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Abstract

Abstract. We investigate a method of accelerated Landweber type for the

iteratve regularization of nonlinear ill-posed operator equations in Banach spaces.

Based on an auxiliary algorithm with simplified choice of the step size parameter we

present a convergence and stability analysis of the algorithm under consideration.

We will close our discussion with the presentation of a numerical example.

Key words: Iterative Regularization, Landweber iteration, Banach spaces,

smooth of power type, convex of power type, Bregman distance

AMS subject classifications: 47A52, 65F10, 46E15, 46B20

1 Introduction

Let X and Y be both Banach spaces with dual spaces X ∗ and Y∗ respectively. We consider
the nonlinear ill-posed operator equation

F (x) = y, x ∈ D(F ), (1)

where F : D(F ) ⊆ X −→ Y describes a continuous nonlinear mapping from the domain
D(F ) into the space Y . In many applications the ill-posedness arises from instability
effects: even if a solution x ∈ D(F ) satisfying F (x) = y exists it does not depend
continuously on the data y. On the other hand it can be assumed that only a perturbed
version yδ of y is available where only the estimate ‖yδ − y‖ ≤ δ is known. Therefore we
have to apply regularization methods. In particular, Tikhonov regularization has been
well-established theoretically in e.g. [19], [11], [8] and the references therein. On the other
hand, the corresponding numerical treatment (for linear problems) was considered in e.g.
[2] and [4].
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Major drawback of Tikhonov regularization is the high numerical effort. For the proper
determination of the regularization parameter α we usually have to solve several non-
quadratic minimization problems (exactly up to a numerical error). Therefore the de-
velopment and analysis of iterative regularization methods in Banach spaces are of high
interest. The theory of iterative regularization methods in Hilbert spaces has been deeply
studied in the recent years. For a short overview we refer to [5], for more detailed infor-
mation to [1] and [13].

Here the focus is on gradient-type methods. We refer also to [14] for an iteratively
regularized Gauss-Newton-type approach in Banach spaces. For given parameter p > 1
we reformulate equation (1) as minimization problem

Ωp(x) :=
1

p
‖F (x) − yδ‖p → min subject to x ∈ D(F ). (2)

We generalize the results of [6] and [18] in a first step. Using a gradient method for solving
the problem (2) we therefore deal with the following iteration:

xδ
0 := x0 = J∗

s∗(x
∗
0) ∈ D(F ) with x∗0 ∈ X ∗,

x∗n+1 := x∗n − µnF
′(xδ

n)⋆Jp

(

F (xδ
n) − yδ

)

,

xδ
n+1 := J∗

s∗(x
∗
n+1),

together with a proper choice of the step size µn and an appropriate stopping criterion.
The choice of the parameter s∗ ∈ (1, 2] is determined by the supposed smoothness of the
dual space X ∗. Moreover, Jp : Y −→ Y∗ and J∗

s∗ : X ∗ −→ X denote corresponding duality
mappings with gauge functions t 7→ tp−1 and t 7→ ts

∗−1 respectively. The algorithm above
was considered in Banach spaces for linear operators in [18] and generalized to nonlinear
problems in [14]. There, similar nonlinearity restrictions to the operator F were applied
as already supposed in [6] in the Hilbert space setting. We present here an analysis which
is closely related to the one in [14] even the results are somewhat different. If X and Y
are Hilbert spaces then the choices p = 2 and µn ≡ 1 reduce the algorithm to classical
Landweber iteration for nonlinear ill-posed problems which was originally considered in
[6]. However, a constant step size leads usually to a slow convergence of gradient methods.
Therefore an appropriate choice of the parameter µn in each iteration step is crucial for
a satisfying speed of convergence of the iteration process. We also point out that the
update of the iterates (i.e. the search of the optimal step size µn) in fact takes place in
the dual space X ∗.

Therefore the paper is organized as follows: in Section 2 we introduce basic notations
and assumptions. In Section 3 the main algorithm is derived and the existence of the
suggested choice of the step size µn is proved. Furthermore an auxiliary algorithm based
on an explicit calculation of the step size µn and its descent property is shown. Section 5
deals with convergence and stability of the algorithm under consideration. Two numerical
examples in the last section illustrate these theoretical results.
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2 Preliminaries

Throughout the paper let 1 < s, s∗ <∞ denote conjugate exponents, i.e.

1

s
+

1

s∗
= 1.

For x ∈ X and x∗ ∈ X ∗ we denote by 〈x, x∗〉 or 〈x∗, x〉 the associated duality product.
Norms will be denoted as usual by ‖·‖. We obmit indices indicating the underlying spaces
since it will become clear out of the context.

For the convergence analysis we need the following assumptions:

(A1) The Banach space X is supposed to be s-convex for some s ∈ [2,∞) and Y is
assumed to be smooth.

(A2) For δ = 0 there exists a solution x∗ ∈ D(F ) of (1), i.e. F (x∗) = y holds.

(A3) There exists a ball B̺(x∗) ⊆ D(F ) around x∗ with radius ̺ > 0 such that:

(i) For all x ∈ B̺(x∗) the operator F is Fréchet-differentiable with Fréchet-derivative
F ′(x) : X −→ Y .

(ii) The operator F is of degree (1, 0) of nonlinearity with uniform constant 0 ≤
L < 1 on B̺(x∗), i.e.

‖F (x̃) − F (x) − F ′(x)(x̃− x)‖ ≤ L ‖F (x̃) − F (x)‖ (3)

holds for all x, x̃ ∈ B̺(x∗).

(iii) It holds ‖F ′(x)‖ ≤ K uniformly for some constants K > 0 on B̺(x∗).

We shortly discuss these conditions. We recall that the Banach space X is said to be
convex of power-type s ∈ [2,∞) or s-convex if for the modulus of convexity σX : [0, 2] −→
[0, 1]

δX(ε) := inf

{

1 − 1

2
‖x+ x̃‖ : ‖x‖ = ‖x̃‖ = 1, ‖x− x̃‖ ≥ ε

}

≥ CXε
s, ε ∈ [0, 2],

holds for some constant CX > 0 and smooth of power-type r ∈ (1, 2] or r-smooth if for
the modulus of smoothness ρX : [0,∞) −→ [0,∞)

ρX(τ) :=
1

2
sup {‖x+ x̃‖ + ‖x− x̃‖ − 2 : ‖x‖ = 1, ‖x̃‖ ≤ τ} ≤ ĈXτ

r, τ ∈ [0,∞),

holds for another constant ĈX > 0. We refer e.g. to [3] and [16] for detailed information
about geometric properties of Banach spaces.

