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Abstract

In the last years convergence rates results for Tikhonov regularization of non-

linear ill-posed problems in Banach spaces have been published, where the classical

concept of source conditions was replaced with variational inequalities holding on

some level sets. Also this advanced essentially the analysis of non-smooth situ-

ations with respect to forward operators and solutions. In fact, such variational

inequalities combine both structural conditions on the nonlinearity of the operator

and smoothness properties of the solution. Varying exponents in the variational

inequalities correspond to different levels of convergence rates. In this paper, we

discuss the range of occurring exponents in the Banach space setting. To lighten

the cross-connections between generalized source conditions, degree of nonlinearity

of the forward operator and associated variational inequalities we study the Hilbert

space situation and even prove some converse result for linear operators.
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1 Introduction

After turn of the millennium there seems to be a substantial progress in regularization
theory for the stable approximate solution of ill-posed inverse problems. On the one
hand, partially motivated by specific applications in imaging and by a growing interest
in sparsity of solutions as well as in new types of stabilizing terms in variational regu-
larization, the Banach space treatment of linear and nonlinear operator equations and
occurring difficulties in this context came into the focus of recent papers and books. On
the other hand, Bregman distances for measuring the regularization error and variational
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inequalities for replacing the standard form of source conditions offer now good prospects
for proving convergence rates results also for non-smooth situations with respect to solu-
tion and forward operator. For recent results we refer to the monograph [17] and in an
exemplary manner to the papers [1, 2, 6, 7, 8, 9, 12, 14, 15, 16, 18, 19, 20].

This paper is devoted to the utility of variational inequalities combining both struc-
tural conditions on the nonlinearity of the operator and smoothness properties of the
solution. Varying exponents in the variational inequalities correspond to different lev-
els of convergence rates. We are going to discuss the range of occurring exponents in
the Banach space setting and the interplay of general source conditions and variational
inequalities in Banach and Hilbert spaces.

The paper is organized as follows: In Section 2 we describe the Tikhonov type regu-
larization for the stable approximate solution of nonlinear ill-posed operator equations in
a Banach space setting under basic assumptions which follow the corresponding assump-
tions of the papers [8, 9]. As in the previous papers the focus is again on level sets for
the Tikhonov sum functional, and the majority of conditions under consideration have
to hold on such sets. Section 3 summarizes propositions on convergence and convergence
rates under variational inequalities. Moreover, we recall the concept of a degree of nonlin-
earity for characterizing the local structural nonlinearity conditions in the solution point.
The range of occurring exponents in the variational inequalities is discussed in Section 4.
Here the forward operator and the stabilizing functional are assumed to be Gâteaux dif-
ferentiable. We distinguish three typical cases of exponents and make assertions for all of
them. Some open questions cannot be answered currently for the general Banach space
setting. Therefore we restrict our considerations in the concluding Section 5 to the clas-
sical nonlinear Tikhonov regularization in Hilbert spaces. Under that restriction we are
able to formulate assertions on the interplay of variational inequalities and Hölder source
conditions with fractional exponents including some converse result for the subcase of
linear operators.

2 Problem, notation, and basic assumptions

We are going to study ill-posed operator equations

F (u) = v (2.1)

expressing inverse problems with an in general nonlinear forward operator F : D(F ) ⊆
U → V possessing the domain D(F ) and mapping between normed real linear spaces U
and V with norms ‖ · ‖U and ‖ · ‖V , respectively. Based on noisy data vδ of the exact
right-hand side v = v0 ∈ F (D(F )) with

‖vδ − v‖V ≤ δ (2.2)

and noise level δ ≥ 0 we consider stable approximate solutions uδ
α as minimizers over U

of the Tikhonov type functional

T vδ

α (u) := ‖F (u) − vδ‖p
V + α Ω(u) (2.3)

with a prescribed norm exponent
1 < p < ∞
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and a regularization parameter α > 0. In this context, let Ω : U → [0, +∞] be a stabilizing
functional with

D(Ω) := {u ∈ U : Ω(u) 6= +∞} 6= ∅

and set T vδ

α (u) = ∞ if u /∈ D(F ).

