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Abstract. We consider European double-barrier options for underlyings that are given by the
superposition of a Gaussian and a compound Poisson process with discrete values. The determination
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1. Introduction. The problem of determining the price of a double barrier op-
tion when the stock price is modeled by geometric Brownian motion is considered in
[10, 12, 13, 15, 19, 23, 25]. In [12, 13, 19, 25] the approach is to solve the Black-Scholes
partial differential equation on a strip of finite width. However, for many situations
geometric Brownian motion is not an adequate model for stock price, and in recent
years Lévy processes have come to be used as models for logarithmic stock price.
In this context European options [1, 8, 17, 18, 20, 21], perpetual American options
[4, 5, 16], and single barrier options [4, 5, 6, 16] have been examined in detail. Recent
papers concerning double barrier options under Lévy processes include [2, 3, 7, 9, 22].

In this article we consider European double-barrier options whose underlyings are
Lévy processes formed by the superposition of a Gausssian and a compound Poisson
process with discrete values. The determination of the price of such options leads
to a Black-Scholes system that is perturbed by a Toeplitz matrix. On the basis of
this observation, we design an effective algorithm for the computation of this price.
Numerical examples are provided.

The mathematical setting will be a filtered probability space (Ω,F , {Fτ}, P ) on
which {Xτ}τ≥0 is the Lévy process ([24], p. 202) specified by

EP
[
eiξXτ

]
= e−τψ(ξ),

ψ(ξ) =
σ2

2
ξ2 − iµ0ξ + ε



1 −
∞∑

j=−∞
qje

ijξ



 ,(1.1)

EP referring to the expected value taken with respect to the probability measure P .
Here σ, µ0, ε, qj are real numbers subject to the constraints σ > 0, ε ≥ 0, qj ≥ 0,∑
qj = 1, and we also require that only finitely many of the numbers qj are nonzero.

We consider {Xτ}τ≥0 under the assumption that we are given two absorbing barriers,
one at 0 and one at a natural number n ≥ 2. Let g be a function in L2(0, n). Our
objective is, for a fixed t > 0, to compute the expected value on (0, n) of e−rtg(Xt)
with respect to a certain equivalent martingale measure (EMM) Q for P under the
condition that X0 is known to be a given value x ∈ (0, n). Thus, we look for

u(x, t) := EQ
[
e−rtg(Xt)1η>t

∣∣∣
F0

X0 = x

]
,(1.2)
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where the hitting time η is the random variable

η := inf{τ > 0 : Xτ ∈ (−∞, 0] or Xτ ∈ [n,∞)}

and 1(·) denotes the characteristic function of a set.
The value (1.2) may be interpreted as the price for a knock-out double-barrier

option. Let b− < b+ and think of

Sτ = S0 b
−e((1/n) log(b+/b−))Xτ(1.3)

as the market price of a stock at time τ . The market drift and volatility are µ0 and σ,
while the parameter r is the rate of the riskless bond. Fix t > 0 and let X0 = x. The
holder pays the premium u(x, t) at time τ = 0 to the writer and receives the amount
g(Xt) = h(St) at time τ = t from the writer provided that the condition 0 < Xτ < n,
i.e., b− < Sτ/S0 < b+, is maintained for all τ ∈ [0, t].

Our assumptions say that

Xτ = σ2Bτ + µ0τ +

Nτ∑

k=1

Jk

where Bτ ∼ N(0,
√
τ) is normalized Brownian motion, µ0 characterizes the drift, Nτ

is the Poisson counting process at rate ε,

Probability (Nτ = k) =
(ετ)k

k!
e−ετ (k = 0, 1, 2, . . .),

and J1, J2, . . . are independent identically distributed random variables with

Probability (Jk = j) = qj (j = 0,±1,±2, . . .).

We remark that terminology is sometimes different, the holder paying the price
to the writer at time t and receiving the amount g(XT ) at an agreed point of time
T > t. If one denotes the option price in this context by U(x, τ), then clearly this is
just u(x, t) with t = T − τ .

