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1 Introduction and main results

Markov-type inequalities give upper bounds for the derivatives of an algebraic
polynomial by the polynomial itself. To be more precise, they provide a constant
C such that ‖Dνf‖ ≤ C‖f‖ for all polynomials of degree at most n, where D is
the operator of differentiation. The constant C depends on n, on the order ν of
the derivative, and on the norm ‖ · ‖. We here consider the case where ‖ · ‖ is one
of the classical L2 norms and study the problem of extending such inequalities to
the situation when f is a polynomial of several variables and Dν is replaced by a
partial differential operator.

Let Pn be the linear space of all polynomials f(t) =
∑n

j=0 fjt
j of degree

at most n with complex coefficients fj. We equip Pn with one of the classical
Hermite, Laguerre, or Gegenbauer norms. These are defined by

‖f‖2 =

∫ ∞
−∞
|f(t)|2e−t2 dt, (1)

‖f‖2 =

∫ ∞
0

|f(t)|2tαe−t dt, (2)

‖f‖2 =

∫ 1

−1

|f(t)|2(1− t2)α dt, (3)
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where α > −1 is a parameter. Given a polynomial

p(ξ) = ξm + pm−1ξ
m−1 + . . .+ p0,

we can consider the differential operator p(D) on Pn. The best constant C such
that ‖p(D)f‖ ≤ C‖f‖ for all f ∈ Pn is clearly nothing but the norm of the
operator p(D) : Pn → Pn. This constant will be denoted by ηn(p(D)), λn(p(D)),
γn(p(D)) in dependence on whether the norm ‖ · ‖ is (1), (2), (3). In [4], we
showed that

lim
n→∞

ηn(p(D))

nm/2
= 2m/2,

lim
n→∞

λn(p(D))

nm
= ‖Lm,α‖∞,

lim
n→∞

γn(p(D))

n2m
= ‖Gm,α‖∞,

where Lm,α and Gm,α are the Volterra integral operators on L2(0, 1) that are given
by

(Lm,αf)(x) =
1

Γ(m)

∫ 1

x

xα/2y−α/2(y − x)m−1f(y) dy, (4)

(Gm,αf)(x) =
1

2m−1Γ(m)

∫ 1

x

x1/2+αy1/2−α(y2 − x2)m−1f(y) dy (5)

and ‖ · ‖∞ denotes the operator norm. Note that these operators are just the
iterates (= powers) of their m = 1 versions, that is, Lm,α = Lm1,α and Gm,α = Gm

1,α.

Let [0, 1]N be the N -dimensional cube. Given a closed subset E of [0, 1]N , we
define Pn(E) as the linear space of all polynomials f of the form

f(t1, . . . , tN) =
∑

(i1/n,...,iN/n)∈E

fi1,...,iN t
i1
1 . . . t

iN
N

with complex coefficients. We will always assume that E contains a point in the
interior of [0, 1]N and that E contains together with each of its points (x1, . . . , xN)
also the cube [0, x1]× . . .× [0, xN ]. The most canonical choice of E is

ΩN := {(x1, . . . , xN) ∈ [0, 1]N : x1 + . . .+ xN ≤ 1}.

For δ > 0, we define Eδ = {(xδ1, . . . , xδN) : (x1, . . . , xN) ∈ E}. For example,

Ω
1/2
N = {(x1, . . . , xN) ∈ [0, 1]N : x2

1 + . . .+ x2
N ≤ 1},

Ω2
N = {(x1, . . . , xN) ∈ [0, 1]N :

√
x1 + . . .+

√
xN ≤ 1}.
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We endow Pn(E) with the N -dimensional versions of the norms (1), (2), (3):

‖f‖2 =

∫
RN

|f(t1, . . . , tN)|2e−t21 . . . e−t2N dt1 . . . dtN , (6)

‖f‖2 =

∫
(0,∞)N

|f(t1, . . . , tN)|2tα1
1 . . . tαNN e−t1 . . . e−tN dt1 . . . dtN , (7)

‖f‖2 =

∫
(−1,1)N

|f(t1, . . . , tN)|2(1− t21)α1 . . . (1− t2N)αN dt1 . . . dtN , (8)

where αj > −1 for all j.

Take a polynomial

p(ξ1, . . . , ξN) =
∑

ν1+...+νN≤M

pν1,...,νN ξ
ν1
1 . . . ξνNN . (9)

Here ν1 + . . .+νn ≤M means that the sum is taken over all N -tuples (ν1, . . . , νN)
of nonnegative integers νj whose sum does not exceed M . The differential oper-
ator on Pn(E) given by

p(∂1, . . . , ∂N) =
∑

ν1+...+νN≤M

pν1,...,νN∂
ν1
1 . . . ∂νNN

may be written in the form

p(∂1, . . . , ∂N) =
∑

ν1+...+νN≤M

pν1,...,νND
ν1 ⊗ . . .⊗DνN | Pn(E),

where | denotes restriction to a subspace. In dependence of the choice of the
norm ‖ · ‖ from (6), (7), (8), we let

η(p(∂1, . . . , ∂N) | Pn(E)), λ(p(∂1, . . . , ∂N) | Pn(E)), γ(p(∂1, . . . , ∂N) | Pn(E))

denote the best constant C for which

‖p(∂1, . . . , ∂N)f‖ ≤ C‖f‖ for all f ∈ Pn(E).

Of course, this constant is just the norm of p(∂1, . . . , ∂N) as an operator on Pn(E).
Our standing assumption that E contains the cube [0, x1]× . . .× [0, xN ] together
with each of its points (x1, . . . , xN) guarantees that p(∂1, . . . , ∂N) maps Pn(E)
into itself.

If A1, . . . , Ak are operators on L2(0, 1), their tensor product A := A1⊗. . .⊗Ak
on L2((0, 1)k) is defined in the usual way. If L2(E) is an invariant subspace for
A, we denote by A |L2(E) the restriction of A to L2(E). The notation an ∼ bn
means that an/bn → 1 as n→∞.
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We need one more definition. Let ν := (ν1, . . . , νN) be an N -tuple of nonneg-
ative integers. We put |ν| = ν1 + . . . + νN and always suppose that |ν| ≥ 1. Let
νj1 , . . . , νjk (j1 < . . . < jk) denote the nonzero integers among ν1, . . . , νN . Given
a point (x1, . . . , xk) ∈ [0, 1]k, we define (x1, . . . , xk)ν as the point in [0, 1]N whose
`th coordinate is 0 if ν` = 0 and is xm if ` = jm. For example, if ν = (0, ν2, 0, 0, ν5)
with nonzero ν2 and ν5, then k = 2, j1 = 2, j2 = 5 and (x1, x2)ν = (0, x1, 0, 0, x2).
Finally, given E ⊂ [0, 1]N , we put

Eν = {(x1, . . . , xk) ∈ [0, 1]k : (x1, . . . , xk)ν ∈ E}.

Note that if E is [0, 1]N , ΩN , Ωδ
N , then Eν is simply [0, 1]k, Ωk, Ωδ

k, respectively.

Theorem 1.1 The best constants for ∂ν1
1 . . . ∂νNN have the asymptotic behavior

η(∂ν1
1 . . . ∂νNN | Pn(E)) ∼ n|ν|/2 max

(x1,...,xk)∈Eν
(2x1)νj1/2 . . . (2xk)

νjk/2, (10)

λ(∂ν1
1 . . . ∂νNN | Pn(E)) ∼ n|ν| ‖Lνj1 ,αj1 ⊗ . . .⊗ Lνjk ,αjk |L

2(Eν)‖∞, (11)

γ(∂ν1
1 . . . ∂νNN | Pn(E)) ∼ n2|ν| ‖Gνj1 ,αj1

⊗ . . .⊗Gνjk ,αjk
|L2(Eν)‖∞. (12)

If E is [0, 1]N , then the maximum in (10) is 2|ν|/2, and if E = Ωδ
N , then this

maximum equals (
21/δνj1
|ν|

)δ νj1/2
. . .

(
21/δνjk
|ν|

)δ νjk/2
.

Thus, in the Hermite case the coefficient in the asymptotic formula is explicitly
available. Theorem 1.2 will show that the Gegenbauer case can be reduced to the
Laguerre case.

When dealing with the coefficients in the asymptotics, we have k dimensions
instead of N . To avoid double subscripts, we assume in this context that we are
given a k-tuple ν = (ν1, . . . , νk) of positive integers and a k-tuple α = (α1, . . . , αk)
of real numbers such that αj > −1 for all j. The set E is now a closed subset of
[0, 1]k which contains a point of (0, 1)k and which contains [0, x1] × . . . × [0, xk]
together with each of its points (x1, . . . , xk). Recall that E2 = {(x2

1, . . . , x
2
k) :

(x1, . . . , xk) ∈ E}. Henceforth we also make use of the abbreviations

Lν,α = Lν1,α1 ⊗ . . .⊗ Lνk,αk , Gν,α = Gν1,α1 ⊗ . . .⊗Gνk,αk .