Moreover, from the s-convexity of the (reflexive) space X we conclude the s∗-smoothness
of the dual space X ∗. By the Xu/Roach inequalities [20] there exist constants Cs > 0 and
G∗

s∗ > 0 such that

1

s
‖x̃‖s − 1

s
‖x‖s − 〈x∗, x̃− x〉 ≥ Cs

s
‖x− x̃‖s, x∗ ∈ Js(x), (4)
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with duality mapping Js : X −→ 2X
∗

where 2X
∗

is the power-set of X ∗ and

1

s∗
‖x̃∗‖s∗ − 1

s∗
‖x∗‖s∗ − 〈J∗

s∗(x
∗), x̃∗ − x∗〉 ≤ G∗

s∗

s∗
‖x∗ − x̃∗‖s∗ (5)

hold for all x, x̃ ∈ X and x∗, x̃∗ ∈ X ∗ respectively. Both constants we will need in our
convergence analysis. We recall that the duality mapping Jq : X −→ 2X

∗

is defined as

Jq(x) :=
{

x∗ ∈ X ∗ : 〈x∗, x〉 = ‖x∗‖ ‖x‖, ‖x∗‖ = ‖x‖q−1
}

The properties of duality mappings are well-studied, see e.g. [3, Chapter 1 and 2] and
[21, Proposition 47.17]. The smoothness of the space Y guarantees that duality mappings
from Y into Y∗ are always single valued.

Concerning assumption (A3) we remark the following. The nonlinearity restriction of
type (3) with L < 1

2
was applied in [6] for dealing with Landweber iteration for nonlinear

ill-posed problems in Hilbert spaces. We emphasize that in our convergence analysis the
weaker condition L < 1 is sufficient. In particular, we make use of the inequality

1

1 + L
‖F ′(x)(x̃− x)‖ ≤ ‖F (x̃) − F (x)‖ ≤ 1

1 − L
‖F ′(x)(x̃− x)‖

for x, x̃ ∈ B̺(x∗) which is an immediate consequence of (3). With L = 0 we also include
the case of linear equations in our considerations. The concept of the degree of nonlinearity
for nonlinear operators in Hilbert spaces was introduced in [12]. In [8] this approach was
transfered to Banach spaces.

3 The algorithm

For x∗ ∈ X ∗, x = J∗
s∗(x

∗) and arbitrary x̃ ∈ X we introduce the notation

∆s(x̃, x) :=
1

s
‖x̃‖s − 1

s
‖x‖s − 〈x∗, x̃− x〉

for the Bregman distance of the functional x 7→ 1
s
‖x‖s. Here we applied that x∗ ∈ Js(x)

holds. Using the definition of duality mappings we have

〈x∗, x〉 = ‖x‖s = ‖x∗‖s∗

which allows us to reformulate the Bregman distance as

∆s(x̃, x) =
1

s
‖x̃‖s +

1

s∗
‖x‖s − 〈x∗, x̃〉 =

1

s
‖x̃‖s +

1

s∗
‖x∗‖s∗ − 〈x∗, x̃〉.

We return to the minimization problem (2) with arbitrary parameter p > 1. Let the n-th
iterates xδ

n and x∗n be given. Then – with A⋆
n := F ′(xδ

n)⋆, ψ∗
n = A⋆

nJp(F (xδ
n) − yδ) and

∆n := ∆s(x∗, x
δ
n) – we derive

∆s(x∗, J
∗
s∗(x

∗
n − µψ∗

n)) − ∆n =
1

s∗
‖x∗n − µψ∗

n‖s∗ − 1

s∗
‖x∗n‖s∗ + µ 〈A⋆

nJp(F (xδ
n) − yδ), x∗〉

=
1

s∗
‖x∗n − µψ∗

n‖s∗ − 1

s∗
‖x∗n‖s∗ + µ 〈ψ∗

n, x
δ
n〉

+µ 〈Jp(F (xδ
n) − yδ), An(x∗ − xδ

n)〉.
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Furthermore, with T (x∗, x
δ
n) := F (x∗) − F (xδ

n) −An(x∗ − xδ
n) we have

µ 〈Jp(F (xδ
n) − yδ), F (x∗) − F (xδ

n) + T (x∗, x
δ
n)〉

= µn

(

−〈Jp(F (xδ
n) − yδ), F (xδ

n) − yδ〉 − 〈Jp(F (xδ
n) − yδ), T (x∗, x

δ
n)〉

+〈Jp(F (xδ
n) − yδ), y − yδ〉

)

≤ µn

(

−‖F (xδ
n) − yδ‖p + L‖F (xδ

n) − y‖‖F (xδ
n) − yδ‖p−1 + δ‖F (xδ

n) − yδ‖p−1
)

≤ µn

(

−(1 − L)‖F (xδ
n) − yδ‖p + (1 + L)δ‖F (xδ

n) − yδ‖p−1
)

.

We introduce the notation

cδn := (1 − L)‖F (xδ
n) − yδ‖p − (1 + L)δ‖F (xδ

n) − yδ‖p−1

Then we derive

∆s(x∗, J
∗
s∗(x

∗
n − µψ∗

n)) − ∆n ≤ 1

s∗
‖x∗n − µψ∗

n‖s∗ − 1

s∗
‖x∗n‖s∗ + µ 〈ψ∗

n, x
δ
n〉 − µ cδn.

In the linear case L = 0 even equality holds for given exact data, i.e. δ = 0. Therefore
we suggest the following choice of the step size µn: choose the parameter µ = µn in such
a way, that the right hand side of the above estimate becomes minimal (with respect to
µ). Collecting all terms on the right hand side depending on µ we define

f(µ) :=
1

s∗
‖x∗n − µψ∗

n‖s∗ + µ 〈ψ∗
n, x

δ
n〉 − µ cδn, µ ≥ 0.

Then we easily can prove the following lemma.

Lemma 3.1. Assume (A1)-(A3), xδ
n ∈ B̺(x∗)∩D(F ) and ψ∗

n 6= 0. Then the minimization
problem

f(µ) → min subject to µ > 0 (6)

has a unique solution µ∗ > 0 as long as cδn > 0.