Throughout this paper we make the following assumptions:

Assumption 2.1

1. U and V are reflexive Banach spaces with duals U∗ and V ∗, respectively. In U and
V we consider in addition to the norm convergence the associated weak convergence.
That means in U

uk ⇀ u ⇐⇒ 〈f, uk〉U∗,U → 〈f, u〉U∗,U ∀f ∈ U∗

for the dual pairing 〈·, ·〉U∗,U with respect to U∗ and U . The weak convergence in V
is defined in an analog manner.

2. F : D(F ) ⊆ U → V is weakly continuous and D(F ) is weakly sequentially closed,
i.e.,

uk ⇀ u in U with uk ∈ D(F ) =⇒ u ∈ D(F ) and F (uk) ⇀ F (u) in V.

3. The functional Ω is convex and weakly sequentially lower semi-continuous.

4. The domain D := D(F ) ∩ D(Ω) is non-empty.

5. For every α > 0, c ≥ 0, and for the exact right-hand side v = v0 of (2.1) the sets

Mv
α(c) := {u ∈ D : T v

α(u) ≤ c} , (2.4)

whenever they are non-empty, are weakly sequentially pre-compact in the follow-
ing sense: every sequence {uk}

∞
k=1 in Mv

α(c) has a subsequence, which is weakly
convergent in U to some element from U .

Under the stated assumptions existence and stability of regularized solutions uδ
α can be

shown (cf. [9, §3] and [17, Theorems 3.22 and 3.23]).

In the Banach space theory of Tikhonov type regularization methods, regularization
errors are frequently measured, for the convex functional Ω with subdifferential ∂Ω, by
means of Bregman distances

Dξ(ũ, u) := Ω(ũ) − Ω(u) − 〈ξ, ũ− u〉U∗,U , ũ ∈ D(Ω) ⊆ U ,

at u ∈ D(Ω) ⊆ U and ξ ∈ ∂Ω(u) ⊆ U∗. The set

DB(Ω) := {u ∈ D(Ω) : ∂Ω(u) 6= ∅}

is called Bregman domain. For more details see, e.g., [17, Lemmas 3.16 and 3.17].

An element u† ∈ D is called an Ω-minimizing solution to (2.1) if

Ω(u†) = min {Ω(u) : F (u) = v, u ∈ D} < ∞ .

Such Ω-minimizing solutions exist under Assumption 2.1 if (2.1) has a solution u ∈ D
(see [17, Theorem 3.25]), and by [17, Theorem 3.26]
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3 Convergence, convergence rates, the degree of non-

linearity, and variational inequalities

As the following proposition shows, all regularized solutions associated with data pos-
sessing a sufficiently small noise level δ belong to a common pre-compact level set of
type Mv

α(c) whenever the regularization parameters α = α(δ) are chosen such that weak
convergence to Ω-minimizing solutions u† is enforced.

Proposition 3.1 Consider an a priori choice α = α(δ) > 0, 0 < δ < ∞, for the
regularization parameter in (2.3) depending on the noise level δ such that

α(δ) → 0 and
δp

α(δ)
→ 0, as δ → 0. (3.1)

Then under Assumption 2.1 every sequence {un}
∞
n=1 := {uδn

α(δn)}
∞
n=1 of regularized solutions

corresponding to a sequence {vδn}∞n=1 of data with lim
n→∞

δn = 0 has a subsequence {unk
}∞k=1,

which is weakly convergent in U , i.e. unk
⇀ u†, and its limit u† is an Ω-minimizing solution

of (2.1) with Ω(u†) = lim
k→∞

Ω(unk
).

For given αmax > 0 let u† denote an Ω-minimizing solution of (2.1). If we set

ρ := 2p−1αmax(1 + Ω(u†)) , (3.2)

then we have u† ∈ Mv
αmax

(ρ) and there exists some δmax > 0 such that

uδ
α(δ) ∈ Mv

αmax
(ρ) for all 0 ≤ δ ≤ δmax . (3.3)

Proof: The first part of the proposition concerning convergence replicates only the result
of [17, Theorem 3.26] and we refer to the proof ibidem. The second part can be proven
as follows: Owing to (3.1) there exists some δmax > 0 such that α(δ) ≤ αmax and δp

α(δ)
≤ 1

2

for all 0 < δ ≤ δmax. Then for such δ, by writing for simplicity α instead of α(δ), we have
with (a + b)p ≤ 2p−1(ap + bp) (a, b ≥ 0, p > 1) and T v

