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Abstract

Abstract. We introduce and discuss an iterative method of relaxed Landwe-

ber type for the regularization of the solution operator of the operator equation

F (x) = y, where X and Y are Banach spaces and F is a non-linear, continuous

operator mapping between them. We assume that the Banach space X is smooth

and convex of power type. We will show that under the so-called approximate source

conditions convergence rates may be achieved. We will close our discussion with the

presentation of a numerical example.
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1 Introduction

Let X and Y be both Banach spaces. We consider the non-linear operator equation

F (x) = y, x ∈ D(F ), (1)

where F : D(F ) ⊆ X −→ Y describes a continuous non-linear mapping from the domain
D(F ) into the space Y . In many applications (1) turns out to be ill-posed. In particular
a solution x ∈ D(F ) satisfying F (x) = y needs not to exist nor to be unique, and if it
exists then it does not necessarily depend continuously on the data y. This means that
small perturbations of the data may cause large perturbations of the solution. Usually
F models some measurement system. Therefore it can be assumed that a noise cluttered
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version yδ of y is available where only the estimate ‖yδ − y‖ ≤ δ is known. This rises the
need of the application of a regularization method.

In the case that both spaces X and Y are Hilbert many regularization methods have been
established [11, 25, 23], see also the references therein. The most prominent classes of
regularization strategies are

• regularization by minimizers of functionals, i.e. Tikhonov regularization and

• iterative regularization methods, like Landweber iteration etc.

Motivated by their successful application in image restoration, sparsity reconstruction the
development and investigation of regularization methods for inverse problems in Banach
spaces have become a field of modern research, cf. e.g. [8, 6, 20]. In particular, the
Tikhonov regularization in Banach spaces has been established theoretically in e.g. [20]
whereas their numerical treatment (for linear problems) was considered in e.g. [8, 5].
As described in [20] and references therein, many convergence rate results for Tikhonov
regularization are available for linear and non-linear operators. We also refer to [15] for
some newer results.

For the case that F in (1) is replaced by a linear operator A (with adjoint operator A⋆)
an iterative regularization method which is given via

x∗
n+1 ∈ x∗

n − µnA
⋆Jp(A xn − yδ), xn+1 := J∗

q (x∗
n+1) (2)

was recently introduced in [27]. Strong convergence of the iterates to the minimum-norm
solution of (1) was proven under mild assumptions on the space X. However, from the
theoretical point of view the lack of quantitative results, i.e. convergence rates, is a major
drawback.

In this paper we introduce an alternative iterative method for regularization of (linear
and) non-linear operator equations in Banach spaces. We assume F to be (Gâteaux-
)differentiable in D(F ) with derivative F ′(x). Then this method reads as

x∗
n+1 := x∗

n − µF ′(xn)⋆Jp(F (xn)− yδ)− βnx
∗
n, xn+1 := J∗

q (x∗
n+1), (3)

where Jq : Y −→ Y ∗ and J∗
q : X∗ −→ X denote duality mappings in the spaces under

consideration. In Hilbert spaces this method is also known as modified Landweber itera-
tion which was introduced and investigated in [26]. However, as opposite to the approach
there we suggest here an a-posteriori choice of the parameter βn. We will show that for
properly chosen parameters µ and {βn} and under assumptions on the space X similar
to those of [27] not only strong convergence but also convergence rates can be obtained.
We point out, that to our best knowledge, this is the first time that convergence rates for
Landweber-like algorithms could be proven in Banach spaces. Moreover, we can give an
extension of the convergence rates results of [26] in Hilbert spaces.

The iteration of [27] can be understood as a steepest descent approach along the functional

1
p
‖A x− yδ‖p,

whereas the new iteration can be understood as the steepest descent along the Tikhonov
functional

1
p
‖F (x)− yδ‖p + βn

1
µ p
‖x‖p.
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Therefore one can interpret our iteration as a regularized version of the iteration of [27]
for nonlinear problems.

Since we also aim to prove convergence rates we need some (source) conditions describing
the smoothness of a (minimum-norm) solution x† ∈ D(F ) of equation (1). Here we deal
with so-called approximative source condition of the form

Jp(x
†) = F ′(x†)⋆ω + υ, ‖ω‖ ≤ S, ‖υ‖ ≤ d(S),

for S > 0 where d : [0,∞) −→ [0,∞) denotes the non-negative decreasing distance
function of the element Jp(x

†) with respect to the set R(F ′(x†)⋆). The idea of using
the decay rate of this distance functions for proving convergence rates was developed by
[19, 18] in Hilbert spaces. Since this method does not depend on Hilbert space techniques
such as spectral calculus it can be applied in Banach spaces, see also [16].

Consequently the paper is organized as follows: In the next section, we introduce basic
notions of geometry of Banach spaces. In Section 3 we recapitulate the idea and defini-
tions of approximate source conditions and distance functions and derive a corresponding
variational inequality which will be applied in the proofs of our main convergence rates
result. In Section 4 the iteration (3) is introduced more precisely. As main result we
will show that for this iteration together with approximate source condition convergence
rate results can be obtained. In Section 5 we show that a slightly altered version of the
iteration can be used if no approxiamte source conditions are available. We will close our
discussion with theoretical and numerical analysis of an nonlinear example which arises
in option pricing theory.

2 Preliminaries

Throughout the paper let 1 < p <∞ and 1 < q <∞ be conjugate exponents, i.e.

1
p

+ 1
q

= 1.

Let X and Y be Banach spaces with duals X∗ and Y ∗. Their norms will be denoted by
‖ · ‖. We omit indices indicating the space since it will become clear from the context
which one is meant. For x ∈ X and z∗ ∈ X∗ we denote by 〈x, z∗〉 or 〈z∗, x〉 the duality
paring, i.e. 〈x, z∗〉 = 〈z∗, x〉 = z∗(x).

For p > 1 the (in general) set-valued mapping Jp : X ⇉ X∗ defined by

Jp(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖p−1}

is called a duality mapping of X with gauge function t 7→ tp−1. We remark that Jp is
in general non-linear. One can show [7, Th.I.4.8] that J2 is linear if and only if X is a
Hilbert space. In the case of a Hilbert space J2 is just the identity mapping. The space X
is called smooth if Jp(x) is single valued for all x ∈ X. Then for the sake of convenience
we identify Jp with it’s only single-valued selection.

In the convergence analysis we deal with Bregman distances. The definition is stated
below.
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Definition 2.1. Let X be a smooth Banach space and p > 1. The Bregman distance
∆p(x, ·) of the convex functional x 7→ 1

p
‖x‖p at x ∈ X is defined as

∆p(x, x̃) :=
1

p
‖x̃‖p − 1

p
‖x‖p − 〈Jp(x), x̃− x〉, x̃ ∈ X,

where Jp : X −→ X∗ denotes the duality mapping of X with gauge function t 7→ tp−1.

