential sum (1.1). Since
|fj | < π (j = 1, . . . ,M), we infer that the Nyquist condition is fulfilled (see [4, p.
183]).
The classical Prony method solves this problem for exact sampled data h̃k = h(k),
cf. [15, pp. 457 – 462]. This procedure is based on a separate computation of all
frequencies fj and then of all coefficients cj . First we form the exact rectangular
Hankel matrix

H :=
(
h(k + l)

)2N−L,L
k,l=0

∈ C(2N−L+1)×(L+1) , (2.2)

where L ∈ N with M ≤ L ≤ N is an a priori known upper bound of M . If T denotes
the complex unit circle, then we introduce the pairwise different numbers

wj := eifj ∈ T (j = 1, . . . ,M) .

Thus we obtain that

M∏
j=1

(z − wj) =
M∑
l=0

pl z
l (z ∈ C)

with certain coefficients pl ∈ C (l = 0, . . . ,M) and pM = 1. Using these coefficients,
we construct the vector p := (pk)Lk=0, where pM+1 = . . . = pL := 0. By S :=(
δk−l−1

)L
k,l=0

we denote the forward shift matrix, where δk is the Kronecker symbol.
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Lemma 2.1 Let L, M, N ∈ N with M ≤ L ≤ N be given. Furthermore let hk =
h(k) ∈ C (k = 0, . . . , 2N) be the exact sampled data of (1.1) with cj ∈ C \ {0} and
pairwise distinct frequencies fj ∈ (−π, π) (j = 1, . . . ,M).
Then the rectangular Hankel matrix (2.2) has the singular value 0, where

ker H = span {p,Sp, . . . ,SL−Mp}

and dim (ker H) = L−M + 1 .

For a proof see [25]. The classical Prony method is based on the following result.

Lemma 2.2 Under the assumptions of Lemma 2.1 the following assertions are equiv-
alent:
(i) The polynomial

L∑
k=0

uk z
k (z ∈ C) (2.3)

with complex coefficients uk (k = 0, . . . , L) has M different zeros wj = eifj ∈ T
(j = 1, . . . ,M).
(ii) 0 is a singular value of the complex rectangular Hankel matrix (2.2) with a right
singular vector u := (ul)Ll=0 ∈ CL+1.

For a proof see [25].

Algorithm 2.3 (Classical Prony Method)

Input: L, N ∈ N (N � 1, 3 ≤ L ≤ N , L is upper bound of the number of
exponentials), h(k) ∈ C (k = 0, . . . , 2N), 0 < ε, ε′ � 1.

1. Compute a right singular vector u = (ul)Ll=0 corresponding to the singular value 0
of (2.2).
2. For the polynomial (2.3), evaluate all zeros z̃j ∈ C with | |z̃j | − 1| ≤ ε′ (j =
1, . . . , M̃). Note that L ≥ M̃ .
3. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), compute c̃j ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde–type system

M̃∑
j=1

c̃j w̃
k
j = h(k) (k = 0, . . . , 2N). (2.4)

4. Cancel all that pairs (w̃l, c̃l) (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε and denote the re-
maining set by {(w̃j , c̃j) : j = 1, . . . ,M} with M ≤ M̃ . Form f̃j := Im (log w̃j)
(j = 1, . . . ,M), where log is the principal value of the complex logarithm.

Output: M ∈ N, f̃j ∈ (−π, π), c̃j ∈ C (j = 1, . . . ,M).

Note that we consider a rectangular Hankel matrix (2.2) with only L+ 1 columns in
order to determine the zeros of a polynomial (2.3) of relatively low degree L (see step
2 of Algorithm 2.3).
Unfortunately, the classical Prony method is notorious for its sensitivity to noise such
that numerous modifications were attempted to improve its numerical behavior. The
main drawback of this Prony method is the fact that 0 is a singular value of (2.2)
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(see Lemma 2.1 or step 1 of Algorithm 2.3). But in practice, only perturbed values
h̃k = h(k) + ek ∈ C (k = 0, . . . , 2N) of the exact sampled data h(k) of an exponential
sum (1.1) are known such that this fact is not fulfilled. Here we assume that |ek| ≤ ε1
with certain accuracy ε1 > 0. Then the error Hankel matrix

E :=
(
ek+l

)2N−L,L
k,l=0

∈ C(2N−L+1)×(L+1)

has a small spectral norm by

‖E‖2 ≤
√
‖E‖1 ‖E‖∞ ≤

√
(L+ 1) (2N − L+ 1) ε1 ≤ (N + 1) ε1 . (2.5)

Then the perturbed rectangular Hankel matrix can be represented by

H̃ :=
(
h̃k+l

)2N−L,L
k,l=0

= H + E ∈ C(2N−L+1)×(L+1) . (2.6)

By the singular value decomposition of the complex rectangular Hankel matrix H̃
(see [16, pp. 414 – 415]), there exist two unitary matrices Ṽ ∈ C(2N−L+1)×(2N−L+1),
Ũ ∈ C(L+1)×(L+1) and a rectangular diagonal matrix D̃ :=

(
σ̃k δj−k

)2N−L,L
j,k=0

with
σ̃0 ≥ σ̃1 ≥ . . . ≥ σ̃L ≥ 0 such that

H̃ = Ṽ D̃ ŨH . (2.7)

By (2.7), the orthonormal columns ṽk ∈ C2N−L+1 (k = 0, . . . , 2N − L) of Ṽ and
ũk ∈ CL+1 (k = 0, . . . , L) of Ũ fulfill the conditions

H̃ ũk = σ̃k ṽk, H̃H ṽk = σ̃k ũk (k = 0, . . . , L), (2.8)

i.e., ũk is a right singular vector and ṽk is a left singular vector of H̃ related to the
singular value σ̃k ≥ 0 (see [16, p. 415]).
Note that σ ≥ 0 is a singular value of the exact rectangular Hankel matrix H if and
only if σ2 is an eigenvalue of the Hermitian and positive semidefinite matrix HH H
(see [16, p. 414]). All eigenvalues of HH H are nonnegative. Let σ0 ≥ σ1 ≥ . . . ≥
σL ≥ 0 be the ordered singular values of the exact Hankel matrix H. Note that
ker H = ker HH H, since obviously ker H ⊆ ker HH H and since from u ∈ ker HH H it
follows that

0 = (HH Hu, u) = ‖Hu‖2 ,

i.e., u ∈ ker H. Then by Lemma 2.1, we know that dim (ker HH H) = L−M + 1, and
hence σM−1 > 0 and σk = 0 (k = M, . . . , L). Then the basic perturbation bound for
the singular values σk of H reads as follows (see [16, p. 419])

|σ̃k − σk| ≤ ‖E‖2 (k = 0, . . . , L) .