α(uδ
α) ≤ T v

α(u†) (α > 0) the estimate

T v
αmax

(uδ
α) ≤ 2p−1

[
∥

∥F (uδ
α) − vδ

∥

∥

p

V
+ δp + αmaxΩ(uδ

α)
]

= 2p−1
[
∥

∥F (uδ
α) − vδ

∥

∥

p

V
+ αΩ(uδ

α) + (αmax − α)Ω(uδ
α) + δp

]

≤ 2p−1
[

T vδ

α (u†) + (αmax − α)Ω(uδ
α) + δp

]

≤ 2p−1
[

δp + αΩ(u†) + (αmax − α)Ω(uδ
α) + δp

]

.

Because of Ω(uδ
α) ≤ δp

α
+ Ω(u†) and δp

α
≤ 1

2
this yields

T v
αmax

(uδ
α) ≤ 2p−1

[

δp + αmax
δp

α
+ αmaxΩ(u†)

]

≤ 2p−1

[

2αmax
δp

α
+ αmaxΩ(u†)

]

≤ ρ

and hence proves (3.3). Evidently, it holds T v
αmax

(u†) = αmaxΩ(u†) ≤ 2p−1αmaxΩ(u†) for
all p > 1, which implies u† ∈ Mv

αmax
(ρ) and completes the proof.
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For the analysis of nonlinear problems both the smoothness of Ω-minimizing solutions
u† and the smoothness of the forward operator F in a neighbourhood of u† are essential
ingredients. In this context, the term ‘smoothness’ has to be considered in a very general
sense. With respect to the operator we recall the concept of a degree of nonlinearity from
[8, Definition 2.5] which represents a Banach space update of Definition 1 from [10].

Definition 3.2 Let c1, c2 ≥ 0 and c1 + c2 > 0. We define F to be nonlinear of degree
(c1, c2) for the Bregman distance Dξ(·, u

†) of Ω at a solution u† ∈ DB(Ω) ⊆ U of (2.1)
with ξ ∈ ∂Ω(u†) ⊆ U∗ if there is a constant K > 0 such that

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K

∥

∥F (u) − F (u†)
∥

∥

c1

V
Dξ(u, u†) c2 (3.4)

for all u ∈ Mv
αmax

(ρ).

In recent publications the distinguished role of variational inequalities

〈

ξ, u† − u
〉

U∗,U
≤ β1Dξ(u, u†) + β2

∥

∥F (u) − F (u†)
∥

∥

κ

V
, for all u ∈ Mv

αmax
(ρ) (3.5)

with some ξ ∈ ∂Ω(u†), two multipliers 0 ≤ β1 < 1, β2 ≥ 0 and an exponent κ > 0
for obtaining convergence rates was elaborated. The subsequent proposition outlines the
chances of such variational inequalities for ensuring convergence rates in Tikhonov type
regularization. Here we summarize convergence rates results from [8], [9], and [17, Section
3.2].

Proposition 3.3 Assume that F, Ω,D, U and V satisfy the Assumption 2.1 and that
there is an Ω-minimizing solution from the Bregman domain u† ∈ DB(Ω). If there exist
an element ξ ∈ ∂Ω(u†) and constants 0 ≤ β1 < 1, β2 ≥ 0, and 0 < κ ≤ 1 such that the
variational inequality (3.5) holds with ρ from (3.2), then we have the convergence rate

Dξ(u
δ
α(δ), u

†) = O (δκ) as δ → 0 (3.6)

for an a priori parameter choice α(δ) ≍ δp−κ.

Proof: We write again for simplicity α instead of α(δ) and note that the parameter choice
rule α ≍ δp−κ satisfies the condition (3.1) with the consequence that Proposition 3.1 is
applicable. Then by using T vδ

α (uδ
α) ≤ T vδ

α (u†), (2.2), and the definition of the Bregman
distance we can estimate as follows:

∥

∥F (uδ
α) − vδ

∥

∥

p

V
+ αDξ(u

δ
α, u†) ≤ δp + α

(

Ω(u†) − Ω(uδ
α) + Dξ(u

δ
α, u†)

)

. (3.7)

Moreover, by exploiting the inequality (a + b)κ ≤ aκ + bκ (a, b > 0, 0 < κ ≤ 1) because of
(3.3) we obtain from the variational inequality (3.5) that