Proof. Differentiating f(µ) we see

f ′(µ) = −〈J∗
s∗(x

∗
n − µψ∗

n), ψ∗
n〉 + 〈xδ

n, ψ
∗
n〉 − cδn.

By monotonicity of the duality mappings this function f ′(µ) is strictly increasing. By
assumption we have cδn > 0 which shows f ′(0) = −cδn < 0. On the other hand we have
s∗ > 1. Hence the norm term in f(µ) dominates as µ → ∞ which shows f(µ) → ∞
as µ → ∞. From continuity of f ′(µ) we can conclude the existence of a unique element
µ = µ∗ > 0 satisfying the necessary optimality condition f ′(µ) = 0. �

We are now able to present the algorithm under consideration in detail:

Algorithm 3.1.

(S0) Init. Choose start point x∗0 ∈ X ∗, xδ
0 := J∗

s∗(x
∗
0) with ∆s(x∗, x

δ
0) < ̺s Cs

s
with

constant C2 from (4). Choose an upper bound µ ∈ (0,∞] for the step size and
define the parameter τ > 1 such that

τ >
1 + L

1 − L

holds. Set n := 0.
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(S1) STOP, if for δ > 0 the discrepancy criterion
∥

∥F (xδ
n) − yδ

∥

∥ ≤ τ δ is fulfilled or we
have F (xδ

n) = y for δ = 0.

(S2) Calculate ψ∗
n := F ′(xδ

n)⋆Jp(F (xδ
n) − yδ) and find the solution µ∗ of the equation

f ′(µ) = 0, µ ≥ 0. (7)

Set µn := min
{

µ∗, µ ‖F (xδ
n) − yδ‖s−p

}

.

(S3) Calculate the new iterate

x∗n+1 := x∗n − µnψ
∗
n, and

xδ
n+1 := J∗

s∗(x
∗
n+1).

Set n := n+ 1 and go to step (S1).

In the noiseless case we will write xn instead of xδ
n = x0

n for the iterates. Let N(δ, yδ)
denotes the index where the iteration stops. Then we have the relation

∥

∥

∥
F (xδ

N(δ,yδ)) − yδ
∥

∥

∥
≤ τ δ <

∥

∥F (xδ
n) − yδ

∥

∥ , 0 ≤ n < N(δ, yδ). (8)

For the proof of convergence and stability we deal with an auxiliary problem.

Remark 3.1. For linear operators in Hilbert spaces, noiseless data, i.e. δ = 0, and the
choice p = 2 this algorithm reduces to the classical method of minimal error which was
already considered in [17] in the context of regularization methods.

4 On an auxiliary problem

Main problem in the analysis of Algorithm 3.1 arises from the fact that we cannot state the
step size µn explicitly. Therefore we now suggest the following modified algorithm with
an explicit expression for the chosen step size. In turns out that convergence and stability
results derived for the modified algorithm also remain valid for the original version.

For given xδ
n and arbitrary µ ≥ 0 we recall the relation

∆s(x∗, J
∗
s∗(x

∗
n − µψ∗

n)) − ∆n =
1

s∗
‖x∗n − µψ∗

n‖s∗ − 1

s∗
‖x∗n‖s∗ + µ 〈A⋆

nJp(F (xδ
n) − yδ), x∗〉.

From the s∗-smoothness of the space X ∗ we conclude

1

s∗
‖x∗n − µψ∗

n‖s∗ − 1

s∗
‖x∗n‖s∗ ≤ −µ〈A⋆

nJp(F (xδ
n) − yδ), xδ

n〉 +
G∗

s∗

s∗
‖µA⋆

nJp(F (xδ
n) − yδ)‖s∗

= −µ〈A⋆
nJp(F (xδ

n) − yδ), xδ
n〉 +

G∗
s∗

s∗
µs∗‖ψ∗

n‖s∗ ,

where G∗
s∗ is the constant from inequality (5). Continuing as in the previous section we

obtain

∆s(x∗, J
∗
s∗(x

∗
n − µψ∗

n)) ≤ ∆s(x∗, x
δ
n) −

(

cδnµ+
G∗

s∗

s∗
‖ψ∗

n‖s∗µs∗
)

.

Minimizing the right hand side with respect to the step size µ we obtain the following
modified algorithm:
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Algorithm 4.1. In Algorithm 3.1 we replace step (S2) by

(S2’) Calculate ψ∗
n := F ′(xδ

n)⋆Jp

(

F (xδ
n) − yδ

)

,

cδn := ‖F (xδ
n) − yδ‖p(1 − L) − (1 + L)δ ‖F (xδ

n) − yδ‖p−1,

ĉδn := max
{

G∗
s∗‖ψ∗

n‖s∗ , cδn
(

µ ‖F (xδ
n) − yδ‖s−p

)− 1

s−1

}

and

µn :=

(

cδn
ĉδn

)s−1

.

In particular, the choice µ = ∞ is allowed in this assertion. Then ĉδn = G∗
s∗‖ψ∗

n‖s∗ holds
automatically. We further introduce the constants

µ
τ

= min

{

(1 − L− (1 + L)τ−1)s−1

G∗
s∗

s−1Ks
, µ

}

> 0 and µ
0

:= min

{

(1 − L)s−1

G∗
s∗

s−1Ks
, µ

}

> 0,

as well as

λτ :=
1 − L− (1 + L)τ−1

s
> 0 and λ0 :=

(1 − L)

s
> 0.

Then we can prove the following.

Lemma 4.1. Assume (A1)-(A3) and all iterates {xδ
n} generated by Algorithm 4.1 remain

in B̺(x∗) ∩ D(F ). Then, for all n < N(δ, yδ) the following holds true:

(i) The step size µn is the (unique) maximizer of C(µ) := cδnµ− ĉδ
n

s∗
µs∗, µ ∈ [0,∞).

(ii) For δ > 0 we have µn ∈ [µ
τ
, µ]‖F (xδ

n) − yδ‖s−p and

C(µn) ≥ λτµn‖F (xδ
n) − yδ‖p ≥ λτµτ

‖F (xδ
n) − yδ‖s > 0.