It is well known that the problem of defining the option price u(x, t) in the right
way is delicate. Under our assumptions, we do not have a complete market. This
implies that there is in general no unique EMM and hence the definition of u(x, t) by
(1.2) includes a high extent of arbitrariness. We will employ (1.2) with the EMM Q
delivered by the Esscher transform, and we find that this is a reasonable starting point
for the investigation of double-barrier options under processes with jumps. In Sec-
tions 2 and 3 we describe the EMM and give the existence result for the corresponding
Black-Scholes system. Sections 4 and 5 contain the detailed numerical algorithm and
the computational considerations. In Section 6 we describe the particular situation
when σ = µ0 = 0, i.e., when Xτ is driven by pure jumps.

2. An equivalent martingale measure. We determine the EMM Q from the
Esscher transform [4, pp. 98–99], that is, from the equation

dQ

dP

∣∣∣∣
Fτ

= eθXτ−d(θ,τ)(2.1)

where θ is the real solution of the equation

ψ(−i(1 + θ)) − ψ(−iθ) + r = 0,(2.2)
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and d(θ, τ) = −τψ(−iθ).
Proposition 1. Equation (2.2) has a unique real solution θ = θε for every

ε ∈ [0,∞). This solution depends continuously on ε. If ε = 0, the solution is θ0 =
−(σ2/2 + µ0 − r)/σ2.

Proof. By (1.1), equation (2.2) reads

σ2

2
(−i(1 + θ))2 − iµ0(−i(1 + θ)) + ε

(
1 −

∑

j

qje
ij(−i(1+θ))

)

−σ
2

2
(−iθ)2 + iµ0(−iθ) − ε

(
1 −

∑

j

qje
ij(−iθ)

)
+ r = 0,

which can be simplified to

̺(θ) := σ2θ + (σ2/2 + µ0 − r) − ε
∑

j 6=0

qje
jθ(1 − ej) = 0.(2.3)

If ε = 0, then (2.3) has the unique solution θ = θ0 = −(σ2/2 + µ0 − r)/σ2. Clearly,
̺(−∞) = −∞ and ̺(+∞) = +∞, which shows that (2.3) has a solution. Since

̺′(θ) = σ2 − ε
∑

j 6=0

qjje
jθ(1 − ej) > 0

for all θ, the solution must be unique. The continuous dependence of θε on the
parameter ε is obvious.

With Q given by (2.1),

EQ
[
eiξXt

]
= e−tψ

Q(ξ), ψQ(ξ) := ψ(ξ − iθ) − ψ(−iθ),

and a simple computation yields

ψQ(ξ) =
σ2

2
ξ2 − iµξ + δ


1 −

∞∑

j=−∞
pje

ijξ


(2.4)

where the EMM market parameters are given by

µ := µ0 + σ2θε, δ := εS, pj :=
qje

jθε

S
,(2.5)

with

S :=

∞∑

j=−∞
qje

jθε .

3. The generalized Black-Scholes equation. Let σ > 0, r > 0 and let µ, δ, pj
be the parameters (2.5). We consider the operator A defined by

(Af)(x) := −σ
2

2
f ′′(x) − µf ′(x) + rf(x) + δf(x) − δ

∞∑

j=−∞
pjf(x+ j)

∣∣∣
(0,n)

,(3.1)

where f(x + j)
∣∣∣
(0,n)

is f(x + j) for x + j ∈ (0, n) and zero for x + j /∈ (0, n). We

think of A as an operator on L2(0, n) with the (dense) domain D(A) := C2[0, n].
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In [4] it is shown that the function given by (1.2) and (2.1) satisfies the generalized
Black-Scholes equation1

ut(x, t) + (Au)(x, t) = 0, (x, t) ∈ (0, n) × (0,∞),(3.2)

where A is taken in the variable x, along with the boundary conditions

u(x, 0) = g(x), x ∈ (0, n),(3.3)

u(x, t) = 0, (x, t) ∈
(
(−∞, 0] ∪ [n,∞)

)
× (0,∞).(3.4)

Condition (3.4) is in fact superfluous because A is considered as acting on L2 over
(0, n). We may also write (3.2), (3.3), (3.4) in the form

ut(x, t) =
σ2

2
uxx(x, t) + µux(x, t) − (r + δ)u(x, t)

+ δ

∞∑

j=−∞
pj u(x+ j, t)

∣∣∣
(0,n)

(3.5)

on (0, n) × (0,∞) with the boundary conditions

u(x, 0) = g(x) for x ∈ (0, n),(3.6)

u(0, t) = u(n, t) = 0 for t ∈ (0,∞).(3.7)

For t ∈ [0,∞), we define ũ(t) ∈ L2(0, n) by (ũ(t))(x) := u(x, t). Then the problem
(3.2), (3.3) can be interpreted as the Cauchy problem

d

dt
ũ(t) = −(Aũ)(t), ũ(0) = g.(3.8)

Let Dx := d/dx. In the case δ = 0, the solution of (3.8) (and hence of (3.2), (3.3)) is
well known and can be found by separation of variables. Here it is.

