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An important problem of digital signal processing is the so-called frequency
analysis problem: Let f be an anharmonic Fourier sum. Determine the differ-
ent frequencies, the coefficients, and the number of frequencies from finitely
many equispaced sampled data of f . This is a nonlinear inverse problem. In
this paper, we present new results on an approximate Prony method which
is based on [1, 2]. In contrast to [1, 2], we apply matrix perturbation the-
ory such that we can describe the properties and the numerical behavior of
the approximate Prony method in detail. Numerical experiments show the
performance of our method.
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1 Introduction

We consider an anharmonic Fourier sum of the form

f(x) :=
α0

2
+

M∑
j=1

(
αj cos(ωjx) + βj sin(ωjx)

)
(x ∈ R)

with real coefficients αj , βj (α2
j + β2

j > 0) and frequencies ωj with

0 < ω1 < . . . < ωM < π .
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For α0 6= 0 let ω0 = 0 and β0 = 0. For simplicity we consider only the case α0 6= 0. The
frequencies ωj (j = −M, . . . , M) are extended with the period 2π such that for example
ω−M−1 := −2π + ωM and ωM+1 := 2π − ωM . We denote the separation distance q of
the frequency set {ωj : j = 0, . . . ,M + 1} by

q := min
j,k=0,...,M+1

j 6=k

|ωk − ωj | .

Then we have qM < π. Let N ∈ N an integer with N ≥ 2M + 1. Assume that the
sampled data hk := f(k) (k = 0, . . . , 2N) are given. Since ωM < π, we infer that
the Nyquist condition is fulfilled (see [3, p. 183]). From the 2N + 1 sampled data hk
(k = 0, . . . , 2N) we have to determine the positive integer M , the real coefficients αj ,
βj and the frequencies ωj ∈ [0, π) (j = 0, . . . ,M). This is the real frequency analysis
problem.
Using

cos(ωjx) =
1
2

(eiωjx + e−iωjx), sin(ωjx) =
1
2i

(eiωjx − e−iωjx),

we obtain the complex representation of f in the form

f(x) = ρ0 +
M∑
j=1

(
ρj eiωjx + ρ̄j e−iωjx

)
with the coefficients

ρj :=
1
2

(αj − iβj) (j = 0, . . . ,M).

We define
ωj := −ω−j , ρj := ρ̄−j (j = −M, . . . ,−1) (1.1)

and write the anharmonic Fourier sum f in the complex form

f(x) =
M∑

j=−M
ρj eiωjx . (1.2)

Then the complex frequency analysis problem reads as follows: Determine the positive
integer M , the frequencies ωj ∈ [0, π) and the coefficients ρj ∈ C \ {0} (j = 0, . . . ,M)
with (1.1) such that

M∑
j=−M

ρj eiωjk = hk (k = 0, . . . , 2N) .

This is a nonlinear inverse problem which can be simplified by original ideas of G. R.
de Prony. But the classical Prony method is numerically unstable such that numerous
modifications were attempted to improve its numerical behavior. For the more general
case with wj ∈ C see e.g. [13] and the references therein. Our results are based on
the papers [1, 2] of G. Beylkin and L. Monzón. The nonlinear problem of finding the
frequencies and coefficients can be split into two problems. To obtain the frequencies,
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we solve an eigenvalue problem of the Hankel matrix H =
(
f(k + l)

)N
k,l=0

and find
the frequencies via roots of an eigenpolynomial. To obtain the coefficients, we use the
frequencies to solve an overdetermined linear Vandermonde–type system. In contrast to
[1, 2], we present an approximate Prony method by means of matrix perturbation theory
such that we can describe the properties and the numerical behavior of the approximate
Prony method in detail.
In applications, perturbed values h̃k ∈ R of the exact sampled data hk = f(k) are only
known with the property

h̃k = hk + ek , |ek| ≤ ε1 (k = 0, . . . , 2N),

where the error terms ek are bounded by certain accuracy ε1 > 0. Also if the sampled
values hk are accurately determined, then we still have a small roundoff error due to the
use of floating point arithmetic. Furthermore we assume that |ρj | ≥ ε1 (j = 0, . . . ,M).

This paper is organized as follows. In Section 2, we discuss the classical Prony method.
Then in Section 3, we shortly describe an improved Prony method founded by G. Beylkin
and L. Monzón [2]. The core of this paper are the Sections 4 and 5 with our new results
on an approximate Prony method. Using matrix perturbation theory, we discuss the
properties of small eigenvalues and related eigenvectors of a real Hankel matrix formed
by given noisy data. By means of the separation distance of the frequency set, we
can describe the numerical behavior of the approximate Prony method also for clustered
frequencies, if we use oversampling. Further we discuss the sensitivity of the approximate
Prony method to perturbation. Finally, various numerical examples are presented in
Section 6.

2 Classical Prony method

The classical Prony method works with exact sampled data. Following an idea of G. R.
de Prony from 1795 (see e.g. [11, pp. 303–310]), we regard the sampled data hk = f(k)
(k = 0, . . . , 2N) as solution of a homogeneous linear difference equation with constant
coefficients. If

hk = f(k) =
M∑

j=−M
ρj

(
eiωj

)k
with (1.1) is a solution of certain homogeneous linear difference equation with constant
coefficients, then eiωj (j = −M, . . . , M) must be zeros of the corresponding character-
istic polynomial. Thus

P0(z) :=
M∏

j=−M
(z − eiωj ) = (z − 1)

M∏
j=1

(z2 − 2z cosωj + 1)

= p2M+1 z
2M+1 + p2M z2M + . . .+ p1 z + p0 (z ∈ C) (2.1)

with p2M+1 = −p0 = 1 is the monic characteristic polynomial of minimal degree. With
the real coefficients pk (k = 0, . . . , 2M+1) we compose the homogeneous linear difference
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equation
2M+1∑
l=0

xl+m pl = 0 (m = 0, 1, . . .), (2.2)

which obviously has P0 as characteristic polynomial. Consequently, (2.2) has the real
general solution

xm =
M∑

j=−M
ρj eiωjm (m = 0, 1, . . .)

with arbitrary coefficients ρ0 ∈ R and ρj ∈ C (j = 1, . . . ,M) with (1.1). Then we
determine ρj (j = 0, . . . ,M) in such a way that xk ≈ hk (k = 0, . . . , 2N). To this end,
we compute the least squares solution of the overdetermined linear Vandermonde–type
system

M∑
j=−M

ρj eiωjk = hk (k = 0, . . . , 2N).