Ω(u†) − Ω(uδ
α) + Dξ(u

δ
α, u†) = −

〈

ξ, uδ
α − u†

〉

U∗,U

≤ β1 Dξ(u
δ
α, u†) + β2

∥

∥F (uδ
α) − F (u†)

∥

∥

κ

V

≤ β1 Dξ(u
δ
α, u†) + β2

(
∥

∥F (uδ
α) − vδ

∥

∥

κ

V
+ δκ

)

.
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Therefore from (3.7) it follows that

∥

∥F (uδ
α) − vδ

∥

∥

p

V
+αDξ(u

δ
α, u†) ≤ δp+α

(

β1Dξ(u
δ
α, u†) + β2

(
∥

∥F (uδ
α) − vδ

∥

∥

κ

V
+ δκ

))

. (3.8)

Using the variant

a b ≤ ε ap1 +
bp2

(ε p1)p2/p1p2

(a, b ≥ 0, ε > 0 p1, p2 > 1 with
1

p1

+
1

p1

= 1) (3.9)

of Young’s inequality twice with ε := 1, p1 := p/κ, p2 := p/(p − κ) and b := αβ2, on the
one hand with a := ‖F (uδ

α) − u†‖κ
V and on the other hand with a := δκ, the inequality

αDξ(u
δ
α, u†) ≤ 2δp + αβ1Dξ(u

δ
α, u†) +

2(p − κ)

(p/κ)κ/(p−κ) p
(αβ2)

p/(p−κ)

follows from (3.8). Because of 0 ≤ β1 < 1 this provides us with the estimate

Dξ(u
δ
α, u†) ≤

2δp + 2(p−κ)

(p/κ)κ/(p−κ) p
(α β2)

p/(p−κ)

α (1 − β1)
(3.10)

for sufficiently small δ > 0, which yields (3.6) for the a priori parameter choice α ≍ δp−κ

and proves the proposition. As a by-product from formula (3.10) we obtain for the case
δ = 0 of noiseless data the corresponding estimate

Dξ(u
0
α, u†) ≤ Ĉ α

κ
p−κ (3.11)

with some constant Ĉ > 0.

The Proposition 3.3 shows the formidable capability of variational inequalities (3.5) for
obtaining convergence rates without any additional requirements on the solution smooth-
ness and on the nonlinearity structure of the forward operator. In this sense, the validity
of such variational inequality (3.5) on the associated level set embodies an advantageous
combination of properties on u† and F in a neighbourhood of u†. Necessary and suffi-
cient conditions for (3.5) are given in the literature only in a fragmented manner, mostly
expressing the interplay with classical source conditions. In the next two sections we
discuss the limited variability of exponents κ > 0 in (3.5) and we analyze in a Hilbert
space situation the interplay of general source conditions, the degree of nonlinearity and
required variational inequalities.

4 A case distinction for the exponent in the variational

inequality

We specify the general Assumption 2.1 to Assumption 4.1 by additional requirements for
local use in this section.
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Assumption 4.1

1. F, Ω,D, U and V satisfy the Assumption 2.1.

2. Let u† ∈ D be an Ω-minimizing solution of (2.1).

3. The operator F is Gâteaux differentiable in u† with Gâteaux derivative F ′(u†).

4. The functional Ω is Gâteaux differentiable in u† with Gâteaux derivative ξ = Ω′(u†),
i.e., the subdifferential ∂Ω(u†) = {ξ} is a singleton.

Remark 4.2 The Gâteaux differentiability of F and Ω in u† implies that there is a ball
Br(u

†) with center u† and radius r > 0 such that Br(u
†) ⊆ D, i.e., u† is an inner point of

D(F ) and D(Ω).

Case κ > 1:

The following proposition shows that exponents κ > 1 in the variational inequality (3.5)
under Assumption 4.1 in principle cannot occur.

Proposition 4.3 Under the Assumption 4.1 the variational inequality (3.5) cannot hold
with ξ = Ω′(u†) 6= 0 and multipliers β1, β2 ≥ 0 whenever κ > 1.

Proof: To prove the proposition we assume that the variational inequality (3.5) holds
for ξ = Ω′(u†) 6= 0 and some κ > 1 with multipliers β1, β2 ≥ 0 and for all u ∈ Mv

αmax
(ρ).

