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Abstract

This note formulates some assertions and conjectures concerning an up to now
missing case of convergence rates results for variational regularization of nonlinear
ill-posed problems in Banach spaces. If the residual term is the p-th power of a
Banach space norm, then the use of powers 0 < p < 1 instead of the common
values 1 ≤ p < ∞ leads to an artificial limitation of convergence rates. This effect
also occurs for general residual terms when they represent concave monomials of that
distance which is bounded by the noise level and expresses some kind of qualification
for the regularization method.
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1 Introduction

We will consider ill-posed operator equations

F (u) = v (1.1)

with an in general nonlinear operator F : D(F ) ⊆ U → V possessing the domain D(F )
and mapping between normed real linear spaces U and V with norms ‖ · ‖U and ‖ · ‖V ,
respectively. Based on noisy data vδ of the exact right-hand side v = v0 ∈ F (D(F )) with

‖vδ − v‖V ≤ δ (1.2)
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and noise level δ ≥ 0 we analyze stable approximate solutions uδ
α as minimizers of the

Tikhonov type functional

T vδ

α (u) := ‖F (u)− vδ‖p
V + α Ω(u) (1.3)

with regularization parameters α > 0 and a penalty functional Ω : U → [0, +∞] with
proper domain

D(Ω) := {u ∈ U : Ω(u) 6= +∞} .

Hence we have to minimize in the functional T vδ

α in (1.3) over the intersection

D := D(F ) ∩ D(Ω)

of the domains of F and Ω which is assumed to be non-empty.

In the literature the variational regularization (1.3) is studied comprehensively for
convex penalty functionals Ω (see, e.g., [2, 3, 4, 6]), and in the context of sparsity also
for non-convex ones (see, e.g., [7] and recent papers of O. Scherzer’s Innsbruck research
group). The exponent p, however, is always chosen from the interval [1,∞), since the
background of ‖F (u) − vδ‖p

V is mostly ‖F (u) − vδ‖p
Lp and Lp is only a Banach space for

p ≥ 1. On the other hand, the theory allows a wide range of Banach space norms ‖ · ‖V .
In this note we therefore outline the consequences for convergence rates occurring when
small exponents 0 < p < 1 are connected with convex penalties Ω. Then the weak point is
that one uses a concave function of the norm as residual term, which leads to an artificial
limitation of convergence rates. This is an analytical argument that complements the
abhorrence of the case 0 < p < 1 coming from numerical difficulties in finding minimizers
of (1.3). On the other hand, this expresses some kind of qualification for the regularization
method depending on p in analogy to the qualification concepts in linear regularization
theory.

Throughout this note we make the following assumptions:

Assumption 1.1

1. U and V are reflexive Banach spaces with duals U∗ and V ∗, respectively. In U and
V we consider in addition to the norm convergence the associated weak convergence.
That means in U

uk ⇀ u ⇐⇒ 〈f, uk〉U∗,U → 〈f, u〉U∗,U ∀f ∈ U∗

for the dual pairing 〈·, ·〉U∗,U with respect to U∗ and U . The weak convergence in V
is defined in an analog manner.

2. F : D(F ) ⊆ U → V is weakly-weakly sequentially continuous and D(F ) is weakly
sequentially closed, i.e.,

uk ⇀ u in U with uk ∈ D(F ) =⇒ u ∈ D(F ) and F (uk) ⇀ F (u) in V.

3. The functional Ω is convex and weakly sequentially lower semi-continuous.

4. We have 0 < p < 1 for the exponent in the residual term of (1.3).
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5. For every α > 0, c ≥ 0, and for the exact right-hand side v = v0 of (1.1), the sets

Mv
α(c) := {u ∈ D : T v

α(u) ≤ c} (1.4)

are weakly sequentially pre-compact in the following sense: every sequence {uk}∞k=1

in Mv
α(c) has a subsequence, which is weakly convergent in U to some element from

U .

