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The paper is devoted to the asymptotic behavior of the eigenvectors of banded
Hermitian Toeplitz matrices as the dimension of the matrices increases to infinity.
The main result, which is based on certain assumptions, describes the structure of
the eigenvectors in terms of the Laurent polynomial that generates the matrices
up to an error term that decays exponentially fast. This result is applicable to
both extreme and inner eigenvectors.
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1 Introduction and main results

Given a function a in L1 on the complex unit circle T, we denote by a` the `th
Fourier coefficient,

a` =
1

2π

∫ 2π

0

a(eix)e−i`xdx (` ∈ Z),

and by Tn(a) the n × n Toeplitz matrix (aj−k)
n
j,k=1. We assume that a is real-

valued, in which case the matrices Tn(a) are all Hermitian. Let

λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ(n)

n

be the eigenvalues of Tn(a) and let

{v(n)
1 , v

(n)
2 , . . . , v(n)

n }
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be an orthonormal basis of eigenvectors such that Tn(a)v
(n)
j = λ

(n)
j v

(n)
j . The

present paper is dedicated to the asymptotic behavior of the eigenvectors v
(n)
j as

n→∞.

To get an idea of the kind of results we will establish, consider the function
a(eix) = 2 − 2 cosx. The range a(T) is the segment [0, 4]. It is well known that
the eigenvalues and eigenvectors of Tn(a) are given by

λ
(n)
j = 2− 2 cos

πj

n+ 1
, x

(n)
j =

√
2

n+ 1

(
sin

mπj

n+ 1

)n
m=1

. (1)

(We denote the eigenvectors in this reference case by x
(n)
j and reserve the notation

v
(n)
j for the general case.) Let ϕ be the function

ϕ : [0, 4]→ [0, π], ϕ(λ) = arccos
2− λ

2
.

We have ϕ(λ
(n)
j ) = πj/(n + 1) and hence, apart from the normalization factor√

2/(n+ 1), x
(n)
j,m is the value of sin(mϕ(λ)) at λ = λ

(n)
j . In other words, an

eigenvector for λ is given by (sin(mϕ(λ)))nm=1. A speculative question is whether
in the general case we can also find functions Ωm such that, at least asymptot-
ically, (Ωm(λ))nm=1 is an eigenvector for λ. It turns out that this is in general
impossible but that after a slight modification the answer to the question is in
the affirmative. Namely, we will prove that, under certain assumptions, there
are functions Ωm, Φm and real-valued functions σ, η such that an eigenvector for
λ = λ

(n)
j is always of the form(

Ωm(λ) + Φm(λ) + (−1)j+1e−i(n+1)σ(λ)e−iη(λ)Φn+1−m(λ) + error term
)n
m=1

. (2)

The error term will be shown to decrease to zero exponentially fast and uniformly
in j and m as n → ∞. Moreover, we will show that Ωm(λ) is an oscillating
function of m for each fixed λ and that Φm(λ) decays exponentially fast to zero
as m→∞ for each λ (which means that Φn+1−m(λ) is an exponentially increasing
function of m for each λ). Finally, it will turn out that

n∑
m=1

|Φm(λ)|2
/ n∑

m=1

|Ωm(λ)|2 = O

(
1

n

)
as n → ∞, uniformly in λ. Thus, the dominant term in (2) is Ωm(λ), while the
terms containing Φm(λ) and Φn+1−m(λ) may be viewed as twin babies.

If a is also an even function, a(eix) = a(e−ix) for all x, then all the matri-
ces Tn(a) are real and symmetric. In [4], we conjectured that then, again under
additional but reasonable assumptions, the appropriately rotated extreme eigen-
vectors v

(n)
j are all close to the vectors x

(n)
j . To be more precise, we conjectured
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that if n → ∞ and j (or n − j) remains fixed, then there are complex numbers

τ
(n)
j of modulus 1 such that∥∥∥τ (n)

j v
(n)
j − x

(n)
j

∥∥∥
2

= o(1), (3)

where ‖ · ‖2 is the `2 norm. Several results related to this conjecture were estab-
lished in [3] and [4]. We here prove this conjecture under assumptions that will
be specified in the following paragraph. We will even be able to show that the
o(1) in (3) is O(j/n) if j/n→ 0 and O(1− j/n) if j/n→ 1.

Throughout what follows we assume that a is a Laurent polynomial

a(t) =
r∑

k=−r

akt
k (t = eix ∈ T)

with r ≥ 2, ar 6= 0, and ak = a−k for all k. The last condition means that a is
real-valued on T. We assume without loss of generality that a(T) = [0,M ] with
M > 0 and that a(1) = 0 and a(eiϕ0) = M for some ϕ0 ∈ (0, 2π). We require that
the function g(x) := a(eix) is strictly increasing on (0, ϕ0) and strictly decreasing
on (ϕ0, 2π) and that the second derivatives of g at x = 0 and x = ϕ0 are nonzero.
Finally, we denote by [α, β] ⊂ [0,M ] a segment such that if λ ∈ [α, β], then the
2r − 2 zeros of the Laurent polynomial a(z) − λ that lie in C \ T are pairwise
distinct.

Note that we exclude the case r = 1, because in this case the eigenvalues and
eigenvectors of Tn(a) are explicitly available. Also notice that if r = 2, which
is the case of pentadiagonal matrices, then for every λ ∈ [0,M ] the polynomial
a(z) − λ has two zeros on T, one zero outside T, and one zero inside T. Thus,
in this situation the last requirement of the previous paragraph is automatically
satisfied for [α, β] = [0,M ].