Then there is an element uξ ∈ U with 〈ξ, uξ〉U∗,U > 0 such that u† − tuξ ∈ Mv
αmax

(ρ) for
all 0 ≤ t ≤ 1. Hence we have for all 0 < t ≤ 1

0 < 〈ξ, tuξ〉U∗,U ≤ β1Dξ(u
† − tuξ, u

†) + β2

∥

∥F (u† − tuξ) − F (u†)
∥

∥

κ

V

and dividing by t > 0

〈ξ,uξ〉
U∗,U

≤β1

»

Ω(u†−tuξ)−Ω(u†)

t
+〈ξ,uξ〉

U∗,U

–

+ β2

‚

‚

‚

‚

F (u†−tuξ)−F (u†)

t

‚

‚

‚

‚

V
‖F (u†−tuξ)−F (u†)‖

κ−1

V
. (4.1)

The left-hand side of inequality (4.1) is a positive constant. The right-hand side, how-

ever, tends to zero as t → 0. Precisely, it holds lim
t→0

Ω(u†−tuξ)−Ω(u†)

t
= −〈ξ, uξ〉U∗,U ,

lim
t→0

∥

∥

∥

F (u†−tuξ)−F (u†)

t

∥

∥

∥

V
= ‖F ′(u†)uξ‖V < ∞ and lim

t→0

∥

∥F (u† − tuξ) − F (u†)
∥

∥

κ−1

V
= 0 be-

cause of the Gâteaux-differentiability of F and Ω in u† taking into account that Gâteaux-
differentiability of F at some point implies strong continuity of F in that point. This
contradicts the assumption and proves the proposition.

Case κ = 1:

As the next proposition shows the variational inequality (3.5) is closely connected with
the source condition ξ ∈ R(F ′(u†)∗), where R(A) denotes the range of a linear operator A.
The assertion a) of Proposition 4.4 repeats the Proposition 3.38 from [17], but reflects in
contrast to the original the fact that the proof ibidem does not need the condition β1 < 1.
Note that the proof given there is similar to the proof of Proposition 4.3 presented above.
On the other hand, for the assertion b) of Proposition 4.4 and its proof we refer to
Proposition 3.35 in [17].
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Proposition 4.4 Under the Assumption 4.1 the following two assertions hold:

a) The validity of a variational inequality

〈

ξ, u† − u
〉

U∗,U
≤ β1Dξ(u, u†) + β2

∥

∥F (u) − F (u†)
∥

∥

V
for all u ∈ Mv

αmax
(ρ) (4.2)

for ξ = Ω′(u†) and two multipliers β1, β2 ≥ 0 implies the source condition

ξ = F ′(u†)∗ w, w ∈ V ∗. (4.3)

b) Let F be nonlinear of degree (0, 1) for the Bregman distance Dξ(·, u
†) of Ω at u†, i.e.,

we have
∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K Dξ(u, u†) (4.4)

for a constant K > 0 and all u ∈ Mv
αmax

(ρ). Then the source condition (4.3) together
with the smallness condition

K ‖w‖V ∗ < 1 (4.5)

imply the validity of a variational inequality (4.2) with ξ = Ω′(u†) and multipliers
0 ≤ β1 = K‖w‖V ∗ < 1, β2 = ‖w‖V ∗ ≥ 0.

Case 0 < κ ≤ 1:

The following proposition extends the result b) of Proposition 4.4 to a wider class of
degrees of nonlinearity. The particular case κ = 1 discussed above occurs here only for
the complementary situation c1 > 0.

Proposition 4.5 Under the Assumption 4.1 let F be nonlinear of degree (c1, c2) with
0 < c1 ≤ 1, 0 ≤ c2 < 1, c1 + c2 ≤ 1 for the Bregman distance Dξ(·, u

†) of Ω at u†, i.e., we
have

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K ‖F (u) − F (u†)‖ c1

V Dξ(u, u†)c2 (4.6)

for a constant K > 0 and all u ∈ Mv
αmax

(ρ). Then the source condition (4.3) without any
additional condition implies the validity of a variational inequality (3.5) with

κ =
c1

1 − c2

, (4.7)

ξ = Ω′(u†) and multipliers 0 ≤ β1 < 1, β2 ≥ 0.