(iii) For δ = 0 we have µn ∈ [µ
0
, µ]‖F (xn) − y‖s−p and

C(µn) ≥ λ0µn‖F (xn) − y‖p ≥ λ0µτ
‖F (xn) − y‖s > 0.

Proof. The first part follows immediately by the definition of µn. Moreover, we observe

C(µn) =

(

cδn
)s

(ĉδn)s−1 − 1

s∗

(

cδn
)s

(ĉδn)s−1 =
1

s

(

cδn
)s

(ĉδn)
s−1 =

1

s
µnc

δ
n.

We now assume δ > 0. Since the stopping criterion is not fulfilled we get τδ < ‖F (xδ
n) −

yδ‖. Then we estimate

cδn = ‖F (xδ
n) − yδ‖p

[

1 − L− (1 + L)
δ

‖F (xδ
n) − yδ‖

]

≥ ‖F (xδ
n) − yδ‖p

[

1 − L− (1 + L)τ−1
]

> 0.

This automatically proves

C(µn) =
1

s
µnc

δ
n ≥ λτµn‖F (xδ

n) − yδ‖p.
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Assume now µ <∞ and ĉδn =
(

µ ‖F (xδ
n) − yδ‖s−p

)− 1

s−1 cδn. Then µn = µ ‖F (xδ
n) − yδ‖s−p

holds by construction. Hence we have

C(µn) =
1

s
µnc

δ
n ≥ ‖F (xδ

n) − yδ‖p1 − L− (1 + L)τ−1

s
µn = λτµ‖F (xδ

n) − yδ‖s.

On the other we now suppose ĉδn = G∗
s∗‖ψ∗

n‖s∗. Since ĉδn ≥
(

µ ‖F (xδ
n) − yδ‖s−p

)− 1

s−1 cδn we
derive µn ≤ µ ‖F (xδ

n) − yδ‖s−p. With ‖F ′(xδ
n)⋆‖ = ‖F ′(xδ

n)‖ ≤ K we estimate

ĉδn ≤ G∗
s∗‖F ′(xδ

n)⋆‖s∗‖Jp(F (xδ
n) − yδ)‖s∗ ≤ G∗

s∗K
s∗‖F (xδ

n) − yδ‖s∗(p−1).

Hence we obtain

µn =

(

cδn
ĉδn

)s−1

≥ (1 − L− (1 + L)τ−1)
s−1

G∗
s∗

s−1Ks
‖F (xδ

n) − yδ‖(p−s∗(p−1))(s−1)

=
(1 − L− (1 + L)τ−1)

s−1

G∗
s∗

s−1Ks
‖F (xδ

n) − yδ‖s−p ≥ µ
τ
‖F (xδ

n) − yδ‖s−p

in that case. Consequently we can estimate

C(µn) =
1

s
cδnµn ≥ 1

s
‖F (xδ

n) − yδ‖s
[

1 − L− (1 + L)τ−1
]

µ
τ

= λτµτ
‖F (xδ

n) − yδ‖s.

This proves the second part. For δ = 0 we have cδn = ‖F (xn) − y‖p(1 − L). Then an
analogous calculation shows the third part of the assertions. �

Remark 4.1. Assume F (xδ
n) → yδ as n → ∞. For s > p we have ‖F (xδ

n) − yδ‖s−p → 0
and hence µn → 0 as n→ ∞. On the other hand, for s < p we conclude ‖F (xδ

n)−yδ‖s−p →
∞ and consequently µn → ∞ as n→ ∞. However, in both cases we derive

‖x∗n+1 − x∗n‖ = µn‖ψ∗
n‖ ≤ µ ‖F (xδ

n) − yδ‖s−pK ‖F (xδ
n) − yδ‖p−1 = µK ‖F (xδ

n) − yδ‖s−1

and hence ‖x∗n+1 − x∗n‖ → 0 as n→ ∞ as long as we have chosen µ <∞.

We now show that as long as the discrepancy principle is not fulfilled the algorithm
generates a decreasing sequence {∆s(x∗, x

δ
n)} of Bregman distances. Moreover, for δ >

0 the algorithm terminates after a finite number N(δ, yδ) of iterations. We prove the
following lemma.

Lemma 4.2. Assume (A1)-(A3). Then, for all 0 ≤ n < N(δ, yδ), we have xδ
n ∈ B̺(x∗)

and the estimate
∆s(x∗, x

δ
n+1) < ∆s(x∗, x

δ
n)

is valid. . Moreover, the following hold:

(i) If δ > 0 then the algorithm stops after a finite number N(δ, yδ) of iterations. More-
over we have the estimates

N(δ, yδ) ≤ C δ−s

for some constant C > 0 as well as

N(δ,yδ)−1
∑

n=0

µn‖F (xδ
n) − yδ‖p ≤ λ−1

τ ∆s(x∗, x0)
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and
N(δ,yδ)−1

∑

n=0

‖F (xδ
n) − yδ‖s ≤ λ−1

τ µ−1

τ
∆s(x∗, x0).

(ii) For δ = 0 we have

∞
∑

n=0

µn‖F (xn) − y‖p ≤ λ−1
0 ∆s(x∗, x0) and

∞
∑

n=0

‖F (xn) − y‖s ≤ λ−1
0 µ−1

τ
∆s(x∗, x0).

Proof. With the introduced notation we derived

∆n+1 ≤ ∆n −
(

cδnµn − ĉδn
s∗
µs∗

n

)

.

Hence, from Lemma 4.1 we get

∆n+1 ≤ ∆n − λ0µn‖F (xn) − y‖p ≤ ∆n − λ0µ0
‖F (xn) − y‖s

for δ = 0 and

∆n+1 ≤ ∆n − λτµn‖F (xδ
n) − yδ‖p ≤ ∆n − λτµτ

‖F (xδ
n) − yδ‖s

for δ > 0. This proves the lemma by induction. We only have to remark that

Cs

s
‖xδ

n+1 − x∗‖s ≤ ∆s(x∗, x
δ
n+1) < ∆s(x∗, x

δ
0) ≤ ̺sCs

s

which implies xδ
n+1 ∈ B̺(x∗). We observe for δ > 0 that

∆0 ≥ ∆0 − ∆N(δ,yδ) ≥ λτµτ

N(δ,yδ)−1
∑

n=0

‖F (xδ
n) − yδ‖s ≥ λτµτ

N(δ, yδ)(τ δ)s

or equivalently N(δ, yδ) ≤ ∆0λ
−1
τ µ−1

τ
τ−sδ−s which completes the proof. �

Remark 4.2. The use of Bregman distances here is opposite to their application in the
analysis of Tihkonov functionals with P (x) = 1

s
‖x‖s, see e.g. [10]. Whereas for Tikhonov

regularization the Bregman distances of form ∆s(x, x∗) are used we here deal with the
Bregman distance ∆s(x∗, x) with interchanged arguments x and x∗. In particular, the
element x∗ ∈ X ∗ with J∗

s∗(x
∗) = x depends here also on the iteration number n. Taking

the non-symmetry of Bregman distances into account both approaches may vary.