Due to the definition of duality mappings we can also rewrite the definition as

∆p(x, x̃) = 1
p
‖x̃‖p − 1

p
‖x‖p − 〈Jp(x), x̃〉+ ‖x‖p

= 1
p
‖x̃‖p + 1

q
‖x‖p − 〈Jp(x), x̃〉

By the convexity of the functional x 7→ 1
p
‖x‖p we have ∆p(x, x̃) ≥ 0 for all x, x̃ ∈ X.

One can further show that the Bregman distance is continuous in both arguments [27,
Theorem 2.12].

The presented convergence rate analysis is based essentially on the following assumptions.

(A1) There exists a solution x† ∈ D(F ) of (1), i.e. F (x†) = y holds.

(A2) The Banach space X is smooth and p-convex for some p ≥ 2.

(A3) The exists a ball B̺(x
†) around x† with radius ̺ > 0 and a constant 0 ≤ η < 1 such

that for each x ∈ D(F ) ∩ B̺(x
†) we can find a linear bounded operator F ′(x) with

‖F ′(x)‖ ≤ K for some constant K > 0 and

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖ ≤ η‖F (x̃)− F (x)‖ (4)

for all x̃ ∈ D(F ) ∩ B̺(x
†).

We shortly discuss the assumptions (A2) and (A3). The space X is called convex of power
type p or p-convex if there exists a constant C > 0 such that δX(ǫ) ≥ Cǫp, where the
modulus of convexity of X δX : [0, 2]→ [0, 1] is defined via

δX := inf{1− ‖1
2
(x + x̃)‖ : ‖x‖ = ‖x̃‖ = 1, ‖x− x̃‖ ≥ ǫ}.

Moreover, the space X is said to be smooth of power type q or q-smooth for q > 1 if there
exists a constant G > 0 such that ρX(τ) ≤ Gτ q, where ρX : [0,∞)→ [0,∞) – called the
modulus of smoothness of X – is defined via

ρX = 1
2
sup{‖x + x̃‖+ ‖x− x̃‖ − 2 : ‖x‖ = 1, ‖x̃‖ ≤ τ}.

As a consequence of the Lindenstrauss duality formula X is p-convex if and only if X∗ is
q-smooth and X is q-convex if and only if X∗ is p-smooth, (cf. [9, IV.1.7 and IV.1.12]).
Due to the polarization identity every Hilbert space is 2-smooth and 2-convex. Further
for 1 < p < ∞ the sequence spaces ℓp, Lebesgue spaces Lp and Sobolev spaces W m

p are
min{2, p}-smooth and max{2, p}-convex [13, 30, 7].
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By (A2) and due to the Xu-Roach inequalities [30], we conclude from the p-convexity of
X that there exists a constant Cp > 0 such that the estimate

∆p(x, x̃) =
1

p
‖x̃‖p − 1

p
‖x‖p − 〈Jp(x), x̃− x〉 ≥ Cp

p
‖x− x̃‖p (5)

holds for all x, x̃ ∈ X. From the q-smoothness of the dual space X∗ we derive the existence
of a constant Gq > 0 such that

1

q
‖x̃∗‖q − 1

q
‖x∗‖q − 〈Jq(x

∗), x̃∗ − x∗〉 ≤ Gq

q
‖x∗ − x̃∗‖q (6)

for all x∗, x̃∗ ∈ X∗. We will use the relations (5) and (6) in our convergence analysis. In
particular, the constants Gq and Cp will play the role of fixed parameters in the algorithm
under consideration.

The condition (4) is also known as η-condition which is in fact a restriction of the non-
linearity of the operator F . It was originally introduced in [12] for proving convergence
and convergence rates for Landweber iteration for nonlinear ill-posed problems in Hilbert
spaces. There, the authors supposed η < 1

2
for their analysis. For our considerations the

weaker requirement η < 1 is sufficient. The same condition was applied in [26] for proving
convergence of the modified Landweber iteration. In order to prove convergence rates for
Landweber iteration the additional structural condition

F ′(x) = RxF
′(x†) with ‖Rx − I‖ ≤ C ‖x− x†‖, Rx : Y −→ Y

with ‖x − x†‖ sufficiently small and constant C > 0 was introduced in [12]. On the
other hand, in [26] only Litschitz continuity of the Fréchet-derivative was supposed which
is a weaker restriction than (A3). In order to understand the necessity of the different
strength of the applied assumptions we briefly recall convergence rates results for itera-
tively regularized Gauß-Newton methods, see e.g. [1] and [4] as well as [2] and [23] for a
further discussion of conditions for iterative regularization methods of nonlinear problems
in Hilbert spaces. There, for an a-priori guess x0 ∈ X the power-type source condition

x† − x0 ∈ R
(

(F ′(x†)∗F ′(x†))ν
)

for some exponent 0 < ν ≤ 1 is considered. Then it is essential to distinguish between
ν ≥ 1

2
, see [1], and 0 < ν < 1

2
, see [4]. For ν ≥ 1

2
the Lipschitz continuity of the Fréchet-

derivative F ′(x), x ∈ D(F ), is sufficient to prove accordant convergence rates. But it
has been well-established that this condition is not sufficient in the case 0 < ν < 1

2
. As

consequence, in [4] was dealt with the (more general) structural condition

F ′(x̄) = R(x̄, x)F ′(x) + Q(x̄, x)

‖I − R(x̄, x)‖ ≤ CR

‖Q(x̄, x)‖ ≤ CQ‖F ′(x†)(x̄− x)‖

with sufficiently small parameters CR and CQ and operators R(·, ·), Q(·, ·) depending on
x̄, x ∈ X. In particular, CR + CQ‖x − x†‖ < 1

2
implies automatically the condition

(A3). Since in [26] only the case ν = 1
2

was considered, the Lipschitz continuity of the
Fréchet-derivative was sufficient in the corresponding convergence rates analysis. The
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presented convergence rates analysis here deals with the situation 0 < ν ≤ 1
2

and show
that condition (A3) is sufficient to prove accordant convergence results. Moreover, the
presented convergence rates analysis includes also logarithmic source conditions which
was treated in [22] separately for iteratively regularized Gauß-Newton methods.

For linear operators we can set η = 0. So linear inverse problems can be considered as
special case of the subsequent analysis. With F ′(x)⋆ : Y ∗ −→ X∗ we denote the adjoint
operator of F ′(x) which is defined by

〈y∗, F ′(x) x̃〉 = 〈F ′(x)⋆y∗, x̃〉, x̃ ∈ X, y∗ ∈ Y ∗.

3 Approximate source conditions

Since our aim is also to prove convergence rates we need a source condition. Therefore,
we introduce the notions of approximate source conditions and distance functions. Origi-
nally, approximate source conditions were established in [3] for proving error estimates for
linear regularization methods in Hilbert spaces. In combination with distance functions in
[18] a concept was developed for proving convergence rates based on approximate source
conditions. Since no Hilbert space tools such as spectral calculus is needed the idea can
be transferred to regularization approaches in Banach spaces, see e.g. [14] for some initial
convergence rates results. We define distance functions.

