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Abstract. We consider the classical problem to find optimal distributions of interacting particles
on a sphere by solving an evolution problem for a particle density. Starting from a given pair potential
we sketch the derivation of the resulting higher order surface partial differential equation, which is
an approximation of a surface dynamic density functional theory. Different numerical approaches
are discussed to solve the evolution problem: (a) an implicit approach to describe the surface using
a phase-field description, (b) a parametric finite element approach, and (c) a spectral method based
on nonequispaced fast Fourier transforms on the sphere. Results for computed minimal energy
configurations are discussed for various particle numbers and extensions to other more complex and
evolving surfaces are mentioned
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1. Introduction. The centennial of Hilbert’s announcement of his mathematical
problems for the 20th century was the natural occasion to propose a ”new set of Hilbert
problems”. One of these problems proposed by Smale [1] ask about the distribution
of N points on a sphere. Let

VN (r) =
∑

1≤i<j≤N

1/‖ri − rj‖β , and VN = min
r
VN (r)

with r = (r1, . . . , rN ), ri distinct points on the 2-sphere S2, ‖ri − rj‖ the distance in
IR3 and β > 0. The problem is to find

r s.t. VN (r)− VN ≤ c logN

with c an universal constant. The corresponding problem related to β = 0 with
VN (r) = −

∑
1≤i<j≤N log ‖ri − rj‖ is related to finding a good starting polynomial

for a homotopy algorithm for realizing the fundamental theorem of algebra [2]. For
β = 1, VN (r) is the Coulomb potential and finding the minimal energy configuration
for N electrons on S2 is known as the Thomson problem [3]. But also other values of
β are possible, β = 3 would model dipole interactions and β = 12 could be used to
model the repulsive part of a Leonard-Jones potential.
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The criteria to be included in the ”new set of Hilbert problems” are fulfilled: The
problem is easy to formulate but not easy to solve and it is likely that its solution
will have a large impact. Various numerical approaches have been applied to find
an optimal distribution of N points on a sphere. However, the optimization prob-
lem becomes extremely difficult to solve for large N , as the number of local minima
growth exponentially in N , see [4] for the Thomson problem. It remains to discuss
the potential impact. Besides its importance in mathematics, i.e. for the mentioned
application in algebra, ordering of interacting point on a sphere or more generally
on curved surfaces, has also applications in different fields, e.g. water droplets in oil,
which are coated with colloidal particles [5]. Such coated droplets are potential drug
delivery vehicles [6, 7]. Similar configurations occur if a jammed layer of colloidal par-
ticles separates two immiscible fluids forming a so-called bijel [8], which has potential
applications as an efficient micro-reacting media. A large number of ordered particles
on curved surfaces is also required for fabrication of nanostructures on pliable sub-
strates, e.g. to make foldable electronic devices [9]. Also viral capsides, where protein
subunits play the role of the particles [10, 11, 12] are possible applications. The same
is true for the head groups of lipid bilayers in biological membranes or self-assembled
peptide nanostructures, see [13].

We will derive a continuum description to study the ordering of interacting par-
ticles on a sphere and describe three different numerical approaches which allow to
obtain good approximations of VN for large N . Our approach is based on energy
minimization with the geometric frustration resulting from the curved surface incor-
porated. The paper is organized as follows: In Section 2 we derive a surface partial
differential equation for a number density starting from N Brownian particles which
interact via a pairwise repulsive potential u(|ri − rj |) ≈ 1/|ri − rj |β . In Section 3
we discuss different numerical approaches to solve the resulting nonlinear 6th order
surface partial differential equation and compare them. In Section 4 we discuss results
and in Section 5 we draw conclusions.

2. Model derivation. For the derivation we follow the approach of [14] in flat
space: Assume N Brownian particles confined to a sphere which interact via a pairwise
repulsive potential u(|ri − rj |) ≈ 1/|ri − rj |β . Neglecting inertial terms the motion
of the particles can be described by N coupled surface Langevin equations ṙi =
−γ−1∇Γ,i( 1

2

∑
i6=j u(|ri − rj |)) + ηi with γ a friction coefficient and ηi a Gaussian

white noise random force term. Different ways have been shown in flat space how to
derive from these equations a deterministic equation of motion for the time evolution
of a particle density ρ(r) =

∑
i < δ(r − ri) >, where < . > denotes the ensemble

average. This can either be done directly as shown in [15] or via a Smoluchovski
equation as used in [16]. The continuity equation for ρ adapted to our situation on a
curved surface than reads

∂tρ = γ−1∇Γ · (kBT∇Γρ+
∫

Γ

ρ(2)(r, r′)∇Γu(|r− r′|) dΓ′) (2.1)

with ρ(2)(r, r′) =
∑
i,j < δ(r − ri)δ(r′ − rj) > the two-particle density and kBT

the thermal energy. By approximating the two-particle density by its equilibrium
counterpart and relating the last term in eq. (2.1) with the excess Helmholtz free
energy functional FΓ

ex[ρ], which is provided by classical density functional theory, we
obtain the deterministic equation for the time-evolution of the one-particle density

∂tρ = γ−1kBT∆Γρ+ γ−1∇Γ · (ρ∇Γ
δFΓ

ex[ρ]
δρ

)
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which gives a dynamic density functional theory on a surface. As FΓ
ex[ρ] is not known

exactly for the potential u it has to be approximated. Following [17] and expanding
FΓ
ex[ρ] in terms of differences with a reference state ρ̄ of an averaged density in the

liquid phase, δρ = ρ− ρ̄ one obtains

FΓ
ex[ρ] ∼ FΓ

ex[ρ̄]− kBT

2

∫
Γ

∫
Γ

δρδρ′c
(2)
0 (r− r′) dΓdΓ′

with the direct correlation function c(2)
0 (r− r′) of the reference state ρ̄. Following [18]

by using this approximation and truncating a Taylor expansion of a Fourier transform
of c(2)