Thus at least L−M + 1 singular values of H̃ are contained in [0, ‖E‖2]. We evaluate
the smallest singular value σ̃ ∈ (0, ‖E‖2] and a corresponding right singular vector of
the matrix H̃.

For noisy data we can not assume that our reconstruction yields roots z̃j ∈ T. There-
fore we compute all zeros z̃j with | |z̃j | − 1| ≤ ε2, where 0 < ε2 � 1. Now we can
formulate the following APM–algorithm.
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Algorithm 2.4 (APM)

Input: L, N ∈ N (3 ≤ L ≤ N , L is upper bound of the number of exponentials),
h̃k = h(k) + ek ∈ C (k = 0, . . . , 2N) with |ek| ≤ ε1, accuracy bounds ε1, ε2 > 0.

1. Compute a right singular vector ũ = (ũk)Lk=0 corresponding to the smallest singular
value σ̃ > 0 of the perturbed rectangular Hankel matrix (2.6).
2. For the polynomial

∑L
k=0 ũk z

k, evaluate all zeros z̃j (j = 1, . . . , M̃) with | |z̃j |−1| ≤
ε2. Note that L ≥ M̃ .
3. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), compute c̃j ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde–type system

M̃∑
j=1

c̃j w̃
k
j = h̃k (k = 0, . . . , 2N) .

4. Delete all the w̃l (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε1 and denote the remaining set by
{w̃j : j = 1, . . . ,M} with M ≤ M̃ .
5. Repeat step 3 and solve the overdetermined linear Vandermonde–type system

M∑
j=1

c̃j w̃
k
j = h̃k (k = 0, . . . , 2N)

with respect to the new set {w̃j : j = 1, . . . ,M} again. Set f̃j := Im (log w̃j)
(j = 1, . . . ,M).

Output: M ∈ N, f̃j ∈ (−π, π), c̃j ∈ C (j = 1, . . . ,M).

Remark 2.5 The convergence and stability properties of Algorithm 2.4 are discussed
in [24]. The steps 1 and 2 of Algorithm 2.4 can be replaced by the least squares
ESPRIT method [20, p. 493], for corresponding numerical tests see [24]. In the step
3 (and analogously in step 5) of Algorithm 2.4, we use the diagonal preconditioner
D = diag

(
1− |k|/(N + 1)

)N
k=−N . For very large M̃ and N , we can apply the CGNR

method (conjugate gradient on the normal equations), where the multiplication of the
rectangular Vandermonde–type matrix

W̃ :=
(
w̃kj
)2N, M̃
k=0,j=1

=
(
eikf̃j

)2N, M̃
k=0,j=1

is realized in each iteration step by the NFFT (see [23, 19]). By [1, 24], the condition
number of W̃ is bounded for large N . Thus W̃ is well conditioned, provided the
frequencies f̃j (j = 1, . . . , M̃) are not too close to each other or provided N is large
enough.

3. Stability of exponential sums. In this section, we discuss the stability of
exponential sums. We start with the known Ingham inequality (see [17] or [27, pp. 162
– 164]).

Lemma 3.1 Let M ∈ N and T > 0 be given. If the ordered frequencies fj (j =
1, . . . ,M) fulfill the gap condition

fj+1 − fj ≥ q >
π

T
(j = 1, . . . ,M − 1),
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then the exponentials eifjx (j = 1, . . . ,M) are Riesz stable in L2[−T, T ], i.e., for all
complex vectors c = (cj)Mj=1

α(T ) ‖c‖22 ≤ ‖
M∑
j=1

cj eifjx‖22 ≤ β(T ) ‖c‖22

with positive constants

α(T ) =
2
π

(
1− π2

T 2q2
)
, β(T ) =

4
√

2
π

(
1 +

π2

4T 2q2
)

and with the square norm

‖f‖2 =
( 1

2T

∫ T

−T
|f(x)|2 dx

)1/2

(f ∈ L2[−T, T ]) .

For a proof see [17] or [27, pp. 162 – 164]. The Ingham inequality for exponential
sums can be considered as far–reaching generalization of the Parseval equation for
Fourier series. The constants α(T ) and β(T ) are not optimal in general. Note that
these constants are independently on M . The assumption q > π

T is necessary for the
existence of a positive constant α(T ).
Now we show that a Ingham–type inequality is also true in the uniform norm of
C[−T, T ].

Corollary 3.2 If the assumptions of Lemma 3.1 are fulfilled, then the exponentials
eifjx (j = 1, . . . ,M) are Riesz stable in C[−T, T ], i.e., for all complex vectors c =
(cj)Mj=1 √

α(T )
M
‖c‖1 ≤ ‖

M∑
j=1

cj eifjx‖∞ ≤ ‖c‖1

with the uniform norm

‖f‖∞ := max
−T≤x≤T

|f(x)| (f ∈ C[−T, T ]) .

Proof. Let h ∈ C[−T, T ] be given by (1.1). Then ‖h‖2 ≤ ‖h‖∞ < ∞. Using the
triangle inequality, we obtain that

‖h‖∞ ≤
M∑
j=1

|cj | · 1 = ‖c‖1 .

From Lemma 3.1, it follows that√
α(T )
M
‖c‖1 ≤

√
α(T ) ‖c‖2 ≤ ‖h‖2 .

This completes the proof.

Now we estimate the error ‖h − h̃‖2 between the original exponential sum (1.1) and
its reconstruction

h̃(x) :=
M∑
j=1

c̃j eif̃jx (x ∈ [−T, T ]) (3.1)
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in the case
∑M
j=1 |cj − c̃j |2 � 1 and |fj − f̃j | ≤ δ � 1 (j = 1, . . . ,M) in the norm

of L2[−T, T ]. As shown in Section 2, f̃j and c̃j (j = 1, . . . ,M) can be computed by
Algorithm 2.4.

Lemma 3.3 Let M ∈ N and T > 0 be given. Let c = (cj)Mj=1 and c̃ = (c̃j)Mj=1 be
arbitrary complex vectors. If (fj)Mj=1, (f̃j)Mj=1 ∈ RM fulfill the conditions

fj+1 − fj ≥ q >
π

T
(j = 1, . . . ,M − 1),

|f̃j − fj | ≤ δ <
π

4T
(j = 1, . . . ,M),

then

‖h− h̃‖2 ≤
√
β(T )

[
‖c− c̃‖2 + ‖c‖2

(
1− cos(Tδ) + sin(Tδ)

)]
in the norm of L2[−T, T ]. Note that

1− cos(Tδ) + sin(Tδ) = 1−
√

2 sin(
π

4
− Tδ) = Tδ +O(δ2) ∈ [0, 1) .