Theorem 2. Let A := −(σ2/2)D2
x − µDx + rI. Then the problem (3.8) is well-

posed in the sense that −A generates a C0 contraction semigroup on L2(0, n). The
solution of (3.8) is

u(x, t) =

∞∑

k=1

Bke
−λ0

kte−(µ/σ2)x sin
kπ

n
x

where

λ0
k := r +

µ2

2σ2
+
k2π2σ2

2n2
,

∞∑

k=1

Bk sin
kπ

n
x = e(µ/σ

2)xg(x).

For δ > 0, we have the following result. We denote by ‖ · ‖2 the norm in L2.

1More exactly, Theorem 2.13 of [4, p. 65] holds if the Lévy process satisfies the so-called (ACP)
condition (see [4, p. 59]). Formally our case does not satisfy the (ACP) condition; however, a minor
modification of the proof of their Theorem 2.13 allows one to apply it to our case (see Remarks 2.1
and 2.2 in [4, pp. 64, 66]).
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Theorem 3. Let A be the operator (3.1). Problem (3.8) is well-posed in the
sense that −A generates a C0 contraction semigroup and

‖e−tAg‖2 ≤ e−rt‖g‖2.(3.9)

The resolvent operator (λI +A)−1 is compact and hence the spectrum of −A consists
entirely of isolated eigenvalues of finite algebraic multiplicity.

Proof. We have

−A =
σ2

2
D2
x + µDx − rI − δ(I − V )(3.10)

where (V f)(x) :=
∑
j pjf(x + j)

∣∣
(0,n)

. Clearly, (3.9) will follow once we have shown

that (σ2/2)D2
x+µDx−δ(I−V ) generates a C0 contraction semigroup. By Theorem 2

and [11, Theorem 2.6.1], it suffices to show that −δ(I−V ) is bounded and dissipative.
The boundedness of −δ(I − V ) is obvious. To show that −δ(I − V ) is dissipative, let
F denote the Fourier transform, (Ff)(ξ) :=

∫∞
−∞ eiξxf(x)dx (ξ ∈ R), and notice that

−δ(I − V ) can be written as −δF−1ϕF with ϕ(x) := 1 −∑j pje
−ijξ. Since

Re ((−δ(I − V )f, f) = −δRe (1(0,n)F
−1ϕFf, f)

= −δRe (F−1ϕFf, f) = −δRe (ϕFf, Ff) ≤ 0

(recall that Reϕ ≥ 0), we see that −δ(I − V ) is dissipative.
Finally, since (σ2/2)D2

x + µDx − rI has compact resolvent ([14, p. 187]) and, by
(3.10), −A differs from (σ2/2)D2

x+µDx− rI by a bounded operator, we deduce that
−A must also have a compact resolvent ([14, p. 214]).

4. Algorithm. Let σ, µ, r, δ, pj be real numbers satisfying σ > 0, r > 0, δ ≥ 0,
pj ≥ 0,

∑
pj = 1. For a natural number n, we consider the boundary value problem

(3.5), (3.6), (3.7).
We divide (0, n) into n pieces of length 1. Given a function f on (0, n), we define

functions f1, . . . , fn on (0, 1) by

fk(x) = f(x+ k − 1), x ∈ (0, 1), k = 1, 2, . . . , n.

We now can write (3.5) as



u1,t

...
un,t


 =

σ2

2




u1,xx

...
un,xx


+ µ




u1,x

...
un,x


+ Tn(c)




u1

...
un


(4.1)

where Tn(c) = (cj−k)
n
j,k=1 is the Toeplitz matrix




−r − δ + δp0 δp1 . . . δpn−1

δp−1 −r − δ + δp0 . . . δpn−2

...
...

. . .
...

δp−(n−1) δp−(n−2) . . . −r − δ + δp0


 .