0 (r− r′) on the sphere, we obtain

∂tρ = γ−1kBT (∆Γρ−∇Γ · (ρ∇Γ((Ĉ0 − Ĉ2∆Γ + Ĉ4∆2
Γ)ρ))). (2.2)

Instead of this physically derived model, we use the originally proposed phase field
crystal model [19], which follows from eq. (2.2) by making further approximations,
for details see [14], where both models are compared. Written as a system of three
second order equations the model to be solved reads:

∂tρ = ∆Γµ (2.3)
µ = 2ν + ∆Γν + f ′(ρ) (2.4)
ν = ∆Γρ (2.5)

with f(ρ) = 1
2 (1− ε)ρ2 + 1

4ρ
4. This model was phenomenologically introduced in flat

space, with ∆Γ replaced by ∆ as the H−1 gradient flow of the Swift-Hohenberg free
energy

F [ρ] =
∫

Ω

−|∇ρ|2 +
1
2
|∆ρ|2 + f(ρ) dΩ (2.6)

with Ω ⊂ R2 in [19]. In the same way model (2.3) - (2.5) follow as the H−1 gradient
flow of

FΓ[ρ] =
∫

Γ

−|∇Γρ|2 +
1
2
|∆Γρ|2 + f(ρ) dΓ. (2.7)

To relate the phase field crystal model to the original problem we have to param-
eterize it to approximate the direct correlation function of the reference state, which
reflects the interatomic potential and might be computed using molecular dynamics
on a small reference configuration. Various ways have been proposed how to do this
approximation in two and three dimensions [19, 20, 14, 21]. The numerical results
on a sphere however indicate, that the obtained minimal energy configurations are
only sensitive to the defined lattice spacing (the position of the highest maxima in
the direct correlation function) and insensitive to a large extend to other parameters.
This might explain why triangular tessellations on spherical surfaces occur in very
distinct occasions, for which the interactions involved may differ a lot.

In [22] the approach is validate for the Thomson problem β = 1 by computing
minimal energy configurations for various numbers of N and comparing the resulting
configurations and Coulomb energies with known results for N ∈ [12, 2790]. For
N ≤ 112 the computed configurations and energies coincide with the equilibrium
values for the Thomson problem reported in [23]. The maximal deviation from the
minimal energy for larger N is less than 0.1 %. In order to achieve this results, a small
postprocessing step is needed. After identifying each maxima in the density field a
gradient step is allowed to locally move the identified points [4]. The configuration
thereby does not change but the Coulomb energy is slightly reduced.
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3. Numerical approaches. Only recently various numerical methods have been
proposed to solve a general class of partial differential equations on surfaces. They
can be distinguished into direct methods, which require a surface mesh or points on a
surface and indirect methods in which the surface is only implicitly described. Within
the first approach parametric finite elements can be used to solve the surface partial
differential equation, see e.g. [24, 25]. Other direct approaches consider finite volume
discretizations, see e.g. [26]. Level set method have been used within the second
approach, see e.g. [27]. Furthermore also phase-field models can be used to implicitly
describe the surface, as used in [28, 29, 30, 31]. In order for the implicit approach
to be efficient, adaptively refined meshes or narrow band approaches are required.
For recent approaches in this direction see [32, 33, 34]. We will here concentrate
on a phase-field approximation, a parametric finite element approach and a spectral
method based on nonequispaced Fourier transforms on the sphere to solve eq. (2.3) -
(2.5).

3.1. Phase field approximation. In [28] an approach is proposed how to solve
partial differential equations on implicitly defined surfaces. Thereby the surface is
represented by the 1/2-level set of a phase-field variable φ which is defined in a domain
Ω ⊂ R3 containing S2. However, the approach is not restricted to approximate partial
differential equations on a sphere, but works for any surface Γ which can implicitly
represented. Formally the approach results from an extension of the partial differential
equation to Ω and multiplying all terms in their weak formulation by a surface delta
function δΓ. For eq. (2.3)-(2.5) the resulting system reads

δΓ∂tρ = ∇ · (δΓ∇µ)
δΓµ = 2∇ · (δΓ∇ρ) +∇ · (δΓ∇ν) + δΓf

′(ρ)
δΓν = ∇ · (δΓ∇ρ)

with zero-flux boundary conditions on ∂Ω for ρ, µ and ν, and appropriate initial
conditions for ρ. Within a next step we approximate

δΓ ≈
3
√

2
η

B(φ)

with B(φ) = φ2(1− φ)2 and

φ(x, t) =
1
2

(1 + tanh
d(x)
2
√

2η
)

with η the diffuse interface thickness and d(x) a signed distance function to the surface
Γ. The system to solve now reads

B(φ)∂tρ = ∇ · (B(φ)∇µ) (3.1)
B(φ)µ = 2∇ · (B(φ)∇ρ) +∇ · (B(φ)∇ν) +B(φ)f ′(ρ) (3.2)
B(φ)ν = ∇ · (B(φ)∇ρ). (3.3)

Matched asymptotic can be performed along the same lines as discussed in [28] for
general parabolic systems of second order equations, to show the convergence to the
original problem as η → 0, see Appendix A.