The asymptotic behavior of the extreme eigenvalues and eigenvectors of Tn(a),

that is, of λ
(n)
j and v

(n)
j when j or n− j remain fixed, has been studied by several

authors. As for extreme eigenvalues, the pioneering works are [7], [9], [11], [12],
[18], while recent papers on the subject include [3], [6], [8], [10], [13], [14], [15], [19],
[20]. See also the books [1] and [5]. Much less is known about the asymptotics
of the eigenvectors. Part of the results of [4] and [19] may be interpreted as
results on the behavior of the eigenvectors “in the mean” on the one hand and
as insights into what happens if eigenvectors are replaced by pseudomodes on
the other. In [3], we investigated the asymptotics of the extreme eigenvectors of
certain Hermitian (and not necessarily banded) Toeplitz matrices. Our paper [2]
may be considered as a first step to the understanding of the asymptotic behavior
of individual inner eigenvalues of Toeplitz matrices. In the same vein, this paper
intends to understand the nature of individual eigenvectors as part of the whole,
independently of whether they are extreme or inner ones.
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To state our main results, we need some notation. Let λ ∈ [0,M ]. Then there
are uniquely defined ϕ1(λ) ∈ [0, ϕ0] and ϕ2(λ) ∈ [ϕ0 − 2π, 0] such that

g(ϕ1(λ)) = g(ϕ2(λ)) = λ;

recall that g(x) := a(eix). We put

ϕ(λ) =
ϕ1(λ)− ϕ2(λ)

2
, σ(λ) =

ϕ1(λ) + ϕ2(λ)

2
.

We have

a(z)− λ = z−r
(
arz

2r + . . .+ (a0 − λ)zr + . . .+ a−r

)
= arz

−r
2r∏
k=1

(z − zk(λ)),

and our assumptions imply that we can label the zeros zk(λ) so that the collection
Z(λ) of the zeros may be written as

{z1(λ), . . . , zr−1(λ), zr(λ), zr+1(λ), zr+2(λ), . . . , z2r(λ)}
= {u1(λ), . . . , ur−1(λ), eiϕ1(λ), eiϕ2(λ), 1/u1(λ), . . . , 1/ur−1(λ)} (4)

where |uν(λ)| > 1 for 1 ≤ ν ≤ r − 1 and each uν(λ) depends continuously on
λ ∈ [0,M ]. Here and in similar places below we write uk(λ) := uk(λ). We define
δ0 > 0 by

eδ0 = min
λ∈[0,M ]

min
1≤ν≤r−1

|uν(λ)|.

Throughout the following, δ stands for any number in (0, δ0). Further, we denote
by hλ the function

hλ(z) =
r−1∏
ν=1

(
1− z

uν(λ)

)
.

The function Θ(λ) = hλ(e
iϕ1(λ))/hλ(e

iϕ2(λ)) is continuous and nonzero on [0,M ]
and we have Θ(0) = Θ(M) = 1. In [2], it was shown that the closed curve

[0,M ]→ C \ {0}, λ 7→ Θ(λ)

has winding number zero. Let θ(λ) be the continuous argument of Θ(λ) for which
θ(0) = θ(M) = 0.

In [2], we proved that if n is large enough, then the function

fn : [0,M ]→ [0, (n+ 1)π], fn(λ) = (n+ 1)ϕ(λ) + θ(λ)

is bijective and increasing and that if λ
(n)
j,∗ is the unique solution of the equation

fn(λ
(n)
j,∗ ) = πj, then the eigenvalues λ

(n)
j satisfy

|λj − λ(n)
j,∗ | ≤ K e−δn
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for all j ∈ {1, . . . , n}, where K is a finite constant depending only on a. Thus,
we have

(n+ 1)ϕ(λ
(n)
j ) + θ(λ

(n)
j ) = πj +O(e−δn), (5)

uniformly in j ∈ {1, . . . , n}.
Now take λ from (α, β). For j ∈ {1, . . . , n} and ν ∈ {1, . . . , r − 1}, we put

A(λ) =
eiσ(λ)

2i hλ(eiϕ1(λ))
, B(λ) =

eiσ(λ)

2i hλ(eiϕ2(λ))
,

Dν(λ) =
e2iσ(λ) sinϕ(λ)

(uν(λ)− eiϕ1(λ))(uν(λ)− eiϕ2(λ))h′λ(uν(λ))
,

Fν(λ) =
sinϕ(λ)

(uν(λ)− e−iϕ1(λ))(uν(λ)− e−iϕ2(λ))h′λ(uν(λ))
×

×|hλ(e
iϕ1(λ))hλ(e

iϕ2(λ))|
hλ(eiϕ1(λ))hλ(eiϕ2(λ))

and define the vector w
(n)
j (λ) = (w

(n)
j,m(λ))nm=1 by

w
(n)
j,m(λ) = A(λ)e−imϕ1(λ) −B(λ)e−imϕ2(λ)

+
r−1∑
ν=1

(
Dν(λ)

1

uν(λ)m
+ Fν(λ)

(−1)j+1e−i(n+1)σ(λ)

uν(λ)n+1−m

)
.

The assumption that zeros uν(λ) are all simple guarantees that h′(uν) 6= 0. We
denote by ‖ · ‖2 and ‖ · ‖∞ the `2 and `∞ norms on Cn, respectively.

Here are our main results.

Theorem 1.1 As n→∞ and if λ
(n)
j ∈ (α, β),

‖w(n)
j (λ

(n)
j )‖22 =

n

4

(
1

|hλ(eiϕ1(λ))|2
+

1

|hλ(eiϕ2(λ))|2

)∣∣∣∣
λ=λ

(n)
j

+O(1),

uniformly in j.