Theorem 1.2 The Gegenbauer and Laguerre cases are related by the equality

‖Gν,α |L2(E)‖∞ = 2−|ν| ‖Lν,α |L2(E2)‖∞.

Bounds for ‖Lν,α |L2(E)‖∞ are delivered by the trivial inequalities

‖L∗ν,αLν,α |L2(E)‖2

‖Lν,α |L2(E)‖2

≤ ‖Lν,α |L2(E)‖∞ ≤ ‖Lν,α |L2(E)‖2, (13)

where ‖ · ‖2 stands for the Hilbert-Schmidt norm. Here L∗ν,α is the adjoint of
Lν,α |L2(E), that is, by L∗ν,α we actually mean (Lν,α |L2(E))∗.
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Theorem 1.3 We have

‖Lν,α |L2(Ωδ
k)‖2

2 =
δk

Γ(2δ|ν|+ 1)

k∏
j=1

Γ(αj + 1)Γ(2νj − 1)Γ(2δνj)

Γ(αj + 2νj)Γ(νj)2

and

‖L∗ν,αLν,α |L2(Ωδ
k)‖2

2 ≥
(2δ)k

Γ(4δ|ν|+ 1)

k∏
j=1

Γ(αj + 1)2Γ(2νj − 1)2Γ(4δνj)

Γ(αj + 2νj)2(αj + 2νj + 1)Γ(νj)4
.

Inserting the expressions from Theorem 1.3 in (13) we get bounds

b1(ν, α,Ωδ
k) ≤ ‖Lν,α |L2(Ωδ

k)‖∞ ≤ b2(ν, α,Ωδ
k).

If k, δ, α1, . . . , αk remain fixed and νj →∞ for all j, then

b2(ν, α,Ωδ
k)

b1(ν, α,Ωδ
k)
∼ (2πδ)(k−1)/4 ν

1/4
1 . . . ν

1/4
k

(ν1 + . . .+ νk)1/4
. (14)

For k = 1, the right-hand side of (14) is 1, but for k ≥ 2 it increases (though
moderately). The following result reveals that the upper bound b2(ν, α,Ωδ

k) is
asymptotically sharp as ν goes to infinity along a straight line.

Theorem 1.4 Let ν = (%1τ, . . . , %kτ) where %1, . . . , %k are positive real numbers.
Then as τ →∞,

‖Lν,α |L2(Ωδ
k)‖∞ ∼ ‖Lν,α |L2(Ωδ

k)‖2.

If, for example, k = 2, δ = 1, α1 = α2 = 0, ν1 = ν2 =: ν, then Theorems 1.1,
1.3, 1.4 yield

λ(∂ν1∂
ν
2 | Pn(Ω2)) ∼ (2πν)1/4

4

1

22νν2

1

Γ(ν)2
n2ν . (15)

In the case k = 1 we infer from the same theorems that

λ(∂ν1 |Pn(Ω2)) = λ(∂ν2 |Pn(Ω2)) ∼ 1

2νΓ(ν)
nν . (16)

It is easily seen that always

λ(∂ν1∂
ν
2 | Pn(Ω2)) ≤ λ(∂ν1 |Pn(Ω2))λ(∂ν2 |Pn(Ω2)). (17)

However, from (15) and (16) we obtain that

λ(∂ν1∂
ν
2 | Pn(Ω2))

λ(∂ν1 |Pn(Ω2))λ(∂ν2 |Pn(Ω2))
∼ (2πν)1/4

22ν
,

which is much smaller than 1 if ν is large and hence much sharper than (17).
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We finally turn to linear combinations of partial derivatives. Let

p0(ξ1, . . . , ξN) =
∑

ν1+...+νN=M

pν1,...,νN ξ
ν1
1 . . . ξνNN

be the principal part of polynomial (9). We write an ' bn if there exist constants
0 < c1 < c2 < ∞ such that c1bn ≤ an ≤ c2bn for all sufficiently large n. The
following theorem reveals that the asymptotic behavior of the best constants
for linear partial differential operators with constant coefficients is completely
determined by their principal parts.

Theorem 1.5 Let C stand for η, λ, or γ and put σ = 1/2 in the Hermite case,
σ = 1 in the Laguerre case, and σ = 2 in the Gegenbauer case. Then

C(p0(∂1, . . . , ∂N) | Pn(E)) ' nσM (18)

and
C(p(∂1, . . . , ∂N) | Pn(E)) ∼ C(p0(∂1, . . . , ∂N) | Pn(E)). (19)

The paper is organized as follows. Section 2 is devoted to comments on
previous work and the results and methods of this paper. Sections 3 to 7 contain
the proofs of Theorems 1.1 to 1.5 and in Section 8 we list some problems we have
to leave open.

2 Remarks on the history

The problem of finding upper bounds for the derivatives of functions in terms
of the functions themselves has a long and rich history. Nowadays one speaks
of Bernstein-type inequalities if the functions are trigonometric polynomials and
of Markov-type inequalities in the case of algebraic polynomials. The Markov
brothers [24], [25] found the best constant C in the inequality ‖Dmf‖ ≤ C‖f‖
when ‖ · ‖ is the L∞ norm on some finite interval. We refer to [2], [15], [26], [27],
[29], [30] for more on the subject and here confine ourselves to the asymptotics
of the best constants in Markov-type inequalities with L2 norms.

An L2 version of a Markov-type inequality was first established by Erhard
Schmidt [31] and subsequently for Lp norms by Hille, Szegö, and Tamarkin [17].
In 1944, Schmidt [32] proved that

ηn(D) =
√

2n, λn(D) ∼ 2

π
n, γn(D) ∼ 1

π
n2,

assuming α = 0, and even provided the next two terms in the asymptotics of
λn(D) and γn(D). Schmidt also observed that for the Hermite weight the prob-
lem is more or less trivial. Shampine [33] then showed that, again for α = 0,
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λn(D2) ∼ n2/µ2
0 and γn(D2) ∼ n4/(4µ2

0) where µ0 is the smallest positive root of
the equation 1+cosµ coshµ = 0. For the exact values of λn(D) and γn(D) in the
case α = 0 see [17], [21], [36]. The idea that the best constants in question are
the largest singular value (= operator norm) of certain matrices was developed
in [7], [8], [9] and used to derive bounds for

lim inf
n→∞

λn(Dm)

nm
, lim sup

n→∞

λn(Dm)

nm

for general m and α. In [3], [4] we proved that λn(Dm)/nm and γn(Dm)/n2m

converge to a limit as n → ∞ and identified these limits as the operator norms
of certain Volterra integral operators.

The appearance of Volterra operators in this context connects us with another
field of research. Paul Halmos [16] was probably the first to state explicitly that
the operator norm of the operator

(L1,0f)(x) =

∫ 1

x

f(y) dy

on L2(0, 1) is 2/π. Combining this result with our formula λn(D) ∼ ‖L1,0‖∞ n
reproduces Schmidt’s formula λn(D) ∼ (2/π)n. Halmos also raised the question
of determining the operator norms of the iterates Lm1,0 = Lm,0. This problem was
subsequently studied by many authors, including [1], [12], [18], [23], [22], [35].
The much earlier paper [14] was detected by Thorpe [35] to be also of relevancy
in connection with the matter. The reader may consult [3] and [4] for details. In
the course of these investigations sharp bounds for ‖Lm,0‖∞ and the asymptotic
formula ‖Lm,0‖∞ ∼ 1/(2m!) were established. In [4] we solved the corresponding
problems for the norms ‖Lm,α‖∞ and ‖Gm,α‖∞. In particular, the N = 1 versions
of Theorems 1.2, 1.3, 1.4 are already in [4]. We also want to note that Halmos’
‖L1,0‖∞ = 2/π was in [10] and [4] extended to the equality ‖L1,α‖∞ = 1/j0(α)
where j0(α) is the smallest positive zero of the Bessel function J(α−1)/2.

The literature on multivariate Markov-type inequalities is immense, a main
topic of research being inequalities for the L∞ norm on multidimensional regions
and manifolds. See, for example, [19], [20], [28]. However, we are not aware of
publications dealing with best constants in multivariate Markov-type inequalities
with the L2 norm and for partial derivatives of arbitrary order. Note that even
the one-dimensional versions of the results of this paper were established only
in [3], [4]. Clearly, for E = [0, 1]N our Theorems 1.1 to 1.4 simply follow from
their one-dimensional counterparts by taking tensor products. However, passage
to the simplex E = ΩN makes things nontrivial. Moreover, Theorem 1.2 even
motivates consideration of the entire scale E = Ωδ

N .