Proof. 1. If δ = 0, then fj = f̃j (j = 1, . . . ,M) and the assertion

‖h− h̃‖2 ≤
√
β(T ) ‖c− c̃‖2

follows directly from Lemma 3.1. Therefore we suppose that 0 < δ < π
4T . For

simplicity, we can assume that T = π. First we use the ideas of [27, pp. 42 – 44] and
estimate

M∑
j=1

cj
(
eifjx − eif̃jx

)
(x ∈ [−π, π]) (3.2)

in the norm of L2[−π, π]. Here c = (cj)Mj=1 is an arbitrary complex vector. Further
let (fj)Mj=−M and (f̃j)Mj=1 be real vectors with following properties

fj+1 − fj ≥ q > 1 (j = 1, . . . ,M − 1),

|f̃j − fj | ≤ δ <
1
4

(j = 1, . . . ,M) .

Write

eifjx − eif̃jx = eifjx
(
1− eiδjx

)
with δj := f̃j − fj and |δj | ≤ δ < 1

4 (j = 1, . . . ,M).
2. Now we expand the function 1 − eiδjx (x ∈ [−π, π]) into a Fourier series relative
to the orthonormal basis {1, cos(kx), sin(k − 1

2 )x : k = 1, 2, . . .} in L2[−π, π]. Note
that δj ∈ [−δ, δ] ⊂ [− 1

4 ,
1
4 ]. Then we obtain for each x ∈ (−π, π) that

1− eiδjx =
(
1− sinc(πδj)

)
+
∞∑
k=1

2 (−1)kδj sin(πδj)
π(k2 − δ2j )

cos(kx)

+ i
∞∑
k=1

2 (−1)kδj cos(πδj)
π((k − 1

2 )2 − δ2j )
sin(k − 1

2
)x .
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Interchanging the order of summation and then using the triangle inequality, we see
that

‖
M∑
j=1

cj
(
eifjx − eif̃jx

)
‖2 ≤ S1 + S2 + S3

with

S1 := ‖
M∑
j=1

(
1− sinc(πδj)

)
cj eifjx‖2 ,

S2 :=
∞∑
k=1

‖ cos(kx)
M∑
j=1

2 (−1)kδj sin(πδj)
π(k2 − δ2j )

cj eifjx‖2 ,

S3 :=
∞∑
k=1

‖ sin(k − 1
2

)x
M∑
j=1

2 (−1)kδj cos(πδj)
π((k − 1

2 )2 − δ2j )
cj eifjx‖2 .

From Lemma 3.1 and δj ∈ [−δ, δ], it follows that

S1 ≤
√
β(π)

( M∑
j=1

|cj |2
(
1− sinc(πδj)

)2)1/2

≤
√
β(π) ‖c‖2

(
1− sinc(πδ)

)
.

Now we estimate

S2 ≤
∞∑
k=1

‖
M∑
j=1

2 (−1)kδj sin(πδj)
π(k2 − δ2j )

cj eifjx‖2 ≤
√
β(π) ‖c‖2

∞∑
k=1

2δ
π(k2 − δ2)

sin(πδ) .

Using the known expansion

π cot(πδ) =
1
δ

+
∞∑
k=1

2δ
δ2 − k2

,

we receive

S2 ≤
√
β(π) ‖c‖2

(
sinc(πδ)− cos(πδ)

)
.

Analogously, we estimate

S3 ≤
∞∑
k=1

‖
M∑
j=1

2 (−1)kδj cos(πδj)
π((k − 1

2 )2 − δ2j )
cj eifjx‖2 ≤

√
β(π) ‖c‖2

∞∑
k=1

2δ
π((k − 1

2 )2 − δ2)
cos(πδ) .

Applying the known expansion

π tan(πδ) =
∞∑
k=1

2δ
(k − 1

2 )2 − δ2
,

we obtain

S3 ≤
√
β(π) ‖c‖2 sin(πδ) .
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Hence we conclude that

‖
M∑
j=1

cj
(
eifjx − eif̃jx

)
‖2 ≤

√
β(π) ‖c‖2

(
1− cos(πδ) + sin(πδ)

)
. (3.3)

3. Finally, we estimate the normwise error by the triangle inequality. Then we obtain
by Lemma 3.1 and (3.3) that

‖h− h̃‖2 ≤ ‖
M∑
j=1

(cj − c̃j) eif̃jx‖2 + ‖
M∑
j=1

cj
(
eifjx − eif̃jx

)
‖2

≤
√
β(π)

[
‖c− c̃‖2 + ‖c‖2

(
1− cos(π δ) + sin(π δ)

)]
.

This completes the proof in the case T = π. If T 6= π, then we use the substitution
t = π

T x ∈ [−π, π] for x ∈ [−T, T ].

A similar result is true in the uniform norm of C[−T, T ].

Theorem 3.4 Let M ∈ N and T > 0 be given. Let c = (cj)Mj=1 and c̃ = (c̃j)Mj=1 be
arbitrary complex vectors. If (fj)Mj=1, (f̃j)Mj=1 ∈ (−π, π)M fulfill the conditions

fj+1 − fj ≥ q >
3π
2T

(j = 1, . . . ,M − 1),

|f̃j − fj | ≤ δ <
π

4T
(j = 1, . . . ,M),

then both eifjx (j = 1, . . . ,M) and eif̃jx (j = 1, . . . ,M) are Riesz stable in C[−T, T ].
Further

‖h− h̃‖∞ ≤ ‖c− c̃‖1 + 2 ‖c‖1 sin
δT

2
, (3.4)

‖h′ − h̃′‖∞ ≤ π ‖c− c̃‖1 + ‖c‖1
(
δ + 2π sin

δT

2
)

(3.5)

in the norm of C[−T, T ].

Proof. 1. By the gap condition we know that

fj+1 − fj ≥ q >
3π
2T

>
π

T
.

Hence the original exponentials eifjx (j = 1, . . . ,M) are Riesz stable in C[−T, T ] by
Corollary 3.2. Using the assumptions, we conclude that

f̃j+1 − f̃j = (fj+1 − fj) + (f̃j+1 − fj+1) + (fj − f̃j)

≥ q − 2
π

4T
>
π

T
.