Theorem 1.2 Let n→∞ and suppose λ
(n)
j ∈ (α, β). Then the eigenvectors v

(n)
j

are of the form

v
(n)
j = τ

(n)
j

(
w

(n)
j (λ

(n)
j )

‖w(n)
j (λ

(n)
j )‖2

+O∞(e−δn)

)
where τ

(n)
j ∈ T and O∞(e−δn) denotes vectors ξ

(n)
j ∈ Cn such that ‖ξ(n)

j ‖∞ ≤
Ke−δn for all j and n with some finite constant K independent of j and n.
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Note that the previous theorem gives (2) with

Ωm(λ) = A(λ)e−imϕ1(λ) −B(λ)e−imϕ2(λ), Φm(λ) =
r−1∑
ν=1

Dν(λ)

uν(λ)m
,

e−iη(λ) =
|hλ(eiϕ1(λ))hλ(e

iϕ2(λ))|
hλ(eiϕ1(λ))hλ(eiϕ2(λ))

.

Things can be a little simplified for symmetric matrices. Thus, suppose all ak
are real and ak = a−k for all k. We will show that then {u1(λ), . . . , ur−1(λ)} =
{u1(λ), . . . , ur−1(λ)}. Put

Qν(λ) =
|hλ(eiϕ(λ))| sinϕ(λ)

(uν(λ)− eiϕ(λ))(uν(λ)− e−iϕ(λ))h′λ(uν(λ))

and let y
(n)
j (λ) = (y

(n)
j,m(λ))nm=1 be given by

y
(n)
j,m(λ) = sin

(
mϕ(λ) +

θ(λ)

2

)
−

r−1∑
ν=1

Qν(λ)

(
1

uν(λ)m
+

(−1)j+1

uν(λ)n+1−m

)
. (6)

Theorem 1.3 Let n→∞ and suppose λ
(n)
j ∈ (α, β). If ak = a−k for all k, then

‖y(n)
j (λ

(n)
j )‖22 =

n

2
+O(1)

uniformly in j, and the eigenvectors v
(n)
j are of the form

v
(n)
j = τ

(n)
j

(
y

(n)
j (λ

(n)
j )

‖y(n)
j (λ

(n)
j )‖2

+O∞(e−δn)

)

where τ
(n)
j ∈ T and O∞(e−δn) is as in the previous theorem.

Let J be the n × n matrix with ones on the counterdiagonal and zeros else-
where. Thus, (Jv)m = vn+1−m. A vector v is called symmetric if Jv = v and skew-

symmetric if Jv = −v. Trench [17] showed that the eigenvectors v
(n)
1 , v

(n)
3 , . . .

are all symmetric and that the eigenvectors v
(n)
2 , v

(n)
4 , . . . are all skew-symmetric.

From (5) we infer that

sin

(
(n+ 1−m)ϕ(λ

(n)
j ) +

θ(λ
(n)
j )

2

)

= (−1)j+1 sin

(
mϕ(λ

(n)
j ) +

θ(λ
(n)
j )

2

)
+O(e−δn)
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and hence (6) implies that

(Jy
(n)
j (λ

(n)
j ))m = (−1)j+1y

(n)
j,m(λ

(n)
j ) +O(e−δn).

Consequently, apart from the term O(e−δn), the vectors y
(n)
j (λ

(n)
j ) are symmet-

ric for j = 1, 3, . . . and skew-symmetric for j = 2, 4, . . .. This is in complete
accordance with Trench’s result.

Due to (5), we also have

sin

(
mϕ(λ

(n)
j ) +

θ(λ
(n)
j )

2

)
= sin

((
m− n+ 1

2

)
ϕ(λ

(n)
j )

)
+O(e−δn).

Thus, Theorem 1.3 remains valid with (6) replaced by

y
(n)
j,m(λ) = sin

((
m− n+ 1

2

)
ϕ(λ) +

πj

2

)
−

r−1∑
ν=1

Qν(λ)

(
1

uν(λ)m
+

(−1)j+1

uν(λ)n+1−m

)
. (7)

In this expression, the function θ has disappeared.

Define y
(n)
j again by (6). The following theorem in conjunction with Theo-

rem 1.3 proves (3).

Theorem 1.4 Let n→∞ and suppose λ
(n)
j ∈ (α, β). If ak = a−k for all k, then∥∥∥∥∥ y

(n)
j (λ

(n)
j )

‖y(n)
j (λ

(n)
j )‖2

− x(n)
j

∥∥∥∥∥
2

= O

(
j

n

)
.

The rest of the paper is as follows. We approach eigenvectors by using the
elementary observation that if λ is an eigenvalue of Tn(a), then every nonzero
column of the adjugate matrix of Tn(a)− λI = Tn(a− λ) is an eigenvector for λ.
In Section 2 we employ “exact” formulas by Trench and Widom for the inverse and
the determinant of a banded Toeplitz matrix to get a representation of the first
column of the adjugate matrix of Tn(a−λ) that will be convenient for asymptotic
analysis. This analysis is carried out in Section 3. On the basis of these results,
Theorems 1.1 and 1.2 are proved in Section 4, while the proofs of Theorems 1.3
and 1.4 are given in Section 4. Section 6 contains numerical results.

2 The first column of the adjugate matrix

The adjugate matrix adjB of an n× n matrix B = (bjk)
n
j,k=1 is defined by

(adjB)jk = (−1)j+k detMkj
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where Mkj is the (n− 1)× (n− 1) matrix that results from B by deleting the kth
row and the jth column. We have

(A− λI) adj (A− λI) = (det(A− λI))I.