The approach employed in [3], [4] and also in Section 4 of this paper is based
on an idea by Harold Widom [37], [38], [39], which was independently also intro-
duced by Lawrence Shampine [33], [34]. In order to find the asymptotic behavior
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of spectral quantities of a sequence of n× n matrices An, they associated an in-
tegral operator WAn on L2(0, 1) with each matrix An and then studied whether,
after appropriate scaling, the operators WAn converge uniformly to some limiting
operator. In this way Widom and Shampine were able to express asymptotic
properties of An in terms of the limiting operator. In particular, Shampine [33]
considered WAn where An is the matrix representation of the operator (D2)∗D2.
For (Dm)∗Dm with m ≥ 2, the matrices become more complicated and hence we
have the limitation to m = 2 in [33]. What is new in our approach is that we
exploit the fact that the replacement An 7→ WAn is an algebraic homomorphism
that preserves also tensor products. Thus, we simply consider the operator WAn

for An being the matrix representation of D and show that, after scaling, WAn

converges to some limiting operator. Once this has been done, we can easily pass
to adjoints, sums, products, and tensor products.

The reasoning in Section 5 is similar to the one of [3], [4]. The argument used
in Section 6 is different from [3], [4] and based on a strategy that was in another
context pursued in [6].

3 Hermite weights

In this section we prove the assertion of Theorem 1.1 that concerns the Hermite
case. This case is particularly simple.

An orthonormal basis in Pn with the norm (1) is {h0, h1, . . . , hn} where hk is
the kth normalized Hermite polynomial. We have

Dνhi = 2ν/2

√
Γ(i+ 1)

Γ(i− ν + 1)
hi−ν (20)

for ν ≤ i. As usual, hi1 ⊗ . . .⊗ hiN is defined by

(hi1 ⊗ . . .⊗ hiN )(t1, . . . , tN) = hi1(t1) . . . hiN (tN).

Then {hi1 ⊗ . . .⊗ hiN : (i1/n, . . . , iN/n) ∈ E} is an orthonormal basis in Pn(E).
For

f =
∑

fi1,...,iNhi1 ⊗ . . .⊗ hiN ∈ Pn(E)

we then get

‖(Dν1 ⊗ . . .⊗DνN )f‖2 = ((Dν1 ⊗ . . .⊗DνN )f, (Dν1 ⊗ . . .⊗DνN )f)

=
( ∑

fi1,...,iN D
ν1hi1 ⊗ . . .⊗DνNhiN ,

∑
fk1,...,kN D

ν1hk1 ⊗ . . .⊗DνNhkN

)
=
∑∑

fi1,...,iNfk1,...,kN (Dν1hi1 , D
ν1hk1) . . . (DνNhiN , D

νNhkN ). (21)

Using (20) and the orthonormality of h0, h1, . . . , hn we see that (21) equals∑
|fi1,...,iN |2 2ν1

Γ(i1 + 1)

Γ(i1 − ν1 + 1)
. . . 2νN

Γ(iN + 1)

Γ(iN − νN + 1)
,
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the sum over i1 ≥ ν1, . . . , iN ≥ νN , (i1/n, . . . , iN/n) ∈ E. It follows that the
operator norm of Dν1 ⊗ . . .⊗DνN on Pn(E) is given by

‖Dν1 ⊗ . . .⊗DνN | Pn(E)‖2
∞ = max 2|ν|

Γ(i1 + 1)

Γ(i1 − ν1 + 1)
. . .

Γ(iN + 1)

Γ(iN − νN + 1)

= 2|ν|max i1(i1−1) . . . (i1−ν1+1) . . . iN(iN−1) . . . (iN−νN+1),

the maximum over i1 ≥ ν1, . . . , iN ≥ νN , (i1/n, . . . , iN/n) ∈ E. Consequently,

η2(∂ν1
1 . . . ∂νNN | Pn(E))/(2n)|ν|

= max
i1
n

(
i1
n
− 1

n

)
. . .

(
i1
n
− ν1 − 1

n

)
. . .

iN
n

(
iN
n
− 1

n

)
. . .

(
iN
n
− νN − 1

n

)
= max

(
i1
n

)ν1

. . .

(
iN
n

)νN (
1 +O

(
1

n

))
. (22)

The limit of (22) is

max
(x1,...,xN )∈E

xν1
1 . . . xνNN = max

(x1,...,xk)∈Eν
x
νj1
1 . . . x

νjk
k ,

which proves (10).

4 Laguerre and Gegenbauer weights

This section is devoted to the proof of Theorem 1.1 in the Laguerre and Gegen-
bauer cases and to the proof of Theorem 1.2.

Suppose first that νj ≥ 1 for all j. In that case Eν = E. We denote by pα,i
the ith normalized Laguerre or Gegenbauer polynomial in the norm (2) or (3),
respectively. Then {pα,0, pα,1, . . . , pα,n} is an orthonormal basis in Pn. Let Dα,n

be the matrix representation of the operator D : Pn → Pn in this basis. Given
a matrix An = (aik)

n
i,k=0, we denote by WAn the integral operator on L2(0, 1)

with the piecewise constant kernel (n+ 1)a[(n+1)x],[(n+1)y], where [ξ] is the integral
part of ξ. Recall that Lm,α and Gm,α are given by (4) and (5). Put σ = 1 and
Tm,α = Lm,α in the Laguerre case and σ = 2 and Tm,α = Gm,α in the Gegenbauer
case. In [4] we showed that

‖(n+ 1)−σmWDmα,n − Tm,α‖∞ → 0 as n→∞. (23)

An orthonormal basis in Pn([0, 1]N) is

F := {pα1,i1 ⊗ . . .⊗ pαN ,iN : (i1, . . . , iN) ∈ SNn }

where Sn := {0, 1, . . . , n}. If A is a linear operator on Pn([0, 1]N), we denote by
An = (ai,k)i,k∈SNn its matrix representation in this basis. Thus, if i = (i1, . . . , iN)
and k = (k1, . . . , kN), then

ai,k = (A(pα1,k1 ⊗ . . .⊗ pαN ,kN ), pα1,i1 ⊗ . . .⊗ pαN ,iN ).
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In the case where A = ∂ν1
1 . . . ∂νNN = Dν1 ⊗ . . . ⊗DνN , the matrix representation

An is just the Kronecker product Dν1
α1,n
⊗ . . .⊗DνN

αN ,n
. We associate with An the

integral operator WAn on L2((0, 1)N) given by

(WAnf)(x1, . . . , xN)

= (n+ 1)N
∫

(0,1)N
a[(n+1)x1],...,[(n+1)xN ],[(n+1)y1],...,[(n+1)yN ]f(y1, . . . , yN) dy.

Throughout what follows ‖A‖∞ denotes the operator norm if A is an operator
and the spectral norm in case A is a matrix.

Lemma 4.1 (Widom and Shampine) If C1, . . . , CN are linear operators on
Pn, A,B are linear operators on Pn([0, 1]N), and α, β ∈ C, then

WαAn+βBn = αWAn + βWBn , WAnBn = WAnWBn ,

W(C1)n⊗...⊗(CN )n = W(C1)n ⊗ . . .⊗W(CN )n , ‖WAn‖∞ = ‖An‖∞.

Proof. Let Ik be the interval (k/(n + 1), (k + 1)/(n + 1)), denote by χk the
characteristic function of Ik, and consider the operators

R : Cn+1 → L2(0, 1), {xk}nk=0 7→
√
n+ 1

n∑
k=0

xkχk,

S : L2(0, 1)→ Cn+1, f 7→
{√

n+ 1

∫
Ik

f(x)dx

}n
k=0

.

It can be verified straightforwardly that ‖R‖∞ = ‖S‖∞ = 1, that SR = I, and
that R(Ci)nS = W(Ci)n and (R ⊗ . . . ⊗ R)Xn(S ⊗ . . . ⊗ S) = WXn for every
linear operator X on Pn([0, 1]N). It follows that WαAn+βBn = αWAn + βWBn ,
WAnBn = WAnWBn , and W(C1)n⊗...⊗(CN )n = W(C1)n ⊗ . . .⊗W(CN )n . Since

‖WAn‖∞ = ‖(R⊗ . . .⊗R)An(S ⊗ . . . S)‖∞ ≤ ‖An‖∞
= ‖(S ⊗ . . .⊗ S)WAn(R⊗ . . .⊗R)‖∞ ≤ ‖WAn‖∞,

we arrive at the equality ‖WAn‖∞ = ‖An‖∞. �

From (23) we infer that

‖(n+ 1)−σ|ν|WD
ν1
α1,n
⊗ . . .⊗WD

νN
αN ,n
− Tν1,α1 ⊗ . . .⊗ TνN ,αN‖∞ → 0,

and from Lemma 4.1 we therefore deduce that

‖(n+ 1)−σ|ν|WD
ν1
α1,n
⊗...⊗DνNαN ,n

− Tν1,α1 ⊗ . . .⊗ TνN ,αN‖∞ → 0. (24)

Lemma 4.2 Let X be a Banach space and suppose X is the direct sum of two
closed subspaces U and V , X = U ⊕ V . Let K be a bounded linear operator on
X which has U as an invariant subspace. Then, with PU denoting the projection
of X onto U parallel to V ,

‖K |U‖∞ = ‖KPU‖∞.
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Proof. The decomposition X = U⊕V allows us to represent K by a 2×2 operator
matrix. Since U is an invariant subspace, the 2, 1 entry of this matrix is zero.
Thus,

K =

(
A B
0 C

)
.