Proof: We can estimate for u ∈ Mv
αmax

(ρ)

〈

ξ, u† − u
〉

U∗,U
=

〈

F ′(u†)∗ w, u† − u
〉

U∗,U
=

〈

w, F ′(u†)(u† − u)
〉

V ∗,V
≤ ‖w‖V ∗‖F ′(u†)(u†−u)‖V

≤ ‖w‖V ∗

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
+ ‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

V

≤ K‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

c1

V
Dξ(u, u†) c2 + ‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

V
.

Taking into account that
∥

∥F (u) − F (u†)
∥

∥

V
≤ ρ1/p for u ∈ Mv

αmax
(ρ) this implies for

the case c2 = 0 and 0 < c1 ≤ 1 the variational inequality (3.5) with β1 = 0, β2 =
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‖w‖V ∗(K + ρ
1−c1

p ) and κ = c1. On the other hand, for 0 < c2 < 1 and 0 < c1 ≤ 1 the
variant (3.9) of Young’s inequality with p1 := 1

c2
, p2 := 1

1−c2
, ε := c2, a := Dξ(u, u†) c2 and

b := K‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

c1

V
yields here

K‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

c1

V
Dξ(u, u†) c2 ≤ c2 Dξ(u, u†)+(1−c2)(K‖w‖V ∗)

1
1−c2

∥

∥F (u) − F (u†)
∥

∥

c1
1−c2
V .

and hence the validity of a variational inequality (3.5) with κ = c1
1−c2

and multipliers

0 ≤ β1 = c2 < 1, β2 = ρ
1−κ

p ‖w‖V ∗ + (1 − c2)K
1

1−c2 ‖w‖
1

1−c2
V ∗ .

This proves the proposition.

Note that essential ingredients for this proposition and its proof have already been
presented in [8, Lemma 3.1]. The proposition shows that the variational inequality (3.5)
holds with the maximum exponent κ = 1 if either c1 itself is maximal, i.e., c1 = 1, or its
defect in the case 0 < c1 < 1 can be compensated by c2 > 0 whenever we have c1 + c2 = 1.

We close this section with three questions, which cannot be answered in a moment for
the used general Banach space setting under consideration in this paper:
I. Are there alternative sufficient conditions for obtaining a variational inequality (3.5)
with exponents 0 < κ < 1 when ξ fails to satisfy a source condition (4.3)?
II. What combinations of c1 and c2 in the degree of nonlinearity do really occur?
In particular:
III. Are the degrees of nonlinearity (c1, c2) with c1 + c2 > 1 of interest?
These questions, however, will be partially answered in the subsequent Section 5 for the
standard Tikhonov regularization in a Hilbert space setting.

5 Extended results for a Hilbert space situation

In Assumption 5.1 we specify now the requirements expressing the setting of this section.

Assumption 5.1

1. Set p := 2 and let U, V be Hilbert spaces. Moreover, set Ω(u) := ‖u − u∗‖2
U with

fixed reference element u∗ ∈ U and D(Ω) = U.

2. The operator F, D(F ), u† and ξ are chosen such that they satisfy togehther with
U, V and Ω the Assumption 4.1.

Remark 5.2 Under Assumption 5.1 the Ω-minimizing solutions and the classical u∗-
minimum solutions (cf. [4, 5]) coincide. Moreover, we have D = D(F ) and for ξ and
Dξ(ũ, u) the simple structure

ξ = 2(u† − u∗), Dξ(ũ, u) = ‖ũ − u‖2
U (5.1)
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with Bregman domain DB(Ω) = U . Regularized solutions uδ
α are minimizers over U of

the classical Tikhonov functional of Hilbert space type

T vδ

α (u) := ‖F (u) − vδ‖2
V + α ‖u − u∗‖2

U

comprehensively studied in [4, Chapter 10].

Consequently, we have to specify the Definition 3.2 as follows:

Definition 5.3 Let c1, c2 ≥ 0 and c1 + c2 ≥ 0. We define F to be nonlinear of degree
(c1, c2) at a solution u† ∈ D(F ) of (2.1) if there is a constant K > 0 such that

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K

∥

∥F (u) − F (u†)
∥

∥

c1

V
‖u − u†‖ 2c2

U (5.2)

for all u ∈ Mv
αmax

(ρ).