Definition 3.1. The distance function d(·; ξ) : [0,∞) −→ R of an element ξ ∈ X∗ with
respect to the set R(F ′(x†)⋆) is defined as

d(S; ξ) := inf
{

‖ξ − F ′(x†)⋆ω‖ : ‖ω‖ ≤ S
}

, S ≥ 0. (7)

Since the space X is supposed to be smooth of power type and hence X∗ is convex of
power type (and therefore in particular strictly convex) we can replace the infimum by
the minimum. In particular, for each S ≥ 0 there exist elements ω = ω(S) and υ = υ(S)
such that

ξ = F ′(x†)⋆ω + υ, ‖ω‖ ≤ S, ‖υ‖ = d(S; ξ), (8)

holds. We refer to conditions of form (8) as approximate source conditions. We will
emphasize the following properties of distance functions: distance functions d(·; ξ) are
non-negative and non-increasing. They are strictly positive, if ξ 6∈ R(F ′(x†)⋆). If ξ ∈
R(F ′(x†)⋆), in particular if the ’classical’ source condition

ξ = F ′(x†)⋆ω, ω ∈ Y ∗, (9)

holds, then d(S; ξ) = 0 for all S ≥ ‖ω‖. On the other hand, if ξ 6∈ R(F ′(x†)⋆) but
ξ ∈ R(F ′(x†)⋆) then d(S; ξ) tends to zero as S →∞.

Of interest for our considerations is the following result.

Lemma 3.2. Assume (A1)-(A3) and Jp(x
†) has distance function d(S) = d(S; Jp(x

†)),
S ≥ 0. Then the estimate

−〈Jp(x
†), x− x†〉 ≤ S(1 + η)‖F (x)− yδ‖+ S(1 + η)δ

+
(

1− 1
q

)

∆p(x, x†) + 1
q

(

p

Cp

)
1

p−1
d(S)q.

(10)

6



holds for all S ≥ 0 and all x ∈ X . The same estimate holds if the Bregman distance
∆p(x, x†) is replaced by ∆p(x

†, x).

Proof. We set T (x, x†) := F (x)−F (x†)−F ′(x†)(x−x†). By assumption the approximate
source condition (8) holds for all S ≥ 0 with ξ = Jp(x

†). We derive

−〈Jp(x
†), x− x†〉 = −〈w(S), F ′(x†)(x− x†)〉 − 〈υ(S), x− x†〉

= −〈w(S), F (x)− yδ + yδ − y − T (x, x†)〉 − 〈υ(S), x− x†〉
≤ S‖F (x)− yδ‖+ S δ + S‖T (x, x†)‖+ d(S)‖x− x†‖

≤ S(1 + η)‖F (x)− yδ‖+ S(1 + η)δ + d(S)
(

p

Cp

)
1
p
∆p(x, x†)

1
p

and finally (10) by applying Young’s inequality to the last term.

The concept of introducing source conditions as variational inequalities was introduces in
[20], see also the discussion of some consequences therein. The variational inequality (10)
holds also in more general situations than (8). So, approximate source conditions can be
considered as kind of motivation for formulating the condition (10).

In order to achieve convergence of the algorithm we further have to suppose that d(S; Jp(x
†))

tends to zero as S →∞, i.e.
Jp(x

†) ∈ R(F ′(x†)⋆) (11)

holds. On the first moment it looks like only a little extension of convergence rates
results assuming the source condition (9). On the other hand, if F ′(x†) is injective then
R(F ′(x†)⋆) = X, see e.g. [29, Satz II.4.5]. Moreover, from [27, Lemma 2.10] we observe
that at least for linear operator equations the minimum-norm-solution x† always satisfies
(11).

4 Convergence and Convergence Rates Results

We consider the following algorithm.

Algorithm 4.1. Let yδ be the given data with ‖yδ − y‖ ≤ δ and d0 : [0,∞) −→ [0,∞)
some non-negative non-increasing function with d0(S)→ 0 as S →∞ and η, ̺ and K be
constants of (A3). Let the iterative regularization algorithm be given via

(S0) Init. Choose µ > 0 such that

(η − 1)µ + 2q Gq

q
Kqµq ≤ 0,

start point x∗
0, x0 := Jq(x

∗
0) such that ∆p(x0, x

†) ≤ R0 and ∆p(x0, x
†) ≤ ̺p Cp

p
. We

choose S̄ = S̄(δ) so big, that
d0(S̄)q ≤ δ · S̄ (12)

and we further choose τ > 0. Set

C1 := 1
q

(

2(1+η)p

µ(1−η)

)q−1

+
(

2(1+η)q

1−η

)p−1
µ

p
τ q +

(

1 + η + 1
q

(

p

Cp

)
1
p

)

τ q−1.
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(S1) Compute

γn := 2q−1Gq‖x∗
n‖q + C1S̄

q

βn := min
{

q, (Rn/(qγn))
p−1
}

Rn+1 :=
(

1− βn

q

)

Rn + γn

q
βq

n.

STOP, if τβnS̄ ≤ δp−1 and βn < q.

(S2) Compute the new iterate via

x∗
n+1 := x∗

n − µF ′(xn)⋆Jp(F (xn)− yδ)− βnx
∗
n

xn+1 := Jq(x
∗
n+1)

Set n← (n + 1) and go to step (S1).

Then the following convergence results hold:

Theorem 4.2. Assume (A1)-(A3), δ > 0 and Jp(x
†) has distance function d(S; Jp(x

†)),
S ≥ 0. We further assume that the iterates {xn} remain in D(F ). If the function d0 is
chosen such that d(S; Jp(x

†)) ≤ d0(S) for all S ≥ 0 then the following hold:

(i) The iterates {xn} remain in B̺(x
†).

(ii) The iteration terminates after a finite number of iterations, i.e. the stopping index
k(δ) = k(δ, yδ) is well-defined.

(iii) There exists a number C = C(δmax) > 0 such that for all δ ≤ δmax the estimate

∆p(xk(δ), x
†) ≤ C δ S̄(δ) (13)

holds.

If in particular S̄(δ) is chosen such that δ S̄(δ) → 0 as δ → 0 then we have convergence
xk(δ) → x† as δ → 0.

Proof. To shorten the notation we set ∆n := ∆p(xn, x
†), An := F ′(xn) and A := F ′(x†).

By definition of the Bregman distance we have

∆n+1 := 1
q
‖x∗

n+1‖q − 〈x∗
n+1, x

†〉+ 1
p
‖x†‖p.

By the q-smoothness of X∗ we have

1
q
‖x∗

n+1‖q ≤ 1
q
‖x∗

n‖q + 〈xn,−µ A⋆
nJp(F (xn)− yδ)− βnx

∗
n〉

+Gq

q
‖µ A⋆

nJp(F (xn)− yδ) + βnx∗
n‖q.