The boundary conditions (3.6), (3.7) become

uj(x, 0) = gj(x) for x ∈ (0, 1),(4.2)

u1(0, t) = un(1, t) = 0,(4.3)

uj(1, t) = uj+1(0, t), u
′
j(1, t) = u′j+1(0, t) (j = 1, . . . , n− 1)(4.4)
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where gj(x) = g(x + j − 1), x ∈ (0, 1). We look for solutions of the form u(x, t) =
v(x)e−λt or, equivalently, of the form




u1(x, t)
...

un(x, t)


 =




v1(x)
...

vn(x)


 e−λt.

Equation (4.1) then reads

σ2

2




v′′1
...
v′′n


+ µ




v′1
...
v′n


+ Tn(c)




v1
...
vn


 = −λ




v1
...
vn


 ,(4.5)

and the boundary conditions (4.3), (4.4) are

v1(0) = vn(1) = 0,(4.6)

vj(1) = vj+1(0), v′j(1) = v′j+1(0) (j = 1, . . . , n− 1).(4.7)

Suppose the eigenvalues γ1, . . . , γn of Tn(c) are all simple. Then there is an
invertible matrix E = (Ejk)

n
j,k=1 such that

Tn(c) = EΛE−1 with Λ = diag (γ1, . . . , γn).

Put



y1
...
yn


 = E−1




v1
...
vn


 .(4.8)

On multiplying (4.5) from the left by E−1 we arrive at the equivalent equation

σ2

2




y′′1
...
y′′n


+ µ




y′1
...
y′n


+ Λ




y1
...
yn


 = −λ




y1
...
yn


 ,

which can be written as

σ2

2
y′′k + µy′k + (λ+ γk)yk = 0 (k = 1, . . . , n).(4.9)

Suppose the equation

z2 +
2µ

σ2
z +

2(λ+ γk)

σ2
= 0(4.10)

has two distinct zeros

αk = − µ

σ2
+

√
µ2

σ4
− 2(λ+ γk)

σ2
, βk = − µ

σ2
−
√
µ2

σ4
− 2(λ+ γk)

σ2
.(4.11)

Then (4.9) is satisfied by

yk(x) = ake
αkx + bke

βkx,
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where ak and bk are arbitrary constants. These 2n constants can be determined from
the 2n conditions (4.6), (4.7) and from (4.8). By virtue of (4.8),

vj(0) =

n∑

k=1

Ejkyk(0) =

n∑

k=1

Ejk(ak + bk),

vj(1) =

n∑

k=1

Ejkyk(1) =

n∑

k=1

Ejk(e
αkak + eβkbk),

v′j(0) =
n∑

k=1

Ejky
′
k(0) =

n∑

k=1

Ejk(αkak + βkbk),

v′j(1) =

n∑

k=1

Ejky
′
k(1) =

n∑

k=1

Ejk(αke
αkak + βke

βkbk),

and hence (4.6), (4.7) is the 2n× 2n system

n∑

k=1

(E1kak + E1kbk) = 0,

n∑

k=1

(
Enke

αkak + Enke
βkbk

)
= 0,

n∑

k=1

(
(Ejke

αk − Ej+1,k) ak +
(
Ejke

βk − Ej+1,k

)
bk
)

= 0 (j = 1, . . . , n− 1)

n∑

k=1

(
αk (Ejke

αk − Ej+1,k) ak + βk
(
Ejke

βk − Ej+1,k

)
bk
)

= 0 (j = 1, . . . , n− 1).

Note that the Ejk’s depend on λ. Thus, the system is of the form

B2n(λ)




a1

b1
...
an
bn




= 0.(4.12)

We first have to find the λ′s such that detB2n(λ) = 0 and then to find an eigenvector
to B2n(λ) to the eigenvalue 0.

Suppose finally that the two zeros of (4.10) coincide and denote them by αk.
Then the general solution of (4.9) is

yk(x) = ake
αkx + bkxe

αkx,

we have

yk(0) = ak, yk(1) = eαkak + eαkbk,

y′k(0) = αkak + bk, y′k(1) = αke
αkak + (1 + αk)e

αkbk,

and hence, for the indices k in question, we must make the following changes in the
matrix B2n(λ):

E1kak −→ E1kak, E1kbk −→ 0,
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Enke
αkak −→ Enke

αkak, Enke
βkbk −→ Enke

αkbk

(Ejke
αk − Ej+1,k) ak −→ (Ejke

αk − Ej+1,k) ak,(
Ejke

βk − Ej+1,k

)
bk −→ Ejke

αkbk,

αk (Ejke
αk − Ej+1,k) ak −→ αk (Ejke

αk − Ej+1,k) ak,

βk
(
Ejke

βk − Ej+1,k

)
bk −→

(
(1 + αk)Ejke

αk − Ej+1,k

)
bk.