We believe that assertions on existence and stability of regularized solutions uδ
α, well-

known for p ≥ 1, can be extended to the case 0 < p < 1, but we do not verify that
here.

As obvious in Banach space theory of variational regularization errors will be measured
for the convex functional Ω with subdifferential ∂Ω by means of Bregman distances

Dξ(ũ, u) := Ω(ũ)− Ω(u)− 〈ξ, ũ− u〉U∗,U , ũ ∈ D(Ω) ⊆ U ,

at u ∈ D(Ω) ⊆ U and ξ ∈ ∂Ω(u) ⊆ U∗. We denote the Bregman domain by

DB(Ω) := {u ∈ D(Ω) : ∂Ω(u) 6= ∅}
and consider Ω-minimizing solutions u† ∈ DB(Ω) ∩ D(F ) to (1.1), which we assume to
exist and for which we have

Ω(u†) = min {Ω(u) : F (u) = v, u ∈ D} < ∞ .

2 Convergence and variational inequalities

As the following proposition shows, all regularized solutions associated with data possess-
ing a sufficiently small noise level δ belong to a common weakly pre-compact level set of
type Mv

α(c) whenever the regularization parameters α = α(δ) are chosen such that weak
convergence to Ω-minimizing solutions u† is enforced.

Proposition 2.1 Consider an a priori choice α = α(δ) > 0, 0 < δ < ∞, for the
regularization parameter in (1.3) depending on the noise level δ such that

α(δ) → 0 and
δp

α(δ)
→ 0, as δ → 0. (2.1)

Provided that (1.1) has a solution u ∈ D then under Assumption 1.1 every sequence
{un}∞n=1 := {uδn

α(δn)}∞n=1 of regularized solutions corresponding to a sequence {vδn}∞n=1 of
data with lim

n→∞
δn = 0 has a subsequence {unk

}∞k=1, which is weakly convergent in U ,

i.e. unk
⇀ u†, and its limit u† is an Ω-minimizing solution of (1.1) with

Ω(u†) = lim
k→∞

Ω(unk
).

For given αmax > 0 let u† denote an Ω-minimizing solution of (1.1). If we set

ρ := αmax(1 + Ω(u†)) , (2.2)

then we have u† ∈Mv
αmax

(ρ) and there exists some δmax > 0 such that

uδ
α(δ) ∈Mv

αmax
(ρ) for all 0 ≤ δ ≤ δmax . (2.3)
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Proof: The proof of the first part of the proposition concerning convergence can be done
as in [6, Theorem 3.26]. The second part can be proven as follows: Owing to (2.1) there
exists some δmax > 0 such that α(δ) ≤ αmax and δp

α(δ)
≤ 1

2
for all 0 < δ ≤ δmax. Then

for such δ, by writing for simplicity α instead of α(δ), we have with (a + b)p ≤ ap + bp

(a, b ≥ 0, 0 < p < 1) the estimate

T v
αmax

(uδ
α) ≤ [∥∥F (uδ

α)− vδ
∥∥p

V
+ δp + αmaxΩ(uδ

α)
]

=
[∥∥F (uδ

α)− vδ
∥∥p

V
+ αΩ(uδ

α) + (αmax − α)Ω(uδ
α) + δp

]

≤
[
T vδ

α (u†) + (αmax − α)Ω(uδ
α) + δp

]
≤ [

δp + αΩ(u†) + (αmax − α)Ω(uδ
α) + δp

]
.

Because of Ω(uδ
α) ≤ δp

α
+Ω(u†), which is a consequence of T vδ

α (uδ
α) ≤ T vδ

α (u†) (α > 0), and
with αmax

α
≥ 1, δp

α
≤ 1

2
this yields

T v
αmax

(uδ
α) ≤

[
δp + αmax

δp

α
+ αmaxΩ(u†)

]
≤

[
2αmax

δp

α
+ αmaxΩ(u†)

]
≤ ρ

and hence proves (2.3). Evidently, it holds T v
αmax

(u†) = αmaxΩ(u†) ≤ αmaxΩ(u†) for all
p under consideration. This, however, implies u† ∈Mv

αmax
(ρ) and completes the proof.