This gives

∆n+1 ≤ ∆n + 〈xn − x†,−µ A⋆
nJp(F (xn)− yδ)− βnx

∗
n〉

+Gq

q
‖µ A⋆

nJp(F (xn)− yδ) + βnx∗
n‖q.
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Furthermore, we have with T (x†, xn) := F (x†)− F (xn)− An(x† − xn)

〈xn − x†,−µ A⋆
nJp(F (xn)− yδ)− βnx∗

n〉
= −µ〈F (xn)− yδ, Jp(F (xn)− yδ)〉+ µ〈T (x†, xn), Jp(F (xn)− yδ)〉
−µ〈yδ − y, Jp(F (xn)− yδ)〉
−βn〈xn − x†, x∗

n − Jp(x
†)〉 − βn〈xn − x†, Jp(x

†)〉

The first term generates a negative term since

−µ〈F (xn)− yδ, Jp(F (xn)− yδ)〉 = −µ‖F (xn)− yδ‖p.

The second term provides

µ
∣

∣〈T (x†, xn), Jp(F (xn)− yδ)〉
∣

∣ ≤ µη‖F (xn)− y‖‖F (xn)− yδ‖p−1

≤ µη‖F (xn)− yδ‖p + µηδ‖F (xn)− yδ‖p−1.

The third term can be estimated as

µ
∣

∣〈yδ − y, Jp(F (xn)− yδ)〉
∣

∣ ≤ µδ‖F (xn)− yδ‖p−1.

The forth term allows us to generate a second negative term, since

−βn〈xn−x†, x∗
n−Jp(x

†)〉 = −βn〈xn−x†, Jp(xn)−Jp(x
†)〉 = −βn∆n−βn∆p(x

†, xn) ≤ −βn∆n

Finally, for the last term we use the source condition (10) to get

−βn〈xn − x†, Jp(x
†)〉 ≤ S̄(1 + η)‖F (xn)− yδ‖βn + S̄(1 + η)δ βn

+
(

1− 1
q

)

∆nβn + 1
q

(

p

Cp

)
1

p−1

d0(S̄)qβn.

With the estimations above we have

∆n+1 ≤
(

1− βn

q

)

∆n − µ(1− η)‖F (xn)− yδ‖p + µ(1 + η)δ‖F (xn)− yδ‖p−1

+ S̄(1 + η)‖F (xn)− yδ‖βn + S̄ δ(1 + η)βn + 1
q

(

p

Cp

)
1

p−1
d0(S̄)qβn

+ Gq

q
‖µ A⋆

nJp(F (xn)− yδ) + βnx
∗
n‖q.

Assume now, that the iteration did not stop in the last step. Since the stopping criterion
is not fulfilled for xn we have δp−1 < τβnS̄. Moreover we have chosen S̄ such that
S̄δ ≥ d0(S̄)q, therefore we derive

S̄(1 + η)δ βn + 1
q

(

p

Cp

)
1
p
d0(S̄)qβn = S̄ βn

(

(1 + η)δ + 1
q

(

p

Cp

)
1
p d0(S̄)q

S̄

)

≤
(

1 + η + 1
q

(

p

Cp

)
1
p

)

S̄ βnδ

≤
(

1 + η + 1
q

(

p

Cp

)
1
p

)

τ
1

p−1 (S̄ βn)
1+

1
p−1

=

(

1 + η + 1
q

(

p

Cp

)
1
p

)

τ q−1(S̄ βn)q.
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Due to the Young inequality we get

µ(1 + η)‖F (xn)− yδ‖p−1δ ≤ µ(1 + η)‖F (xn)− yδ‖p−1
(

τ βnS̄
)

1
p−1

≤ µ(1−η)
2 q
‖F (xn)− yδ‖p + µ

p

(

2(1+η)q

1−η

)p−1
(

τ βnS̄
)q

and

(1 + η)‖F (xn)− yδ‖βnS̄ ≤ µ(1−η)
2 p
‖F (xn)− yδ‖p + 1

q

(

2(1+η)p

µ(1−η)

)

1
p−1 (

βnS̄
)q

.

The last term we estimate by Jensen inequality

Gq

q
‖µ A⋆

nJp(F (xn)− yδ) + βnx
∗
n‖q ≤ 2q Gq

q

(

1
2
‖µ A⋆

nJp(F (xn)− yδ)‖+ 1
2
‖βnx∗

n‖
)q

≤ 2q−1 Gq

q
µq‖An‖q‖F (xn)− yδ‖p + 2q−1 Gq

q
‖x∗

n‖qβq
n.

We arrive at

∆n+1 ≤
(

1− βn

q

)

∆n + ‖F (xn)−yδ‖p

2

(

−µ(1− η) + 2q Gq

q
µq‖An‖q

)

+ 2q−1 Gq

q
‖x∗

n‖qβq
n

+

(

1
q

(

2(1+η)p

µ(1−η)

)

1
p−1

+
(

2(1+η)q

1−η

)p−1
µ

p
τ q +

(

1 + η + 1
q

(

p

Cp

)
1
p

)

τ q−1

)

S̄qβq
n.

Now the term in the first bracket is negative or zero by the initial assumption on µ.
Therefore, the last estimation simplifies to

∆n+1 ≤
(

1− βn

q

)

∆n + 2q−1 Gq

q
‖x∗

n‖qβq
n + C1S̄

qβq
n =

(

1− βn

q

)

∆n + γn

q
βq

n.

What we have proven may be seen as a part of an induction to show that ∆n ≤ Rn

for all n. We have by assertion ∆0 ≤ R0 and assuming ∆n ≤ Rn we have proven that
∆n+1 ≤ Rn+1. We also have Rn+1 ≤ Rn by the choice of βn. Hence the sequence {Rn} is
monotonically decreasing (and bounded, therefore convergent). We show next that {Rn}
is a zero sequence. The very same trick as used below to show convergence may also be
found in e.g. [10, 6]. We define

Γ := sup{2q−1 Gq

q
‖Jp(x)‖q + C1S̄

q : ∆p(x, x†) ≤ R0}.

By the coercivity of Bregman distances we have Γ <∞, therefore

R1−p
n+1 −R1−p

n ≥
(

βn

q
− γn

Rn
βq

n

)

R1−p
n ≥ 1

q
min{R1−p

0 , 1/(qqΓ)p−1} > 0.

We have

R1−p
n ≥

n−1
∑

k=0

R1−p
k+1 −R1−p

k ≥ n
(

1
q
min{R1−p

0 , 1/(qqΓ)p−1}
)

.

Therefore

Rn ≤ q
1

p−1 max{R0, Γqq} · n−
1

p−1 .
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We define another auxiliary number

γ := C1S̄
q.

It is clear that 0 < γ ≤ γn ≤ Γ <∞ for all n. We have then

βn ≤ 1/(qqγn)p−1 Rp−1
n ≤ q/(qqγn)p−1 max{R0, Γ qq}p−1n−1

≤ q max{(R0/(qγ)p−1, (Γ/γ)p−1q}n−1

Hence {βn} is a zero sequence and the iteration is well defined. Let k(δ) = k(δ, yδ) be the
index, where the iteration terminates. Then we have that βk(δ) = (Rk(δ)/(qγk(δ)))

p−1 and
τβk(δ)S̄ ≤ δp−1. Further there exists a constant c = c(δmax) > 0 such that S̄(δ) ≥ c for all
δ ≤ δmax. Hence there exists a number C2 ≥ C1 such that Γ ≤ C2S̄(δ)q for all δ ≤ δmax.
Therefore

∆k(δ) ≤ Rk(δ) = q γk(δ)β
1

p−1
k(δ) ≤ qΓ τ

−
1

p−1 S̄
−

1
p−1 δ ≤ C2q τ

−
1

p−1 δ S̄(δ),

which proves the theorem.