Thus, if λ is an eigenvalue of A, then each nonzero column of adj (A− λI) is an
eigenvector. For an invertible matrix B,

adjB = (detB)B−1. (8)

Formulas for detTn(b) and T−1
n (b) were established by Widom [18] and Trench

[16], respectively. The purpose of this section is to transform Trench’s formula for
the first column of T−1

n (b) into a form that will be convenient for further analysis.

Theorem 2.1 Let

b(t) =

q∑
k=−p

bkt
k = bpt

−q
p+q∏
j=1

(t− zj) (t ∈ T)

where p ≥ 1, q ≥ 1, bp 6= 0, and z1, . . . , zp+q are pairwise distinct nonzero complex
numbers. If n > p+ q and 1 ≤ m ≤ n, then the mth entry of the first column of
of adjTn(b) is

[adjTn(b)]m,1 =
∑

J⊂Z,|J |=p

CJW
n
J

∑
z∈J

Sm,J,z (9)

where Z = {z1, . . . , zp+q}, the sum is over all sets J ⊂ Z of cardinality p, and,
with J := Z \ J ,

CJ =
∏
z∈J

zq
∏

z∈J,w∈J

1

z − w
, WJ = (−1)pbp

∏
z∈J

z,

Sm,J,z = − 1

bp

1

zm

∏
w∈J\{z}

1

z − w
.

Proof. It suffices to prove (9) under the assumption that detTn(b) 6= 0 because
both sides of (9) are continuous functions of z1, . . . , zp+q. Thus, let detTn(b) 6= 0.
We will employ (8) with B = Tn(b).

Trench [16] proved that [T−1
n (b)]m,1 equals

− 1

bp

D{1,...,p+q}(0, . . . , q − 1, q + n, . . . , q + n+ p− 2, q + n−m)

D{1,...,p+q}(0, . . . , q − 1, q + n, . . . , q + n+ p− 1)
(10)

where D{j1,...,jk}(s1, . . . , sk) denotes the determinant

det


zs1j1 zs2j1 . . . zskj1
zs1j2 zs2j2 . . . zskj2
...

...
...

zs1jk zs2jk . . . zskjk

 .
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Note that

DJ(s1 + ξ, . . . , sk + ξ) =

(∏
j∈J

zξj

)
DJ(s1, . . . , sk),

D{1,2,...,k}(0, 1, . . . , k − 1) =
∏
j,`∈J
`>j

(z` − zj).

We first consider the denominator of (10). Put Z = {1, . . . , p + q}. Laplace
expansion along the last p columns gives

DZ(0, . . . , q − 1, q + n, . . . , q + n+ p− 1)

=
∑

J⊂Z,|J |=p

(−1)inv(J,J)DJ(q + n, . . . , q + n+ p− 1)DJ(0, . . . , q − 1)

=
∑

J⊂Z,|J |=p

(−1)inv(J,J)
∏
k∈J

zq+nk

∏
k,`∈J
`>k

(z` − zk)
∏
k,`∈J
`>k

(z` − zk),

where inv(J, J) is the number of inversions in the permutation of length p + q
whose first q elements are the elements of the set J in increasing order and whose
last p elements are the elements of the set J in increasing order. A little thought
reveals that inv(J, J) is just the number of pairs (k, `) with k ∈ J , ` ∈ J , k < `.
We have ∏

j∈J,s∈J

(zj − zs) =
∏

`∈J,k∈J
`>k

(z` − zk)
∏

k∈J,`∈J
`>k

(zk − z`)

= (−1)inv(J,J)
∏

`∈J,k∈J
`>k

(z` − zk)
∏

`∈J,k∈J
`>k

(z` − zk) (11)

and hence the denominator is equal to

Rn

∑
J⊂Z,|J |=p

CJW
n
J with Rn :=

(−1)pn

bnp

∏
`>k

(z` − zk).

A formula by Widom [18], which can also be found in [1], says that

detTn(b) =
∑

J⊂Z,|J |=p

CJW
n
J .

Consequently, the denominator of (10) is nothing but Rn detTn(b).
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Let us now turn to the numerator of (10). This time Laplace expansion along
the last p columns yields

DZ(0, . . . , q − 1, q + n, . . . , q + n+ p− 2, q + n−m)

=
∑

J⊂Z,|J |=p

(−1)inv(J,J)DJ(q + n, . . . , q + n+ p− 1, q + n−m)DJ(0, . . . , q − 1)

=
∑

J⊂Z,|J |=p

(−1)inv(J,J)DJ(0, . . . , q − 1)

(∏
j∈J

zq+nj

)
DJ(0, . . . , p− 2,−m).

Expanding DJ(0, . . . , p− 2,−m) by its last column we get

DJ(0, . . . , p− 2,−m) =
∑
j∈J

(−1)inv(J\{j},j)z−mj DJ\{j}(0, . . . , p− 2) (12)

with inv(J \ {j}, j) being the number of s ∈ J \ {j} such that s > j. Thus, (12)
is ∑

j∈J

(−1)inv(J\{j},j)z−mj
∏

k,`∈J\{j}
`>k

(z` − zk)

=
∑
j∈J

z−mj
∏
k,`∈J
`>k

(z` − zk)
∏

s∈J\{j}

1

zj − zs
.

This in conjunction with (11) shows that the numerator of (9) equals

−bpRn

∑
J⊂Z,|J |=p

CJW
n
J

∑
z∈J

Sm,J,z.