Remark 5.4 In this Hilbert space setting we can formulate conditions for admissible
pairs (c1, c2) in formula (5.2) of Definition 5.3 and study the smoothness background of
such degrees of nonlinearity.

A sufficient condition for the classical case c1 = 0, c2 = 1, assumed for example in [17,
Section 3.2]), is the Lipschitz continuity

‖F ′(u) − F ′(u†)‖L(U,V ) ≤ L‖u − u†‖U

of F ′ for all u in a neighbourhood of u†. On the other hand, the case c1 = 1, c2 =
0 characterized by a tangential cone condition is frequently discussed in the theory of
iterative regularization (cf. [4, Chapter 11] and [11]). In [8] the focus is on the case c1 > 0,
0 < c1 + c2 ≤ 1, but it is well-known that numerous applications of ill-posed nonlinear
inverse problems occur, where c1 = 1, c2 = 1/2 can be shown, i.e. 1 < c1 + c2 ≤ 2. We
conjecture that the conditions

0 ≤ c1, c2 ≤ 1, 0 < c1 + 2c2 ≤ 2 (5.3)

characterize all really occurring situations apart from singular cases.

As already mentioned in [10] the pairs (c1, c2) of the degree of nonlinearity are not
necessarily uniquely determined. Namely, under a local Lipschitz condition

‖F (u) − F (u†)‖V ≤ C ‖u − u†‖U (5.4)

for all u in a neighbourhood of u† a degree (c1, c2) evidently implies the degree (0, c1/2+c2).
Then c1 + 2c2 > 2 would lead to some ε > 0 such that

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K ‖u − u†‖2+ε

U

for all u from appropriate level sets. If the operator F is continuously twice differentiable
in a neighbourhood of u† with bilinear operators F ′′(u) : U × U → V using the integral
representation of the second order Taylor remainder this would imply ‖F ′′(u†)(h, h)‖V = 0
for all h ∈ U indicating a singular case.

10



Using similar arguments as in the proof of Proposition 4.3 we can easily see that for
F ′(u†) 6= 0 an inequality

∥

∥F ′(u†)(u − u†)
∥

∥

V
≤ K

∥

∥F (u) − F (u†)
∥

∥

c1

V

cannot hold for all u ∈ Mαmax(ρ) whenever c1 > 1. Then because of c1 − 1 > 0 an ansatz
u := u† + th with h 6= 0 and ‖h‖U sufficiently small would after division by t > 0 lead to

∥

∥F ′(u†)h
∥

∥

V
≤ K

∥

∥F ′(u†)h
∥

∥

V
lim
t→0

∥

∥F (u) − F (u†)
∥

∥

c1−1

V
= 0

in the limit case for t → 0. However, we have no stringent proof for the limitation c1 ≤ 1
which shows that in regular cases of nonlinear operators F

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K

∥

∥F (u) − F (u†)
∥

∥

c1

V

will not hold for all u ∈ Mαmax(ρ) whenever c1 > 1.

Proposition 5.5 Under the Assumption 5.1 let the operator F mapping between the
Hilbert spaces U and V be nonlinear of degree (c1, c2) at u† with c1 > 0 and let
ξ = 2(u† − u∗) satisfy the general source condition

ξ = (F ′(u†)∗F ′(u†))η/2w, 0 < η < 1, w ∈ U. (5.5)

Then we have the variational inequality (3.5) with exponent

κ = min

{

2ηc1

1 + η(1 − 2c2)
,

2η

1 + η

}

(5.6)

for all u ∈ Mαmax(ρ) and multipliers 0 ≤ β1 < 1, β2 ≥ 0.

Proof: Under the general source condition (5.5) we can estimate for all u ∈ Mαmax(ρ)
with the interpolation inequality [4, formula (2.49), p. 47]

〈

ξ, u† − u
〉

U
≤

〈

w, (F ′(u†)∗F ′(u†))η/2(u† − u)
〉

U

≤ ‖w‖U‖(F
′(u†)∗F ′(u†))η/2(u† − u)‖η

U‖u
† − u‖1−η

U = ‖w‖U‖F
′(u†)(u† − u)‖η

V ‖u
† − u‖1−η

U ,

where 〈·, ·〉U denotes the inner product in the Hilbert space U . Now we use the degree of
nonlinearity in order to estimate the term ‖F ′(u†)(u†−u)‖η