As recent publications show, for variational regularization the variational inequalities
that have to hold on level setsMv

αmax
(ρ) play an important role for obtaining convergence

rates. This is also the case for 0 < p < 1. In this context, we fix an a priori parameter
choice α = α(δ) yielding convergence along the lines of Proposition 2.1 and use the
notation around that proposition. Then we can consider variational inequalities of the
form

〈
ξ, u† − u

〉
U∗,U ≤ β1Dξ(u, u†) + β2

∥∥F (u)− F (u†)
∥∥κ

V
for all u ∈Mv

αmax
(ρ) (2.4)

with some ξ ∈ ∂Ω(u†), two multipliers 0 ≤ β1 < 1, β2 ≥ 0 and an exponent κ > 0. In [3,
Proposition 4.3] it was shown that only the interval 0 < κ ≤ 1 is of real interest. Now we
have the following assertion concerning the interplay of different exponents κ.

Lemma 2.2 Let u† ∈ DB(Ω) ∩ D(F ) with ξ ∈ ∂Ω(u†) be an Ω-minimizing solution of
(1.1). If a variational inequality (2.4) is valid for some exponent κ = κ0 ∈ (0, 1] and two
multipliers 0 ≤ β1 < 1, β2 = β2(κ0) ≥ 0, then for any smaller exponent 0 < κ = κ1 < κ0

the inequality (2.4) also holds on the same level set, with the same β1, but with another
β2 = β2(κ1) ≥ 0.

Proof: The proof is simple, since u ∈Mv
αmax

(ρ) means that

‖F (u)− F (u†)‖p
V + αmax Ω(u) ≤ ρ

and implies ‖F (u)− F (u†)‖V ≤ ρ
1
p as well as

β2(κ0)
∥∥F (u)− F (u†)

∥∥κ0

V
≤ β2(κ0) ρ

κ0−κ1
p

∥∥F (u)− F (u†)
∥∥κ1

V
.

Setting β2(κ1) := β2(κ0) ρ
κ0−κ1

p this proves the lemma.
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3 A new convergence rates result for 0 < p < 1

Now we are ready to formulate and prove the main assertion of this note concerning
convergence rates for the new exponent interval 0 < p < 1 in variational regularization.
We are based on and connect to the well-known recent results on convergence rates results
for p ≥ 1 based on the technique of variational inequalities published in [4], [6] and [2, 3].
The theorem assumes that a variational inequality (2.4) is satisfied with some exponent
κ. Sufficient conditions for that assumptions are formulated in [4] and [6, Section 3.2] for
κ = 1 and in [2, 3] for 0 < κ ≤ 1.

Theorem 3.1 Let u† ∈ DB(Ω) be an Ω-minimizing solution of (1.1) with ξ ∈ ∂Ω(u†) and
let exist constants 0 ≤ β1 < 1, β2 ≥ 0, and 0 < κ ≤ 1 such that the variational inequality
(2.4) holds with ρ from (2.2). Then under the assumptions stated above we have for the
Tikhonov type regularization method (1.3) with norm exponent 0 < p < 1 in the residual
term the convergence rate

Dξ(u
δ
α(δ), u

†) = O (δµ) as δ → 0 (3.1)

for all rate exponents 0 < µ < 1 satisfying the condition

µ < p if p ≤ κ and µ = κ if κ < p (3.2)

whenever we use an a priori parameter choice α(δ) ³ δp−µ.