Thus the reconstructed exponentials eif̃jx (j = 1, . . . ,M) are Riesz stable in C[−T, T ]
by Corollary 3.2 too.
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2. Using (3.2), we estimate the normwise error ‖h − h̃‖∞ by the triangle inequality.
Then we obtain

‖h− h̃‖∞ ≤ ‖
M∑
j=1

(cj − c̃j) eif̃jx‖∞ + ‖
M∑
j=1

cj
(
eifjx − eif̃jx

)
‖∞

≤ ‖c− c̃‖1 + ‖c‖1 max
−T≤x≤T

|eifjx − eif̃jx| .

Since

|eifjx − eif̃jx| = |1− eiδjx| =
√

2− 2 cos(δjx)

= 2 | sin δjx
2
| ≤ 2 sin

δT

2

for all x ∈ [−T, T ] and for δj = f̃j − fj ∈ [−δ, δ] with δT < π
4 , we receive (3.4).

3. The derivatives h′ and h̃′ can be explicitly represented by

h′(x) = i
M∑
j=1

fj cj eifjx , h̃′(x) = i
M∑
j=1

f̃j c̃j eif̃jx

for all x ∈ [−T, T ]. From the triangle inequality it follows that

‖(i fj cj)Mj=1 − (i f̃j c̃j)Mj=1‖1 ≤ π ‖c− c̃‖1 + δ ‖c‖1 .

Further we see immediately that

‖(i f̃j c̃j)Mj=1‖1 ≤ π ‖c̃‖1 .

Then by (3.4) we receive the assertion (3.5). Note that similar estimates are also true
for derivatives of higher order.

Remark 3.5 Assume that perturbed sampled data

h̃k := h(k) + ek, |ek| ≤ ε1 (k = 0, . . . , 2N)

of a exponential sum (1.1) are given. Then from [24, Lemma 5.1] it follows that
‖c − c̃‖2 ≤

√
3 ε1 for each N ≥ π2/q. By Lemma 3.3, h̃ is a good approximation of

h in L2[−T, T ]. Fortunately, by Theorem 3.4, h̃ is also a good approximation of h in
C1[−T, T ], if N is large enough. Thus we obtain a uniform approximation of h from
given perturbed values at 2N + 1 equidistant nodes. Since the approximation of h is
again an exponential sum h̃ with computed frequencies and coefficients, we can use h̃
for an efficient determination of derivatives and integrals.

4. APM for sums of translates. Let N ∈ 2 N be fixed. We introduce an
oversampling factor α > 1 such that n := αN is a power of 2. Let ϕ ∈ C(R) be a
1–periodic even, nonnegative function with a uniformly convergent Fourier expansion,
where the Fourier coefficients ck(ϕ) do not vanish for k = 0, . . . , N/2. Note that all
Fourier coefficients of ϕ are nonnegative and even by

ck(ϕ) :=

1/2∫
−1/2

ϕ(x) e−2πikx dx = 2

1/2∫
0

ϕ(x) cos(2πkx) dx ≥ 0 (k ∈ Z) .

Such a function ϕ is called a window function. We can consider one of the following
window functions.
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Example 4.1 A known window function is the 1–periodization of a Gaussian func-
tion (see [10, 26, 9])

ϕ(x) =
∞∑

k=−∞

ϕ0(x+ k), ϕ0(x) :=
1√
πb

e−(nx)2/b (x ∈ R, b ≥ 1)

with the Fourier coefficients ck(ϕ) = 1
n e−b(πk/n)2 > 0 (k ∈ Z) .

Example 4.2 Another window function is the 1–periodization of a centered cardinal
B–spline (see [2, 26])

ϕ(x) =
∞∑

k=−∞

ϕ0(x+ k), ϕ0(x) := M2m(nx) (x ∈ R; m ∈ N)

with the Fourier coefficients ck(ϕ) = 1
n

(
sinckπn

)2m (k ∈ Z) . With M2m (m ∈ N) we
denote the centered cardinal B–spline of order 2m.

Example 4.3 Further, a possible window function is the 1–periodization of the 2m-th
power of a sinc–function

ϕ(x) =
∞∑

k=−∞

ϕ0(x+ k) , ϕ0(x) :=
N (2α− 1)

2m
sinc2m

(πNx (2α− 1)
2m

)
with the Fourier coefficients ck(ϕ) = M2m

(
2mk

(2α−1)N

)
(k ∈ Z) .

Example 4.4 As next example of a window function we mention the 1–periodization
of a Kaiser–Bessel function (see [18])

ϕ(x) =
∞∑

k=−∞

ϕ0(x+ k) ,

ϕ0(x) :=


sinh(b

√
m2 − n2x2)

π
√
m2 − n2x2

for |x| ≤ m
n

(
b := π

(
2− 1

α

))
,

sin(b
√
n2x2 −m2)

π
√
n2x2 −m2

otherwise

with the Fourier coefficients

ck(ϕ) =
{

1
n I0

(
m
√
b2 − (2πk/n)2

)
for k = −n (1− 1

2α ), . . . , n (1− 1
2α ),

0 otherwise,

where I0 denotes the modified zero–order Bessel function.

Example 4.5 A special trigonometric polynomial with

ck(ϕ) =
{

1 for |k| ≤ N/2,
0 for |k| > n/2

is the de la Vallée Poussin kernel

ϕ(x) :=


2 sin(nx/4) sin((n− 2N)x/4)

(n− 2N)
√
n/2 sin2(x/2)

for x ∈ R \ 2πZ ,√
n/2 for x ∈ 2πZ ,

which can be used as window function too.
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Now we consider a linear combination (1.2) of translates with complex coefficients
cj 6= 0 and pairwise different shift parameters sj , where

−1
2
< s1 < . . . < sM <

1
2

(4.1)

is fulfilled. Then f ∈ C(R) is a complex–valued 1–periodic function. Further let
N ≥ 2M + 1. Assume that perturbed, uniformly sampled data

f̃l = f(
l

n
) + el, |el| ≤ ε1 (l = −n/2, . . . , n/2− 1)

are given, where the error terms el ∈ C are bounded by certain accuracy ε1 (0 < ε1 �
1). Again we suppose that |cj | � ε1 (j = 1, . . . ,M).
Then we consider the following nonlinear approximation problem for a sum (1.2) of
translates: Determine the pairwise different shift parameters sj ∈ (− 1