In summary, from (10) we obtain that

[T−1
n (b)]m,1 =

1

detTn(b)

∑
J⊂Z,|J |=p

CJW
n
J

∑
z∈J

Sm,J,z,

which after multiplication by detTn(b) becomes (9). �

3 The main terms of the first column

We now apply Theorem 2.1 to

b(t) = a(t)− λ = art
−r

2r∏
k=1

(t− zk(λ)) (13)
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where λ ∈ (α, β). The set Z = Z(λ) is given by (4). Let

d0(λ) = (−1)rare
iσ(λ)

r−1∏
k=1

uk(λ). (14)

In [2], we showed that d0(λ) > 0 for all λ ∈ (0,M). The dependence on λ will
henceforth frequently be suppressed in notation. Let

J1 = {u1, . . . , ur−1, e
iϕ1}, J2 = {u1, . . . , ur−1, e

iϕ2}

and for ν ∈ {1, . . . , r − 1}, put

J0
ν = {u1, . . . , ur−1, 1/uν}.

Lemma 3.1 If J ⊂ Z, |J | = r, J /∈ {J1, J2, J
0
1 , . . . , J

0
r−1}, then

|CJW n
j Sm,J,z| ≤ K

dn0
sinϕ

e−δn

for all z ∈ J , n ≥ 1, 1 ≤ m ≤ n, λ ∈ (α, β) with some finite constant K that
does not depend on z, n,m, λ.

Proof. If both eiϕ1 and eiϕ2 belong to J , then

J = {uν1 , . . . , uνk , eiϕ1 , eiϕ2 , 1/us1 , . . . , 1/us`}

with k + ` = r − 2. Since

min
λ∈[α,β]

min
j1 6=j2
|uj1(λ)− uj2(λ)| > 0,

we conclude that |CJ | ≤ K1. Here and in the following Ki denotes a finite
constant that is independent of λ ∈ [α, β]. We have k ≤ r − 2 and thus

|WJ | = |ar|
|uν1 . . . uνk |
|us1 . . . us` |

≤ d0e
−δ

|us1 . . . us` |
. (15)

If z ∈ {uν1 , . . . , uνk , eiϕ1 , eiϕ2}, then obviously |Sm,J,z| ≤ K2/ sinϕ and hence

|CJW n
J Sm,J,z| ≤ K1K2

dn0e
−δn

sinϕ
.

In case z ∈ {1/us1 , . . . , 1/us`}, say z = 1/us1 , we have |Sm,J,z| ≤ K3|uν1|m, which
gives

|CJW n
J Sm,J,z| ≤ K1K3d

n
0e
−δn |uν1 |m

|uν1|n
≤ K1K3d

n
0e
−δn ≤ K1K3

dn0e
−δn

sinϕ
.
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The only other possibility for J is to be of the type

J = {uν1 , . . . , uνk , eiϕ1 , 1/us1 , . . . , 1/us`}

with k + ` ≤ r − 1, k ≤ r − 2, ` ≥ 1. (The case where eiϕ1 is replaced by
eiϕ2 is completely analogous.) This time, |CJ | ≤ K4/ sinϕ and (15) holds again.
For z ∈ {uν1 , . . . , uνk , eiϕ1} we have |Sm,J,z| ≤ K5 and thus get the assertion. If
z = 1/us for some s ∈ {s1, . . . , s`}, say s = s1, then |Sm,J,z| ≤ K6|us1|m, and the
assertion follows as above, too. �

Let

d1(λ) =
1

|hλ(eiϕ1(λ))hλ(eiϕ2(λ))|

r−1∏
k,s=1

(
1− 1

uk(λ)us(λ)

)−1

.

It is easily seen that d1(λ) > 0 for all λ ∈ [0,M ].

Lemma 3.2 If λ = λ
(n)
j ∈ (0,M), then

CJ1W
n
J1
Sm,J1,eiϕ1 =

d1d
n−1
0

sinϕ

[
(−1)jAe−imϕ1 +O(e−δn)

]
,

CJ2W
n
J2
Sm,J2,eiϕ2 =

d1d
n−1
0

sinϕ

[
(−1)j+1Be−imϕ2 +O(e−δn)

]
uniformly in m and λ.

Proof. We abbreviate
∏r−1

k=1 to
∏

k. Clearly,

Wj1 = (−1)rar

(∏
k

uk

)
eiϕ1 = (−1)rar

(∏
k

uk

)
eiσeiϕ = d0e

iϕ.

We have

CJ1 =
(
∏

k u
r
k) e

irϕ1

(eiϕ1 − eiϕ2)
∏

k,s

(
uk − 1

us

)∏
k (uk − eiϕ2)

∏
k

(
eiϕ1 − 1

uk

)
=

eirϕ1

eiσ(eiϕ − e−iϕ)
∏

k,s

(
1− 1

ukus

)∏
k

(
1− eiϕ2

uk

)
ei(r−1)ϕ1

∏
k

(
1− e−iϕ1

uk

)
=

eiϕ

2i sinϕ
∏

k,s

(
1− 1

ukus

)
h(eiϕ2)h(eiϕ1)

and because
h(eiϕ2)h(eiϕ1) = |h(eiϕ1)h(eiϕ2)|e−iθ, (16)

it follows that

CJ1 =
d1e

i(ϕ+θ)

2i sinϕ
.