In order to solve eq. (3.1) - (3.3) we use a semi-implicit time-discretization and
Lagrange finite elements in space. The time interval is split by discrete time instants
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0 = t0 < t1 < . . . with time steps τm = tm − tm−1. We linearize f ′(ρ(m+1)) ≈
f ′(ρ(m)) +f ′′(ρ(m))(ρ(m+1)−ρ(m)) and treat all other terms implicit. To discretize in
space, let Th be a conforming triangulation of Ω. We use the finite element space of
globally continuous, piecewise linear elements Vh = {vh ∈ H1 : vh|T ∈ P1 ∀T ∈ Th}.
We thus obtain: Find ρ

(m+1)
h , µ(m+1)

h , ν(m+1)
h ∈ Vh such that

1
τm

∫
Ω

B(φ)ρ(m+1)
h ξ dx+

∫
Ω

B(φ)∇µ(m+1)
h · ∇ξ dx =

1
τm

∫
Ω

B(φ)ρ(m)
h ξ dx∫

Ω

B(φ)µ(m+1)
h ξ dx+ 2

∫
Ω

B(φ)∇ρ(m+1)
h · ∇ξ dx +

∫
Ω

B(φ)∇ν(m+1)
h · ∇ξ dx

−
∫

Ω

f ′′(ρ(m)
h )ρ(m+1)

h B(φ)ξ dx =
∫

Ω

B(φ)f ′(ρ(m)
h )ξ dx −

∫
Ω

B(φ)f ′′(ρ(m)
h )ρ(m)

h ξ dx∫
Ω

B(φ)ν(m+1)
h ξ dx+

∫
Ω

B(φ)∇ρ(m+1)
h · ∇ξ dx = 0.

for all ξ ∈ Vh. This leads to a linear system of equations for R(m+1), M (m+1)

and N (m+1) with ρ
(m+1)
h =

∑
iR

(m+1)
i ξi, µ

(m+1)
h =

∑
iM

(m+1)
i ξi and ν

(m+1)
h =∑

iN
(m+1)
i ξi

1
τm

MR(m+1) + AM (m+1) =
1
τm

MR(m)

MM (m+1) + 2AR(m+1) + AN (m+1) − FiR(m+1) = Fe

MN (m+1) + AR(m+1) = 0

with

M = (Mij) Mij = (B(φ)ξi, ξj)Ω

A = (Aij) Aij = (B(φ)∇ξi,∇ξj)Ω

Fi = (Fij)i F iij = (B(φ)f ′′(ρ(m)
h )ξi, ξj)Ω

Fe = (Fi)e F ei = (B(φ)(f ′(ρ(m)
h )− f ′′(ρ(m)

h ))ρ(m)
h , ξi)Ω

where (·, ·)Ω denotes the L2-scalar product in Ω. The resulting system is iteratively
solved using BiCGStab(ell). In order for the approach to be efficient we use an
adaptively refined mesh along the 1/2-level set of the phase-field function φ. Within
the diffuse interface we require h < η with approximately 10 grid points across the
interface. We further require η < a, with a the equilibrium lattice constant in the
phase field crystal model. Fig. 3.1 shows a typical mesh together with the phase field
variable φ describing the surface and the solution for ρ on the 1/2-level set of φ in Ω.

3.2. Parametric finite elements. A more direct approach solves eq. (2.3)-
(2.5) on a surface mesh. In a parametric finite element approach instead of perform-
ing the integration on the surface elements T of a surface triangulation T of S2, a
parameterization FT : T̂ → T is used, with T̂ = conv hull {0, ~e1, ~e2} the standard
element in R2. Furthermore we can define the basis functions on a reference element
T = {(λ0, . . . , λ2) ∈ IR3;λk ≥ 0,

∑2
k=0 λk = 1} using barycentric coordinates. These

allow to transform all integrations onto the standard element and have the definition
of basis functions on the reference element at hand. Both are defined in R2 and R3.
The parameterization FT is given by the coordinates of the surface mesh elements
and provides the only difference between solving equations on surfaces and on planar
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Fig. 3.1. Adaptively refined mesh along 1/2-level set of φ representing S2, solution for ρ in on
1/2-level set and phase field variable.

domains. For a surface we have to allow FT : R2 → R3, whereas for a planar domain
FT : R2 → R2. With this tiny modification any code to solve partial differential equa-
tions on Cartesian grids can be used to solve the same problem on a surface, providing
a surface triangulation is given. Again the approach is therefor not restricted to S2

but works for any triangulated surface. Within an efficient implementation this does
not even require to recompile a running 2D code, but only a change in a parameter
file, as e.g. done in AMDiS [25] . With this approach all available tools to solve par-
tial differential equations on planar domains, such as adaptive refinement, multigrid
algorithms or parallelization approaches, can be used also to solve partial differential
equations on surfaces, see e.g. [25, 35, 36].

To solve eq. (2.3)-(2.5) we use the discretization scheme introduced in [37], with
the integration defined on the discrete surface mesh. Similar to the above scheme
we use a semi-implicit time-discretization and Lagrange finite elements in space. The
time interval is split by discrete time instants 0 = t0 < t1 < . . . with time steps
τm = tm − tm−1. We linearize f ′(ρ(m+1)) ≈ f ′(ρ(m)) + f ′′(ρ(m))(ρ(m+1) − ρ(m))
and treat all other terms implicit. To discretize in space, let Γh be a conforming
triangulation of Γ. We use the finite element space of globally continuous, piecewise
quartic elements Vh = {vh ∈ H1 : vh|T ∈ P4 ∀T ∈ Γh}. We thus obtain: Find
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ρ
(m+1)
h , µ(m+1)

h , ν(m+1)
h ∈ Vh such that

1
τm

∫
Γh

ρ
(m+1)
h ξ dΓh +

∫
Γh

∇Γh
µ

(m+1)
h · ∇Γh

ξ dΓh =
1
τm

∫
Γh

ρ
(m)
h ξ dΓh∫

Γh

µ
(m+1)
h ξ dΓh + 2

∫
Γh

∇Γh
ρ

(m+1)
h · ∇Γh

ξ dΓh +
∫

Γh

∇Γh
ν

(m+1)
h · ∇Γh

ξ dΓh

−
∫

Γh

f ′′(ρ(m)
h )ρ(m+1)

h ξ dΓh =
∫

Γh

f ′(ρ(m)
h )ξ dΓh −

∫
Γh

f ′′(ρ(m)
h )ρ(m)

h ξ dΓh∫
Γh

ν
(m+1)
h ξ dΓh +

∫
Γh

∇Γh
ρ

(m+1)
h · ∇Γh

ξ dΓh = 0.