5 Convergence results

We now discuss the convergence properties of the algorithms. We start with Algorithm
4.1 and the noiseless case δ = 0. Here we can present the following convergence result. We
show that the main ideas of the proof in [6] for the convergence for classical Landweber
iteration of nonlinear equations in Hilbert spaces can be applied also in a Banach space
setting.
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Theorem 5.1. Assume (A1)-(A3) and δ = 0. Then Algorithm 4.1 stops either after
a finite number N of iterations with xN satisfying F (xN) = y or the sequence {xn}
convergences to a solution of equation (1).

Proof. Assume that the iteration process does not stop after a finite number of iterations.
From Lemma 4.2 we conclude F (xn) → y as n → ∞. Moreover, the sequence {∆n} of
Bregman distances is convergent since it is monotonically decreasing and bounded from
below by zero. We now show that {xn} is a Cauchy sequence. For arbitrary chosen indices
k > l we can find an index l ≤ j ≤ k such that

‖F (xj) − y‖ ≤ ‖F (xn) − y‖, ∀ l ≤ n ≤ k.

Using the triangle inequality we obtain ‖xk − xl‖ ≤ ‖xk − xj‖ + ‖xj − xl‖. On the other
hand we have from inequality (4) that

Cs

s
‖xk − xj‖s ≤ ∆s(xj , xk)

=
1

s
‖xj‖s − 1

s
‖xk‖s − 〈x∗k, xj − xk〉

=
1

s
‖x∗‖s − 1

s
‖xk‖s − 〈x∗k, x∗ − xk〉 −

(

1

s
‖x∗‖s − 1

s
‖xj‖s − 〈x∗j , x∗ − xj〉

)

−〈x∗k − x∗j , x∗ − xj〉
= ∆k − ∆j − 〈x∗k − x∗j , x∗ − xj〉.

We have |∆k − ∆j| → 0 as j, k → ∞. Furthermore, we derive

∣

∣〈x∗k − x∗j , xj − x∗〉
∣

∣ =

∣

∣

∣

∣

∣

k−1
∑

n=j

〈x∗n+1 − x∗n, xj − x∗〉
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

k−1
∑

n=j

µn〈Jp(F (xn) − y), F ′(xn)(xj − xn + xn − x∗)〉
∣

∣

∣

∣

∣

≤
k−1
∑

n=j

µn‖F (xn) − y‖p−1(1 + L) (‖F (xn) − y‖ + ‖F (xn) − F (xj)‖)

≤
k−1
∑

n=j

µn‖F (xn) − y‖p−1(1 + L) (2‖F (xn) − y‖ + ‖F (xj) − y‖)

≤ 3

k−1
∑

n=j

µn‖F (xn) − y‖p−1(1 + L)‖F (xn) − y‖

= 3 (1 + L)
k−1
∑

n=j

µn‖F (xn) − y‖p.

For j, k → ∞ the right hand side goes to zero. This proves ‖xj −xk‖ → 0 as j, k → ∞. A
similar argumentation shows ‖xj − xl‖ → 0 as j, l → ∞. Consequently, {xn} is a Cauchy
sequence and hence xn → x̃∗ ∈ B̺(x∗). By the continuity of F and F (xn) → y we have
F (x̃∗) = y which shows that the limit element x̃∗ is a solution of (1). �

Under some additional assumptions we can characterize the limit element x̃∗ ∈ D(F ).
Therefore we cite the following result, see [14, Proposition 1] and [13, Proposition 2.1].
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Proposition 5.1. Assume (A3). Then for all x ∈ Bρ(x0) with radius ρ > 0 chosen such
that Bρ(x0) ⊂ B̺(x∗) ⊆ D(F ) we have

Mx := {x̃ ∈ Bρ(x0) : F (x̃) = F (x)} = (x+ N (F ′(x))) ∩ Bρ(x0) (9)

and
N (F ′(x̃)) = N (F ′(x)), ∀ x̃ ∈Mx. (10)

The property (9) was already observed in [6, Proposition 2.1] in Hilbert spaces. Moreover,
we need an additional condition which was introduced in [6] for the characterization of
the limit element in a Hilbert space setting. There, the condition

N (F ′(x∗)) ⊆ N (F ′(x)) for all x ∈ B̺(x∗) (11)

was supposed. Using this assumption we can prove the following result.

Theorem 5.2. Assume (A1)-(A3) and Bρ(x0) ⊂ B̺(x∗) for some radius ρ > 0. If X is
additionally supposed to be smooth then the following hold:

(i) Assume the set {x ∈ D(F ) : F (x) = y} ∩ Bρ(x0) to be non-empty. Then the
minimization problem

∆s(x, x0) → min subject to {x ∈ D(F ) : F (x) = y} ∩ Bρ(x0) (12)

has a solution which is unique if this solution belongs to the interior of Bρ(x0).

(ii) Suppose δ = 0. Assume x† ∈ intBρ(x0) to be the (unique) solution of (12). Then

Js(x
†) − x∗0 ∈ R(F ′(x†)⋆) holds. Moreover, if additionally (11) is valid, then the

sequence {xn} generated by Algorithm 4.1 converges to x†.

Proof. Assume x ∈ D(F ) to be arbitrary chosen and x∗ is chosen such that x∗ ∈ Bρ(x0).
From (9) we can conclude that F (x) = y if and only if x − x∗ ∈ N (F ′(x∗)) = N (F ′(x)).
We examine the Bregman distance ∆s(x, x0). Let be x, x̃n ∈ X arbitrary chosen with
x̃n ⇀ x. By the weak lower semi-continuity of the norm we conclude

1

s
‖x‖s ≤ lim inf

n→∞

1

s
‖x̃n‖s.