2 ,
1
2 ) and the

complex coefficients cj in such a way that

∣∣f̃l − M∑
j=1

cj ϕ
( l
n

+ sj
)∣∣ ≤ ε (l = −n/2, . . . , n/2− 1) (4.2)

for very small accuracy ε > 0 and for minimal number M of translates. This nonlinear
inverse problem can be numerically solved in two steps. First we convert the given
problem (4.2) into a parameter estimation problem (2.1) for an exponential sum by
using Fourier technique. Then the parameters of the transformed exponential sum
are recovered by APM. Thus this procedure is based on a separate computation of all
shift parameters sj and then of all coefficients cj .
For the 1–periodic function (1.2), we compute the corresponding Fourier coefficients.
By (1.2) we obtain for k ∈ Z

ck(f) =

1/2∫
−1/2

f(x) e−2πikx dx =
( M∑
j=1

cj e2πiksj
)
ck(ϕ) = h(k) ck(ϕ) (4.3)

with the exponential sum

h(x) :=
M∑
j=1

cj e2πixsj (x ∈ R) . (4.4)

In applications, the Fourier coefficients ck(ϕ) of the window function ϕ are often
explicitly known, where ck(ϕ) > 0 (k = 0, . . . , N/2) by assumption. Further the
function f is sampled on a fine grid, i.e., we know noisy sampled data f̃l = f(l/n)+el
(l = −n/2, . . . , n/2− 1) on the fine grid {l/n : l = −n/2, . . . , n/2− 1} of [−1/2, 1/2],
where el are small error terms. Then we can compute ck(f) (k = −N/2, . . . , N/2) by
discrete Fourier transform

ck(f) ≈ 1
n

n/2−1∑
l=−n/2

f
( l
n

)
e−2πikl/n

≈ f̂k :=
1
n

n/2−1∑
l=−n/2

f̃l e−2πikl/n .
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For shortness we set

h̃k := f̂k/ck(ϕ) (k = −N/2, . . . , N/2) . (4.5)

Lemma 4.6 Let ϕ be a window function. Further let c = (cj)Mj=1 ∈ CM and let
f̃l = f(l/n) + el (l = −n/2, . . . , n/2− 1) with |el| ≤ ε1 be given.
Then h̃k is an approximate value of h(k) for each k ∈ {−N/2, . . . , N/2}, where the
following error estimate

|h̃k − h(k)| ≤ ε1
ck(ϕ)

+ ‖c‖1 max
j=0,...,N/2

∞∑
l=−∞
l6=0

cj+ln(ϕ)
cj(ϕ)

is fulfilled.

Proof. The function f ∈ C(R) defined by (1.2) is 1–periodic and has a uniformly
convergent Fourier expansion. Let k ∈ {−N/2, . . . , N/2} be an arbitrary fixed index.
By the discrete Poisson summation formula (see [4, pp. 181 – 182])

1
n

n/2−1∑
j=−n/2

f
( j
n

)
e−2πikj/n − ck(f) =

∞∑
l=−∞
l6=0

ck+ln(f)

and by the simple estimate

1
n

∣∣ n/2−1∑
j=−n/2

ej e−2πikj/n
∣∣ ≤ 1

n

n/2−1∑
j=−n/2

|ej | ≤ ε1 ,

we conclude that

|f̂k − ck(f)| ≤ ε1 +
∞∑

l=−∞
l 6=0

|ck+ln(f)| .

From (4.3) and (4.5) it follows that

h̃k − h(k) =
1

ck(ϕ)
(
f̂k − ck(f)

)
and hence

|h̃k − h(k)| ≤ 1
ck(ϕ)

(
ε1 +

∞∑
l=−∞
l6=0

|ck+ln(f)|
)
.

Using (4.3) and

|h(k + ln)| ≤
M∑
j=1

|cj | = ‖c‖1 (l ∈ Z) ,

we obtain for all l ∈ Z

|ck+ln(f)| = |h(k + ln)| ck+ln(ϕ) ≤ ‖c‖1 ck+ln(ϕ) .
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Thus we receive the estimate

|h̃k − h(k)| ≤ ε1
ck(ϕ)

+ ‖c‖1
∞∑

l=−∞
l 6=0

ck+ln(ϕ)
ck(ϕ)

≤ ε1
ck(ϕ)

+ ‖c‖1 max
j=−N/2,...,N/2

∞∑
l=−∞
l 6=0

cj+ln(ϕ)
cj(ϕ)

.

Since the Fourier coefficients of ϕ are even, we obtain the error estimate of Lemma
4.6.

Remark 4.7 For a concrete window function ϕ from the Examples 4.1 – 4.5, we can
more precisely estimate the expression

max
j=0,...,N/2

∞∑
l=−∞
l 6=0

cj+ln(ϕ)
cj(ϕ)

. (4.6)

Let n = αN be a power of 2, where α > 1 is the oversampling factor. For the window
function ϕ of Example 4.1,

e−bπ
2(1− 1

α )
[
1 +

α

(2α− 1)bπ2
+ e−2bπ2/α

(
1 +

α

(2α+ 1)bπ2

)]
is an upper bound of (4.6) (see [26]). For ϕ of Example 4.2,

4m
2m− 1

( 1
2α− 1

)2m
is an upper bound of (4.6) (see [26]). For ϕ of Examples 4.3 – 4.5, the expression
(4.6) vanishes, since ck(ϕ) = 0 (|k| > n/2).

Thus h̃k is an approximate value of h(k) for k ∈ {−N/2, . . . , N/2}. For the computed
data h̃k (k = −N/2, . . . , N/2), we determine a minimal number M of exponential
terms with frequencies 2πsj ∈ (−π, π) and complex coefficients cj (j = 1, . . . ,M) in
such a way that

∣∣h̃k − M∑
j=1

cj e2πiksj
∣∣ ≤ ε (k = −N/2, . . . , N/2) (4.7)

for very small accuracy ε > 0. Our nonlinear approximation problem (4.2) is trans-
ferred into a parameter estimation problem (4.7) of an exponential sum. Starting from
the given perturbed sampled data f̃l (l = −n/2, . . . , n/2− 1), we obtain approximate
values h̃k (k = −N/2, . . . , N/2) of the exponential sum (4.4). In the next step we
use the APM–Algorithm 2.4 in order to determine the frequencies 2π sj of h (= shift
parameters sj of f) and the coefficients cj .

Algorithm 4.8 (APM for sums of translates)
Input: N ∈ 2N, L ∈ L (3 ≤ L ≤ N/2, L is an upper bound of the number of translated
functions), n = αN power of 2 with α > 1, f̃l = f(l/n) + el (l = −n/2, . . . , n/2− 1)
with |el| ≤ ε1, ck(ϕ) > 0 (k = 0, . . . , N/2), accuracies ε1, ε2 > 0.
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1. By fast Fourier transform compute

f̂k :=
1
n

n/2−1∑
l=−n/2

f̃l e−2πikl/n (k = −N/2, . . . , N/2) ,

h̃k := f̂k/ck(ϕ) (k = −N/2, . . . , N/2) .