for all ξ ∈ Vh. This leads to a linear system of equations for R(m+1), M (m+1)

and N (m+1) with ρ
(m+1)
h =

∑
iR

(m+1)
i ξi, µ

(m+1)
h =

∑
iM

(m+1)
i ξi and ν

(m+1)
h =∑

iN
(m+1)
i ξi

1
τm

MR(m+1) + AM (m+1) =
1
τm

MR(m)

MM (m+1) + 2AR(m+1) + AN (m+1) − FiR(m+1) = Fe

MN (m+1) + AR(m+1) = 0

with

M = (Mij) Mij = (ξi, ξj)Γh

A = (Aij) Aij = (∇Γh
ξi,∇Γh

ξj)Γh

Fi = (Fij)i F iij = (f ′′(ρ(m)
h )ξi, ξj)Γh

Fe = (Fi)e F ei = ((f ′(ρ(m)
h )− f ′′(ρ(m)

h ))ρ(m)
h , ξ)Γh

where (·, ·)Γh
denotes the L2-scalar product on Γh. The resulting system is solved

using the direct solver paradiso. We use a surface mesh which results from adaptive
refinement by bisection and projection of the inserted nodes on S2, starting from a
cube with 12 triangular elements, see Fig. 3.2 for a sequence of refined meshes.

3.3. Spectral method. In many applications, where nonlinear partial differen-
tial equations have to be solved on flat spaces, so-called Fourier spectral techniques
have proven to be very efficient and accurate, cf. [38, 39]. These methods benefit
from exponential convergence rates for smooth solutions and from fast Fourier trans-
forms like the FFT. The proposed approach is based on the expansion of a function
f ∈ L2(S2) in spherical harmonics Y ml , l ∈ N0, m = −l, . . . , l, which are eigenfunctions
of the spherical Laplace operator ∆S2 , cf. [40].

Let the sphere S2 of radius r > 0 be parameterized by spherical coordinates
(ϑ, ϕ) ∈ [0, π] × [0, 2π) with x(ϑ, ϕ) := (r sinϑ cosϕ, r sinϑ sinϕ, r cosϑ). Then the
spherical harmonics of degree l ∈ N0 and order m = −l, . . . , l can be represented by

Y ml (x) = Y ml (ϑ, ϕ) :=

√
2l + 1
4πr2

P
|m|
l (cosϑ)eimϕ.

For the readers convenience, the associated Legendre functions Pml : [−1, 1]→ R and
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Fig. 3.2. Sequence of surface meshes approximating S2.

the Legendre polynomials Pl : [−1, 1]→ R are given by

Pml (x) =
(

(l −m)!
(l +m)!

)1/2 (
1− x2

)m/2 dm

dxm
Pl(x), l ∈ N0, m ≤ l,

Pl(x) :=
1

2ll!
dl

dxl
(
x2 − 1

)l
, l ∈ N0.

The spherical harmonics Y ml form an orthonormal basis of L2(S2). Hence, every
function f ∈ L2(S2) obeys the series expansion

f =
∑
l∈N0

l∑
m=−l

f̂ml Y
m
l

with spherical Fourier coefficients

f̂ml :=
∫

S2
f(x)Y ml (x)dx, l ∈ N0, m = −l, . . . , l.

Furthermore we denote by Πn(S2) := {f =
∑n
l=0

∑l
m=−l f̂

m
l Y

m
l } the space of all

spherical polynomials with degree at most n and we remark that its dimension is
dn := (n+ 1)2.

The spectral methods are based on the ansatz to approximate the solutions of
partial differential equation by spherical polynomials. We approximate the solution ρ
of eq. (2.3) - (2.5) by the spherical polynomial

ρn(x, t) :=
n∑
l=0

l∑
m=−l

ρ̂ml (t)Y ml (x).

In order to determine the spherical Fourier coefficients ρ̂ml = ρ̂ml (t) we use Galerkins
method, cf. [39, Ch. 3], which requires that for every t > 0 the residual

Rn(x, t) := ∂tρn(x, t)−∆S2

[(
(∆S2 + 1)2 − ε

)
ρn(x, t) + ρn(x, t)3

]
(3.4)
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is orthogonal to Πn(S2). Since the spherical harmonics are eigenfunctions of the
spherical Laplacian, i.e.,

∆S2Y ml = − l(l + 1)
r2

Y ml , l ∈ N0, l = −m, . . . ,m,

we obtain to equation (3.4) the equivalent system of ordinary differential equations
in the Fourier domain

dρ̂ml
dt

= − l(l + 1)
r2

[((
1− l(l + 1)

r2

)2

− ε

)
ρ̂ml + (ρ̂3

n)ml

]
, (3.5)

with l = 0, . . . , n, m = −l, . . . , l. In order to solve the nonlinear system (3.5) numer-
ically it is common praxis to use semi-implicit schemes, where one treats the linear
terms implicitly and the nonlinear term explicitly, cf. [41]. Here we use a second-order
backward difference for the linear term and a second-order Adams-Bashforth scheme
for the nonlinear term. For simplicity we omit the indices l and m of the spherical
Fourier coefficients ρ̂ml , (ρ̂3

n)ml and indicate the t-th iterated of the scheme by ρ̂t and
(ρ̂3
n)t respectively. With the time step τ the scheme reads as

3ρ̂t+1 − 4ρ̂t + ρ̂t−1

2τ
=

− l(l + 1)
r2

[((
1− l(l + 1)

r2

)2

− ε

)
ρ̂t+1 +

(
2(ρ̂3

n)t − (ρ̂3
n)t−1

)]
,

(3.6)

where the first step is computed by the corresponding first-order scheme

ρ̂1 − ρ̂0

τ
= − l(l + 1)

r2

[((
1− l(l + 1)

r2

)2

− ε

)
ρ̂1 + (ρ̂3

n)0

]
(3.7)

with initial spherical Fourier coefficients ρ̂0.
For the computation of the above spherical Fourier coefficients ρ̂t we shall use fast

Fourier transforms on the sphere S2. For a more convenient notation we introduce
for arbitrary scattered sampling nodes X := {x1, . . . ,xM} ⊂ S2 the nonequispaced
spherical Fourier matrix

Y := (Y ml (xi))
M, n, l
i=0; l=0,m=−l ∈ CM×dn .