The Prony method is based on following assertions:

Lemma 2.1 Let M, N ∈ N with N ≥ 2M + 1 and

hk = f(k) =
M∑

j=−M
ρj eiωjk (k = 0, . . . , 2N) (2.3)

with ρ0 ∈ R \ {0}, ρj ∈ C \ {0} (j = 1, . . . ,M) and let ω0 = 0 < ω1 < . . . < ωM < π be
given with (1.1). Furthermore let

P (z) =
N∑
k=0

uk z
k (z ∈ C)

be a polynomial with real coefficients uk (k = 0, . . . , N) and with 2M + 1 different zeros
eiωj (j = −M, . . . ,M) on the unit circle.
Then the equations

N∑
l=0

hl+m ul = 0 (m = 0, 1, . . .) (2.4)

are fulfilled and 0 is an eigenvalue of the real Hankel matrix H =
(
hl+m

)N
m,l=0

with the
eigenvector u := (ul)Nl=0.

Proof. We compute the sum (2.4) by using (2.3) and obtain for m = 0, 1, . . .

N∑
l=0

hl+m ul =
N∑
l=0

ul

( M∑
j=−M

ρj eiωj(l+m)
)

=
M∑

j=−M
ρj eiωjm P (eiωj ) = 0.
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Therefore we get Hu = o, where o ∈ RN+1 denotes the zero vector.

Lemma 2.2 Let M, N ∈ N with N ≥ 2M + 1 be given. Furthermore let hk be given
by (2.3) with ρ0 ∈ R \ {0}, ρj ∈ C \ {0} (j = 1, . . . ,M), ω0 = 0 < ω1 < . . . < ωM < π
and (1.1). Assume that the Hankel matrix H = (hl+m)Nl,m=0 has the eigenvalue 0 with
an eigenvector u = (un)Nn=0 ∈ RN+1.
Then the corresponding eigenpolynom

P (z) =
N∑
k=0

uk z
k (z ∈ C),

has the values eiωj (j = −M, . . . ,M) as zeros, i.e., P0 defined by (2.1) is a divisor of P .

Proof. By assumption we have

N∑
l=0

hl+m ul = 0 (m = 0, . . . , N)

such that we obtain for arbitrary z ∈ C

N∑
m=0

( N∑
l=0

hl+m ul
)
zm = 0.

We use (2.3), change the order of summation and obtain

M∑
j=−M

ρj P (eiωj )Q(eiωjz) = 0 (2.5)

with

Q(z) :=
N∑
m=0

zm.

The 2M + 1 polynomials Q(eiωjz) (j = −M, . . . , M) are linearly independent, since by
comparison of coefficients from

M∑
j=−M

αj Q(eiωjz) = 0 (αj ∈ C)

we obtain the following linear system

M∑
j=−M

αj eikωj = 0 (k = 0, . . . , 2M)
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with the regular Vandermonde matrix
(
eikωj

)2M,M

k=0,j=−M such that αj = 0 (j = −M, . . . ,M).
Hence we infer from (2.5) and ρj 6= 0

P (eiωj ) = 0 (j = −M, . . . ,M),

but this means that P0 divides P .

The idea of G. R. de Prony is based on the separation of the unknown frequen-
cies ωj from the unknown coefficients ρj by means of a homogeneous linear difference
equation (2.2). With the 2N + 1 sampled data hk ∈ R we form the Hankel matrix
H = (hl+m)Nl,m=0 ∈ R(N+1)×(N+1). Using the coefficients pk (k = 0, . . . , 2M + 1) of
(2.1), we construct the vector p := (pk)Nk=0, where p2M+2 = . . . = pN := 0. By
S :=

(
δk−l−1

)N
k,l=0

we denote the forward shift matrix, where δk is the Kronecker symbol.

Lemma 2.3 Let M, N ∈ N with N ≥ 2M+1 be given. Furthermore let hk ∈ R be given
by (2.3) with ρ0 ∈ R \ {0}, ρj ∈ C \ {0} (j = 1, . . . ,M), ω0 = 0 < ω1 < . . . < ωM < π
and (1.1).
Then the Hankel matrix H = (hl+m)Nl,m=0 has the eigenvalue 0 with multiplicity N −2M
and

dim (ker H) = N − 2M, rank H = 2M + 1

with the kernel
ker H = span {p,Sp, . . . ,SN−2M−1p}.

Proof. 1. From
2M+1∑
l=0

hl+m pl = 0 (m = 0, . . . , N − 2M − 1)

it follows that
H
(
Sjp

)
= o (j = 0, . . . , N − 2M − 1).

By p0 = −1 we see immediately that the vectors Sjp (j = 0, . . . , N−2M−1) are linearly
independent and located in the kernel ker H.
2. We prove that ker H is contained in the span of the vectors Sjp (j = 0, . . . , N−2M−
1). Let u ∈ RN+1 be an arbitrary eigenvector of H of the eigenvalue 0 and let P be
the related eigenpolynomial. Using Lemma 2.2, we infer that P (z) = P0(z)P1(z) with a
polynomial

P1(z) = β0 + β1z + . . .+ βN−2M−1z
N−2M−1 ,

where the coefficients βk are real. But this means that

u = β0 p + β1 Sp + . . .+ βN−2M−1 SN−2M−1p.

Hence it follows that the vectors Sjp (j = 0, . . . , N − 2M − 1) compose a basis of ker H
and we obtain dim(ker H) = N − 2M .
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3. Since H is real and symmetric, we can represent RN+1 as the orthogonal sum of the
kernel ker H and the image im H such that

rank H = dim (im H) = (N + 1)− (N − 2M) = 2M + 1 .

This completes the proof.