Furthermore, 〈x∗0, x̃n〉 → 〈x∗0, x〉 as n → ∞ holds by definition of the weak convergence.
Hence we have shown that

∆s(x, x0) ≤ lim inf
n→∞

∆s(x̃n, x0),

i.e. the Bregman distance is sequentially weakly lower semi-continuous with respect to the
first argument. Then the existence of a minimizer is clear by the coercivity of the Bregman
distance ∆s(x, x0) and the weak closedness of the set M := x∗ + N (F ′(x∗)) ∩ Bρ(x0), see
e.g. [21, Theorem 38.A and Corollary 38.14]. Let x♯ denote a solution of (12). Considering
the Bregman distance ∆s(x, x0) we have

∂

∂x
∆s(x, x0) =

∂

∂x

(

1

s
‖x‖s − 1

s
‖x0‖s − 〈x∗0, x− x0〉

)

= Js(x) − x∗0 ∈ X ∗.
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Assume x♯ ∈ intBρ(x0) and let x ∈ N (F ′(x∗)) be chosen arbitrary. Then x♯ ± λx ∈ M
for λ > 0 sufficiently small. From the optimality condition we conclude

0 ≤ 〈Js(x♯) − x∗0, x♯ ± λx− x♯〉 = ±λ〈Js(x♯) − x∗0, x〉
which implies

〈Js(x♯) − x∗0, x〉 = 0, ∀x ∈ N (F ′(x∗)).

Let N (F ′(x))⊥ denote the annihilator of N (F ′(x)). Since R(F ′(x∗)⋆) = N (F ′(x∗))
⊥ this

proves Js(x♯) − x∗0 ∈ R(F ′(x∗)⋆). Let x̃♯ denote another solution of (12). Then

〈Js(x♯) − Js(x̃♯), x〉 = 0, ∀x ∈ N (F ′(x∗)),

follows immediately. We set x := x♯ − x̃♯. This and the strict monotonicity of the duality
mapping Jp, see e.g. [21, Proposition 47.19], imply x♯ = x̃♯.
We consider the second part with {xn} generated by Algorithm 4.1. From the theorem
above we have xn → x̃∗ and x∗n → Js(x̃∗) as n → ∞ with F (x̃∗) = y. We have to
show x† = x̃∗. Since R(F ′(xn)⋆) = N (F ′(xn))⊥ ⊆ N (F ′(x†))⊥, we see from the iteration
process that Js(x̃∗) − x∗0 ∈ N (F ′(x†))⊥. In particular, this implies

〈Js(x̃∗) − x∗0, x〉 = 0 ∀x ∈ N (F ′(x†)).

Since x† is the minimizer of (12) we immediately observe that

〈Js(x
†) − Js(x̃∗), x〉 = 0, ∀x ∈ N (F ′(x†)).

Setting x := x† − x̃∗ ∈ N (F ′(x†)), this again implies x† = x̃∗. This proves the theorem.
�

Finally – under some additional assumptions – we present a result which proves that
Algorithm 4.1 describes in fact a regularization method.

Theorem 5.3. Assume (A1)-(A3), x† ∈ intBρ(x0) ⊂ B̺(x∗) for some radius ρ > 0.
Suppose furthermore, that F ′ depends continuously on x, X is smooth and Y is uniformly
smooth. If (11) holds and {xδ

n} is generated by Algorithm 4.1 then we have convergence
xδ

N(δ,yδ) → x† as δ → 0.

Proof. Introducing a change in the notation we write (xδ
n)∗ for the iterates in the dual

space X ∗ for noisy data and x∗n for the case δ = 0. Let n be a fixed index. Since X ∗ and Y
are uniformly smooth the duality mappings J∗

s∗ and Jp are uniformly continuous on each
bounded set, see e.g. [21, Proposition 47.19]. Hence, under the assumptions stated above
the iterated xδ

n and (xδ
n)∗ depend continuously on the given data yδ. From Theorem 5.2(ii)

we conclude xn → x† as n→ ∞. Without loss of generality we can assume N(δ, yδ) → ∞
as δ → 0. Then, for N(δ, yδ) ≥ n we obtain

∆s(x
†, xδ

N(δ,yδ)) ≤ ∆s(x
†, xδ

n)

=
1

s
‖x†‖s − 1

s
‖xδ

n‖s − 〈(xδ
n)∗, x† − xδ

n〉

= ‖x†‖s − 1

s
‖xn‖s − 〈x∗n, x† − xn〉 +

1

s
‖xn‖s − 1

s
‖xδ

n‖s

+〈x∗n, x† − xn〉 − 〈(xδ
n)∗, x† − xδ

n〉
= ∆s(x

†, xn) +
1

s∗
(

‖xδ
n‖s − ‖xn‖s

)

+ 〈(xδ
n)∗ − x∗n, x

†〉.
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The right hand side vanishes for δ → 0 and n → ∞. On the other hand, convergence
∆s(x

†, xδ
N(δ,yδ)) → 0 as δ → 0 implies xδ

N(δ,yδ) → x† as δ → 0 since X is supposed to be
s-convex. This proves the theorem. �

Remark 5.1. The smoothness of the space X was applied only for the characterization of
the limit element x†. The regularization property of Algorithm 3.1 remains valid without
this assumption since the duality mapping Js : X −→ X ∗ is neither required to be single-
valued nor continuous.

We now return to our starting point and discuss convergence and regularization property
of Algorithm 3.1. By a simple observation we can apply the results of Lemma 4.2, Theorem
5.1 and Theorem 5.3 to prove the following.

Theorem 5.4. Assume (A1)-(A3) and all iterates {xδ
n} generated by Algorithm 3.1 re-

main in D(F ). Then the following hold:

(i) We set µn := µ∗ where µ∗ is the solution of the problem (6). Then all results of
Lemma 4.2 remain true.

(ii) We set µn := min{µ∗, µ ‖F (xδ
n)− yδ‖s−p}, 0 < µ <∞. Then all results of Theorem

5.1 and Theorem 5.3 remain true under the assumptions stated therein.