By means of the matrix-vector notation the point evaluation of the spherical polyno-
mial ρn on the nodes X can be written as

ρn = Yρ̂n,

where ρn := (ρn(xi))
M
i=1 ∈ CM are the sampling values and ρ̂n := (ρ̂ml )n, l

l=0,m=−l ∈
Cdn is the corresponding Fourier coefficient vector. Recently, fast algorithms for the
matrix times vector multiplication with the nonequispaced spherical Fourier matrix
Y and its adjoint Y∗ have been proposed in [42]. Both algorithms have an arithmetic
complexity of O(n2 log2 n+M) and are implemented in the NFFT library [43].

As already seen, the multiplication with the spherical Fourier matrix Y is nothing
else than the evaluation of a spherical polynomial. For the analysis step, that is the
computation of Fourier coefficients ρ̂n, we can make use of the fast adjoint spherical
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Fourier transform in conjunction with suitable quadrature rules, cf. [44]. More pre-
cisely, a quadrature rule on the sphere S2 is a set of pairs (xi, wi), i = 1, . . . ,M , with
sample nodes xi ∈ S2 and quadrature weights wi ∈ C. We say such a rule has degree
of exactness n if

M∑
i=0

wip(xi) =
∫

S2
p(x)dx

is valid for all spherical polynomials p ∈ Πn(S2). Hence, given a quadrature with
degree of exactness 2n we can reconstruct the Fourier coefficients ρ̂n of the spherical
polynomial ρn from its sample values. In matrix-vector notation this is done by
multiplication with the adjoint Y∗ and the weight matrix W = diag(wi)Mi=1

ρ̂n = Y∗Wρn. (3.8)

Recently, efficient algorithms for the computation of the weights wi for scattered
sampling nodes X have been proposed in [45]. Since we are not able to compute
the Fourier coefficients of the nonlinear term ρ3

n explicitly, we are forced to switch in
every time step (3.6) between the spatial and Fourier domain. There we evaluate first
from the Fourier coefficients ρ̂n the sample values ρn. From these we simply obtain
the cubed values and compute by means of the adjoint spherical Fourier transform
in conjunction with a quadrature rule the spherical Fourier coefficients (ρ̂3

n)ml . We
remark that if the initial value ρ0 ∈ Πn(S2) and the used quadrature rules have
degree of exactness 4n we compute in every step the exact projected spherical Fourier
coefficients of the time-discretized Galerkin-method.

The above discussed semi-implicit scheme (3.6), (3.7) is implemented in Mat-
lab R2009b, where the mex-interface to the NFFT library [43] is used. For the
NFSFT (nonequispaced fast spherical Fourier transforms) we set the flags PRE PSI
and PRE PHI HUT, the threshold parameter κ = 1000 and the cutoff parameter
m = 9. For the sampling nodes we used a slightly modified Reuter grid, cf. [46, Ex.
7.1.9].

X := {x(0, 0),x(π, 0)} ∪
S−1⋃
j=1

{
x
(
jπ

S
,

(
k − 1

2
mod(j, 2)

)(
2π
Sj

))
: k = 1, . . . , Sj

}

with Sj := 5
⌊√

3π/arccos
((

cos
π

S
− cos2 jπ

S

)
/ sin2 jπ

S

)
/5
⌋
.

Fig. 3.3. Sequences of the slightly modified Reuter grids.

We found that for this grid it is sufficient to use M ≈ 100N sampling nodes, where
N is the number of expected maxima of the density function ρ. Furthermore, the
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Figure 4.5 in Section 4 shows that for a suitable solution the most important spherical
Fourier coefficients, besides the first ρ̂0

0, are located in a band around the degree n ≈ r.
Furthermore we computed the quadrature weights for this grid accordingly due to
[45]. Hence the evaluation of (3.8) reproduces the spherical Fourier coefficients of a
polynomial with requested degree n.

4. Results. A classic theorem of Euler shows for a triangulation of the surface
in which nearest neighbors are connected, that

∑
i(6− i)vi = 6χ, with vi the number

of vertices with i nearest neighbors and χ the Euler characteristic of the surface. Thus
for surfaces with the topology of a sphere (χ = 2), besides the expected triangular
lattice with six-fold coordination, which would give the optimal ordering in R2, there
must be at least 12 five-fold disclinations present. With each disclination an extra
energy is associated (relative to a perfect triangular lattice in flat space) which grows
proportional to r2, with r the radius of the sphere. For a fixed lattice constant a we
have N ∼ (r/a)2. Thus for large N , or respectively large r, mechanisms are expected
which reduce this extra energy by changing the ground state configuration, which
can be done by introducing additional defects and forming so-called grain boundary
scars, which are chains of five-fold and seven-fold disclinations. Experimental results
for such configurations have been observed in [5]. For a detailed discussion we refer
to [13].

We will use our numerical approaches to first show minimal energy configurations
for small N , for which 12 isolated five-fold disclinations provide the global minimum.
Next we consider larger N and compare the different numerical schemes. We demon-
strate energy reduction in time and the obtained minimal energy configuration with
additional defect structures. Last we show the potential for each of the numerical
methods by going to even larger N , by generalizing the surface to be considered and
discussing extensions to couple the ordering with the evolution of the surface.