We summaries:

Algorithm 2.4 (Classical Prony Method)
Input: N ∈ N (N � 1), hk = f(k) (k = 0, . . . , 2N), 0 < ε� 1.
1. Compute an eigenvector u = (ul)Nl=0 corresponding to the eigenvalue 0 of the exact
Hankel matrix H = (hl+m)Nl,m=0.
2. Form the corresponding eigenpolynomial

P (z) =
N∑
k=0

uk z
k

and evaluate all zeros eiωj (j = 1, . . . , M̃) with ωj ∈ (0, π) and (1.1) lying on the unit
circle. Note that N ≥ 2M̃ + 1.
3. Compute ρ0 ∈ R and ρj ∈ C (j = 1, . . . , M̃) with (1.1) as least squares solution of
the overdetermined linear Vandermonde–type system

M̃∑
j=−M̃

ρj eiωjk = hk (k = 0, . . . , 2N). (2.6)

4. Cancel all that pairs (ωl, ρl) (l ∈ {1, . . . , M̃}) with |ρl| ≤ ε and denote the remaining
set by {(ωj , ρj) : j = 1, . . . ,M} with M ≤ M̃ .
Output: M ∈ N, ρ0 ∈ R, ρj ∈ C, ωj ∈ (0, π) (j = 1, . . . ,M).

Remark 2.5 Let N > 4M + 2. If one knows M or a good approximation of M , then
one can use the following least squares Prony method, see e.g. [5]. Since the leading
coefficient p2M+1 of the characteristic polynomial P0 is equal to 1, from (2.2) it follows
the overdetermined linear system

2M∑
l=0

hl+m pl = −h2M+1+m p2M+1 = −h2M+1+m (m = 0, . . . , N − 2M − 1) ,

which can be solved by a least squares method. See also the relation to the classic
Yule-Walker system [4]
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3 Improved Prony method

The classical Prony method is known to perform poorly when noisy data are given.
Therefore numerous modifications were attempted to improve the numerical behavior
of the classical Prony method. Recently, a very interesting approach is described by
G. Beylkin and L. Monzón [2], where the more general problem of approximation by
exponential sums is considered. Since our research is mainly motivated by these results,
we sketch this improved Prony method which is based on the following

Theorem 3.1 (see [2]) Let σ ∈ [−ε, ε] (0 < ε� 1) be a small eigenvalue of the Hankel
matrix H = (hk+l)Nk,l=0 ∈ R(N+1)×(N+1) with a corresponding eigenvector u = (ul)Nl=0 ∈
RN+1. Assume that the eigenpolynomial P related to u has N pairwise distinct zeros
γn ∈ C (n = 1, . . . , N). Further let L > 2N .
Then there exists a unique vector (νn)Nn=1 ∈ CN such that

hk =
N∑
n=1

νn γ
k
n + σ dk (k = 0, . . . , 2N) ,

where the normed vector
(
dk
)L−1

k=0
∈ CL is defined by

dk :=
1
L

L−1∑
l=0

d̂l e2πikl/L (k = 0, . . . , L− 1) (3.1)

with

d̂l :=

{
ûl/¯̂ul if ûl 6= 0,

1 if ûl = 0,

ûl :=
N∑
k=0

uk e−2πikl/L (l = 0, . . . , L− 1) .

Furthermore

|hk −
N∑
n=1

νn γ
k
n| ≤ |σ| ≤ ε (k = 0, . . . , 2N) .

Remark 3.2 The Theorem 3.1 yields a different representation for each L > 2N even
though γn and σ remain the same. If L is chosen as power of 2, then the entries ûl and
dk can be computed by fast Fourier transforms. Note that the least squares solution(
ρn
)N
n=1

of the overdetermined linear system

N∑
n=1

ρn γ
k
n = hk (k = 0, . . . , 2N) (3.2)
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has an error with Euclidean norm less than ε, since

2N∑
k=0

|hk −
N∑
n=1

ρn γ
k
n|2 ≤

2N∑
k=0

|hk −
N∑
n=1

νn γ
k
n|2

=
2N∑
k=0

|σ dk|2 ≤ |σ|2
L−1∑
k=0

|dk|2 ≤ ε2.

The proof of Theorem 3.1 implies that one can obtain the vector (νn)Nn=1 as the unique
solution of the linear Vandermonde system

N∑
n=1

νn γ
k
n = hk − σ dk (k = 0, . . . , N − 1) .

Since this equation is also valid for k = N, . . . , 2N , it follows that the least squares
solution

(
ρn
)N
n=1

of the overdetermined linear Vandermonde–type system

N∑
n=1

ρn γ
k
n = hk (k = 0, . . . , 2N)

has an error with Euclidean norm less than ε. Thus an algorithm of the improved Prony
method [2] reads as follows:

Algorithm 3.3 (Improved Prony method)
Input: N ∈ N (N � 1), L power of 2 with L > 2N , hk = f(k) (k = 0, . . . , 2N) ,
accuracies ε, ε1.

1. Compute a small eigenvalue σ ∈ [−ε, ε] and a corresponding eigenvector u =
(
ul
)N
l=0
∈

RN+1 of the Hankel matrix H =
(
hl+m

)N
l,m=0

.
2. Determine all zeros γn ∈ C of the corresponding eigenpolynomial

P (z) =
N∑
l=0

ul z
l .

Assume that all N zeros of P are simple.

3. Determine the least squares solution
(
ρn
)N
n=1
∈ CN of the overdetermined linear

Vandermonde–type system

N∑
n=1

ρn γ
k
n = hk (k = 0, . . . , 2N) .

4. Denote by γj (j = −M, . . . ,M) with γj = γ̄−j (j = 0, . . . ,M) all that zeros of P
which are close to the unit circle and for which |ρj | ≥ ε1. Set ωj = arg γj ∈ [0, π)
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(j = 0, . . . ,M).

Output: M ∈ N, ρj ∈ C (ρj = ρ̄−j), ωj ∈ [0, π) (j = 0, . . . ,M).

In [2], G. Beylkin and L. Monzón are not interested in exact representations of the
sampled values

hk =
N∑
n=1

ρn γ
k
n (k = 0, . . . , 2N)

but rather in approximate representations

∣∣∣hk − M∑
j=−M

ρj γ
k
j

∣∣∣ ≤ ε (k = 0, . . . , 2N)

for very small accuracy ε and minimal number 2M + 1 of nontrivial terms.