12



Furthermore,

Sm,J1,eiϕ1 = − 1

ar

1

eimϕ1
∏

k(e
iϕ1 − uk)

= − 1

ar

e−imϕ1

(−1)r−1 (
∏

k uk)
∏

k(1− eiϕ1/uk)

=
e−im(σ+ϕ)

(−1)rar (
∏

k uk)h(eiϕ1)
=
e−im(σ+ϕ)eiσ

d0h(eiϕ1)

Putting things together we arrive at the formula

CJ1W
n
J1
Sm,J1,eiϕ1 =

d1d
n−1
0

sinϕ
Ae−im(σ+ϕ)ei((n+1)ϕ+θ).

Obviously, σ + ϕ = ϕ1. By virtue of (5),

ei((n+1)ϕ+θ) = eiπj(1 +O(e−δn)) = (−1)j(1 +O(e−δn)).

This proves the first of the asserted formulas. Analogously,

WJ2 = d0e
−iϕ, CJ2 = −d1e

−i(ϕ+θ)

2i sinϕ
, Sm,J2,eiϕ2 =

e−im(σ−ϕ)eiσ

d0h(eiϕ2)
,

which gives the second formula. �

Lemma 3.3 If 1 ≤ ν ≤ r − 1 and λ = λ
(n)
j ∈ (α, β), then

CJ1W
n
J1
Sm,J1,uν + CJ2W

n
J2
Sm,J2,uν =

d1d
n−1
0

sinϕ

[
(−1)jDν

1

umν
+O(e−δn)

]
uniformly in m and λ.

Proof. By definition,

Sm,J1,uν = − 1

ar

1

umν (uν − eiϕ1)
∏

s 6=ν(uν − us)

=
u−mν

(−1)r−1 (
∏

k uk) ar(uν − eiϕ1)h′(uν))

Since −h′(z) equals

1

u1

(
1− z

u2

)
. . .

(
1− z

ur−1

)
+ . . .+

1

ur−1

(
1− z

u1

)
. . .

(
1− z

ur−2

)
,

we obtain that

h′(uν) = − 1

uν

∏
s 6=ν

(
1− uν

us

)
.
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Thus,

Sm,J1,uν =
u−mν

(−1)rar (
∏

k uk) (uν − eiϕ1)h′(uν)
=

u−mν eiσ

d0(uν − eiϕ1)h′(uν)
.

Changing ϕ1 to ϕ2 we get

Sm,J2,uν =
u−mν eiσ

d0(uν − eiϕ2)h′(uν)
.

These two expressions along with the expressions for CJ1 ,WJ1 , CJ2 ,WJ2 derived
in the proof of Lemma 3.2 show that the sum under consideration is

d1d
n−1
0

2i sinϕ

u−mν eiσ

h′(uν)

[
ei((n+1)ϕ+θ)

uν − eiϕ1
− e−i((n+1)ϕ+θ)

uν − eiϕ2

]
.

Because of (5), the term in brackets equals

(−1)j
[

1

uν − eiϕ1
− 1

uν − eiϕ2
+O(e−δn)

]
= (−1)j

eiσ2i sinϕ

(uν − eiϕ1)(uν − eiϕ2)
+O(e−δn). �

Lemma 3.4 For 1 ≤ ν ≤ r − 1 and λ ∈ (α, β),

CJ0
ν
W n
J0
ν
Sm,J0

ν ,1/uν
= −d1d

n−1
0

sinϕ
Fν

e−i(n+1)σ

un+1−m
ν

.

Proof. We have CJ0
ν

= (
∏

k u
r
k) /(u

r
νP1P2P3) with

P1 =

(
1

uν
− eiϕ1

)(
1

uν
− eiϕ2

)
=

(uν − e−iϕ1)(uν − e−iϕ2)

u2
νe
−2iσ

,

P2 =
∏
k

(uk − eiϕ1)
∏
k

(uk − eiϕ2) =

(∏
k

u2
k

)
h(eiϕ1)h(eiϕ2),

P3 =
∏
s 6=ν

(
1

uν
− 1

us

)∏
k

∏
s 6=ν

(
uk −

1

us

)

=
1

u r−2
ν

∏
s 6=ν

(
1− uν

us

)(∏
k

ur−2
k

)∏
k

∏
s 6=ν

(
1− 1

ukus

)

= − 1

u r−3
ν

h′(uν)

(∏
k

ur−2
k

)
1

d1|h(eiϕ1)h(eiϕ2)|
1∏

k(1− 1/(ukuν))
.

Thus, CJ0
ν

equals

− d1e
−2iσ|h(eiϕ1)h(eiϕ2)|

uν(uν − e−iϕ1)(uν − e−iϕ2)h′(uν)h(eiϕ1)h(eiϕ2)

∏
k

(
1− 1

ukuν

)
.
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Since WJ0
ν

= d0e
−iσ/uν and

Sm,J0
ν ,1/uν

= − 1

ar
umν

1∏
k(1/uν − uk)

=
umν

(−1)rar (
∏

k uk)
∏

k

(
1− 1

ukuν

) =
umν e

iσ

d0

∏
k

(
1− 1

ukuν

) ,
we obtain that CJ0

ν
W n
J0
ν
Sm,J0

ν ,1/uν
is equal to

− d1d
n−1
0

un+1−m
e−iσe−inσ|h(eiϕ1)h(eiϕ2)|

(uν − e−iϕ1)(uν − e−iϕ2)h′(uν)h(eiϕ1)h(eiϕ2)
. �

Lemma 3.5 If 1 ≤ k ≤ r − 1 and λ ∈ (α, β),

CJ0
ν
W n
J0
ν
Sm,J0

ν ,uk
=
d1d

n−1
0

sinϕ
O(e−δn)

uniformly in m and λ.