Let λ1, . . . , λL be solutions of detB2n(λ) = 0 and suppose we have the corre-
sponding exponents αℓ,k βℓ,k given by (4.11) and the corresponding solutions aℓ,k,
bℓ,k of (4.12). For ℓ = 1, . . . , L, we define




vℓ,1(x)
...

vℓ,n(x)


 = E




aℓ,1e
αℓ,1x + bℓ,1e

βℓ,1x

...
aℓ,ne

αℓ,nx + bℓ,ne
βℓ,nx


 , x ∈ (0, 1)

(with the obvious modification if αℓ,k = βℓ,k). We denote by Vℓ the function on (0, n)
given by

Vℓ(x+ k − 1) = vℓ,k(x), x ∈ (0, 1).

The function Vℓ is in C2(0, n) ∩C[0, n] and satisfies Vℓ(0) = Vℓ(n) = 0. For arbitrary
constants C1, . . . , CL, the function

uL(x, t) :=

L∑

ℓ=1

CℓVℓ(x)e
−λℓt(4.13)

satisfies (3.7) and (4.1). The constants C1, . . . , CL have to be chosen so that

uL(x, 0) =

L∑

ℓ=1

CℓVℓ(x) ≈ g(x), x ∈ (0, n),(4.14)

i.e., so that (3.6) is approximately satisfied. The function uL(x, t) obtained in this
way is the desired approximation to the exact option price u(x, t).

Let

Φ0(x) = g(x) − uL(x, 0) = g(x) −
L∑

ℓ=1

CℓVℓ(x)

be the error made in (4.14) and let

Φt(x) = u(x, t) − uL(x, t) = u(x, t) −
L∑

ℓ=1

CℓVℓ(x)e
−λℓt

be the difference at time t between the exact solution of (3.5), (3.6), (3.7) and the
approximate solution given by the right-hand side of (4.13) with the coefficients from
(4.14). Theorem 3 implies that ‖Φt‖2 ≤ e−rt‖Φ0‖2, where ‖ · ‖2 is the L2 norm on
(0, n).

To summarize, the algorithm is as follows. Compute the eigenvalues and eigen-
vectors of the Toeplitz matrix Tn(c), that is, the numbers γ1, . . . , γn and the matrix
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E. For λ on a grid on the real line, compute the numbers (4.11), construct the matrix
B2n(λ) (taking into account the modifications if the two numbers (4.11) coincide),
and check whether B2n(λ) is almost singular (e.g., by computing the determinant or
the minimum of the absolute values of the eigenvalues). Refine the grid in neighbor-
hoods of the λ’s where B2n(λ) is close to singular to find λ’s where B2n(λ) is actually
(or almost actually) singular. Suppose we have L such λ’s, λ1, . . . , λL. For these λ’s,
solve (4.12), which amounts to finding an eigenvector for the eigenvalue 0. Construct
the functions V1, . . . , VL and finally determine C1, . . . , CL from (4.14).

We discuss the effectiveness of this algorithm. As L → ∞, the series (4.14)
converge in the L2 sense. In more detail: a Gibbs’s phenomenon appears; that is, the
series (4.14) converges uniformly on the segment [0, L− ε] for each positive ε, and the
partial sums are uniformly bounded in neighborhood of the endpoint L. Therefore it
is necessary use many coefficients Cℓ to obtain a good approximation of the function
uL(x, 0). But for t > 0 we note the exponential factors exp(−λℓt) in the series (4.13),
for which it is known that the λℓ are asymptotically linear in ℓ. Therefore the series
(4.13) converges very rapidly if t is not very small. The main drawback of our method
is the solution of the nonlinear equation (4.12), which is time-consuming when n is
large. However, for a fixed model (i.e., the values σ, µ, δ, pj and L) we can calculate
the λℓ once and then reuse them as many times as desired for different times t and
even for different payoffs.