4 Approximate Prony method

In contrast to [1, 2], we present a new approximate Prony method by means of matrix
perturbation theory. In praxis, only perturbed values h̃k := hk + ek (k = 0, . . . , 2N)
of the exact sampled data hk are known. Here we assume that |ek| ≤ ε1 with certain
accuracy ε1 > 0 such that the error Hankel matrix

E :=
(
ek+l

)N
k,l=0

has a small spectral norm by

‖E‖2 ≤
√
‖E‖1 ‖E‖∞ = max

l=0,...,N

N∑
k=0

|ek+l| ≤ (N + 1) ε1. (4.1)

Then the perturbed Hankel matrix can be represented by

H̃ :=
(
h̃k+l)Nk,l=0 = H + E . (4.2)

Using the Theorem of H. Weyl (see [7, p. 181]), we receive two–sided bounds for
small eigenvalues of H̃. More precisely, N − 2M eigenvalues of H̃ are contained in
[−‖E‖2, ‖E‖2], if the modulus of each nonzero eigenvalue of H is greater than 2 ‖E‖2.
In the following we use this property and evaluate a small real eigenvalue σ (|σ| ≤ ε2)
and a corresponding eigenvector of the perturbed Hankel matrix H̃.

Lemma 4.1 Let M, N ∈ N with N ≥ 2M + 1 given. Furthermore let ω0 = 0 < ω1 <
. . . < ωM < π with (1.1) and a separation distance

q >
1

N + 1

√
π3

3
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be given. Let D := diag
(
1− |k|/(N + 1)

)N
k=−N be a diagonal matrix and let

V :=
(
eikωj

)2N,M
k=0,j=−M ∈ C(2N+1)×(2M+1) (4.3)

be a Vandermonde–type matrix.
Then for arbitrary r ∈ C2M+1, the following inequality(

N + 1− π3

3q2(N + 1)
)
‖r‖2 ≤ ‖D1/2Vr‖22 ≤

(
N + 1 +

π3

3q2(N + 1)
)
‖r‖2

is fulfilled. Further the squared spectral norm of the left inverse L := (VHDV)−1VHD
of V can be estimated by

‖L‖22 ≤
3q2(N + 1)

3q2(N + 1)2 − π3
. (4.4)

Proof. 1. The rectangular Vandermonde–type matrix V ∈ C(2N+1)×(2M+1) has full
rank 2M + 1, since the submatrix (

eikωj
)2M,M

k=0,j=−M

is a regular Vandermonde matrix. Hence we infer that VHDV is Hermitian and positive
definite such that all eigenvalues of VHDV are positive.
2. We introduce the 2π–periodic Fejér kernel FN by

FN (x) :=
N∑

k=−N

(
1− |k|

N + 1

)
eikx .

Then we obtain(
VHDV

)
j,l

= e−iNωj FN (ωj − ωl) eiNωl (j, l = −M, . . . ,M)

for the (j, l)-th entry of the matrix VHDV. We use Gershgorin’s Disk Theorem (see [7,
p. 344]) such that for an arbitrary eigenvalue λ of the matrix VHDV we preserve the
estimate (see also [10, Theorem 4.1])

|λ− FN (0)| = |λ−N − 1| ≤ max
{ M∑

j=−M
j 6=l

|FN (ωj − ωl)|; l = −M, . . . ,M
}
. (4.5)

3. Now we estimate the right–hand side of (4.5). As known, the Fejér kernel FN can be
written in the form

0 ≤ FN (x) =
1

N + 1

(
sin((N + 1)x/2)

sin(x/2)

)2

.

Thus we obtain the estimate
M∑

j=−M
j 6=l

|FN (ωj − ωl)| ≤
1

N + 1

M∑
j=−M

j 6=l

| sin((ωj − ωl)/2)|−2
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for l ∈ {−M, . . . ,M}. In the case l = 0, we use (1.1), qM < π, ωj ≥ jq (j = 1, . . . ,M)
and

sinx ≥ 2
π
x (x ∈ [0, π/2])

and then we estimate the above sum by

M∑
j=−M

j 6=0

| sin(ωj/2)|−2 = 2
M∑
j=1

(
sin(ωj/2)

)−2 ≤ 2π
M∑
j=1

ω−2
j

≤ 2π
q2

M∑
j=1

j−2 <
π3

3q2
.

By similar arguments, we obtain

M∑
j=−M

j 6=l

| sin((ωj − ωl)/2)|−2 <
π3

3q2

in case l ∈ {±1, . . . ,±M}. Note that we use the 2π–periodization of the frequencies ωj
(j = −M, . . . ,M) such that

| sin((ωj − ωl)/2)| = | sin(±π + (ωj − ωl)/2)| .

Hence it follows in each case that

|λ−N − 1| < π3

3q2(N + 1)
. (4.6)

4. Let λmin and λmax be the smallest and greatest eigenvalue of VHDV, respectively.
Using (4.6), we receive

N + 1− π3

3q2(N + 1)
≤ λmin ≤ N + 1 ≤ λmax ≤ N + 1 +

π3

3q2(N + 1)
,

where we have by assumption

N + 1− π3

3q2(N + 1)
> 0 .

Using the variational characterization of the Rayleigh–Ritz ratio for the Hermitian ma-
trix VHDV (see [7, p. 176]), we obtain for arbitrary r ∈ C2M+1 that

λmin ‖r‖2 ≤ ‖D1/2Vr‖2 ≤ λmax ‖r‖2 .

From (
VHDV

)−1
VHD1/2D1/2V = I
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it follows that the singular values of D1/2V lie in [
√
λmin,

√
λmax]. Hence we obtain for

the squared spectral norm of the left inverse L (see also [15, Theorem 4.2])

‖L‖22 ≤ ‖
(
VHDV

)−1
VHD1/2‖22 ‖D1/2‖22 ≤ λ−1

min

≤ 3q2(N + 1)
3q2(N + 1)2 − π3

.

This completes the proof.

Corollary 4.2 Let M ∈ N be given. Furthermore let ω0 = 0 < ω1 < . . . < ωM < π and
(1.1) with separation distance q.
Then for each N ∈ N with

N >
2π
q

+ 1

the squared spectral norm of the left inverse L is bounded, i.e.,

‖L‖22 ≤
3

2N + 2
.