We assume now that the distance function is known. Based on the convexity estimate
(5) we are now able to present the following conclusion which can be considered as an
a-priori convergence rates result.

Corollary 4.3. Under the condition of Theorem 4.2 we assume d0(S) = d(S; Jp(x
†)).

Then the following holds:

(i) If Jp(x
†) ∈ R(F ′(x†)⋆), i.e. Jp(x

†) = F ′(x†)⋆ω for some ω ∈ Y∗, then the choice of
S̄ as S̄ ≥ ‖ω‖ independent of the noise level δ leads to the convergence rate

‖xk(δ) − x†‖ ≤ C
√

δ. (14)

(ii) If Jp(x
†) ∈ R(F ′(x†)⋆) \ R(F ′(x†)⋆) then the choice S̄(δ) := Φ−1(δ) with function

Φ(S) := d0(S)qS−1 leads to the optimal convergence rate

‖xk(δ) − x†‖ ≤ C
(

δ Φ−1(δ)
)

1
p = C d0

(

Φ−1(δ)
)

1
p−1 . (15)

Remark 4.4. Notice that Φ−1(δ) → ∞ as δ → 0 if the source condition (9) is violated.
Therefore the best rate that can be achieved with this iteration is O(

√
δ) and it is achieved

in the case that the condition (9) is not violated.

In order to understand these convergence rates we compare them with known results for
Tikhonov regularization in Banach spaces.

Example 4.5. Instead of the iterative procedure we consider Tikhonov regularization

1
p
‖F (x)− yδ‖p + α

p
‖x‖p → min subject to x ∈ D(F ).

We again assume that there exists an linear bounded operator F ′(x†) which satisfies the
η-condition (4) for arbitrary η > 0. We have then the following convergence rates results

11



[16, Theorem 5.2 and 5.3]: If Jp(x
†) ∈ R(F ′(x†)⋆) then an a-priori parameter choice

α ∼ δp−1 leads to the convergence rate (14). On the other hand, for Jp(x
†) ∈ R(F ′(x†)⋆)\

R(F ′(x†)⋆) with distance function d(S) = d(S; Jp(x
†)) we have to introduce the functions

Θ(S) := d(S)pS−p, Ψ(α) := α
1
p d (Θ−1(α))

1
p−1 and Φ(S) := d(S)

p
p−1 S−1 = d(S)qS−1.

Then an a-priori choice α := Ψ−1(δ) gives the convergence rate (15). We remark, that
due to the monotonicity of the function d(S) the inverse functions Θ−1(α), Ψ−1(δ) and
Φ−1(δ) are well-defined. In particular, Tikhonov regularization and the suggested iterative
regularization approach provide the same convergence rates for proper chosen parameters.

Moreover, it also turns out, that these convergence rates can be considered as optimal if
X and Y are assumed to be Hilbert spaces at least if we can suppose power-type distance
functions.

Example 4.6. Let X and Y be Hilbert spaces, i.e. we have p = q = 2. Moreover, we

assume x† 6∈ R(F ′(x†)∗) = R
(

(F ′(x†)∗F ′(x†))
1
2

)

but the element x† satisfies a weaker

source condition, i.e. x† = f(F ′(x†)∗F ′(x†)) ω for some index function f(t), t ≥ 0, and
some ω ∈ X. Then we can rewrite this source condition also as approximate source
condition with respect to the stronger (violated) source condition with corresponding dis-
tance function d(S; x†), S ≥ 0. Then – according [21, Theorem 5.9] – we can give an
upper bound d̄(S), S ≥ 0, for the distance function which allows us to apply the results of
corollary 4.3(ii). We present two examples.

(a) If f(t) = tν for some 0 < ν < 1
2

then we have the estimate

d(S) ≤ κ S
2ν

2ν−1 , κ := ‖ω‖,

see also [19, Theorem 1] in the compact case. This and p = 2 imply the choice

S̄
4ν

2ν−1 ∼ δ S̄ ⇔ δ ∼ S̄
2ν+1
2ν−1 ⇔ S̄ ∼ δ

2ν−1
2ν+1

for the parameter S̄. Then we get from (15) that

‖xk(δ,yδ) − x†‖ ≤ C δ
2ν

2ν+1

which is optimal in this context.

(b) We assume a logarithmic source condition, i.e. f(t) = (− ln t)−µ for some µ > 0
and ‖F ′(x†)‖ ≤ 1. Then we cannot state this upper bound d̄(S) for the distance
function explicitly. However, from the consideration in [21] we know the following
property: introducing a (regularization) parameter α then the (well-defined) choice
S = S(α) such that

√
αS(α) = d̄(S(α)) gives the equality
√

αS(α) = d̄(S(α)) = κ (− ln α)−µ.

For logarithmic source conditions the choice α ∼ δ for the regularization parameter
is suggested. We set α := δ Then we get the choice

(− ln δ)−2µ ∼ δ S̄ ⇔ S̄ ∼ δ−1(− ln δ)−2µ

which ends up at the known convergence rate

‖xδ
α − x†‖ ≤ C (− ln δ)−µ.

12



We also want to point out that the right choice of d0(S) and hence S̄ is important for the
convergence and the speed of convergence of the algorithm. In particular, if S̄ is chosen
too small then the algorithm might not work. Therefore we present the following indicator
which helps to decide if the parameter S̄ was chosen properly.

Lemma 4.7. Under the assumptions of Theorem 4.2 we have

Cp

p
‖xn+1 − xn‖p + Cµ‖F (xn)− yδ‖p ≤ 2p−1 2p−1

p
Rn. (16)

with Cµ := µ(1−η)
2
− 2q−1 Gq

q
µqKq ≥ 0.

Proof. By assumption ∆n ≤ Rn holds. Following the proof of Theorem 4.2 we start with

Cp

p
‖xn+1 − xn‖p ≤ Cp

p

(

‖xn+1 − x†‖+ ‖xn − x†‖
)p

≤ 2p−1 (∆n+1 + ∆n)

≤ 2p−1

[

(

2− βn

q

)

Rn + βn
γn

q
β

1
p−1
n − Cµ‖F (xn)− yδ‖p

]

,

since q − 1 = 1
p−1

. By construction we have β
1

p−1
n ≤ Rn

q γn
and βn ≤ q. Hence, we continue

Cp

p
‖xn+1 − xn‖p + Cµ‖F (xn)− yδ‖p ≤ 2p−1

[(

2− βn

q

)

Rn + βnRn

q2

]

≤ 2p−1
(

2− βn

q p

)

Rn

≤ 2p−1
(

2− 1
p

)

Rn = 2p−1(2p−1)
p

Rn.