Proof. This time

CJ0
ν
W n
J0
ν
Sm,J0

ν ,uk
= − 1

ar

1

umk

1

(uk − 1/uν)
∏

s 6=k(uk − us)

=
u−mk

(−1)r−1aruk

(
1− 1

ukuν

)(∏
s 6=k us

)∏
s 6=k

(
1− uk

us

)
= − 1

d0umk

1(
1− 1

ukuν

)∏
s 6=k

(
1− uk

us

)
Expressions for CJ0

ν
and WJ0

ν
were given in the proof of Lemma 3.4. It follows

that

CJ0
ν
W n
J0
ν
Sm,J0

ν ,uk
= Gν,k

d1d
n−1
0

sinϕ

1

un+1
ν umk

where Gν,k equals

e2iσe−inσ|h(eiϕ1)h(eiϕ2)| sinϕ
(uν − e−iϕ1)(uν − e−iϕ2)h′(uν)h(eiϕ1)h(eiϕ2)

∏
s 6=k

(
1− 1

usuν

)
∏

s 6=k

(
1− uk

us

) .

Since

h′(uν) = − 1

uν

∏
s 6=ν

(
1− uν

us

)
,

we see that Gν,k remains bounded on [α, β]. Finally,

1

|un+1
ν umk |

≤ 1

|uν |n
≤ e−δn. �
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Corollary 3.6 If λ = λ
(n)
j ∈ (α, β), then

[adjTn(a− λ)]m,1 = (−1)j
d1(λ)dn−1

0 (λ)

sinϕ(λ)
[wj,m(λ) +O(e−δn)]

uniformly in m and λ.

Proof. This follows from Theorem 2.1 and Lemmas 3.1 to 3.5 along with the fact
that d1 is bounded and bounded away from zero on [α, β]. �

4 The asymptotics of the eigenvectors

We now prove Theorem 1.1. There is a finite constant K1 such that |Dν | ≤ K1

and |Fν | ≤ K1 for all ν and all λ ∈ (α, β). Thus, summing up two finite geometric
series, we get

n∑
m=1

∣∣∣∣Dν
1

umν
+ Fν

(−1)j+1e−i(n+1)σ

un+1−m
ν

∣∣∣∣2 ≤ 2K2
1

1

|uν |2
1− 1/|uν |2(n+1)

1− 1/|uν |2
≤ K2

for all ν, n, λ. We further have

n∑
m=1

∣∣Ae−imϕ1 −Be−imϕ2
∣∣2 =

n∑
m=1

∣∣∣∣ e−imϕ1

2h(eiϕ1)
− e−imϕ2

2h(eiϕ2)

∣∣∣∣2
=

n∑
m=1

(
1

4|h(eiϕ1)|2
+

1

4|h(eiϕ1)|2

)

−
n∑

m=1

(
e−2imϕ

4h(eiϕ1)h(eiϕ2)
+

e2imϕ

4h(eiϕ1)h(eiϕ2)

)
.

The first sum is of the form
∑n

m=1(γ/4) and therefore equals (n/4)γ. Hence,
because of (16) we are left to prove that∣∣∣∣∣

n∑
m=1

eiθ(λ
(n)
j )e2imϕ(λ

(n)
j )

∣∣∣∣∣ ≤ K3 (17)

for all n and j such that λ
(n)
j ∈ (α, β). The sum in (17) is

ei[(n+1)ϕ(λ
(n)
j )+θ(λ

(n)
j )]

sinnϕ(λ
(n)
j )

sinϕ(λ
(n)
j )

.

Thus, (17) will follow as soon as we have shown that∣∣∣∣∣sinnϕ(λ
(n)
j )

sinϕ(λ
(n)
j )

∣∣∣∣∣ ≤ K3
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for all n and j in question. From (5) we infer that

nϕ(λ
(n)
j ) = πj − ϕ(λ

(n)
j )− θ(λ(n)

j ) +O(e−δn),

which implies that

sinnϕ(λ
(n)
j ) = (−1)j+1 sin

(
ϕ(λ

(n)
j ) + θ(λ

(n)
j )
)

+O(e−δn).

Suppose first that 0 < ϕ(λ
(n)
j ) ≤ π/2. Then∣∣∣∣∣∣

sin
(
ϕ(λ

(n)
j ) + θ(λ

(n)
j )
)

sinϕ(λ
(n)
j )

∣∣∣∣∣∣ ≤ π

2

|ϕ(λ
(n)
j ) + θ(λ

(n)
j )|

|ϕ(λ
(n)
j )|

≤ π

2

(
1 +
|θ(λ(n)

j )|
|ϕ(λ

(n)
j )|

)
. (18)

In [2], we proved that |θ/ϕ| is bounded on (0,M). Thus, the right-hand side of

(18) is bounded by some K3 for all n and j. If π/2 < ϕ(λ
(n)
j ) < π, we may replace

(18) by the upper bound

π

2

(
1 +

|θ(λ(n)
j )|

|π − ϕ(λ
(n)
j )|

)
.

We know again from [2] that |θ/(π − ϕ)| is bounded on (0,M). This completes
the proof of Theorem 1.1.