Proof. By N > 2π
q + 1 and qM < π, we see immediately that

2M + 1 <
2π
q

+ 1 < N , q2 > π3 (N + 1)−2 .

Using the upper estimate (4.4) of ‖L‖22, we obtain the result.

Corollary 4.3 Let M ∈ N be given. Furthermore let ω0 = 0 < ω1 < . . . < ωM < π and
(1.1) with separation distance q. Then the squared spectral norm of the left inverse L
is bounded, i.e.,

‖V‖22 ≤ 2N + 2 +
2π
q

(1 + ln
π

q
).

Proof. We follow the lines of the proof of Lemma 4.1 with the trivial diagonal matrix
D := diag (1)Nk=−N . Instead of the Fejér kernel FN we use the modified Dirichlet kernel

DN (x) :=
2N∑
k=0

eikx = eiNx sin((2N + 1)x/2)
sin(x/2)

and we obtain for the (j, l)-th entry of VHV(
VHV

)
j,l

= DN (ωj − ωl) (j, l = −M, . . . ,M) .

We proceed with

|λ−DN (0)| = |λ− 2(N + 1)| ≤ max
{ M∑

j=−M
j 6=l

|DN (ωj − ωl)|; l = −M, . . . ,M
}
,

13



use the estimate

M∑
j=−M

j 6=l

|DN (ωj − ωl)| ≤
M∑

j=−M
j 6=l

| sin((ωj − ωl)/2)|−1

and infer

M∑
j=−M

j 6=0

| sin(ωj/2)|−1 = 2
M∑
j=1

(
sin(ωj/2)

)−1 ≤ 2π
M∑
j=1

ω−1
j

≤ 2π
q

M∑
j=1

j−1 <
2π
q

(1 + lnM) <
2π
q

(
1 + ln

π

q

)
.

Finally we obtain

λmax(VHV) ≤ 2N + 2 +
2π
q

(1 + ln
π

q
)

and hence the assertion.

Theorem 4.4 Let M, N ∈ N with N ≥ 2M + 1 be given. Furthermore let hk ∈ C be
given in (2.3) with ρ0 ∈ R\{0}, ρj ∈ C\{0} (j = 1, . . . ,M), ω0 = 0 < ω1 < . . . < ωM < π
and (1.1). Assume that the perturbed Hankel matrix H̃ = (h̃l+m)Nl,m=0 has σ ∈ [−ε2, ε2]
as eigenvalue with the corresponding normed eigenvector ũ = (ũn)Nn=0 ∈ RN+1 and the
related eigenpolynom

P̃ (z) =
N∑
k=0

ũk z
k (z ∈ C).

Then the rectangular Vandermode–type matrix (4.3) has a left inverse L = (VHDV)−1VHD.
Further the values P̃ (eiωj ) (j = −M, . . . ,M) fulfill the estimate

ρ2
0 P̃ (1)2 + 2

M∑
j=1

|ρj |2|P̃ (eiωj )|2 ≤ (ε2 + ‖E‖2)2 ‖L‖22 .

Proof. 1. By assumption we have H̃ ũ = σ ũ, i.e.,

N∑
l=0

h̃l+m ũl = σ ũm (m = 0, . . . , N)

such that for arbitrary z ∈ C it follows that

N∑
m=0

( N∑
l=0

h̃l+m ũl
)
zm = σ P̃ (z).

14



Using (2.3) and h̃k = hk + ek, we obtain

M∑
j=−M

ρj P̃ (eiωj )Q(eiωjz) = σ P̃ (z)−
N∑
m=0

( N∑
l=0

el+m ũl
)
zm

with

Q(z) :=
N∑
m=0

zm.

By comparison of coefficients, we receive the N + 1 equations

M∑
j=−M

ρj P̃ (eiωj ) eikωj = σ ũk −
N∑
l=0

el+k ũl (k = 0, . . . , N). (4.7)

2. Using the matrix–vector notation of (4.7) with the rectangular Vandermonde–type
matrix V given by (4.3), we obtain

V
(
ρj P̃ (eiωj )

)M
j=−M = σ ũ−E ũ

with ũ := (ũk)Nk=0. By N > 2M the matrix V has full rank 2M + 1 (see step 1 of the
proof of Lemma 4.1). Hence VHDV is Hermitian and positive definite. The matrix V
has a left inverse L = (VHDV)−1VHD such that(

ρj P̃ (eiωj )
)M
j=−M = σL ũ− LE ũ

and hence

ρ2
0 P̃ (1)2 + 2

M∑
j=1

|ρj |2 |P̃ (eiωj )|2 ≤ (|σ|+ ‖E‖2)2 ‖L‖22 ‖ũ‖2 .

This completes the proof.

Lemma 4.5 If the assumptions of Theorem 4.4 are fulfilled with sufficiently small ac-
curacies ε1, ε2 > 0 and if δ > 0 is the smallest singular value 6= 0 of H, then

‖ũ−P ũ‖ ≤ ε2 + (N + 1) ε1
δ

, (4.8)

where P is the orthogonal projector of RN+1 onto ker H. Furthermore the eigenpolyno-
mial P̃ related to ũ has zeros close to eiωj (j = −M, . . . ,M), where

P̃ (1)2 + 2
M∑
j=1

|P̃ (eiωj )|2 ≤
(

2N + 2 +
2π
q

(1 + ln
π

q
)
)(

ε2 + (N + 1)ε1
δ

)2

.
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Proof. 1. Let ũ be a normed eigenvector of H̃ with respect to the eigenvalue σ ∈
[−ε2, ε2]. Using the Rayleigh–Ritz Theorem (see [7, pp. 176–178]), we receive

δ = min
u6=0

u⊥kerH

‖Hu‖
‖u‖

= min
ũ−u 6=0

ũ−u⊥kerH

‖H(ũ− u)‖
‖ũ− u‖

,

i.e., the following estimate
δ ‖ũ− u‖ ≤ ‖H(ũ− u)‖

is valid for all u ∈ RN+1 with ũ − u ⊥ ker H. Especially for u = P ũ, we see that
ũ−P ũ ⊥ ker H and hence by (4.1)