Clearly, K |U = A and

KPU =

(
A B
0 C

)(
I 0
0 0

)
=

(
A 0
0 0

)
.

This shows that ‖K |U‖∞ = ‖KPU‖∞. �

We may think of Pn(E) as a subspace of Pn([0, 1]N). Moreover, in the or-
thonormal basis F we may identify Pn([0, 1]N) with `2(SNn ) and Pn(E) with
`2(Πn) where Sn = {0, 1, . . . , n} and

Πn = {(i1, . . . , iN) ∈ SNn : (i1/n, . . . , iN/n) ∈ E}.

We are interested in the norm ‖Dν1
α1,n
⊗ . . . ⊗ DνN

αN ,n
| `2(Πn)‖∞. Let PΠn be the

orthogonal projection of `2(SNn ) onto `2(Πn). By Lemma 4.2,

‖Dν1
α1,n
⊗ . . .⊗DνN

αN ,n
| `2(Πn)‖∞ = ‖(Dν1

α1,n
⊗ . . .⊗DνN

αN ,n
)PΠn‖∞

where the norm on the right is taken over `2(SNn ). We denote the matrix repre-
sentation of PΠn in the orthonormal basis F also by PΠn , although strict use of
notation would require to denote it by (PΠn)n. A little thought reveals that

(PΠn)i,k =

{
1 if i = k ∈ Πn,
0 otherwise.

(25)

Lemma 4.3 The operators WPΠn
converge strongly (= pointwise) on L2((0, 1)N)

to the operator

PE : L2((0, 1)N)→ L2((0, 1)N), (PEf)(x) =

{
f(x) if x ∈ E,
0 if x /∈ E.

Proof. By Lemma 4.1, ‖WPΠn
‖∞ = ‖PΠn‖∞ = 1. Hence it suffices to prove that

WPΠn
f → PEf for all f in some dense subset of L2((0, 1)N), say for f ∈ C([0, 1]N).

Thus, fix f ∈ C([0, 1]N) and ε > 0. For i = (i1, . . . , iN) ∈ {0, 1, . . . , n}N , put

Qi =

[
i1

n+ 1
,
i1 + 1

n+ 1

)
× . . .×

[
iN
n+ 1

,
iN + 1

n+ 1

)
.

We have

‖WPΠn
f − PEf‖2 =

n∑
i1,...,iN=0

∫
Qi

|WPΠn
f(x)− PEf(x)|2dx. (26)

11



If x = (x1, . . . , xN) ∈ Qi, then [(n+ 1)x1] = i1, . . . , [(n+ 1)xN ] = iN and hence

(WPΠn
f)(x)

= (n+ 1)N
∫

(0,1)N
(PΠn)[(n+1)x1],...,[(n+1)xN ],[(n+1)y1],...,[(n+1)yN ]f(y) dy

= (n+ 1)N
∫

(0,1)N
(PΠn)i1,...,iN ,[(n+1)y1],...,[(n+1)yN ]f(y) dy.

By virtue of (25),

(WPΠn
f)(x) = (n+ 1)N

∫
Qi

(PΠn)i1,...,iN ,i1,...,iNf(y) dy.

If (i1/(n+ 1), . . . , iN/(n+ 1)) /∈ E then (i1/n, . . . , iN/n) /∈ E. Thus, in this case
we have i = (i1, . . . , iN) /∈ Πn and Qi ⊂ [0, 1]N \ E. Consequently, (PΠn)i,i = 0
and (PEf)(x) = 0 for x ∈ Qi, which implies that∫

Qi

|WPΠn
f(x)− PEf(x)|2dx = 0.

Suppose ((i1 + 1)/n, . . . , (iN + 1)/n) ∈ E. Then i = (i1, . . . , iN) ∈ Πn and since
((i1 + 1)/(n + 1), . . . , (iN + 1)/(n + 1)) ∈ E, it follows that Qi ⊂ E. Thus,
(PΠn)i,i = 1 and (PEf)(x) = f(x) for x ∈ Qi. This gives∫

Qi

|(WPΠn
f)(x)− (PEf)(x)|2dx

≤ 1

(n+ 1)N
sup
x∈Qi
|(WPΠn

f)(x)− (PEf)(x)|2

=
1

(n+ 1)N
sup
x∈Qi

∣∣∣∣(n+ 1)N
∫
Qi

(f(y)− f(x)) dy

∣∣∣∣2
≤ 1

(n+ 1)N
sup
x,y∈Qi

|f(y)− f(x)|2 ≤ ε

2nN

if only n ≥ n1 = n1(ε). It follows that the sum of the terms∫
Qi

|WPΠn
f(x)− PEf(x)|2dx

over ((i1 +1)/n, . . . , (iN +1)/n) ∈ E is at most nN(ε/(2nN)) = ε/2 for all n ≥ n1.
We are left with the case where(

i1
n+ 1

, . . . ,
iN
n+ 1

)
∈ E,

(
i1 + 1

n
, . . . ,

iN + 1

n

)
/∈ E.
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These points (i1, . . . , iN) are all in a small shell around the boundary of nE and
hence their number is O(nN−1). Summing up over these points we get∑

i

∫
Qi

|(WPπnf)(x)− (PEf)(x)|2dx

≤
∑
i

(
2 max
x∈[0,1]N

|f(x)|
)2

1

(n+ 1)N
= O(nN−1)

(
2 max
x∈[0,1]N

|f(x)|
)2

1

(n+ 1)N
,

which is smaller than ε/2 if n ≥ n2 = n2(ε). In summary, (26) is smaller that ε
if n ≥ max(n1, n2). �

We are now in a position to prove (11) and (12) of Theorem 1.1. It is well
known that if K is a compact operator, ‖Kn−K‖∞ → 0, and C∗n → C∗ strongly
(the asterisk denoting the adjoint), then ‖KnCn − KC‖∞ → 0 (see, e.g., [5,
Lemma 2.8]). Put

Kn = (n+ 1)−σ|ν|WD
ν1
α1,n
⊗...⊗DνNαN ,n

, K = Tν1,α1 ⊗ . . .⊗ TνN ,αN
Cn = C∗n = WPΠn

, C = C∗ = PE.

It is easily seen that all Tνj ,αj are Hilbert-Schmidt operators. (Here we are using
our assumption that νj ≥ 1 for all j.) This implies that Tν1,α1⊗. . .⊗TνN ,αN is also
Hilbert-Schmidt and thus compact. From (24) we know that ‖Kn −K‖∞ → 0,
and Lemma 4.3 states that C∗n → C∗ strongly. Consequently,

‖(n+ 1)−σ|ν|WD
ν1
α1,n
⊗...⊗DνNαN ,n

WPΠn
− (Tν1,α1 ⊗ . . .⊗ TνN ,αN )PE‖∞ → 0.

This yields that

(n+ 1)−σ|ν| ‖WD
ν1
α1,n
⊗...⊗DνNαN ,n

WPΠn
‖∞ → ‖(Tν1,α1 ⊗ . . .⊗ TνN ,αN )PE‖∞.

From Lemma 4.1 we infer that

‖WD
ν1
α1,n
⊗...⊗DνNαN ,n

WPΠn
‖∞ = ‖(Dν1

α1,n
⊗ . . .⊗DνN

αN ,n
)PΠn‖∞,

and since n/(n+ 1)→ 1, Lemma 4.2 gives the desired result.

We are left with the case where some of the numbers ν1, . . . , νN are zero. We
assume without loss of generality that ν1, . . . , νk ≥ 1 and νk+1 = . . . = νN = 0.
Note that then

Eν = {(x1, . . . , xk) ∈ [0, 1]k : (x1, . . . , xk, 0, . . . , 0) ∈ E}.