5. Numerical example. Our calculations were performed with Mathematica
(Wolfram) but could be reproduced easily in many standard programming languages
or (with sufficient resourcefulness) on a spreadsheet. Assume that the upper barrier
is at a 25% increase over the current stock price. We will arbitrarily set the jump
probabilities at q−1 = 0.6, q0 = 0.1, q1 = 0.3 and define σ = 0.45, µ0 = 0.12, r = 0.1.
Thus applying n = 2 and b− = 1, b+ = 1.25 in (1.3), we are looking at

Sτ = S0e
X∗

τ(5.1)

where

X∗
τ :=

log(b+/b−)

n
Xτ = 0.11157Xτ .

The region within the barrier is 0 = log b− < x∗ < log b+ = 0.22314.
The EMM parameters (2.5) corresponding to ε = 0 are found to be µ = −0.00125,

δ = 0, p−1 = 0.804796, p0 = 0.073704, p1 = 0.121500. (In these calculations θ0 =
−0.598765 and S = 1.35677.) The resulting values of detB2n(λ) are graphed in Figure
5.1. The zeroes λ1(0), λ2(0), . . . are easily isolated numerically, using a coarse grid
of points separated by, say, ∆λ = 0.5; one may then refine the grid in those intervals
containing roots, or even more easily, apply standard programs, to approximate these
roots to any desired accuracy. For ε > 0 the values of θε of Proposition 1 are likewise
determined by a root-finding program, and shown in Figure 5.2. Applying these values
one calculates the corresponding EMM parameters and then finds λ1(ε), λ2(ε), . . .
for any fixed ε. To provide some insight into the dependence of the eigenvalues on ε,
we graph λℓ(ε) in Figure 5.3.

In this example we use a European call with strike price equal to the initial stock
value S0; i.e., we take h(s) = max(s − S0, 0). With the normalization S0 = 1, this
means g(x) = (b+)x/n − 1 for 0 ≤ x ≤ n, since s/S0 − 1 ≥ 0 for these values of x.
For each ℓ = 1, . . . , L, using the values αk,ℓ, βk,ℓ of (4.11) a null vector (aℓ,1, bℓ,1, . . . ,
aℓ,n, bℓ,n) of (4.12) is obtained by linear algebra routines. With this we have the
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10 20

.1

-.1

 

λ

detB4(λ)

Fig. 5.1. Location of the zeroes λj(0) of detB2n(λ) for n = 2, ε = 0

10.5

-0.5

-1

ε

θε

Fig. 5.2. θε as given by Proposition 1

functions V1, . . . , VL, each being defined by a separate formula of the type aeαx+beβx

in the successive intervals (0, 1), (1, 2), . . .. In the present calculations we have used
L = 34, obtained by setting an upper limit of 300.0 for λℓ. The coefficients C1, . . . , CL
are obtained by a least-squares fit of (4.14) based on g(x) for 8L equally spaced values
of x ∈ (0, n).

.5 1

1

2

3

4

ε

ℓ = 4

ℓ = 3

ℓ = 2

ℓ = 1

Fig. 5.3. Eigenvalues λℓ(ε) for ℓ = 1, 2, 3, 4
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Fig. 5.4. Variations in option price induced by assigning increasing weight ε =
0.1, 0.5, 1.0 to jumps. Ratios uε(x, t)/u0(x, t) are shown for time slices t = 0.1, 0.5, 1.0 (indi-
cated by increasing lengths of dashes). The horizontal axis is scaled to the auxiliary variable
x∗ = x log(b+/b−)/n.
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1

1.5
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u

Fig. 5.5. Option price u for ε = 1.0 as function of time t and logarithmic stock price x

With Cℓ in hand we have our approximation of uε(x, t) via (4.13). To exhibit the
dependence on ε, we plot in Figure 5.4 the ratios uε(x, t)/u0(x, t) for various values
of ε and times t. The reference values u0(x, t) refer to a market in which the jump
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phenomenon is insignificant. Finally, the option price surface u(x, t) for ε = 1.0 is
drawn in Figure 5.5.