δ ‖ũ−P ũ‖ ≤ ‖Hũ‖ = ‖(H̃−E) ũ‖ = ‖σ ũ−E ũ‖ ≤ |σ|+ (N + 1) ε1

such that (4.8) follows.
2. Thereby u = P ũ is an eigenvector of H with respect to the eigenvalue 0. Thus
the corresponding eigenpolynomial P has the values eiωj (j = −M, . . . ,M) as zeros by
Lemma 2.2. By (4.8), the coefficients of P differ only a little from the coefficients of P̃
with respect to ũ. Consequently, the zeros of P̃ lie nearby the zeros of P , i.e., P̃ has
zeros close to eiωj (j = −M, . . . ,M) (see [7, pp. 539–540]).
By ‖V‖2 = ‖VH‖2, (4.8), and Corollary 4.3, we obtain the estimate

M∑
j=−M

|P̃ (eiωj )|2 =
M∑

j=−M
|P (eiωj )− P̃ (eiωj )|2 = ‖VH(u− ũ)‖2

≤ ‖VH‖22 ‖u− ũ‖2 ≤
(

2N + 2 +
2π
q

(1 + ln
π

q
)
)(

ε2 + (N + 1)ε1
δ

)2

.

This completes the proof.

Corollary 4.6 Let M ∈ N. Furthermore let ω0 = 0 < ω1 < . . . < ωM < π with (1.1)
and the separation distance q be given. Further let N ∈ N with

N >
2π
q

+ 1

be given. Assume that the perturbed Hankel matrix H̃ = (h̃l+m)Nl,m=0 has an eigenvalue

σ ∈ [−ε2, ε2] with a corresponding normed eigenvector ũ = (ũn)Nn=0 ∈ RN+1.
Then the values |P̃ (eiωj )| (j = −M, . . . ,M) can be estimated by

ρ2
0 P̃ (1)2 + 2

M∑
j=1

|ρj |2 |P̃ (eiωj )|2 ≤ 3
2

( ε2√
N + 1

+
√
N + 1 ε1

)2

i.e., the values |P̃ (eiωj )| (j = −M, . . . ,M) are small. Further the eigenpolynomial P̃ has
zeros close to eiωj (j = −M, . . . ,M).
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Proof. The assertion follows immediately by the assumption on N , the estimate (4.1),
Theorem 4.4, and Lemma 4.5.

Now we can formulate the approximate Prony method.

Algorithm 4.7 (Approximate Prony method)
Input: N ∈ N (N � 1), h̃k = f(k) + ek (k = 0, . . . , 2N) with |ek| ≤ ε1, accuracies ε1,
ε2, ε3, ε4.

1. Compute an eigenvector ũ(1) = (ũ(1)
l )Nl=0 corresponding to an eigenvalue σ(1) ∈

[−ε2, ε2] of the perturbed Hankel matrix H̃ = (h̃l+m)Nl,m=0.
2. Form the corresponding eigenpolynomial

P̃ (1)(z) =
N∑
k=0

ũ
(1)
k zk

and evaluate all zeros r
(1)
j eiω

(1)
j (j = 1, . . . ,M (1)) with ω

(1)
j ∈ (0, π), (1.1) and |r(1)

j −1| ≤
ε4. Note that N ≥ 2M (1) + 1.
3. Compute an eigenvector ũ(2) = (ũ(2)

l )Nl=0 corresponding to an eigenvalue σ(2) ∈
[−ε2, ε2] (σ(1) 6= σ(2)) of the perturbed Hankel matrix H̃ = (h̃l+m)Nl,m=0.
4. Form the corresponding eigenpolynomial

P̃ (2)(z) =
N∑
k=0

ũ
(2)
k zk

and evaluate all zeros r
(2)
k eiω

(2)
k (k = 1, . . . ,M (2)) with ω

(2)
k ∈ (0, π), (1.1) and |r(2)

k −1| ≤
ε4. Note that N ≥ 2M (2) + 1.
5. Determine all frequencies

ω̃l :=
1
2
(
ω

(1)
j(l) + ω

(2)
k(l)

)
(l = 1 . . . , M̃),

if there exist indices j(l) ∈ {1, . . . ,M (1)} and k(l) ∈ {1, . . . ,M (2)} such that |ω(1)
j(l) −

ω
(2)
k(l)| ≤ ε3. Replace r

(1)
j(l) and r

(2)
k(l) by 1. Note that N ≥ 2M̃ + 1.

6. Compute ρ̃0 ∈ R and ρ̃j ∈ C (j = 1, . . . , M̃) with (1.1) as least squares solution of
the overdetermined linear Vandermonde–type system

M̃∑
j=−M̃

ρ̃j eiω̃jk = h̃k (k = 0, . . . , 2N) (4.9)

with the diagonal preconditioner D = diag
(
1−|k|/(N +1)

)N
k=−N . For very large M and

N use the CGNR method, where the multiplication of the Vandermonde–type matrix

Ṽ :=
(

eikω̃j

)2N, M̃

k=0,j=−M̃
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is realized in each iteration step by the nonequispaced fast Fourier transform (see [14, 9]).
7. Cancel all that pairs (ω̃l, ρ̃j) (l ∈ {1, . . . , M̃}) with |ρ̃l| ≤ ε1 and denote the remaining
frequency set by {ωj : j = 1, . . . ,M} with M ≤ M̃ .
8. Repeat step 6 and solve the overdetermined linear Vandermonde–type system

M∑
j=−M

ρj eiωjk = h̃k (k = 0, . . . , 2N)

with respect to the new frequency set {ωj : j = 1, . . . ,M} again.

Output: M ∈ N, ρ0 ∈ R, ρj ∈ C, (ρj = ρ̄−j), ωj ∈ (0, π) (j = 1, . . . ,M).