For the sake of definiteness, we consider the Laguerre case. Let

Cn = λ(∂ν1
1 . . . ∂νkk | Pn(Eν))
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be the norm of ∂ν1
1 . . . ∂νkk on Pn(Eν). We have already proved that

Cn ∼ n|ν| ‖Lν1,α1 ⊗ . . .⊗ Lνk,αk |L2(Eν)‖∞. (27)

There exists a polynomial g ∈ Pn(Eν) such that ‖∂ν1
1 . . . ∂νkk g‖ = Cn‖g‖. Define

f ∈ Pn(E) by f(t1, . . . , tN) = g(t1, . . . , tk). Then ∂ν1
1 . . . ∂νNN f = ∂ν1

1 . . . ∂νkk g and
hence ∫

(0,∞)k
|(∂ν1

1 . . . ∂νNN f)(t1, . . . , tN)|2tα1
1 . . . tαkk e

−t1 . . . e−tkdt1 . . . dtk

= C2
n

∫
(0,∞)k

|f(t1, . . . , tN)|2tα1
1 . . . tαkk e

−t1 . . . e−tkdt1 . . . dtk

for each point (tk+1, . . . , tN) ∈ (0,∞)N−k. Multiplying this equality by

t
αk+1

k+1 . . . tαNN e−tk+1 . . . e−tN (28)

and integrating the result over (0,∞)N−k we get ‖∂ν1
1 . . . ∂νNN f‖2 = C2

n‖f‖2. Thus,
λ(∂ν1

1 . . . ∂νNN | Pn(E)) ≥ Cn.

On the other hand, every polynomial f ∈ Pn(E) may be written as

f(t1, . . . , tN) =
∑

pi1,...,ik(tk+1, . . . , tN)ti11 . . . t
ik
k (29)

where
pi1,...,ik(tk+1, . . . , tN) =

∑
pi1,...,ik,`k+1,...,`N t

`k+1

k+1 . . . t
`N
N

and (i1/n, . . . , ik/n, `k+1/n, . . . , `N/n) ∈ E. This implies that (i1/n, . . . , ik/n) ∈
Eν and that hence the polynomial (29) belongs to Pn(Eν) for each fixed point
(tk+1, . . . , tN) ∈ (0,∞)N−k. We obtain that, for fixed (tk+1, . . . , tN) ∈ (0,∞)N−k,∫

(0,∞)k
|(∂ν1

1 . . . ∂νNN f)(t1, . . . , tN)|2tα1
1 . . . tαkk e

−t1 . . . e−tkdt1 . . . dtk

≤ C2
n

∫
(0,∞)k

|f(t1, . . . , tN)|2tα1
1 . . . tαkk e

−t1 . . . e−tkdt1 . . . dtk,

which after multiplication by (28) and integration over (0,∞)N−k becomes the
inequality ‖∂ν1

1 . . . ∂νNN f‖2 ≤ C2
n‖f‖2. This proves that λ(∂ν1

1 . . . ∂νNN | Pn(E)) ≤
Cn.

In summary, we have λ(∂ν1
1 . . . ∂νNN | Pn(E)) = Cn, which in conjunction with

(27) completes the proof of Theorem 1.1.

Here is the proof of Theorem 1.2. The operator

U : L2(E2)→ L2(E), (Uf)(t1, . . . , tk) = 2k/2t
1/2
1 . . . t

1/2
k f(t21, . . . , t

2
k)

is an isometry and the inverse operator acts by the rule

(U−1g)(x1, . . . , xk) = 2−k/2x
−1/4
1 . . . x

−1/4
k g(x

1/2
1 , . . . , x

1/2
k ).
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The kernel of the integral operator Gν,α |L2(E) is

κ(x1, . . . , xk, y1, . . . , yk) =
k∏
j=1

x
1/2+αj
j y

1/2−αj
j

2νj−1Γ(νj)
(y2
j − x2

j)
νj−1χ(yj − xj)

where χ(ξ) = 1 for ξ > 0 and χ(ξ) = 0 for ξ < 0. Thus, for x = (x1, . . . , xk) ∈ E,

(U−1(Gν,α |L2(E))Uf)(x)

= 2−k/2
k∏
j=1

x
−1/4
j

∫
E

κ(x
1/2
1 , . . . , x

1/2
k , t1, . . . , tk)(Uf)(t1, . . . , tk) dt

and the integral equals∫
E2

κ(x
1/2
1 , . . . , x

1/2
k , y

1/2
1 , . . . , y

1/2
k )(Uf)(y

1/2
1 , . . . , y

1/2
k )

1

2k

k∏
j=1

y
−1/2
j dy

=

∫
E2

κ(x
1/2
1 , . . . , x

1/2
k , y

1/2
1 , . . . , y

1/2
k ) 2k/2

k∏
j=1

y
1/4
j f(y1, . . . , yk)

1

2k

k∏
j=1

y
−1/2
j dy.

Consequently, U−1Gν,αU is the integral operator on L2(E2) with the kernel

1

2k

(
k∏
j=1

x
−1/4
j y

−1/4
j

)
κ(x

1/2
1 , . . . , x

1/2
k , y

1/2
1 , . . . , y

1/2
k )

=
1

2k

k∏
j=1

1

2νj−1Γ(νj)
x
−1/4
j y

−1/4
j x

1/4+αj/2
j y

1/4−αj/2
j (yj − xj)νj−1χ(y

1/2
j − x

1/2
j )

=
1

2|ν|

k∏
j=1

1

Γ(νj)
x
αj/2
j y

−αj/2
j (yj − xj)νj−1χ(yj − xj).

As this is just 1/2|ν| times the kernel of Lν,α, the proof of Theorem 1.2 is complete.

5 Bounds

In this section we prove Theorem 1.3.

Thus, let ν = (ν1, . . . , νk) with natural numbers νj ≥ 1 and α = (α1, . . . , αk)
with real numbers αj > −1. The operator Lν,α has the kernel

k∏
j=1

x
αj/2
j y

−αj/2
j

Γ(νj)
(yj − xj)νj−1χ(yj − xj).
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The adjoint of the operator Lν,α |L2(E) is L∗ν,α |L2(E) where L∗ν,α is the integral
operator with the kernel

k∏
j=1

x
−αj/2
j y

αj/2
j

Γ(νj)
(xj − yj)νj−1χ(xj − yj).

Recall that Ωδ
k = {x ∈ [0, 1]k : x

1/δ
1 + . . . + x

1/δ
k ≤ 1}. In what follows we will

make frequent use of Euler’s formula∫ 1

0

tp−1(1− t)q−1 dt =
Γ(p)Γ(q)

Γ(p+ q)

and of Dirichlet’s formula∫
Ωδk

xp1−1
1 . . . xpk−1

k dx =
δk Γ(δp1) . . .Γ(δpk)

Γ(δp1 + . . .+ δpk + 1)
. (30)

The Hilbert-Schmidt norm ‖K |L2(E)‖2 of an integral operator is the L2 norm
of its kernel over E × E. We therefore have(

k∏
j=1

Γ(νj)
2

)
‖Lν,α |L2(Ωδ

k)‖2
2 =

(
k∏
j=1

Γ(νj)
2

)
‖L∗ν,α |L2(Ωδ

k)‖2
2

=

∫
Ωδk

∫
Ωδk

k∏
j=1

x
−αj
j y

αj
j (xj − yj)2νj−2χ(xj − yj) dydx. (31)

If (x1, . . . , xk) ∈ Ωδ
k and yj < xj for all j, then (y1, . . . , yj) is automatically in Ωδ

k.
Thus, (31) is ∫

Ωδk

(
k∏
j=1

x
−αj
j

∫ xj

0

y
αj
j (xj − yj)2νj−2dyj

)
dx

=

∫
Ωδk

(
k∏
j=1

x
−αj
j

∫ 1

0

x
αj
j t

αjx
2νj−2
j (1− t)2νj−2xj dt

)
dx

=

(
k∏
j=1

Γ(αj + 1)Γ(2νj − 1)

Γ(αj + 2νj)

)∫
Ωδk

k∏
j=1

x
2νj−1
j dx

and formula (30) now implies the equality asserted in Theorem 1.3.

To prove the inequality stated in Theorem 1.3 note first that the kernel of the
integral operator L∗ν,αLν,α |L2(Ωδ

k) is∫
Ωδk

g(t, x)g(t, y) dt
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where

g(t, z) =
k∏
j=1

t
αj/2
j z

−αj/2
j

Γ(νj)
(zj − tj)νj−1χ(zj − tj).