Proof. By Lemma 3.1 the parameter choices are well defined. Let µ̃n denotes the
parameter generated by Algorithm 4.1. Assume δ > 0. Then we derive by definition of
µn that

∆n+1 − ∆n ≤ f(µ∗) − 1

s∗
‖x∗n‖s∗ ≤ f(µ̃n) −

1

s∗
‖x∗n‖s∗

≤ −
(

Cn,1µ̃n − Cn,2

s∗
µ̃s∗

n

)

≤ −λτ µ̃n‖F (xδ
n) − yδ‖p

which was the essential property for proving Lemma 4.2. For convergence and regular-
ization property we additionally have to apply an upper bound µ‖F (xδ

n) − yδ‖s−p on the
suggested choice of the step sizes µn and µ̃n. The case δ = 0 follows similarly. �

Remark 5.2. We observe the following:

• Finding the parameter µ∗ we have to solve the nonlinear equation (7) numerically.
It cannot be calculated explicitly in general. Hence the price of a lower iteration
number N(δ, yδ) is a higher numerical effort in each iteration step. So it might
depend on the specific problem which algorithm is numerically more efficient.

• Since f ′(µ), µ ≥ 0, is strictly increasing such algorithms for solving equation (7)
are easy to implement. Either one uses a secant method or – if the duality mapping
J∗

s∗ is supposed to be differentiable – we even can apply Newton’s methods. This is
e.g. the case for X ∗ = Lr with r ≥ 2.

6 Some numerical results

Based on two sample functions we want to compare the numerical effort of the algorithms
described above in two small numerical experiments. In the first example we addition-

13



ally apply Landweber iteration with constant step size µn ≡ const. in order to see the
acceleration effect of the control of the step size. It turns out that the choice µn ≡ 1 is
too large in that situation. Therefore we have set µn ≡ 0.1 which was motivated by the
observation of the calculated step sizes µn of Algorithm 3.1.

a) A linear benchmark example

Here we choose X := L1.1(0, 1) and Y := L2(0, 1) and consider the linear operator of
integration, e.g. A : X −→ Y is given as

[Ax](t) :=

t
∫

0

x(τ) dτ, t ∈ [0, 1].

Because of its simple structure this operator has been well-established as benchmark
example for numerical case studies dealing with inverse problems. Moreover we set p = 2
which coincides with the power of convexity of X . For discretization we divide the interval
[0, 1] into k = 1000 equidistant subintervals. We set tj := j/k, 0 ≤ j ≤ k, and approximate
x by n piecewise constant ansatz functions, i.e.

x(t) ≈
k

∑

j=1

xjϕj(t), t ∈ [0, 1], with ϕj = χ(tj−1,tj), 1 ≤ j ≤ k.

If x is supposed to be continuous on the intervals (tj−1, tj) we can set e.g. xj := x((tj−1 +
tj)/2). Then the specific discretization implies that we have no discretization error for
discretizing the exact solution x†. For the discretization of the data y ∈ Y we can take
the function values of y ∈ Y at the end points of the n subintervals, i.e. we approximate

y(t) ≈
k

∑

j=1

yjϕj(t), t ∈ [0, 1], with yj := y(tj), 1 ≤ j ≤ k.

The corresponding discretization of the norms and duality products is induced by the
specific choice of the ansatz functions ϕj(t), 1 ≤ j ≤ k, t ∈ [0, 1]. In the numerical
example we perturb the exact data with random Gaussian noise. Here δrel denotes the
relative size of noise error. We deal with the functions

x†1(t) := 3 (t− 0.5)2 + 0.2, t ∈ (0, 1), and x†2(t) :=















5, t ∈ [0.25, 0.27],
−3, t ∈ [0.4, 0.45],

4, t ∈ [0.7, 0.73],
0, else.

For the discrepancy criterion we set τ := 1.2 and x0 ≡ 0 is chosen as initial guess. The
number of iterations was limited by nmax = 106.

We now turn to the numerical results. The number of iterations as well as the calculation
times are presented in Table 1 for x†1 and in Table 2 for the second function x†2. We
summarize the results:

- Even not presented here the quality of the approximate solutions xδ
N(δ,yδ) do not de-

pend on the specific algorithm. In all cases the achieved results were only little worse
than the Tikhonov-regularized solutions with penalty functional P (x) := 1

q
‖x‖q

Lq ,

q = 1.1, and the regularization parameter α chosen in an optimal way (using the
knowledge of x†i , i = 1, 2).
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µn = const. Algorithm 4.1 Algorithm 3.1
δrel N(δ, yδ) time (sec.) N(δ, yδ) time (sec.) N(δ, yδ) time (sec.)

0.05 863 0.85 63 0.16 28 0.18
0.01 7530 6.56 335 0.40 93 0.33
10−3 79120 69.01 2065 2.29 451 2.05
10−4 > 106 – 24548 26.27 2068 8.69
10−5 – – 118823 126.81 12479 49.97

Table 1: Calculation times for sample function x†1

µn = const. Algorithm 4.1 Algorithm 3.1
δrel N(δ, yδ) time (sec.) N(δ, yδ) time (sec.) N(δ, yδ) time (sec.)

0.05 4023 3.52 253 0.35 104 0.29
0.01 36720 31.98 1520 1.35 358 1.28
10−3 457270 391.40 11022 12.01 963 4.17
10−4 > 106 – 94315 101.77 6729 27.10
10−5 – – 606582 653.37 50890 205.01

Table 2: Calculation times for sample function x†2

- Choosing a constant step size µn ≡ const. the number N(δ, yδ) of necessary iter-
ations grows rapidly when the noise level δ becomes smaller. For a relative noise
level δrel = 10−4 the maximal number nmax = 106 of iterations was exceeded for
both sample functions.

- Both accelerated versions lead to a strongly decrease of the iteration numbers. In
particular, for moderate noise levels δrel = 10−3 . . . 0.05 (which are the one occurring
in practical applications) the calculation times shows the good performance of the
algorithms under consideration.

- For very small noise levels (or δ = 0) the calculation times are still quite high.
Here additional numerical stopping criterions should be tested leading to a earlier
termination (which was not done here).

- The application of the forward operator A and its adjoint A⋆ was implemented here
in an efficient way needing only O(n) operations. Using a matrix-vector multiplica-
tion for the implementation the differences between Algorithm 3.1 and 4.1 in time
will increase since the calculation of the step size µn in Algorithm 3.1 uses only
vector-vector operations (of order O(n)).