This proves the estimate.

The estimate (16) gives a necessary condition for the validity of the assumptions of The-
orem 4.2 and hence on the proper choice of the function d0(S) and the parameter S̄. A
violation of (16) shows that the the decay rate of d0(S) is too high and hence S̄ is chosen
to small. On the other hand, if the right side of (16) is much smaller than the left hand
side it might be an indication that the decay rate of d0(S) is too low and consequently S̄ is
chosen to large. This causes lower speed of convergence. So, checking this inequality (16)
during the iteration and readjusting the parameter S̄ in a proper way can help to ensure
convergence and improve speed of convergence. It is still a topic on ongoing research of
developing an a-posteriori choice of the function d0(S) leading to the optimal convergence
rates (14) and (15), respectively.

5 A convergence analysis without source condition

The convergence rates results essentially base on the proper choice of the function d0(S),
S ≥ 0. We therefore present here a convergence analysis which does not depend on such
assumption. Basically, it combines the convergence analysis of [26] and [27]. In order to
prove convergence we need the following slight modifications of the algorithm:
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(i) Choose µ such that
Cµ := (1− η)µ + 2q Gq

q
Kqµq > 0.

(ii) Choose Cs > 0 sufficiently large such that Cs ≥ d0(0) ≥ ‖Jp(x
†)‖q = ‖x†‖p and

choose S̄ as S̄ := Csδ
−1.

(iii) Choose a decreasing sequence {β̄j} such that β̄j > 0 for all j ≥ 0 and
∑∞

j=0 β̄j <∞.
Calculate

γn := max

{

2q−1Gq‖x∗
n‖+ C1S̄

q, Rn/(q β̄
1

p−1
n )

}

,

βn := min
{

q, (Rn/(qγn))
p−1
}

and

Rn+1 :=
(

1− βn

q

)

Rn − ‖F (xn)−yδ‖p−1

2
Cµ + γn

q
βq

n.

The suggested modifications do not annihilate the results of Theorem 4.2. Moreover, the
modified calculation of the parameters has the following consequence: we have βn ≤ β̄n

for all n ≥ 0 and βn = β̄n if and only if γn = Rn/(q β̄
1

p−1
n ). In particular, we bound the

parameter βn from above in each iteration step by β̄n.

Since by (ii) we have S̄(δ) = Cs/δ the estimate (13) is only a boundedness estimate. To
establish convergence xk(δ) → x† as δ → 0 we have to carry out completely new analysis.
First we prove the following:

Lemma 5.1. Under the above modifications we have

k(δ)−1
∑

n=0

‖F (xn)− yδ‖p ≤ 2 R0

Cµ
and k(δ) ≤ 1 + C δ−p

for some constant C > 0.

Proof. By construction we have

Rn+1 :=
(

1− βn

q

)

Rn − ‖F (xn)−yδ‖p−1

2
Cµ + γn

q
βq

n ≤ Rn − ‖F (xn)−yδ‖p

2
Cµ

for all n ≤ k(δ) which proves the first part. From the stopping criterion we derive for all
n < k(δ) that βn ≤ C n−1 and hence

δp−1 ≤ τ βnS̄ ≤ τ C Csδ
−1n−1

or equivalently n ≤ τ C Csδ
−p which proves the second part by choosing n = k(δ)−1.

We now discuss the noiseless case δ = 0. For δ → 0 we have γn →∞ and hence βn → 0.
Hence we set βn ≡ 0 for given noiseless data.

Theorem 5.2. Assume δ = 0. Then the algorithm stops after a finite number k of
iterations with x̃† := xk or we have convergence xn → x̃† as n → ∞. In both cases the
element x̃† denotes any solution of equation (1) in B̺(x

†), i.e. we have F (x̃†) = y.
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Proof. Let the iteration process does not stop after a finite number of steps. From the
proof of theorem 4.2 with βn = 0 we derive

∆n+1 ≤ ∆n − ‖F (xn)−y‖p

2
Cµ

for all n ≥ 0. Hence we proved
∑∞

n=1 ‖F (xn)− y‖p <∞ and consequently F (xn)→ y as
n → ∞. Now we can choose indices k > l such that ‖F (xn) − y‖ ≥ ‖F (xk) − y‖ for all
l ≤ n ≤ k. Then we derive

∣

∣〈Jp(xk)− Jp(xl), xk − x†〉
∣

∣ =

∣

∣

∣

∣

∣

k−1
∑

n=l

〈Jp(xn+1)− Jp(xn), xk − x†〉
∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

k−1
∑

n=l

µ〈Jp(F (xn)− y), F ′(xn)(xk − xn + xn − x†)〉
∣

∣

∣

∣

∣

≤ µ
k−1
∑

n=l

‖F (xn)− y‖p−1(1 + η) (‖F (xn)− y‖+ ‖F (xn)− F (xk)‖)

≤ µ

k−1
∑

n=l

‖F (xn)− y‖p−1(1 + η) (2‖F (xn)− y‖+ ‖F (xk)− y‖)

≤ 3 µ

k−1
∑

n=l

‖F (xn)− y‖p−1(1 + η)‖F (xn)− y‖

= 3 µ (1 + η)
k−1
∑

n=l

‖F (xn)− y‖p.

For l →∞ the right hand side goes to zero. Following the argumentation in [27] we have
{xn} to be a Cauchy sequence and hence xn → x̃† ∈ X. By the continuity of F and
F (xn)→ y we have F (x̃†) = y which shows that x̃† is a solution.

We now can prove convergence.

Theorem 5.3. We have xk(δ) → x̃† where x̃† denotes any solution of equation (1) in
B̺(x

†), i.e. we have F (x̃†) = y.

Proof. Let {δj} be a sequence of noise levels with δj → 0 as j → ∞. Without loss of
generality we suppose k(δj) → ∞ as j → ∞. Otherwise we see that the iterates depend
continuously on yδj . From lemma 5.1 we conclude ‖F (xk(δj)) − yδj‖ → 0 as j → ∞ and
hence F (xk(δj))→ y as j →∞. Let be j fixed and δ = δj . Thus we can find l < k ≤ k(δ)
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with ‖F (xn)− yδ‖ ≥ ‖F (xk)− yδ‖ for all l ≤ n ≤ k. This gives

∣

∣

〈

Jp(xk)− Jp(x
δ
l ), xk − x†

〉
∣

∣ =

∣

∣

∣

∣

∣

k−1
∑

n=l

〈

Jp(xn+1)− Jp(xn), xk − x†
〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k−1
∑

n=l

〈

µF ′(xn)⋆Jp(F (xn)− yδ) + βn Jp(xn), xk − x†)
〉

∣

∣

∣

∣

∣

≤ µ

k−1
∑

n=l

∣

∣

〈

Jp(F (xn)− yδ), F ′(xn)(xk − x†)
〉
∣

∣

+

k−1
∑

n=l

βn

∣

∣

〈

Jp(xn), xk − x†
〉
∣

∣ .