Proof: By Lemma 2.2 we obtain from (2.4) that such a variational inequality with some
0 ≤ β < 1 and β2 ≥ 0 is also valid for all exponents 0 < µ < 1 satisfying the condition
(3.2) which implies µ < p. We write again for simplicity α instead of α(δ) and note that
the parameter choice rule α ³ δp−µ satisfies the condition (2.1) with the consequence that
Proposition 2.1 is applicable. Then by using T vδ

α (uδ
α) ≤ T vδ

α (u†) and (1.2) we can estimate
as follows:

∥∥F (uδ
α)− vδ

∥∥p

V
+ αDξ(u

δ
α, u†) ≤ δp + α

(
Ω(u†)− Ω(uδ

α) + Dξ(u
δ
α, u†)

)
. (3.3)

Moreover, by exploiting the inequality (a + b)µ ≤ aµ + bµ (a, b > 0, 0 < µ ≤ 1) because
of (2.3) we obtain from the variational inequality (2.4) that

Ω(u†)− Ω(uδ
α) + Dξ(u

δ
α, u†) = − 〈

ξ, uδ
α − u†

〉
U∗,U

≤ β1 Dξ(u
δ
α, u†) + β2

∥∥F (uδ
α)− F (u†)

∥∥µ

V

≤ β1 Dξ(u
δ
α, u†) + β2

(∥∥F (uδ
α)− vδ

∥∥µ

V
+ δµ

)
.

Therefore from (3.3) it follows that
∥∥F (uδ

α)− vδ
∥∥p

V
+αDξ(u

δ
α, u†) ≤ δp+α

(
β1Dξ(u

δ
α, u†) + β2

(∥∥F (uδ
α)− vδ

∥∥µ

V
+ δµ

))
. (3.4)

Using the variant

a b ≤ ε ap1 +
bp2

(ε p1)p2/p1p2

(a, b ≥ 0, ε > 0 p1, p2 > 1 with
1

p1

+
1

p1

= 1) (3.5)
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of Young’s inequality twice with ε := 1, p1 := p/µ, p2 := p/(p− µ) and b := αβ2, on the
one hand with a := ‖F (uδ

α)− u†‖µ
V and on the other hand with a := δµ, the inequality

αDξ(u
δ
α, u†) ≤ 2δp + αβ1Dξ(u

δ
α, u†) +

2(p− µ)

(p/µ)µ/(p−µ) p
(αβ2)

p/(p−µ)

follows from (3.4). Because of 0 ≤ β1 < 1 this provides us with the estimate

Dξ(u
δ
α, u†) ≤

2δp + 2(p−µ)

(p/µ)µ/(p−µ) p
(α β2)

p/(p−µ)

α (1− β1)
(3.6)

for sufficiently small δ > 0, which yields (3.1) for the a priori parameter choice α ³ δp−µ

and proves the theorem.

The theorem and its proof indicate that there is for the variational inequality approach
of the Tikhonov type method a caesura at exponent p = 1. For p ≥ 1 there occur Hölder
convergence rates mit rate exponent κ when (2.4) is fulfilled. For p < 1, however, the
approach produces an artificial limitation of the convergence rate when p ≤ κ. This
seems to be a drawback for the method. This caesura can also be seen by considering the
a priori parameter choice α ³ δp−µ. If µ approaches p from below the decay of quotient

δ
α(δ)

= δp−µ → 0 gets very slow and in the limit situation µ = p the required convergence
condition (2.1) is violated. On the other hand, Young’s inequality (3.5) can only be
applied with exponents p1, p2 > 1 which requires µ < p at all.

In [1] J. Geissler shows that the same ceasura also occurs in the variant

T vδ

α (u) := S(F (u), vδ)p + α Ω(u) → min

of variational regularization with general residual term suggested by C. Pöschl in [5],
where S(F (u), vδ) replaces the norm ‖F (u) − vδ‖V and the inequality S(F (u†), vδ) ≤ δ
defines the noise model.

We conjecture that such effects can appear whenever the residual term has a non-
convex structure, for example for terms f(‖F (u) − vδ‖V ) with f(t) (t ≥ 0) a concave
increasing function and f(0) = 0.
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