The approximate calculation times in seconds for the essential steps of this algo-
rithm (all calculations done with standard precision) are listed in the following table.
For fixed n some minor variation was observed with differences in the probabilities
{pi}; average values are reported. The time for calculating the coefficients Cℓ (as well
as the functions Vℓ) does not depend significantly on the value of δ.

n L {λℓ} {Cℓ}
3 34 2.0 sec 4.1 sec
5 30 5.7 sec 41.0 sec
7 28 44.0 sec 50.0 sec

We stress that for a given payoff, the data λℓ, Cℓ, and Vℓ would be calculated
only once. With these data, the calculation of u(x, t) is extremely rapid.

6. Pure jumps. Let us consider the case where the Brownian component and
the drift are absent. Thus,

Xτ = ε

Nτ∑

k=1

Jk, E
[
eiξXτ

]
= e−tψ(ξ), ψ(ξ) := ε


1 −

∞∑

j=−∞
qje

ijξ


 ,

(Af)(x) := (r + δ)f(x) − δ
∞∑

j=−∞
pjf(x+ j)

∣∣∣
(0,n)

,

δ := εS, pj :=
qje

jθε

S
, S :=

∞∑

j=−∞
qje

jθε ,(6.1)

In that case A is bounded on L2(0, n) and hence −A generates a uniformly bounded
semigroup. The system (4.1),(4.2) becomes




u1,t

...
un,t


 = Tn(c)




u1

...
un


 ,(6.2)

uj(x, 0) = gj(x) for x ∈ (0, 1),(6.3)

and hence



u1(x, t)
...

un(x, t)


 = etTn(c)




g1(x)
...

gn(x)


 = EetΛE−1




g1(x)
...

gn(x)


 ,

which can be written in the form

u(j − 1 + x, t) =

n∑

ℓ=1

g(ℓ− 1 + x)

n∑

k=1

etγkEjk(E
−1)kℓ(6.4)

for j = 1, . . . , n and x ∈ (0, 1).



EUROPEAN DOUBLE-BARRIER OPTIONS 13

The case of a tridiagonal Toeplitz matrix is especially simple. Let qj = 0 for
|j| ≥ 2 and define δ and p−1, p0, p1 by (6.1). Suppose p−1 and p1 are nonzero. Then

Tn(c) =




−r − δ(1 − p0) δp1 0 . . .
δp−1 −r − δ(1 − p0) δp0 . . .

0 δp−1 −r − δ(1 − p0) . . .
. . . . . . . . . . . .


 .

The eigenvalues of Tn(c) are

γk = −r − δ(1 − p0) + δ
√
p1p−1 cos

πk

n+ 1
(k = 1, . . . , n)(6.5)

and an eigenvector for γk is

ek :=

(
1

̺
sin

πk

n+ 1
,

1

̺2
sin

2πk

n+ 1
, . . . ,

1

̺n
sin

nπk

n+ 1

)⊤

with ̺ :=
√
p1/p−1. Thus, Tn(c) = EΛE−1 where E is the matrix whose kth column

is ek. The matrix E−1 is 2/(n+ 1) times the matrix whose kth row is

dk :=

(
̺ sin

πk

n+ 1
, ̺2 sin

2πk

n+ 1
, . . . , ̺n sin

nπk

n+ 1

)
.

Inserting this in (6.4) we arrive at the following result.

Theorem 4. If Tn(c) is tridiagonal and p1p−1 6= 0, then

u(j − 1 + x, t) =
2

n+ 1

1

̺j

n∑

ℓ=1

g(ℓ− 1 + x)̺ℓ
n∑

k=1

etγk sin
kπj

n+ 1
sin

kπℓ

n+ 1

where γk is given by (6.5) and ̺ =
√
p1/p−1.

Letting n→ ∞, we get the solution in the single-barrier case: for j = 1, 2, . . . and
x ∈ (0, 1),

u(j − 1 + x, t) =
1

̺j

∞∑

ℓ=1

g(ℓ− 1 + x)̺ℓetc0
∫ 1

0

etδ
√
p1p−1 cos(πξ) sin(πjξ) sin(πℓξ) dξ

with c0 = −r − δ(1 − p0). We finally mention that in the case of no barriers the
solution is

u(j − 1 + x, t) =

∞∑

ℓ=−∞
g(ℓ− 1 + x)

1

2π

∫ 2π

0

eiξ(ℓ−j)etr+tψ
Q(−ξ) dξ

where ψQ(ξ) := δ(1 − p−1e
−iξ − p0 − p1e

iξ).
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