We show that the right hand side goes to zero as k(δ) → ∞ and l → ∞. Therefore we
estimate

k−1
∑

n=l

∣

∣

〈

Jp(F (xn)− yδ), F ′(xn)(xk − x†)
〉
∣

∣

≤ 3 (1 + η)
k−1
∑

n=l

‖F (xn)− yδ‖p−1‖F (xn)− y‖

≤ 3 µ (1 + η)
k−1
∑

n=l

‖F (xn)− yδ‖p−1
(

‖F (xn)− yδ‖+ δ
)

≤ 3 µ (1 + η)

(

k−1
∑

n=l

‖F (xn)− yδ‖p +
k−1
∑

n=l

‖F (xn)− yδ‖p−1δ

)

.

The first sum tends to zeros as l →∞. For the second sum we apply Young’s inequality
to derive

k−1
∑

n=l

‖F (xn)− yδ‖p−1δ ≤ Cl

q

k−1
∑

n=l

‖F (xn)− yδ‖p + 1
p
C

− p
q

l

k−1
∑

n=l

δp

≤ Cl

q

k−1
∑

n=l

‖F (xn)− yδ‖p + C
p
C1−p

l

with arbitrary constant Cl > 0. Here we additionally used that k− 1 ≤ k(δ)− 1 ≤ C δ−p.
We now choose

Cl :=

(

k−1
∑

n=l

‖F (xn)− yδ‖p
)−

1
2

.

Then we see that both summands on the right hand side of the last inequality vanish as
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l →∞. On the other hand we derive with some generic constant C > 0 that

k−1
∑

n=l

βn

∣

∣

〈

Jp(xn), xk − x†
〉
∣

∣ ≤
k−1
∑

n=l

βn‖Jp(xn)‖ ‖xk − x†‖

≤ C
(

p

Cp

)
1
p

k−1
∑

n=l

βn∆
1
p

k

≤ C
k−1
∑

n=l

βn ≤ C
k−1
∑

n=l

β̄n → 0 as l →∞.

We can again apply the argumentation of [27] to prove the assertion.

6 A nonlinear example

We start with the following example which arises in option pricing theory, see e.g. [24].
The corresponding inverse problem was deeply studied in [17], see also the references
therein for an overview about further aspects in the mathematical foundation of (inverse)
option pricing. We also refer to [20] for some newer results.

A European call option on a traded asset is a contract which gives the holder the right
to buy the asset at time (maturity) t > 0 for a fixed strike price K > 0 independent on
the actual asset price at time t > 0. For fixed current asset price X > 0 and time t0 = 0
we denote with c(t) the (fair) price of such call option with maturity t ≥ 0. Following
the generalization of the classical Black-Scholes analysis with time-dependent volatility
function σ(t), t ≥ 0, and constant riskless short-term interest rate r ≥ 0 we introduce the
Black-Scholes function UBS for the variables X > 0, K > 0, r ≥ 0 and s ≥ 0 as

UBS(X, K, r, t, s) :=

{

X Φ(d1)−K e−r tΦ(d2), s > 0,
max

{

X −K e−r t, 0
}

, s = 0,

with

d1 :=
ln
(

X
K

)

+ r t + s
2√

s
, d2 := d1 −

√
s

and Φ(ξ), ξ ∈ R, denotes the cumulative density function of the standard normal distri-
bution. Then the price of the option as function of the maturity t ∈ [0, T ] is given by the
formula

c(t) := UBS

(

X, K, r, t,

∫ t

0

σ2(τ) dτ

)

, t ∈ [0, T ],

where T > 0 denotes the maximal time horizon of interest.

From the investigations in [17] we know that for t → 0 some additional effects occurs
which need a separate treatment. In order to keep the considerations here more simple
we introduce a (small) time tε > 0 and assume the volatility to be known (and constant)
on the interval [0, tε], i.e. σ(t) ≡ σ0 > 0, t ∈ [0, tε]. Then, for given 1 < a, b < ∞ we
define the nonlinear operator F : D(F ) ⊂ La(tε, T ) −→ Lb(tε, T ) as

[F (x)](t) := UBS

(

X, K, r, t, σ2
0tε +

∫ t

tε

x(τ) dτ

)

, t ∈ [tε, T ],
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with domain D(F ) := {x ∈ La(tε, T ) : x(t) ≥ c a.e. on [tε, T ]}. We further use the
notation k(t, s) := UBS(X, K, r, t, s) and assume x0 ∈ D(F ). For some radius ̺ > 0 and
arbitrary given x ∈ D(F ) ∩ B̺(x0) we set ∆x := x− x0 and

∆s(t) :=

∫ t

tε

∆x(τ) dτ, t ∈ [tε, T ].

Then we have for t ∈ [tε, T ] that

|∆s(t)| ≤ ‖1‖La/(a−1)(tε,t)‖∆x‖La = (t− tε)
a−1

a ‖∆x‖La ≤ (t− tε)
a−1

a ̺.

Moreover we set

s0(t) := σ2
0tε +

∫ t

tε

x0(τ) dτ, t ∈ [tε, T ].

Hence we observe that for t ∈ [tε, T ] we can estimate

c̃(t) := max
{

σ2
otε + c (t− tε), s0(t)− ̺ (t− tε)

a−1
a

}

≤ [s0 + τ ∆s](t) ≤ s0(t) + ̺ (t− tε)
a−1

a

for all τ ∈ [0, 1]. Furthermore we see with ν := ln
(

X
K

)

that

ks(t, s) =
X

2
√

2 π s
exp

(

−(ν + r t)2

2 s
− ν + r t

2
− s

8

)

> 0

and

kss(t, s) = − X

4
√

2 π s

(

−(ν + r t)2

s2
+

1

4
+

1

s

)

exp

(

−(ν + r t)2

2 s
− ν + r t

2
− s

8

)

.

We can estimate

|kss(t, [s0 + τ ∆s](t))| ≤ X

4
√

2 π c̃(t)

(

(ν + r t)2

c̃(t)2
+

1

4
+

1

c̃(t)

)

· exp

(

− (ν + r t)2

2 (s0(t) + ̺ (t− tε)
a−1

a )
− ν + r t

2

−s0(t)− ̺ (t− tε)
a−1

a

8

)

=: C1(t)

and

ks(t, [s0 + τ ∆s](t)) ≥ X

2

√

2 π(s0(t) + ̺ (t− tε)
a−1

a )

· exp

(

−(ν + r t)2

2 c̃(t)
− ν + r t

2
− s0(t) + ̺ (t− tε)

a−1
a

8

)

=: C2(t).
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We consider the quotient C1(t)/C2(t). Here we obtain

C1(t)

C2(t)
= I1 exp

(

(ν + r t)2

2
I2 +

̺ (t− tε)
a−1

a

4

)

with

I1 :=
1

2

√

s0(t) + ̺ (t− tε)
a−1

a

c̃(t)

(

(ν + r t)2

c̃(t)2
+

1

4
+

1

c̃(t)

)

≤ 1

2

√

1 +
2 ̺ (t− tε)

a−1
a

c̃(t)

(

(ν + r t)2

c̃(t)2
+

1

4
+

1

c̃(t)

)

≤ 1

2

√

1 +
2 ̺ (T − tε)

a−1
a

σ2
0tε

(

(ν + r T )2

σ4
0t

2
ε

+
1

4
+

1

σ2
0tε

)

and

I2 :=
s0(t) + ̺ (t− tε)

a−1
a − c̃(t)

c̃(t)(s0(t) + ̺ (t− tε)
a−1

a )
≤ 2 ̺ (t− tε)

a−1
a

σ2
0tε(s0(t) + ̺ (t− tε)

a−1
a )
≤ 2 ̺ (T − tε)

a−1
a

σ4
0t

2
ε

.