Consequently,

‖L∗ν,αLν,α |L2(Ωδ
k)‖2

2 =

∫
Ωδk

∫
Ωδk

(∫
Ωδk

g(t, x)g(t, y) dt

)2

dxdy. (32)

The inner integral in (32) is

I1 :=

(
k∏
j=1

x
−αj/2
j y

−αj/2
j

Γ(νj)2

)
×

×
∫

Ωδk

(
k∏
j=1

t
αj
j (yj − tj)νj−1(xj − tj)νj−1χ(yj − tj)χ(xj − tj)

)
dt. (33)

Put uj = min(xj, yj). If x and y are in Ωδ
k, then (u1, . . . , uk) is also in Ωδ

k.
Therefore the integral in (33) is

I2 :=
k∏
j=1

∫ uj

0

t
αj
j (yj − tj)νj−1(xj − tj)νj−1dtj.

If yj ≤ xj then uj = yj and∫ uj

0

t
αj
j (yj − tj)νj−1(xj − tj)νj−1dtj

=

∫ yj

0

t
αj
j (yj − tj)νj−1(xj − tj)νj−1dtj

=

∫ 1

0

y
αj
j s

αjy
νj−1
j (1− s)νj−1(xj − yjs)νj−1yj ds. (34)

Since xj − yjs ≥ xj − xjs for 0 ≤ yj ≤ xj and 0 ≤ s ≤ 1, integral (34) is at least∫ 1

0

y
αj+νj
j x

νj−1
j sαj(1− s)2νj−2ds

=
Γ(αj + 1)Γ(2νj − 1)

Γ(αj + 2νj)
y
αj+νj
j x

νj−1
j

=
Γ(αj + 1)Γ(2νj − 1)

Γ(αj + 2νj)
u
αj+νj
j w

νj−1
j , (35)

where wj = max(xj, yj). The integral I2 is symmetric in x and y and hence (35)
will also result in the case yj > xj. Thus,

I2 ≥ Γν,α

k∏
j=1

u
αj+νj
j w

νj−1
j , Γν,α :=

k∏
j=1

Γ(αj + 1)Γ(2νj − 1)

Γ(αj + 2νj)
.
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Letting Cν =
∏k

j=1(1/Γ(νj)), we obtain that

I2
1 ≥ C4

νΓ2
ν,α

k∏
j=1

x
−αj
j y

−αj
j u

2αj+2νj
j w

2νj−2
j

= C4
νΓ2

ν,α

k∏
j=1

u
αj+2νj
j w

2νj−αj−2
j .

Consequently, a lower bound for (32) is

C4
νΓ2

ν,α

∫
Ωδk

∫
Ωδk

(
k∏
j=1

u
αj+2νj
j w

2νj−αj−2
j

)
dxdy. (36)

For each j, we have, up to sets of measure zero, the two possibilities yj < xj
or yj > xj. This gives 2k possibilities for all j. Accordingly, we may partition
Ωδ
k ×Ωδ

k into 2k domains Bi (i = 1, . . . , 2k). For a fixed j, we have either uj = xj
and wj = yj or uj = yj and wj = xj throughout each domain Bi. Thus,

dx1 . . . dxk dy1 . . . dyk = du1 . . . duk dw1 . . . dwk

in each Bi. This implies that each Bi makes the same contribution to (36) and
that hence (36) equals

2kC4
νΓ2

ν,α

∫
B1

(
k∏
j=1

u
αj+2νj
j w

2νj−αj−2
j

)
dudw (37)

where B1 = {(u,w) ∈ Ωδ
k × Ωδ

k : uj < wj for all j}. If w ∈ Ωδ
k and uj < wj for

all j, then u is automatically in Ωδ
k. This shows that (37) is equal to

2kC4
νΓ2

ν,α

∫
Ωδk

(
k∏
j=1

∫ wj

0

u
αj+2νj
j w

2νj−αj−2
j duj

)
dw

= 2kC4
νΓ2

ν,α

∫
Ωδk

(
k∏
j=1

w
4νj−1
j

αj + 2νj + 1

)
dw.

From (30) we infer that∫
Ωδk

k∏
j=1

w
4νj−1
j dw =

δk

Γ(4δ|ν|+ 1)

k∏
j=1

Γ(4δνj).

Putting things together we arrive at the inequality in Theorem 1.3.
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Here is, for the sake of completeness, a proof of (14). The squares of the
bounds b1 := b1(ν, α,Ωδ

k) and b2 := b2(ν, α,Ωδ
k) are

b2
2 =

δk

Γ(2δ|ν|+ 1)

k∏
j=1

Γ(αj + 1)Γ(2νj − 1)Γ(2δνj)

Γ(αj + 2νj)Γ(νj)2
,

b2
1 =

2kΓ(2δ|ν|+ 1)

Γ(4δ|ν|+ 1)

k∏
j=1

Γ(αj + 1)Γ(2νj − 1)Γ(4δνj)

Γ(αj + 2νj)(αj + 2νj + 1)Γ(νj)2Γ(2δνj)
,

and the quotient of these two bounds is

b2
2

b2
1

=

(
δ

2

)k
Γ(4δ|ν|+ 1)

Γ(2δ|ν|+ 1)2

k∏
j=1

(αj + 2νj + 1)
Γ(2δνj)

2

Γ(4δνj)
. (38)

Suppose k, δ, α1, . . . , αk remain fixed and νj → ∞ for all j. Taking into account
that

Γ(2µ)

Γ(µ)2
∼ 22µ

√
µ

4π
as µ→∞,

we see that (38) is

δk

2k
4δ|ν|Γ(4δ|ν|)

4δ2|ν|2 Γ(2δ|ν|)2

k∏
j=1

(αj + 2νj + 1)
Γ(2δνj)

2

Γ(4δνj)

∼ δk

2k
1

δ|ν|
24δ|ν|

(
2δ|ν|
4π

)1/2

2k
k∏
j=1

νj
1

24δνj

(
4π

2δνj

)1/2

= (2πδ)(k−1)/2 1

|ν|1/2
k∏
j=1

ν
1/2
j ,

which is the same as (14).

6 Asymptotics

In this section we present a proof of Theorem 1.4.

Let %1, . . . , %k be positive real numbers. For a real number τ > 0, we consider
the integral operator Lτ with the kernel

gτ (x, y) =
k∏
j=1

x
−αj/2
j y

αj/2
j (xj − yj)%jτ−1χ(xj − yj)

on L2(Ωδ
k). Clearly, Lτ is nothing but(

k∏
j=1

Γ(%jτ)

)
(L∗%1τ,α1

⊗ . . .⊗ L∗%kτ,αk) |L
2(Ωδ

k).
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The function
∏k

j=1 x
%j
j attains its maximum on Ωδ

k at the point (p1, . . . , pk) and

nowhere else. This point lies on the boundary of Ωδ
k and is given by

pj =

(
%j
|%|

)δ
, |%| := %1 + . . .+ %k.

We denote by Hτ the integral operator on L2(Ωδ
k) whose kernel is

hτ (x, y) =
k∏
j=1

x
−αj/2
j y

αj/2
j x

%jτ−1
j

(
1− yj

pj

)%jτ−1

χ(pj − yj).

As hτ (x, y) is of the form a(x)b(y), the operator norm of Hτ is the product of the
L2 norms of a and b. Thus, using the Dirichlet and Euler formulas,

‖Hτ‖2
∞ =

∫
Ωδk

k∏
j=1

x
2%jτ−αj−2
j dx

k∏
j=1

∫ pj

0

y
αj
j

(
1− yj

pj

)2%jτ−2

dyj

=
δk
∏k

j=1 Γ(2δ%jτ − (αj + 1)δ)

Γ(2δ|%|τ −
∑

(αj + 1)δ + 1)

k∏
j=1

p
αj+1
j

Γ(αj + 1)Γ(2%jτ − 1)

Γ(αj + 2%jτ)
, (39)

the sum over j = 1, . . . , k. From Theorem 1.3 we infer that

‖Lτ‖2
2 =

δk

Γ(2δ|%|τ + 1)

k∏
j=1

Γ(αj + 1)Γ(2%jτ − 1)Γ(2δ%jτ)

Γ(αj + 2%jτ)
.

Consequently, by Stirling’s formula,

‖Hτ‖2
∞

‖Lτ‖2
2

=
Γ(2δ|%|τ + 1)

Γ(2δ|%|τ −
∑

(αj + 1)δ + 1)

k∏
j=1

p
αj+1
j

Γ(2δ%jτ − (αj + 1)δ)

Γ(2δ%jτ)

∼ (2δ|%|τ)
P

(αj+1)δ

k∏
j=1

p
αj+1
j (2δ%jτ)−(αj+1)δ

= |%|
P

(αj+1)δ

k∏
j=1

p
αj+1
j %

−(αj+1)δ
j

= |%|
P

(αj+1)δ

k∏
j=1

(
%j
|%|

)δ(αj+1)

%
−(αj+1)δ
j = 1,

that is, ‖Hτ‖∞ = ‖Lτ‖2(1 + o(1)). Now suppose we had shown that

‖Lτ −Hτ‖2
2 = o(‖Hτ‖2

∞). (40)
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It would follow that ‖Lτ −Hτ‖∞ = o(‖Hτ‖∞) and hence

‖Lτ‖∞ = ‖Hτ‖∞ + o(‖Hτ‖∞)

= ‖Hτ‖∞(1 + o(1)) = ‖Lτ‖2(1 + o(1)),

as desired. Thus, we are left with (40).