2. Compute a right singular vector ũ = (ũl)Ll=0 corresponding to the smallest singular

value σ̃ > 0 of the perturbed rectangular Hankel matrix H̃ := (h̃k+l−N/2)N−L,Lk,l=0 .

3. For the corresponding polynomial
∑L
k=0 ũk z

k, evaluate all zeros z̃j (j = 1, . . . , M̃)
with | |z̃j | − 1| ≤ ε2. Note that L ≥ M̃ .

4. For w̃j := z̃j/|z̃j | (j = 1, . . . , M̃), compute c̃j ∈ C (j = 1, . . . , M̃) as least squares
solution of the overdetermined linear Vandermonde–type system

M̃∑
j=1

c̃j w̃
k
j = h̃k (k = −N/2, . . . , N/2)

with the diagonal preconditioner D = diag
(
1− |k|/(N/2 + 1)

)N/2
k=−N/2. For very large

M̃ and N use the CGNR method, where the multiplication of the Vandermonde–type

matrix W̃ := (w̃kj )N/2, M̃k=−N/2,j=1 is realized in each iteration step by NFFT [19].

5. Delete all the w̃l (l ∈ {1, . . . , M̃}) with |c̃l| ≤ ε1 and denote the remaining set by
{w̃j : j = 1, . . . ,M} with M ≤ M̃ . Form s̃j := 1

2π Im(log w̃j) (j = 1, . . . ,M).
6. Compute c̃j ∈ C (j = 1, . . . ,M) as least squares solution of the overdetermined
linear system

M∑
j=1

c̃j ϕ
( l
n

+ s̃j
)

= f̃l (l = −n/2, . . . , n/2− 1) .

Output: M ∈ N, s̃j ∈ (− 1
2 ,

1
2 ), c̃j ∈ C (j = 1, . . . ,M).

Remark 4.9 If further we assume that the window function ϕ is well–localized, i.e.,
there exists m ∈ N with 2m � n such that the values ϕ(x) are very small for all
x ∈ R \ (Im + Z) with Im := [−m/n, m/n], then ϕ can be approximated by a 1–
periodic function ψ supported in Im + Z. For the window function ϕ of Example 4.1
– 4.4, we construct its truncated version

ψ(x) :=
∞∑

k=−∞

ϕ0(x+ k)χm(x+ k) (x ∈ R) , (4.8)

where χm is the characteristic function of [−m/n, m/n]. For the window function ϕ
of Example 4.2, we see that ψ = ϕ. For the window function ϕ of Example 4.5, we
form

ψ(x) :=
{
ϕ(x) for x ∈ Im + Z ,
0 for R \ (Im + Z) .

Now we can replace ϕ by its truncated version ψ in (4.2). For each l ∈ {−n2 , . . . ,
n
2−1},

we define the index set Jm,n(l) := {j ∈ {1, . . . ,M} : l −m ≤ n sj ≤ l + m}. In this
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case, we can replace the window function ϕ in step 6 of Algorithm 4.8 by the function
ψ. Then the related linear system of equations∑

j∈Jm,n(l)

c̃j ψ
( l
n

+ s̃j
)

= f̃l (l = −n/2, . . . , n/2− 1)

is sparse.

Remark 4.10 In some applications, one is interested in the reconstruction of a non-
negative function (1.2) with positive coefficients cj . Then we can use a nonnegative
least squares method in the steps 3 and 5 of Algorithm 4.8.

5. Stability of sums of translates. In this section, we discuss the stability of
linear combinations of translated window functions.

Lemma 5.1 (cf. [5, pp. 155− 156]). Let ϕ be a window function. Under the assump-
tion (4.1), the translates ϕ(x + sj) (j = 1, . . . ,M) are linearly independent. Further
for all c = (cj)Mj=1 ∈ CM

‖
M∑
j=1

cj ϕ(x+ sj)
∥∥

2
≤ ‖ϕ‖2 ‖c‖1 ≤

√
M ‖ϕ‖2 ‖c‖2 .

Proof. 1. Assume that for some complex coefficients aj (j = 1, . . . ,M),

g(x) =
M∑
j=1

aj ϕ(x+ sj) = 0 (x ∈ R).

Then the Fourier coefficients of g read as follows

ck(g) = ck(ϕ)
M∑
j=1

aj e2πisjk = 0 (k ∈ Z).

Since by assumption ck(ϕ) > 0 for all k = 0, . . . , N/2 and since N ≥ 2M + 1, we
obtain the homogeneous system of linear equations

M∑
j=1

aj e2πisjk = 0 (k = 0, . . . ,M − 1).

By (4.1), we conclude that for j 6= l (j, l = 1, . . .M), e2πisj 6= e2πisl . Thus the
Vandermonde matrix

(
e2πisjk

)M−1,M

k=0, j=1
is nonsingular and hence aj = 0 (j = 1, . . . ,M).

2. Using the uniformly convergent Fourier expansion

ϕ(x) =
∞∑

k=−∞

ck(ϕ) e2πikx ,

we receive that

M∑
j=1

cj ϕ(x+ sj) =
∞∑

k=−∞

ck(ϕ)h(k) e2πikx
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with

h(k) =
M∑
j=1

cj e2πiksj .

We estimate

|h(k)| ≤ ‖c‖1 ≤
√
M ‖c‖2 .

Applying the Parseval equation

‖ϕ‖22 =
∞∑

k=−∞

ck(ϕ)2 ,

we obtain that

∥∥ M∑
j=1

cj ϕ(x+ sj)
∥∥2

2
=

∞∑
k=−∞

ck(ϕ)2 |h(k)|2 ≤ ‖ϕ‖22 ‖c‖21.

This completes the proof.

Now we estimate the error ‖f − f̃‖2 between the original function (1.2) and the
reconstructed function

f̃(x) =
M∑
j=1

c̃j ϕ(x+ s̃j) (x ∈ R)

in the case
∑M
j=1 |cj − c̃j | ≤ ε� 1 and |sj − s̃j | ≤ δ � 1 (j = 1, . . . ,M) with respect

to the norm of L2[− 1
2 ,

1
2 ].