5 Sensitivity analysis of the approximate Prony method

In this section, we discuss the sensitivity of step 6 of our Algorithm 4.7. Assume that
N ≥ 2M + 1 and M̃ = M . Then solve the overdetermined linear Vandermonde–type
system (4.9) with M = M̃ as weighted least squares problem∥∥D1/2

(
Ṽ ρ̃− h̃

)∥∥ = min . (5.1)

Here h̃ =
(
h̃k
)2N
k=0

is the perturbed data vector and

Ṽ =
(

eikω̃j

)2N,M

k=0,j=−M

is the Vandermonde–type matrix with the computed frequencies ω̃j (j = −M, . . . ,M),
where 0 = ω̃0 < ω1 < . . . < ω̃M < π, ω̃j = −ω̃−j (j = −M, . . . ,−1) and q̃ is the
separation distance of the computed frequency set {ω̃j : j = 0, . . . ,M +1} with ω̃M+1 =
2π − ω̃M . Note that Ṽ has full rank and that the unique solution of (5.1) is given by
ρ̃ = L̃ h̃ with the left inverse L̃ =

(
ṼHDṼ

)−1ṼHD of Ṽ.
We begin with a normwise perturbation result, if all frequencies are exactly determined,
i.e., ωj = ω̃j (j = −M, . . . ,M), and if a perturbed data vector h̃ is given.

Lemma 5.1 Assume that ωj = ω̃j (j = −M, . . . ,M) and that |h̃k − hk| ≤ ε1. Let V be
given by (4.3). Further let V ρ = h and ρ̃ = L h̃, where L =

(
VHDV

)−1VHD is a left
inverse of V. If the assumptions of Corollary 4.2 are fulfilled, then for each N ∈ N with
N > 2π q−1 + 1 the condition number κ(V) := ‖L‖2 ‖V‖2 is uniformly (with respect to
N) bounded by

κ(V) ≤

√
3 +

3πq
2π + 2q

(
1 + ln

π

q

)
. (5.2)

Furthermore, the following stability inequalities are fulfilled

‖ρ− ρ̃‖ ≤
√

3
2N + 2

‖h− h̃‖ ≤
√

3 ε1 , (5.3)

‖ρ− ρ̃‖
‖ρ‖

≤ κ (V)
‖h− h̃‖
‖h‖

. (5.4)
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Proof. 1. The condition number κ(V) of the rectangular Vandermonde–type matrix
V is defined as the number ‖L‖2 ‖V‖2. Note that κ(V) does not coincide with the
condition number of V related to the spectral norm, since the left inverse L is not the
Moore–Penrose pseudoinverse of V by D 6= I. Applying the Corollaries 4.2 and 4.3, we
receive that

κ(V) ≤

√
3 +

6π
2N + 2

(
1 + ln

π

q

)
.

This provides (5.2), since by assumption (N + 1)−1 < q (2π + 2q)−1.
2. The inequality (5.3) follows immediately from ‖ρ− ρ̃‖ ≤ ‖L‖2 ‖h− h̃‖ and Corollary
4.2. The estimate (5.4) arises from (5.3) by multiplication with ‖Vρ‖ ‖h‖−1 = 1.

Now we consider the general case, where the weighted least squares problem (5.1)
is solved for perturbed data h̃k (k = 0, . . . , 2N) and computed frequencies ω̃j (j =
−M, . . . ,M).

Theorem 5.2 Assume that |h̃k − hk| ≤ ε1 (k = 0, . . . , 2N) and |ω̃j − ωj | ≤ δ (j =
0, . . . ,M). Let V be given by (4.3) and let

Ṽ :=
(

eikω̃j

)2N,M

k=0, j=−M
.

Further let Vρ = h and ρ̃ = L̃ h̃, where L̃ =
(
ṼHDṼ

)−1ṼHD is a left inverse of Ṽ.
If the assumptions of Corollary 4.2 are fulfilled, then for each N ∈ N with

N > 2π max {q−1, q̃−1}+ 1 (5.5)

the following estimate

‖ρ− ρ̃‖ ≤
√

(6N + 6) (2M + 1) ‖h‖ δ +
√

3 ε1

is fulfilled.

Proof. 1. Using the matrix–vector notation, we can write (2.6) in the form V ρ = h.
The overdetermined linear system (4.9) with M̃ = M reads Ṽ ρ̃ = h̃. Using the left
inverse Ṽ, the solution ρ̃ of the weighted least squares problem

‖D1/2
(
Ṽ ρ̃− h̃

)
‖ = min

is ρ̃ = L̃ h̃. Thus it follows that

‖ρ− ρ̃‖ = ‖ρ− L̃h̃‖
= ‖L̃ Ṽ ρ− L̃V ρ− L̃

(
h̃− h

)
‖

≤ ‖L̃‖2 ‖Ṽ −V‖2 ‖ρ‖+ ‖L̃‖2 ‖h̃− h‖ .
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2. Now we estimate the squared spectral norm of Ṽ − V by means of the Frobenius
norm

‖V − Ṽ‖22 ≤ ‖V − Ṽ‖2F =
2N∑
k=0

M∑
j=−M

∣∣eikωj − eikω̃j
∣∣2

=
M∑

j=−M

( 2N∑
k=0

[
2− 2 cos((ωj − ω̃j)k)

])

=
M∑

j=−M

(
4N + 1− sin ((2N + 1/2)(ωj − ω̃j))

sin((ωj − ω̃j)/2))

)
.

Using the special property of the Dirichlet kernel

sin(4N + 1)x/2
sinx/2

≥ 4N + 1 +
(
− 1

3
(
2N +

1
2
)3 +

N

6
+

1
24

)
x2 ,

we infer

‖V − Ṽ‖22 ≤
M∑

j=−M

(1
3
(
2N +

1
2
)3 − N

6
− 1

24

)
δ2

≤ (2N + 1/2)3(2M + 1)
3

δ2 . (5.6)

Thus we receive

‖ρ− ρ̃‖ ≤ 1√
3

(
2N +

1
2
)3/2√2M + 1 ‖L̃‖ ‖ρ‖ δ + ‖L̃‖2 ‖h̃− h‖ .

From Corollary 4.2 it follows that for each N ∈ N with (5.5)

‖L̃‖2 ≤
√

3
2N + 2

.

Finally we use

‖h̃− h‖ ≤
√

2N + 1 ‖h̃− h‖∞ ≤
√

2N + 1 ε1 ,

‖ρ‖ = ‖Lh‖ ≤ ‖L‖2 ‖h‖ ≤
√

3
2N + 2

‖h‖

and obtain the result.