V from above for u ∈ Mαmax(ρ).
Owing to 0 < η < 1 we have

‖F ′(u†)(u† − u)‖η
V ≤ ‖F (u) − F (u†) − F ′(u†)(u − u†)‖η

V + ‖F (u†) − F (u)‖η
V

and hence with some constants K1, K2 > 0

〈

ξ, u† − u
〉

U
≤ ‖w‖U

(

‖F (u) − F (u†) − F ′(u†)(u − u†)‖η
V + ‖F (u†) − F (u)‖η

V

)

‖u†−u‖1−η
U

≤ K1‖F (u†) − F (u)‖c1η
V ‖u† − u‖1−η+2c2η

U + K2‖F (u†) − F (u)‖η
V ‖u

† − u‖1−η
U .
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Applying again Young’s inequality (3.9) twice with ε := 1/4 such that terms 1
4
‖u† − u‖2

U

occur in a sum with powers of ‖F (u†)−F (u)‖V we obtain with some constants C1, C2 > 0

〈

ξ, u† − u
〉

U
≤

1

2
‖u† − u‖2

U + C1‖F (u†) − F (u)‖
2c1η

1+η(1−2c2)

V + C2‖F (u†) − F (u)‖
2η

1+η

V .

Taking into account that there is a constant K̄ > 0 such that ‖F (u†) − F (u)‖V ≤ K̄ for
all u ∈ Mαmax(ρ) we have the variational inequality

〈

ξ, u† − u
〉

U
≤

1

2
‖u† − u‖2

U + β2‖F (u†) − F (u)‖κ
V

with κ from (5.6) for all such u and some constant β2 > 0. This completes the proof.

Remark 5.6 An exponent κ = 2η
1+η

in Proposition 5.5 indicates order optimal conver-

gence rates with respect to the general source condition (5.5). This is the case if the
condition

1 + η(1 − 2c2 − c1) ≤ c1 (5.7)

already occurring in [10] is satisfied. Note that the condition (5.7) holds for 0 < η < 1
only if either c1 = 1 or for 0 < c1 < 1 if c1 + c2 > 1 and η is large enough.

The author has no general answer to the question whether one can formulate converse
assertions concluding in the Hilbert space setting from a variational inequality (3.5) with
exponents 0 < κ < 1 and nonlinear forward operator F to Hölder source conditions of
type (5.5). However, for the subcase of a continuous linear operator

F := A ∈ L(U, V ) (5.8)

we can prove a converse result in the following proposition (cf. also [3, Section 3] with
respect to approximate source conditions). Since the conditions ξ ∈ R(F ′(u†)∗) and
ξ ∈ R((F ′(u†)∗F ′(u†))1/2) are equivalent this result complements for the subcase the
assertion a) of our Proposition 4.4 and of Proposition 3.38 in [17] which just handle the
case κ = 1. We should mention here that for linear operators (5.8) no structural condition
(degree of nonlinearity) is required and Proposition 5.5 always yields the implication from

ξ = (A∗A)η/2w, 0 < η < 1, w ∈ U, (5.9)

to a variational inequality

〈

ξ, u† − u
〉

U
≤ β1‖u

† − u‖2
U + β2

∥

∥A(u† − u)
∥

∥

κ

V
(5.10)

with exponent

κ =
2η

1 + η
∈ (0, 1) (5.11)

for all u ∈ Mαmax(ρ) and multipliers 0 ≤ β1 < 1, β2 ≥ 0.
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Proposition 5.7 If for linear forward operators (5.8) a variational inequality (5.10) holds
for all u ∈ Mαmax(ρ) and multipliers 0 ≤ β1 < 1, β2 ≥ 0, then under Assumption 5.1
a general source condition (5.9) is valid for all exponents η > 0 satisfying the inequality
η < κ

2−κ
.

Proof: Under Assumption 5.1 we obtain from (5.10) and (3.11) for noiseless data the
estimate

‖u0
α − u†‖U ≤ Ĉ α

κ
2(2−κ) .

This allows us to apply the converse result of [13] for linear Tikhonov regularization which
provides a Hölder source condition (5.9) for all exponents η > 0 satisfying the inequality
η < κ

2−κ
. This completes the proof.
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