Finally, we present a graphical demonstration of the effect of using Banach spaces in our
considerations. Therefore we choose the Hilbert space X = L2(0, 1) in an alternative cal-
culation which leads back to classical (accelerated) Landweber iteration. The regularized
solutions xδ

N(δ,yδ) for x†2 and δrel = 0.01 were plotted in Figure 1. We see that the choice

X = Lq(0, 1) has the same effect as the choice of the penalty functional P (x) := 1
q
‖x‖q

Lq

with q = 1.1 or q = 2 in the Tikhonov functional. Consequently, the numerical effort
as well as the obtained regularized solutions xδ

N(δ,yδ) of this numerical example show that
accelerated Landweber methods are an interesting alternative to Tikhonov regularization
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Figure 1: exact vs. regularized solution for x†2 for X = L2(0, 1) (left plot) and X =
L1.1(0, 1) (right plot)

with penalty terms based on Banach space norms.

b) A nonlinear application

We also want to demonstrate the applicability of our algorithm to nonlinear problems.
We consider the following example which arises in option pricing theory, see e.g. [15]. The
corresponding inverse problem was deeply studied in [7], see also the references therein
for an overview about further aspects in the mathematical foundation of (inverse) option
pricing. We also refer to [10] for some newer results.

Following the notation in [7] we we introduce the Black-Scholes function UBS for the
variables X > 0, K > 0, r ≥ 0 and s ≥ 0 as

UBS(X,K, r, t, s) :=

{

X Φ(d1) −K e−r tΦ(d2), s > 0,
max

{

X −K e−r t, 0
}

, s = 0,

with

d1 :=
ln

(

X
K

)

+ r t+ s
2√

s
, d2 := d1 −

√
s

and Φ(ξ), ξ ∈ R, denotes the cumulative density function of the standard normal dis-
tribution. We follow the generalization of the classical Black-Scholes analysis with time-
dependent volatility function σ(t), t ≥ 0, and constant riskless short-term interest rate
r ≥ 0. Then the price c(t) of a European call option on a traded asset with fixed strike
price K > 0 as function of the maturity t ∈ [0, T ] is given by formula

c(t) := UBS

(

X,K, r, t,

∫ t

0

σ2(τ) dτ

)

, t ∈ [0, T ],

where T > 0 denotes the maximal time horizon of interest. Moreover, X > 0 denotes the
actual price of the underlying asset at time t0 = 0.

From the investigations in [7] we know that for t → 0 some additional effects occurs
which need a separate treatment. In order to keep the considerations here more simple
we introduce a (small) time tε > 0 and assume the volatility to be known (and constant)
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Algorithm 4.1 Algorithm 3.1

δrel N(δ, yδ)
‖xδ

N
−x

†
1
‖

‖x†
1
‖

N(δ, yδ)
‖xδ

N
−x

†
1
‖

‖x†
1
‖

0.01 39 0.2274 14 0.2263
10−3 691 0.0986 120 0.0995
10−4 10098 0.0484 627 0.0497
10−5 119982 0.0212 2692 0.0216

Table 3: Iteration numbers and regularization error for the nonlinear problem

on the interval [0, tε], i.e. σ(t) ≡ σ0 > 0, t ∈ [0, tε]. Then, for given 1 < a, b < ∞ we
define the nonlinear operator F : D(F ) ⊂ La(tε, T ) −→ Lb(tε, T ) as

[F (x)](t) := UBS

(

X,K, r, t, σ2
0tε +

∫ t

tε

x(τ) dτ

)

, t ∈ [tε, T ],

with domain D(F ) := {x ∈ La(tε, T ) : x(t) ≥ c a.e. on [tε, T ]}. Then one can show
that F is Fréchet differentiable for all x ∈ D(F ) and the estimate

‖F (x̃) − F (x) − F ′(x)(x̃− x)‖ ≤ C ‖x̃− x‖La‖F (x̃) − F (x)‖Lb

holds for all x, x̃ ∈ D(F ) with uniform constant C > 0, see [9]. In particular, condition
(3) holds with L < 1 whenever ‖x̃− x‖ is sufficiently small.

In the specific experiment we choose the parameters

X = 1, K = 0.85, r = 0.05, tε = 0.1 and T = 1.

Moreover, we assume that the exact solution is given by x†1(t), t ∈ [0.1, 1]. Finally we
set σ0 := x†1(0.1) = 0.68. As spaces we take X = L1.1(tε, T ) and Y = L2(tε, T ) in order
to have a similar setting as in the linear example. Also the discretization is done in a
similar manner dividing the interval [0.1, 1] into k = 1000 equidistant subintervals. As
initial guess we choose x0 ≡ 0.4 such that we can set

L :=
1

3
and τ := 2.1 >

1 + L

1 − L
= 2.

The results for different (relative) noise levels are presented in Table 3 for Algorithm
4.1 and Algorithm 3.1. There the number N(δ, yδ) of necessary iterations as well as the
relative errors of the regularized solution xδ

N(δ,yδ)
are given. We remark the following:

- Both algorithms provide regularized solutions of similar quality.

- The number N(δ, yδ) of necessary iteration numbers can be dramatically reduced
by applying Algorithm 3.1 also in the nonlinear case.

- The iteration number N(δ, yδ) is here somewhat lower than in the linear example for
the sample function x†1. This seems to be surprisingly on the first glance. However,
the initial guess x0 ≡ 0.4 is better than x0 ≡ 0 which was the choice in the linear
case. Moreover, we have chosen τ = 2.1 instead of τ = 1.2 which of course reduces
the number of necessary iterations. As consequence, the reconstruction error in the
linear case is smaller than in the nonlinear example.

Summarizing these results, this numerical experiment shows that we can apply this
method successful also to nonlinear ill-posed problems.
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7 Conclusions

We presented an accelerated Landweber iteration method for solving non-linear ill-posed
operator equations in Banach spaces. Based on an auxiliary problem we proved conver-
gence and stability of the algorithm under consideration. Even gradient-type methods are
often regarded as too slow for practical applications we have demonstrated by a numerical
example that including the search of an appropriate step size leads to acceptable number
of necessary iterations and computational time. Because such algorithms are easy to im-
plement we believe that accelerated Landweber approaches are a valuable tool in solving
inverse problems also in Banach spaces.
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