4.1. Isolated disclinations. For 2 ≤ N ≤ 100 there is agreement of all numer-
ical and theoretical methods, suggesting that the global minimum configuration VN
has been found. The most prominent configuration is certainly known for N = 32
which result in 12 isolated 5-fold disclinations. A Voronoi pattern for this config-
uration can be found in a typical soccer ball. The same configuration is obtained
with all three numerical approaches, see Fig. 4.1. The memory requirements and
computational time needed to obtain the result however differs, see Tab. 4.1. The
degrees of freedom (DOFs) for the NFFT approach are given by the dimension dn of
the underlying polynomial space Πn.

Fig. 4.1. Typical soccer ball and minimal energy configuration for N = 32. (middle) density
field, (right) visualization of extracted maxima in density field, colour coding according to number
of neighbors
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CPU-time Memory DOFs
NFFT 20 s 300 MB 289

parametric FEM 1020 s 180 MB 18.438
phase field approximation 140 h 1.4 GB 217.301

Table 4.1
Comparison of the three numerical approaches for N = 32. The parameters used are ε = 0.4,

ρ̄ = −0.3. We start with a randomly perturbed initial configuration ρ0 = ρ̄ ± 0.05 and measure the
CPU-time required to reach t = tend for which the equilibrium configuration is achieved. The time
steps used for each method differ. In case of the NFFT the reported memory requirement is the
allocated memory by Matlab.

4.2. Grain boundary scars. Grain boundary scars (chains of 5-fold and 7-fold
disclinations) are expected for N > 360. Realizations where the formation of grain
boundary scars has been observed are for example water droplets in oil, which are
coated with colloidal particles [5]. In contrast to grain boundaries in flat space grain
boundary scars on curved surfaces belong to the equilibrium state. Furthermore they
freely terminate which is not the case for grain boundaries in R2 or R3.

In order to demonstrate the comparability of the different numerical approaches
we consider a configuration with N = 492. Instead of a randomly perturbed initial
state we use a defined state and monitor not only the equilibrium configuration but
also the evolution of the different approaches. The initial state is given on a sphere
with radius r = 42 by

ρ0(r) := −0.26

(
1− 2

4∑
i=1

e−500 arccos(r·ri/42)2

)

with ri the vertices of the tetrahedron. Due to the high computational cost of the
phase-field approach we only consider the parametric FEM and the NFFT approach.
Fig. 4.2 shows the obtained equilibrium configuration, which coincide for both ap-
proaches. Fig. 4.3 shows a comparison of the two approaches.

Fig. 4.2. Density field and particle visualization of obtained minimal energy configuration for
N = 492, colour coding according to number of neighbors.
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Fig. 4.3. Decay in energy over time for minimization problem. The difference in the dynamics
results from different time step strategies used in the FEM and the NFFT algorithms.

The corresponding Coulomb energy of the computed configuration is V492(r) =
115006.5738019, which is slightly above the communicated minimal energy V492 =
115005.0932623, which corresponds to a configuration in which the 12 five-fold discli-
nations are not isolated but form 12 chains with the pairs of five-fold and seven-fold
disclinations [4].

4.3. Other examples and comparison of the numerical approaches. As
a last example on a sphere we consider a configuration with N ≈ 100000 to show the
potential of the approach to find good estimates for VN ifN is large. Fig. 4.4 shows the
obtained minimal energy configuration using the NFFT approach, which turned out
to be the most efficient method on a sphere. There we used an icosahedral symmetric
initial state with density ρ̄ = −0.3 on a sphere with radius r = 600. We have chosen
the parameter ε = 0.25 for a slow crystal growth up to the time t = 2500 and increased
it to ε = 0.4 for another time-length of t = 1500 in order to freeze the configuration.
The simulation took about 1.5 days on a single processor with 12GB RAM. After
locating the N = 99602 maxima we computed the energy VN (r) ≈ 4.942914·109 which
is less than 0.0004% above the lower bound 1

2N
2 − 0.553051N3/2 ≈ 4.942895 · 109

from [47]. Furthermore under the given initial distribution one observes a similar
star structure of the defects of the minimal configuration as predicted in [48]. In
this example we obtain 732 defects which come in pairs of 5-fold and 7-fold defects
located along lines connecting 12 5-fold defects, which are located at the vertices of
an icosahedron.

For the above example we used for the approximation a polynomial degree n = 900
and a modified Reuter grid with parameter S = 3000 which has approximately 10
million sampling nodes. For this grid we computed the quadrature weights for a degree
of exactness n = 1024. Figure 4.5 shows the absolute values of the spherical Fourier
coefficients ρ̂ of the density ρ at time t = 3000. There is seen that the equilibrium
state admits a relatively sparse representation in spherical harmonics, i.e., the most
Fourier coefficients are nearby zero.

In contrast to the NFFT approach, which turned out to be the most efficient on
a sphere the parametric FEM approach is not restricted to S2. It can be used on
any parametric surface. To demonstrate this we use the approach on the Stanford
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Fig. 4.4. Particle visualization of obtained minimal energy configuration for N = 99602, colour
coding according to number of neighbors.

bunny. Fig. 4.6 shows the obtained minimal energy configuration using parametric
FEM starting from a randomly perturbed initial configuration.

The only requirement for the surface is an appropriate surface mesh. The compu-
tational cost does not depend on the morphology of the surface, but only the number
of grid points. The approach can be parallelized, using the same techniques as used
to parallelize standard FEM. In [36] various of these techniques are discussed and
applied to solve surface partial differential equations. The ability of the approach to
work on arbitrary surfaces will also allow to consider ordering on evolving surfaces.
Appropriate continuum models for such evolutions, which account for bending and
surface tension are discussed in the mathematical review article [49, 50]. Different
concepts have been developed to solve differential equations on evolving surfaces [24]
in the context of parametric FEM. This concept however, can induce severe mesh dis-
tortions as a result of the evolution and requires additional treatment of mesh points
to maintain appropriate mesh properties.