We have

‖Lτ −Hτ‖2
2 =

∫
Ωδk

∫
Ωδk

(g2
τ − 2 gτhτ + h2

τ ) dydx

= ‖Lτ‖2
2 − 2

∫
Ωδk

∫
Ωδk

gτhτ dydx+ ‖Hτ‖2
2.

We already showed that ‖Lτ‖2
2/‖Hτ‖2

∞ → 1, and since the kernel of Hτ is of
the form a(x)b(y) we may conclude that ‖Hτ‖2

2/‖Hτ‖2
∞ = 1. Consequently, esti-

mate (40) will follow as soon as we have proved that∫
Ωδk

∫
Ωδk

gτhτ dydx/‖Hτ‖2
∞ → 1. (41)

The integral in (41) equals∫
Ωδk

k∏
j=1

x
%jτ−αj−1
j

(
k∏
j=1

∫ pj

0

y
αj
j

(
1− yj

pj

)%jτ−1

χ(xj − yj)(xj − yj)%jτ−1 dyj

)
dx.

To tackle the inner integrals, we use that if α > −1 and 0 ≤ β ≤ 1, then∫ 1

0

tα(1− βt)λ(1− t)λdt =
Γ(α + 1)

(1 + β)α+1

1

λα+1
(1 + o(1))

as λ→∞, the o(1) being unform in β ∈ [0, 1]; see, for example, [11, Section 2.4].
If xj < pj, the jth inner integral is∫ xj

0

y
αj
j

(
1− yj

pj

)%jτ−1

(xj − yj)%jτ−1dyj

= x
αj+%jτ
j

∫ 1

0

tαj
(

1− xjt

pj

)%jτ−1

(1− t)%jτ−1dt

= x
αj+%jτ
j

Γ(αj + 1)

(1 + xj/pj)αj+1

1

(%jτ)αj+1
(1 + o(1)),
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while for xj > pj it is∫ pj

0

y
αj
j

(
1− yj

pj

)%jτ−1

(xj − yj)%jτ−1dyj

= x
%jτ−1
j p

αj+1
j

∫ 1

0

tαj(1− t)%jτ−1

(
1− pjt

xj

)%jτ−1

dt

= x
%jτ−1
j p

αj+1
j

Γ(αj + 1)

(1 + pj/xj)αj+1

1

(%jτ)αj+1
(1 + o(1))

= x
αj+%jτ
j

Γ(αj + 1)

(1 + xj/pj)αj+1

1

(%jτ)αj+1
(1 + o(1)).

Thus, the integral in (41) is asymptotically equal to

k∏
j=1

Γ(αj + 1)

(%jτ)αj+1

∫
Ωδk

k∏
j=1

x
2%jτ−1
j

(1 + xj/pj)αj+1
dx. (42)

Taking into account that
∏
x
%j
j has its maximum at (p1, . . . , pk) one can employ

standard methods, for example, such as in [13, Section II.4], to show that the
integral in (42) is asymptotically equal to∫

Ωδk

k∏
j=1

x
2%jτ−1
j

(1 + pj/pj)αj+1
dx =

k∏
j=1

1

2αj+1

∫
Ωδk

k∏
j=1

x
2%jτ−1
j dx. (43)

By Dirichlet’s formula (30), the integral on the right of (43) is

δk

Γ(2δ|%|τ + 1)

k∏
j=1

Γ(2δ%jτ).

In summary, the integral in (41) equals

δk

Γ(2δ|%|τ + 1)

k∏
j=1

Γ(αj + 1)Γ(2δ%jτ)

2αj+1(%jτ)αj+1
(1 + o(1)).

This in conjunction with (39) gives that the left-hand side of (41) is asymptotically
equal to

Γ(2δ|%|τ −
∑

(αj + 1)δ + 1)

Γ(2δ|%|τ + 1)

×
k∏
j=1

Γ(2δ%jτ)Γ(αj + 2%jτ)

(2pj%jτ)αj+1Γ(2δ%jτ − (αj + 1)δ)Γ(2%jτ − 1)

∼ 1

(2δ|%|τ)
P

(αj+1)δ

k∏
j=1

(2δ%jτ)(αj+1)δ(2%jτ)αj+1

(2pj%jτ)αj+1

=
k∏
j=1

1

p
αj+1
j

(
%j
|%|

)(αj+1)δ

=
k∏
j=1

1

p
αj+1
j

p
αj+1
j = 1,
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which completes the proof.

7 Linear combinations

Here is the proof of Theorem 1.5.

Let m ≥ 1 be an integer and α > −1 be a real number. We put Tm,α = Lm,α
in the Laguerre case and Tm,α = Gm,α in the Gegenbauer case. Let M(2x)m/2 be

the operator of multiplication by (2x)m/2 on L2(0, 1) and put Tm,α = M(2x)m/2 in
the Hermite case; clearly, in that case Tm,α does actually not depend on α. In
either case, we let T0,α be the identity operator. We finally use the abbreviation

Cn(p) = C(p(∂1, . . . , ∂N) | Pn(E)). (44)

In Section 4 we introduced the matrix representations Dα,n of the operator of
differentiation on Pn in the Laguerre and Gegenbauer cases. We use the notation
Dα,n also for the matrix representation of the operator D : Pn → Pn in the
Hermite basis (where in fact there is no dependence on α).

Lemma 7.1 We have

(n+ 1)−σ |ν|WD
ν1
α1,n
⊗ . . .⊗WD

νN
αN ,n
→ Tν1,α1 ⊗ . . .⊗ TνN ,αN

strongly on L2((0, 1)N) as n→∞.

Proof. Let In be the (n + 1) × (n + 1) identity matrix. It is easily seen that
WIn → I strongly. In the Laguerre and Gegenbauer cases, we know from (23)
that (n + 1)−σmWDmα,n → Tm,α in the norm provided m ≥ 1. This implies the
lemma in these two cases. Let us consider the Hermite case. For x ∈ Qj :=
[j/(n+ 1), (j + 1)/(n+ 1)), we obtain from (20) that

(WDmα,nf)(x) = (n+ 1)
n∑
i=0

∫
Qi

(Dm
α,n)j,if(y) dy

= (n+ 1)

∫
Qj+m

(Dm
α,n)j,j+mf(y) dy

= (n+ 1)

∫
Qj+m

2m/2

√
Γ(j +m+ 1)

Γ(j + 1)
f(y) dy

= (n+ 1)

∫
Qj+m

2m/2
√

(j +m) . . . (j + 1) f(y) dy,

provided j +m ≤ n. Thus,

(n+ 1)−m/2(WDmα,nf)(x)

= (n+ 1) · 2m/2
∫
Qj+m

√(
j

n+ 1
+

m

n+ 1

)
. . .

(
j

n+ 1
+

1

n+ 1

)
f(y) dy.
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If f is in C[0, 1] and n is large, then the right-hand side of this equality is ap-
proximately equal to 2m/2xm/2f(x). It is not difficult to make this precise and to
show that

‖(n+ 1)−m/2WDmα,nf −M(2x)m/2f‖ → 0

for every f ∈ C[0, 1]. Since, by Lemma 4.1 and the result known for the one-
dimensional case,

‖(n+ 1)−m/2WDmα,n‖∞ = (n+ 1)−m/2‖Dm
α,n‖∞ = (n+ 1)−m/2ηn(Dm) ∼ 2m/2,

it follows that (n + 1)−m/2WDmα,n → M(2x)m/2 strongly on L2(0, 1). Tensoring we
get the assertion in the Hermite case. �

Since (n+ 1)/n→ 1, Lemmas 4.1, 4.3, and 7.1 give that∑
ν1+...+νN≤M

n−σ|ν|pν1,...,νNW(D
ν1
α1,n
⊗...⊗DνNαN ,n)PΠn

→
∑

ν1+...+νN≤M

pν1,...,νN (Tν1,α1 ⊗ . . .⊗ TνN ,αN )PE

strongly, which in turn implies that

n−σM
∑

ν1+...+νN=M

pν1,...,νNW(D
ν1
α1,n
⊗...⊗DνNαN ,n)PΠn

→
∑

ν1+...+νN=M

pν1,...,νN (Tν1,α1 ⊗ . . .⊗ TνN ,αN )PE (45)

strongly. From the Banach-Steinhaus theorem we therefore obtain that

lim inf
n→∞

n−σM

∥∥∥∥∥ ∑
ν1+...+νN=M

pν1,...,νNW(D
ν1
α1,n
⊗...⊗DνNαN ,n)PΠn

∥∥∥∥∥
∞

≥

∥∥∥∥∥ ∑
ν1+...+νN=M

pν1,...,νN (Tν1,α1 ⊗ . . .⊗ TνN ,αN )PE

∥∥∥∥∥
∞

The right-hand side of this inequality is strictly positive and the left-hand side is
just lim inf n−σMCn(p0) due to Lemma 4.1. Hence

lim inf n−σMCn(p0) > 0.