By Theorem 5.2, we see that we have to compute the frequencies very carefully. This
is the reason that we repeat the computation of the frequencies in the steps 3–4 of
Algorithm 4.7.
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6 Numerical examples

Finally, we apply Algorithm 4.7 to various examples. We have implemented our algo-
rithm of the approximate Prony method in Matlab with IEEE double precision arith-
metic. In order to evaluate the zeros of the corresponding eigenpolynomial, we use the
Matlab command roots, which is based on computing the eigenvalues of the companion
matrix related to the eigenpolynomial.

Example 6.1 We sample the anharmonic Fourier sum

f1(x) := 14− 8 cos(0.453x) + 9 sin(0.453x) + 4 cos(0.979x)

+ 8 sin(0.979x)− 2 cos(0.981x) + 2 cos(1.847x)

− 3 sin(1.847x) + 0.1 cos(2.154x)− 0.3 sin(2.154x) (6.1)

at the equidistant nodes x = k (k = 0, . . . , 2N). Then we apply Algorithm 4.7 with
exact sampled data hk = f1(k), i.e., ek = 0 (k = 0, . . . , 2N). Thus the accuracy ε1
can be chosen as the unit roundoff ε1 = 2−53 ≈ 1.11 × 10−16 (see [6, p. 45]). Note
that the frequencies ω2 = 0.979 and ω3 = 0.981 are very closely such that q = 0.002.
Using Corollary 4.6, we have to choose N > 2π

q + 1, i.e., N ≥ 3143. However for

N = 22 and for the accuracies ε2 = ε3 = ε4 = 10−7 we obtain all nonzero frequencies
ωj (j = 1, . . . , 10) with 11 correct decimal places and all coefficients ρj (j = 0, . . . , 10)
with 8 correct decimal places. Furthermore we determine the absolute error eabs(f1) :=
max |f1(x) − f̃1(x)| computed on 10000 equidistant points on the interval [0, 2N ] and
obtain eabs(f1) ≤ 6.8 · 10−13. Here f̃1 denotes the reconstructed function.

Example 6.2 We use again the function (6.1). Now we consider noisy sampled data
h̃k = f1(k)+ek (k = 0, . . . , 2N), where ek is a random error with |ek| ≤ ε1 = 10−3, more
precisely we add pseudorandom values drawn from the standard uniform distribution on
(0, 10−3). Now we choose ε4 < 10−3. In the case N = 22, we obtain the correct number
M = 10, all nonzero frequencies ωj (j = 1, . . . , 10) and all coefficients ρj (j = 0, . . . , 10)
with 2 correct decimal places. The absolute error eabs(f1) is bounded by 1.8 · 10−3.
For N = 100, we obtain the correct number M = 10, all nonzero frequencies ωj
(j = 1, . . . , 10) and all coefficients ρj (j = 0, . . . , 10) with an 3 correct decimal places.
The absolute error is now eabs(f1) ≤ 7.1 · 10−4. We see that for noisy sampled data
oversampling, i.e., increasing N improves the results.

Example 6.3 As in [8], we sample the 24–periodic function

f2(x) := 2 cos(πx/6) + 200 cos(πx/4) + 2 cos(πx/2) + 2 cos(5πx/6)

at the equidistant nodes x = k (k = 0, . . . , 2N). In [8], only the dominant frequency
ω2 = π/4 is iteratively computed via zeros of Szegö polynomials. For N = 50, ω2 is
determined to 2 correct decimal places. For N = 200 and N = 500, the frequency ω2 is
computed to 4 correct decimal places in [8].
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Now we apply Algorithm 4.7 with the same parameters as in Example 6.1, but we use
only the 37 sampled data f2(k) (k = 0, . . . , 36). In this case we are able to compute all
frequencies and all coefficients with 12 correct decimal places.

Example 6.4 A different method for finding the frequencies based on detection of sin-
gularities is suggested in [12]. Similarly as in [12], we consider the 8-periodic test function

f3(x) := 34 + 300 cos(πx/4) + cos(πx/2)

and sample f3 at the nodes x = k (k = 0, . . . , 32). Note that in [12], uniform noise in the
range [0, 3] is added and this experiment is repeated 500-times. Then the frequencies
are recovered very accurately. In this case, the noise exceeds the lowest coefficient of f3.
Now we compare this with Algorithm 4.7, where we add only noise in the range [0, 1] to
the sampled data f3(k) (k = 0, . . . , 64). We choose the accuracies as follows ε1 = 0.9,
ε2 = ε3 = 10−7 and ε4 = 0.1. In this case, we are able to compute all frequencies and
all coefficients with 3 correct decimal places and the absolute error is eabs(f3) ≤ 0.6.

Example 6.5 Finally, we consider the function

f4(x) :=
80∑
j=1

cos(ωjx) ,

where we choose random frequencies ωj drawn from the standard uniform distribution
on (0, π). We sample the function f4 at the equidistant nodes x = k (k = 0, . . . , 2N) with
N = 175. Using the Algorithm 4.7, we receive all frequencies ωj and all coefficients ρj =
1/2 with 2 correct decimal places. For the absolute error eabs(f4) := max |f4(x)− f̃4(x)|
computed on 10000 equidistant points, we obtain eabs(f4) ≤ 1.3·10−4. Note that without
the diagonal preconditioner D the overdetermined linear Vandermonde–type system is
numerically not solvable due to the ill–conditioning of the Vandermonde–type system.
Of course, we can improve the accuracy of the results by oversampling, i.e., increasing
N .

In summary, we obtain very accurate results already for relatively few sampled data. We
can analyze both periodic and nonperiodic functions without preprocessing (as filtering
or windowing). The approximate Prony method works correctly for noisy sampled data
and for clustered frequencies assumed that the separation distance of the frequencies is
not too small and the number 2N+1 of sampled data is sufficiently large. Oversampling
improves the results. The numerical examples show that one can choose the number
2N + 1 of sampled data less than expected by the theoretical results. However we have
essentially improved the stability of our approximate Prony method algorithm by using
a weighted least squares method. Our numerical examples confirm that the proposed
approximate Prony method is robust with respect to noise.
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