Within the considered phase-field description such problems do not occur. An
extension of the method in [28] to evolving surfaces is discussed in [29, 30, 31]. It is
the most flexible and most straight forward to implement approach, as it does not
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Fig. 4.5. Visualization of the Fourier coefficients of the equilibrium state. One observes that
the most relevant Fourier coefficients are located in a band about l = 600.

Fig. 4.6. Density field and particle visualization of obtained minimal energy configuration for
N = 3303 on the Stanford bunny.

require any special treatment, but it is also to most expensive method as it operates
in one dimension higher. The coupling of the surface evolution with the evolution of
the number density on it, however remains open for all methods and requires further
developments.

5. Conclusion. Using the approach introduced in [22] to find optimal configu-
rations of interacting particles on a sphere, we consider different numerical approaches
to solve the 6th order surface partial differential equation. Besides parametric finite
elements and phase-field descriptions which are adapted to solve the specific equa-
tion, a new computational approach is introduced. The introduced spectral method
is based on the ansatz to approximate the solution of the surface partial differential
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equation by spherical polynomials. For the computation of the spherical Fourier co-
efficients a fast Fourier transforms on the sphere with nonequispaced nodes is used.
By making the Fourier spectral techniques available on a sphere a general approach
is introduced which benefits from exponential convergence rates and turns out to be
computationally much more efficient than the previously discussed methods to solve
surface partial differential equations. This is demonstrated here for a specific applica-
tion, but we believe that the benefits of the approach will carry over to all problems
which are efficiently solved using Fourier spectral methods in R2 or R3 if considered
on a sphere. The other discussed numerical approach, turn out to be less efficient but
much more flexible concerning the surface to be considered. The parametric finite ele-
ment approach only requires an appropriate surface mesh and shows a computational
cost which is independent on the complexity of the surface, only depending on the
number of nodes. Within the phase-field description the surface partial differential
equation is reformulated into a partial differential equation in R3 and can be solved
with any standard approach. For computational efficiency, however, adaptivity is rec-
ommended, allowing for a fine resolution along the approximated surface and a coarse
triangulation otherwise.

Concerning the specific application we have shown how to relate the interatomic
potential describing the particle interactions on the sphere with the parameters in the
surface partial differential equation. The derivation of the model extends an approach
in flat space and uses a dynamic density functional theory on surfaces. Examples of
computed minimal energy configurations show the applicability of the approach to
solve the originally formulated optimization problem. The question of finding the
global minimum with the approach remains open. As the approach is constructed as
an energy minimization approach (H−1 gradient flow of the Swift-Hohenberg energy
on a surface) it will most likely terminate at a local minimum. However the computed
minima agree with known results for VN for 2 ≤ N ≤ 100. For N > 360, for which
grain boundary scars are expected, the computed energy in the example for N = 492
is only 0.001% above the lowest reported energy [4]. For large N we considered an
example with N = 99602. The computed Coulomb energy is less than 0.0004% above
the lower bound in [47] All these demonstrate the quality of the results obtained by
using the phase-field-crystal model to find optimal ordering on a sphere.

Appendix A. Asymptotic analysis.

We now provide a matched asymptotic analysis to show the formal convergence
of (3.1) - (3.3) to (2.3) - (2.5) as η → 0.

A.1. New coordinates. New coordinates are established in a neighborhood of
the surface Γ. To this end r = r(x; η) is defined as a signed distance of x from Γη.
Furthermore let X : S → R3 be a parametric representation of Γ, where S is an
oriented manifold of dimension 2. Let s ∈ S and n = n(s; η) denote the normal.
Then we assume that for 0 < r∗ � 1 there exists a neighborhood

Uη = {x ∈ Ω : |r(x; η)| < r∗}
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of Γη such that one can write x = X(s; η) + r(x; η)n(s; η) for x ∈ Uη. Now one
transforms ρ, µ, ν and φ to the new coordinate system:

ρ̂(r, s; η) := ρ(X(s; η) + rn(s; η); η), x ∈ Uη,
µ̂(r, s; η) := µ(X(s; η) + rn(s; η); η), x ∈ Uη,
ν̂(r, s; η) := ν(X(s; η) + rn(s; η); η), x ∈ Uη,

φ̂(r, s; η) := φ(X(s; η) + rn(s; η); η), x ∈ Uη.

Furthermore a stretched variable is introduced z := r
η , and one defines

R(z, s; η) := ρ̂(r, s; η),
M(z, s; η) := µ̂(r, s; η),
N(z, s; η) := ν̂(r, s; η),

Φ(z, s; η) := φ̂(r, s; η).

In addition the following Taylor expansion approximations for small η are assumed
to be valid

ρ(x; η) = ρ0(x) + ηρ1(x) + . . . , (A.1)
ρ̂(r, s; η) = ρ̂0(r, s) + ηρ̂1(r, s) + . . . , (A.2)
R(z, s; η) = R0(z, s) + ηR1(z, s) + . . . , (A.3)
µ(x; η) = µ0(x) + ηµ1(x) + . . . , (A.4)
µ̂(r, s; η) = µ̂0(r, s) + ηµ̂1(r, s) + . . . , (A.5)
M(z, s; η) = M0(z, s) + ηM1(z, s) + . . . , (A.6)
ν(x; η) = ν0(x) + ην1(x) + . . . , (A.7)
ν̂(r, s; η) = ν̂0(r, s) + ην̂1(r, s) + . . . , (A.8)
N(z, s; η) = N0(z, s) + ηN1(z, s) + . . . , (A.9)
φ(x; η) = φ0(x) + ηφ1(x) + . . . , (A.10)