Lemma 5.2 Let ϕ be a window function. Further let M ∈ N. Let c = (cj)Mj=1 and
c̃ = (c̃j)Mj=1 be arbitrary complex vectors with ‖c− c̃‖1 ≤ ε� 1. Assume that N ∈ 2 N
is sufficiently large that ∑

|k|>N/2

ck(ϕ)2 < ε21

for given accuracy ε1 > 0. If (sj)Mj=1, (s̃j)Mj=1 ∈ [− 1
2 ,

1
2 ]M fulfill the conditions

sj+1 − sj ≥
q

2π
>

3
2N

(j = 1, . . . ,M − 1), (5.1)

|sj − s̃j | ≤
δ

2π
<

1
4N

(j = 1, . . . ,M), (5.2)

then

‖f − f̃‖2 ≤ ‖ϕ‖2
(
ε+ 2 ‖c‖1 sin

δN

4
)

+ (2 ‖c‖1 + ε) ε1.

in the square norm of L2[− 1
2 ,

1
2 ].
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Proof. 1. Firstly, we compute the Fourier coefficients of f and f̃ . By (4.3) – (4.4) we
obtain that

ck(f)− ck(f̃) = ck(ϕ) (h(k)− h̃(k)) (k ∈ Z)

with the exponential sum

h̃(x) :=
M∑
j=1

c̃j e2πis̃jx .

Using the Parseval equation, we receive for sufficiently large N that

‖f − f̃‖22 =
∞∑

k=−∞

|ck(f)− ck(f̃)|2 =
∞∑

k=−∞

ck(ϕ)2 |h(k)− h̃(k)|2

=
∑
|k|≤N/2

ck(ϕ)2 |h(k)− h̃(k)|2 +
∑
|k|>N/2

ck(ϕ)2 |h(k)− h̃(k)|2

≤ ‖ϕ‖22
(

max
|k|≤N/2

|h(k)− h̃(k)|
)2 +

(
‖c‖1 + ‖c̃‖1

)2
ε21 .

2. By Theorem 3.4 we know that for all x ∈ [−N/2, N/2]

|h(x)− h̃(x)| ≤ ‖c− c̃‖1 + 2 ‖c‖1 sin
δN

4
.

This completes the proof.

Theorem 5.3 Let ϕ be a window function. Further let M ∈ N. Let c = (cj)Mj=1 and
c̃ = (c̃j)Mj=1 be arbitrary complex vectors with ‖c− c̃‖1 ≤ ε� 1. Assume that N ∈ 2 N
is sufficiently large that ∑

|k|>N/2

ck(ϕ) < ε1

for given accuracy ε1 > 0. If further the assumptions (5.1) and (5.2) are fulfilled,
then

‖f − f̃‖∞ ≤
√
N + 1 ‖ϕ‖2

(
ε+ 2 ‖c‖1 sin

δN

4
)

+ (2 ‖c‖1 + ε) ε1

in the norm of C[− 1
2 ,

1
2 ].

Proof. Using first the triangle inequality and then the Cauchy–Schwarz inequality, we
obtain that

‖f − f̃‖∞ ≤
∞∑

k=−∞

|ck(f)− ck(f̃)| =
∞∑

k=−∞

ck(ϕ) |h(k)− h̃(k)|

=
∑
|k|≤N/2

ck(ϕ) |h(k)− h̃(k)|+
∑
|k|>N/2

ck(ϕ) |h(k)− h̃(k)|

≤
( ∑
|k|≤N/2

ck(ϕ)2
)1/2 ( ∑

|k|≤N/2

|h(k)− h̃(k)|2
)1/2 + (‖c‖1 + ‖c̃‖1) ε1 .
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From the Bessel inequality and Theorem 3.4 it follows that

‖f − f̃‖∞ ≤ ‖ϕ‖2
( ∑
|k|≤N/2

|h(k)− h̃(k)|2
)1/2 + (2 ‖c‖1 + ε) ε1

≤
√
N + 1 ‖ϕ‖2 max

|k|≤N/2
|h(k)− h̃(k)|+ (2 ‖c‖1 + ε) ε1

≤
√
N + 1 ‖ϕ‖2

(
ε+ 2 ‖c‖1 sin

δN

4
)

+ (2 ‖c‖1 + ε) ε1 .

This completes the proof.

6. APM for nonuniform sampling. In this section we generalize the APM to
nonuniformly sampled data. More precisely, as in Section 2 we recover all parameters
of a linear combination h of complex exponentials. But now we assume that the
sampled data h(xk) at the nonequispaced, pairwise different nodes xk ∈ (− 1

2 ,
1
2 )

(k = 1, . . . ,K) are given. We consider the exponential sum

h(x) :=
M∑
j=1

cj e2πixNsj , (6.1)

with complex coefficients cj 6= 0 and pairwise different parameters

−1
2
< s1 < . . . < sM <

1
2
.

Note that 2πNsj ∈ (−πN, πN) are the frequencies of h.
We regard the following nonlinear approximation problem for an exponential sum
(6.1): Recover the pairwise different parameters sj ∈ (− 1

2 ,
1
2 ) and the complex coef-

ficients cj in such a way that

∣∣h(xk)−
M∑
j=1

cj e2πixkNsj
∣∣ ≤ ε (k = 1, . . . ,K)

for very small accuracy ε > 0 and for minimal number M of nontrivial summands.
The fast evaluation of the exponential sum (6.1) at the nodes xk (k = 1, . . . ,K) is
known as NFFT of type 3 [12]. A corresponding fast algorithm presented first by B.
Elbel and G. Steidl in [11] (see also [19, Section 4.3]) requires only O(N logN+K+M)
arithmetic operations. Here N is called the nonharmonic bandwith.
Note that a Prony–like method for nonuniform sampling was already proposed in [6].
There the unknown parameters were estimated by a linear regression equation which
uses filtered signals. We use the approximation schema of the NFFT of type 3 in
order to develop a new algorithm. As proven in [11], the exponential sum (6.1) can
be approximated with the help of a truncated window function ψ (see (4.8)) in the
form

h̃(x) =
L∑
l=1

hl ψ(x− l

L
) . (6.2)

with L > N . From this observation, we immediately obtain the following algorithm:
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Algorithm 6.1 (APM for nonuniform sampling)
Input: K, N, L ∈ N with K ≥ L > N , h(xk) ∈ C with nonequispaced, pairwise
different nodes xk ∈ (− 1

2 ,
1
2 ) (k = 1, . . . ,K).

1. Evaluate the coefficients hl (k = 1, . . . ,K) of the least squares problem

L∑
l=1

hl ψ(xk −
l

L
) = h(xk) (k = 1, . . . ,K) .

2. Compute the values h̃(n/N) (n = −N/2, . . . , N/2− 1) of (6.2) and use Algorithm
2.4 in order to compute all parameters sj and all coefficients cj (j = 1, . . . ,M).