This gives

∥

∥

∥

∥

C1

C2

∥

∥

∥

∥

L∞

:= max
t∈[tε,T ]

I1 exp

(

(ν + r t)2

2
I2 +

̺ (t− tε)
a−1

a

4

)

<∞.

Due to the mean value theorem and the positivity of ks we have

|[F (x0 + ∆x)− F (x0)](t)| = |[k(t, [s0 + ∆s](t))− k(t, s0(t))|
= ks(t, [s0 + τ ∆s](t)) |∆s(t)|
≥ C2(t)|∆s(t)|

a.e. on [tε, T ]. This leads with T (x0) := F (x0 + ∆x)− F (x0)− F ′(x0) ∆x to

|[T (x0)](t)| =

∣

∣

∣

∣

∣

∣

1
∫

0

(ks(t, [s0 + τ ∆s](t))− ks(t, s0(t))) ∆s(t) dτ

∣

∣

∣

∣

∣

∣

≤ C1(t)
|∆s(t)|2

2

≤ C1(t)(T − tε)
a−1

a ‖∆x‖La

2 C2(t)
|[F (x0 + ∆x)− F (x0)](t)|

a.e. on [tε, T ]. This proves

‖T (x0)‖Lb ≤ (T − tε)
a−1

a

2

∥

∥

∥

∥

C1

C2

∥

∥

∥

∥

L∞

‖∆x‖La‖F (x0 + ∆x)− F (x0)‖Lb .

In particular, condition (A3) holds for ̺ > 0 sufficiently small.
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7 Numerical results

In this section we present numerical results for the the nonlinear operator considered in
the last section. We choose the parameters

X = 1, K = 0.85, r = 0.05, tε = 0.1 and T = 1.

Moreover, we assume that the exact solution is given by

x† = (t− 0.5)2 + 0.1, t ∈ [0.1, 1].

Finally we set σ0 := x†(0.1) = 0.26. As spaces we take X = L1.2(tε, T ) and Y = L2(tε, T ),
where we have chosen X = L1.2 arbitrary as an example of a non-Hilbert space. For
discretization we introduce tj := 0.1 + j/(0.9 N), 0 ≤ j ≤ N = 500, and use the values

yj := [F (x†)](tj), 1 ≤ j ≤ N,

as given discretized data y = (y1, . . . , yN)T ∈ R
N . The solutions x are discretized as

piecewise constant functions on the the subintervals (tj−1, tj), 1 ≤ j ≤ N . The initial
guess x0 ∈ D(F ) was chosen such that we can set η := 0.5.

For our experiments we have chosen relative error in the range 10−5...10−2. In a first
variant we used the algorithm without assuming an approximate source condition. Hence
we set S̄ ∼ δ. In order to ensure convergence we additionally introduced the bounds
β̄n := cn with c := 0.99 for the parameters βn, n ≥ 0. For the second calculations we
applied some knowledge about the approximate source condition and the corresponding
distance function.

We set S̄ ∼ δ−
1
3 due to following arguments: The operator F is differentiable in x† and

the derivative F ′(x†) : X −→ Y is given via

[F ′(x†) h](t) := ks(t, [A x†](t)) [A h](t), [A h](t) :=

∫ t

tε

h(τ) dτ, t ∈ [0.1, 1],

for all h ∈ X. We also observe that by the specific choice of the exact solution we
have x†, Jp(x

†) ∈ L2(0.1, 1) and the structure of the derivatives imply that all iterates
xn belongs to L∞(0.1, 1). In particular, xn ∈ L2(0.1, 1) holds. In that case we can apply
lemma 3.2 also with the Hilbert space setting X = Y = L2(0.1, 1). In the Hilbert space
setting A : L2(0.1, 1) −→ L2(0.1, 1), we know from [19] that x† ∈ R((A∗A)ν) for all ν < 1

4
.

Since we have ks(·, A x†) ∈ L∞(0.1, 1) and the function ks(·, A x†) is bounded away from
zero the mapping z 7→ ks(·, A x†) z, z ∈ L2(0.1, 1) is continuously invertible. Therefore we
can assume that the source condition is determined by the operator A. Keeping in mind
Example 4.6(a) with ν = 1

4
we obtain the already mentioned choice S̄ ∼ δ−

1
3 . Moreover,

from the theoretical considerations we expect the convergence rate ‖xk(δ) − x†‖ ∼ δ
1
3 .

The numerical results are presented in Figure 1 and Table 1. By comparing both calcula-
tions we see that the assumed approximate source condition in fact improves the achieved
reconstruction of the exact solution x†. The convergence rate in that case is close to the
expected rate δ

1
3 , too. On the other hand, by introducing the upper bounds β̄n, n ≥ 0,

we can expect from the results of [26] a similar convergence rate in that situation at least
in a Hilbert space setting.
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Figure 1: Relative reconstruction error depending on the noise level δ

S̄ ∼ δ−1 S̄ ∼ δ−
1
3

δrel
‖xk(δ)−x†‖

‖x†‖

‖xk(δ)−x†‖

‖x†‖

10−2 0.2845 0.2873
10−3 0.1365 0.1280
10−4 0.0839 0.0556
10−5 0.0464 0.0373

Table 1: Relative reconstruction error depending on the noise level δ

8 Conclusions

We point out, that the main results of this paper are the theoretical results contained in
Section 6 iteration is computable.

If we have the information that exact source condition Jq(x
†) = F ′(x†)⋆ω for some ω ∈ Y ∗

is fulfilled and we can give some reasonable bound on ‖ω‖ then the method in this paper
should be used to ensure that this information really translates into convergence rates.

If only the weaker generalized source conditions are fulfilled, but at the same time some
more information (i.e. the information on d(S)) is given then again our method may be
used for regularization, since again the information on the source condition is translated
into convergence rates.

However, since the method of this paper can be considered as gradient method for mini-
mizing Tikhonov functionals with fixed step width (but varying regularization parameter
α) the convergence of the algorithm turns out to be rather slow in some examples. In
particular the method introduced by [27] or the newly presented accelerated versions of
[28] SESOP and RESOP promise a faster convergence. However, no convergence rates
for δ → 0 are presented therein. So it part of ongoing research to improve the speed of
convergence of the suggested algorithm.
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