φ̂(r, s; η) = φ̂0(r, s) + ηφ̂1(r, s) + . . . , (A.11)
Φ(z, s; η) = Φ0(z, s) + ηΦ1(z, s) + . . . , (A.12)

for which (A.1), (A.2), (A.4), (A.5), (A.7), (A.8) and (A.10), (A.11) are called outer
expansions while (A.3), (A.6), (A.9) and (A.12) are called inner expansion. It is
assumed that these hold simultaneously in some overlapping region and represent the
same functions, which yields the matching conditions

lim
r→±0

ρ̂0(r, s, t) = lim
z→±∞

R0(z, s, t), (A.13)

lim
r→±0

µ̂0(r, s, t) = lim
z→±∞

M0(z, s, t), (A.14)

lim
r→±0

ν̂0(r, s, t) = lim
z→±∞

N0(z, s, t), (A.15)

lim
r→±0

φ̂0(r, s, t) = lim
z→±∞

Φ0(z, s, t). (A.16)
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Let H = H(s; η) = 1
d−1

∑d−1
i=1 κi denote the mean curvature of Γ with the principal

curvatures κi. The transform of the derivatives into the new coordinates (z, s) lead

∇u = η−1∂zUn +
2∑

i,j=1

gij∂siU∂sj X +O(η)

∆u = η−2∂2
zU + η−1H∂zU + ∆ΓU +O(η),

where gij := φsi
· φsj

and (gij) := (gij)−1. We will need the formula

∇ · (B(φ)∇u) = η−2∂z(B(Φ)∂zU) + η−1B(Φ)H∂zU +B(Φ)∆ΓU +O(η).

Because the surface Γ is fixed, we have the time derivative

∂tu = ∂tU.

A.2. Outer expansion. By assumption we have φ0 = 1 in Ωin and φ0 = 0
in Ωout and therefore limz→+∞ Φ0 = limr→+0 φ0 = 0 as well as limz→−∞Φ0 =
limr→−0 φ0 = 1.

A.3. Inner expansion. Using the inner expansion in (3.1) - (3.3) we obtain in
O(η−2)

∂z(B(Φ0)∂zM0) = 0
2∂z(B(Φ0)∂zR0) + ∂z(B(Φ0)∂zN0) = 0

∂z(B(Φ0)∂zR0) = 0

which yields ∂zR0 = 0, ∂zM0 = 0 and ∂zN0 = 0. From this one gets
O(η−1)

∂z(B(Φ0)∂zM1) = 0
2∂z(B(Φ0)∂zR1) + ∂z(B(Φ0)∂zN1) = 0

∂z(B(Φ0)∂zR1) = 0

and therefore ∂zR1 = 0, ∂zM1 = 0 and ∂zN1 = 0. Finally we have in
O(η0)

B(Φ0)∂tR0 = ∂z(B(Φ0)∂zM2) +B(Φ0)∆ΓM0,

B(Φ0)M0 = 2∂z(B(Φ0)∂zR2) + 2B(Φ0)∆ΓR0

+∂z(B(Φ0)∂zN2) +B(Φ0)∆ΓN0 + f ′(R0),
B(Φ0)N0 = ∂z(B(Φ0)∂zR2) +B(Φ0)∆ΓR0.

Integration of the three equations yields

∂tR0

∫ +∞

−∞
B(Φ0) dz = ∆ΓM0

∫ +∞

−∞
B(Φ0) dz,

M0

∫ +∞

−∞
B(Φ0) dz = 2∆ΓR0

∫ +∞

−∞
B(Φ0) dz + ∆ΓN0

∫ +∞

−∞
B(Φ0) dz

+f ′(R0)
∫ +∞

−∞
B(φ0) dz,

N0

∫ +∞

−∞
B(Φ0) dz = ∆ΓR0

∫ +∞

−∞
B(Φ0) dz.
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Dividing these equations by
∫ +∞
−∞ B(Φ0) dz we end up with

∂tR0 = ∆ΓM0,

M0 = 2∆ΓR0 + ∆ΓN0 + f ′(R0),
N0 = ∆ΓR0

on Γ, which lead by using the matching conditions (A.13) - (A.16) the desired equa-
tions (2.3) - (2.5).
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model for colloidal solidification. Phys. Rev. E, 79:051404, 2009.
[15] U.M.B. Marconi and P. Tarazona. Dynamic density functional theory of fluids. J. Chem. Phys.,

110:8032–8044, 1999.
[16] A.J. Archer and R. Evans. Dynamic density functional theory and its application to spinodal

decomposition. J. Chem. Phys., 121:4246–4254, 2004.
[17] T.V. Ramakrishnan and M. Yussouff. 1st-principles order-parameter theory of freezing. Phys.

Rev. B, 19:2775–2794, 1979.
[18] K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant. Phase-field crystal modeling

and classical density functional theory of freezing. Phys. Rev. B, 75:064107, 2007.
[19] K.R. Elder, M. Katakowski, M. Haataja, and M. Grant. Modeling elasticity in crystal growth.

Phys. Rev. Lett., 88:245701, 2002.
[20] K.A. Wu and A. Karma. Phase-field crystal modeling of equilibrium bcc-liquid interfaces. Phys.

Rev. B, 88:245701, 2007.
[21] A. Jaatinen, C.V. Achim, K.R. Elder, and T. Ala-Nissila. Thermodynamics of bcc metals n

phase-field-crystal models. Phys. Rev. E, 80:031602, 2009.
[22] R. Backofen, A. Voigt, and T. Witkowski. Particles on curved surfaces: A dynamic approach

by a phase-field-crystal model. Phys. Rev. E, 81:025701(R), 2010.
[23] T. Erber and G.M. Hockney. Complex systems: Equilibrium configurations of n equal charges

on a sphere (2 <= n <= 112). Adv. Chem. Phys., 98:495–594, 1997.
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