Output: M ∈ N, s̃j ∈ (− 1
2 ,

1
2 ), c̃j ∈ C (j = 1, . . . ,M).

7. Numerical experiments. Finally, we apply the suggested algorithms to var-
ious examples. We have implemented our algorithms in MATLAB with IEEE double
precision arithmetic.

Example 7.1 First we confirm the uniform approximation property, see Theorem
3.4. We sample the trigonometric sum

h(x) := 14− 8 cos(0.453x) + 9 sin(0.453x) + 4 cos(0.979x) + 8 sin(0.979x)
−2 cos(0.981x) + 2 cos(1.847x)− 3 sin(1.847x) + 0.1 cos(2.154x)− 0.3 sin(2.154x)

at the equidistant nodes x = k/2 (k = 0, . . . , 120), where we add uniformly dis-
tributed pseudo–random numbers ek ∈ [−2.5, 2.5] to h(k/2), which are depicted as
red circles in Figure 7.1. In Figure 7.1 we plot the functions h + 2.5 and h − 2.5 by
blue dashed lines. Finally the function h̃ reconstructed by Algorithm 2.4 is repre-
sented as green line. We observe that ‖h− h̃‖∞ ≤ 2.5. Furthermore, we can improve
the approximation results, if we choose only uniformly distributed pseudo–random
numbers ek ∈ [−0.5, 0.5] (k = 0, . . . , 120), see Figure 7.2 (left). In Figure 7.2 (right),
the derivative h′ is shown as blue dashed line. The derivative h̃′ of the reconstructed
function is drawn as green line, cf. Theorem 3.4. We remark that further examples
for the recovery of signal parameters in (1.1) from noisy sampled data are given in
[24], which support also the new stability results in Section 3.

Example 7.2 Let ϕ be the 1–periodized Gaussian function (4.1) with n = 128 and
b = 5. We consider the following sum of translates

f(x) =
12∑
j=1

ϕ(x+ sj) (7.1)

with the shift parameters

(sj)12j=1 = (−0.44,−0.411,−0.41,−0.4,−0.2,−0.01, 0.01, 0.02, 0.05, 0.15, 0.2, 0.215)T.

Note that all coefficients cj (j = 1, . . . , 12) are equal to 1. The separation distance of
the shift parameters is very small with 0.001. We work with exact sampled data f̃k =
f( k

128 ) (k = −64, . . . , 63). By Algorithm 4.8, we can compute the shift parameters s̃j
with high accuracy

max
j=1,...,12

|sj − s̃j | = 4.8 · 10−10 .
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Fig. 7.1. The functions h+ 2.5 and h−2.5 from Example 7.1 are shown as a blue dashed lines.
The perturbed sampling points with ek ∈ [−2.5, 2.5] are depicted as red circles. The reconstructed
function h̃ is shown as green line.
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Fig. 7.2. Left: The functions h + 0.5 and h − 0.5 from Example 7.1 are shown as a blue
dashed lines. The perturbed sampling points with ek ∈ [−0.5, 0.5] are depicted as red circles. The
reconstructed function h̃ is shown as green line. Right: The function h′ from Example 7.1 is shown
as blue dashed line. The derivative h̃′ of the reconstructed function is shown as green line.

For the coefficients we observe an error of size

max
j=1,...,12

|1− c̃j | = 8.8 · 10−7 .
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Fig. 7.3. The function f from Example 7.3 with exact sampled data.

Example 7.3 Now we consider the function (7.1) with the shift parameters s7 =
−s6 = 0.09, s8 = −s5 = 0.11, s9 = −s4 = 0.21, s10 = −s3 = 0.31, s11 = −s2 = 0.38,
s12 = −s1 = 0.41. The 1–periodic function f and the 64 sampling points are shown in
Figure 7.3. The separation distance of the shift parameters is now 0.02. Using exact
sampled data f̃k = f( k

128 ) (k = −64, . . . , 63), we expect a more accurate solution,
see Section 5. By Algorithm 4.8, we can compute the shift parameters s̃j with high
accuracy

max
j=1,...,12

|sj − s̃j | = 2.81 · 10−14 .

For the coefficients we observe an error of size

max
j=1,...,12

|1− c̃j | = 1.71 · 10−13 .

Now we consider the same function f with perturbed sampled data f̃k = f( k
128 ) + ek

(k = −64, . . . , 63), where ek ∈ [0, 0.01] are uniformly distributed random error terms.
Then the computed shift parameters s̃j have an error of size

max
j=1,...,12

|sj − s̃j | ≈ 4.82 · 10−4 .

For the coefficients we obtain an error

max
j=1,...,12

|1− c̃j | ≈ 5.52 · 10−2 .

Example 7.4 Finally we estimate the parameters of an exponential sum (6.1) from
nonuniform sampling points. We use the same parameters sj (j = 1, . . . , 12) as in
Example 7.3. The coefficients cj (j = 1, . . . , 12) are uniformly distributed pseudo–
random numbers in [0,1]. Then we choose 48 uniformly distributed pseudo–random
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numbers xk ∈ [−0.5, 0.5] as sampling nodes and set N = 32. Using Algorithm 6.1,
we compute the coefficients hl (l = 1, . . . , 32) in (6.2) and then the values h̃(n/32)
at the equidistant points n/32 (n = −16, . . . , 15). By Algorithm 2.4 we compute the
shift parameters s̃j with an error of size

max
j=1,...,12

|sj − s̃j | ≈ 4.83 · 10−3 .

For the coefficients we obtain an error of size

max
j=1,...,12

|cj − c̃j | ≈ 4.81 · 10−2 .
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Fig. 7.4. The function f from Example 7.4 with 128 nonequispaced sampling points × and with
32 equidistant sampling points ◦ computed by Algorithm 6.1.

REFERENCES

[1] F. S. V. Bazán. Conditioning of rectangular Vandermonde matrices with nodes in the unit
disk. SIAM J. Matrix Anal. Appl., 21:679 – 693, 1999.

[2] G. Beylkin. On the fast Fourier transform of functions with singularities. Appl. Comput.
Harmon. Anal., 2:363 – 381, 1995.

[3] G. Beylkin and L. Monzón. On approximations of functions by exponential sums. Appl.
Comput. Harmon. Anal., 19:17 – 48, 2005.

[4] W. L. Briggs and V. E.Henson. The DFT: An Owner’s Manual for the Discrete Fourier
Transform. SIAM, Philadelphia, PA, USA, 1995.

[5] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, Boston, 2002.
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