Lemma 7.2 If p and q are any two polynomials, then Cn(p+q) ≤ Cn(p)+Cn(q).

Proof. Obvious. �

Lemma 7.2 in conjunction with Theorem 1.1 shows that

lim supn−σMCn(p0) <∞.
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Thus, at this point we have proved (18). From Lemma 7.2 we also get

Cn(p) ≤ Cn(p0) +
∑

ν1+...+νN≤M−1

|pν1,...,νN |C(∂ν1
1 . . . ∂νnN | Pn(E)),

Cn(p0) ≤ Cn(p) +
∑

ν1+...+νN≤M−1

|pν1,...,νN |C(∂ν1
1 . . . ∂νnN | Pn(E)),

and Theorem 1.1 therefore yields that Cn(p) = Cn(p0) + O(nσ(M−1)), which to-
gether with (18) gives (19) and thus completes the proof of Theorem 1.5.

Remark 7.3 The arguments used in this section reveal the difference between
the Hermite case on the one hand and the Laguerre and Gegenbauer cases on the
other. In contrast to the Laguerre and Gegenbauer cases, the limiting operators
in the Hermite case are no longer (compact) integral operators, but multiplication
operators, and secondly, in the Hermite case the convergence is no longer uniform,
but only strong. In this light it comes as a fortune that the Hermite case can be
disposed of by the simple reasoning presented in Section 3.

8 Open problems

Problem 8.1 Let N = 2 and consider the operator

p(∂1, ∂2) = p30∂
3
1 + p21∂

2
1∂2 + p12∂1∂

2
2 + p03∂

3
2 +

∑
ν1+ν2≤2

pν1ν2∂
ν1
1 ∂

ν2
2 .

The principal part is p0(∂1, ∂2) = p30∂
3
1 + p21∂

2
1∂2 + p12∂1∂

2
2 + p03∂

3
2 . Theorem 1.5

tells us that, with abbreviation (44),

Cn(p) ∼ Cn(p0) ' n3σ,

and as long as one of the terms p30∂
3
1 and p03∂

3
2 is present, we cannot say more.

However, if p30 = p03 = 0 and if we are in the Laguerre or Gegenbauer cases, then
the convergence in (45) is uniform because all occurring Tνi,αi are compact integral
operators. Consequently, in these cases there is no need in having recourse to the
Banach-Steinhaus theorem, since we can rather conclude straightforwardly that

Cn(p0) ∼ n3σ ‖p21T2,α1 ⊗ T1,α2 + p12T1,α1 ⊗ T2,α2 |L2(E)‖∞.

However, in the general case we must the replacement of “'” in (18) by “∼ times
a constant” leave as an open problem.

Problem 8.2 The most embarrassing message is that our approach fails for the
Laplace operator. This failure is of course connected with Problem 8.1. Let, for
example, N = 2 and ∆ = ∂2

1 + ∂2
2 . From Theorem 1.5 we deduce that

C(∆ | Pn(E)) ' n2σ,
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but we cannot even prove that C(∆ | Pn(E))/n2σ converges to a limit.

On the credit side we have a few modest estimates. From (45) we get

lim inf
n→∞

C(∆ | Pn(E))

n2σ
≥ ‖T2,α1 ⊗ I + I ⊗ T2,α2 |L2(E)‖∞, (46)

while combination of Theorem 1.1 and Lemma 7.2 yields that

lim sup
n→∞

C(∆ | Pn(E))

n2σ
≤ ‖T2,α1 |L2(E2,0)‖∞ + ‖T2,α2 |L2(E0,2)‖∞. (47)

Suppose α1 = α2 = 0 and E = Ω2. In that case E2,0 = E0,2 = [0, 1].

For the Hermite weight, the right-hand sides of (46) and (47) become

‖M2x1+2x2 |L2(Ω2)‖∞ = 2 and 2 ‖M2x |L2(0, 1)‖∞ = 4,

respectively, which results in the estimates

2 ≤ lim inf
n→∞

η(∆ | Pn(Ω2))

n
≤ lim sup

n→∞

η(∆ | Pn(Ω2))

n
≤ 4.

Let us turn to the Laguerre weight. In that case the right-hand side of (47) is

2 ‖L2,0 |L2(0, 1)‖∞ = 2× 0.284 . . . < 0.569

(see [33] or [3]). On the right of (46) we now have the operator norm of the
operator L2,0 ⊗ I + I ⊗ L2,0 on L2(Ω2). Let f be identically 1 on Ω2. Then
‖f‖2 = 1/2 and for (x1, x2) ∈ Ω2,

((L∗2,0 ⊗ I + I ⊗ L∗2,0)f)(x1, x2)

=

∫ x1

0

(x1 − y1)f(y1, x2) dy1 +

∫ x2

0

(x2 − y2)f(x1, y2) dy2

=

∫ x1

0

(x1 − y1) dy1 +

∫ x2

0

(x2 − y2) dy2 =
x2

1 + x2
2

2
.

Thus,

‖L2,0 ⊗ I + I ⊗ L2,0 |L2(Ω2)‖2
∞ = ‖L∗2,0 ⊗ I + I ⊗ L∗2,0 |L2(Ω2)‖2

∞

≥ 2

∫
Ω2

(
x2

1 + x2
2

2

)2

dx1dx2 =
7

180
> 0.1972.

It follows that

0.197 ≤ lim inf
n→∞

λ(∆ | Pn(Ω2))

n2
≤ lim sup

n→∞

λ(∆ | Pn(Ω2))

n2
< 0.569.
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In the Legendre case (= Gegenbauer case for α1 = α2 = 0) we obtain analogously
that

0.091 ≤ lim inf
n→∞

γ(∆ | Pn(Ω2))

n4
≤ lim sup

n→∞

γ(∆ | Pn(Ω2))

n4
< 0.143.

We remark that for the N -dimensional Laplace operator ∆ = ∂2
1 + . . . + ∂2

N

the estimates obtained in this way become worse and worse: in the Hermite case
the right-hand sides of (46) and (47) are 2 and 2N , respectively, whereas in the
Laguerre and Gegenbauer cases the upper bounds go to infinity and the lower
bounds approach zero as N → ∞. Thus, in general we cannot answer even the
question whether

lim inf
n→∞

C(∆ | Pn(ΩN))

n2σ
, lim sup

n→∞

C(∆ | Pn(ΩN))

n2σ

converge to zero, increase to infinity, or remain bounded and bounded away from
zero as N →∞.

Problem 8.3 Consider the wave operator � = ∂2
1 − ∂2

2 on Pn(Ω2). The linear
operator

S : Pn(Ω2)→ Pn(Ω2), (Sf)(t1, t2) = f

(
t1 + t2√

2
,
t1 − t2√

2

)
is an isometry when taking the Hermite norm. Moreover, the factorization

∂2
1 − ∂2

2 = (∂1 + ∂2)(∂1 − ∂2)

may be written as the identity 2 ∂1∂2 S = S(∂2
1 − ∂2

2). It follows that

η(� | Pn(Ω2)) = max
‖f‖=1

‖(∂2
1 − ∂2

2)f‖ = max
‖Sf‖=1

‖S(∂2
1 − ∂2

2)f‖

= max
‖Sf‖=1

‖2 ∂1∂2 Sf‖ = max
‖g‖=1

‖2 ∂1∂2 g‖ = 2 η(∂1∂2 | Pn(Ω2))

and from Theorem 1.1 we obtain that

2 η(∂1∂2 | Pn(Ω2)) ∼ 2n max
(x1,x2)∈Ω2

√
4x1x2 = 2n.

The following problems remain open. What can be said about C(� | Pn(Ω2)) if
C = λ or C = γ? What happens if � is the more general operator ∂2

1−c2∂2
2? Can

one tackle the Laplace operator by using the factorization ∆ = (∂1+i∂2)(∂1−i∂2)?
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[3] A. Böttcher and P. Dörfler: On the best constants in inequalities of the
Markov and Wirtinger types for polynomials on the half-line. Linear Algebra
Appl. 430 (2009), 1057–1069.
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