Here is the proof of Theorem 1.2. By virtue of Theorem 1.1, ‖wj(λ(n)
j )‖2 > 1

whenever n is sufficiently large. Corollary 3.6 therefore implies that the first
column of adjTn(a − λ

(n)
j ) is nonzero and thus an eigenvector for λ

(n)
j for all

n ≥ n0 and all 1 ≤ j ≤ n such that λ
(n)
j ∈ (α, β). Again by Corollary 3.6, the

mth entry of this column is

d1(λ)dn−1
0 (λ)

sinϕ(λ)
[wj,m(λ) + ξ

(n)
j,m]

∣∣∣∣
λ=λ

(n)
j

where |ξ(n)
j,m| ≤ Ke−δn for all n and j under consideration and K does not depend

on m,n, j. It follows that

wj(λ
(n)
j ) +

(
ξ

(n)
j,m

)n
m=1

= wj(λ
(n)
j ) +O∞(e−δn)

is also an eigenvector for λ
(n)
j . Consequently,

wj(λ
(n)
j ) +O∞(e−δn)

‖wj(λ(n)
j ) +O∞(e−δn)‖2

=
wj(λ

(n)
j )

‖wj(λ(n)
j )‖2

+O∞(e−δn) (19)

is a normalized eigenvector for λ
(n)
j . From (5) we deduce that all eigenvalues

of Tn(a) are simple. Thus, v
(n)
j is a scalar multiple of modulus 1 of (19). This

completes the proof of Theorem 1.2.

17



5 Symmetric matrices

The matrices Tn(a) are all symmetric if and only if all ak are real and ak = a−k
for all k. Obviously, this is equivalent to the requirement that the real-valued
function g(x) := a(eix) be even, that is, g(x) = g(−x) for all x. Thus, suppose g
is even. In that case

ϕ0 = π, ϕ1(λ) = −ϕ2(λ) = ϕ(λ), σ(λ) = 0.

Moreover, for t ∈ T we have

art
−r

2r∏
k=1

(t− zk(λ)) = a(t)− λ = a(1/t)− λ

= art
r

2r∏
k=1

(1/t− zk(λ)) = ar

(
2r∏
k=1

zk(λ)

)
t−r

2r∏
k=1

(t− 1/zk(λ)),

which in conjunction with (4) implies that

{u1(λ), . . . , ur−1(λ)} = {u1(λ), . . . , ur−1(λ)}. (20)

The coefficients of the polynomial hλ(t) are symmetric functions of

1/u1(λ), . . . , 1/ur−1(λ).

From (20) we therefore see that these coefficients are real. It follows in particular

that hλ(e
−iϕ(λ)) = hλ(eiϕ(λ)), which gives θ(λ) = 2 arg hλ(e

iϕ(λ)) and thus

hλ(e
iϕ(λ)) = |hλ(eiϕ(λ))|eiθ(λ)/2, hλ(e

−iϕ(λ)) = |hλ(eiϕ(λ))|e−iθ(λ)/2.

We are now in a position to prove Theorem 1.3. To do so, we use Theorem 1.2.
Consider the vector wj(λ

(n)
j ). We now have

Ae−imϕ1 −Be−imϕ2 =
e−imϕ

2ih(eiϕ)
− eimϕ

2ih(e−iϕ)

=
1

2i|h(eiϕ)|

(
e−imϕ

eiθ/2
− eimϕ

e−iθ/2

)
= − 1

|h(eiϕ)|
sin

(
mϕ+

θ

2

)
.

Furthermore,

Dν =
sinϕ

(uν − eiϕ)(uν − e−iϕ)h′(uν)
=

Qν

|h(eiϕ)|
,

Fν =
sinϕ

(uν − eiϕ)(uν − e−iϕ)h′(uν)

|h(eiϕ)h(e−iϕ)|
h(eiϕ)h(e−iϕ)

=
sinϕ

(uν − eiϕ)(uν − e−iϕ)h′(uν)
.
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Consequently, from (20) we infer that

r−1∑
ν=1

Fν
un+1−m
ν

=
r−1∑
ν=1

Dν

un+1−m
ν

=
r−1∑
ν=1

Qν

|h(eiϕ)|un+1−m
ν

.

In summary, it follows that

wj(λ
(n)
j ) = − 1

|h(eiϕ(λ
(n)
j ))|

yj(λ
(n)
j ). (21)

Thus, the representation

v
(n)
j = τ

(n)
j

[
yj(λ

(n)
j )

‖yj(λ(n)
j )‖2

+O∞(e−δn)

]

is immediate from Theorem 1.2. Finally, put hj,n = |h(eiϕ(λ
(n)
j ))| = |h(e−iϕ(λ

(n)
j ))|.

Theorem 1.1 shows that

‖wj(λ(n)
j )‖22 =

n

4

(
1

|h(eiϕ)|2
+

1

|h(e−iϕ)|2

)∣∣∣∣
λ=λ

(n)
j

+O(1) =
n

2h2
j,n

+O(1),

whence, by (21), ‖yj(λ(n)
j )‖22 = h2

j,n‖wj(λ
(n)
j )‖22 = n/2 + O(1). The proof of

Theorem 1.3 is complete.

Here is the proof of Theorem 1.4. We first estimate the “small terms” in y
(n)
j .

Summing up finite geometric series and using the assumption that |uν(λ)| are
separated from 1 we come to

n∑
m=1

∣∣∣∣∣
r−1∑
ν=1

Qν(λ)

(
1

uν(λ)m
+

(−1)j+1

uν(λ)n+1−m

)∣∣∣∣∣
2

≤
r−1∑
ν=1

4(r − 1)|Qν(λ)|2

1− |uν(λ)|2
≤ K sin2 ϕ(λ)

where K is some positive number depending only on a. since ϕ(λ
(n)
j ) = O (j/n),

it follows that∥∥∥∥∥
(
r−1∑
ν=1

Qν(λ)

(
1

uν(λ)m
+

(−1)j+1

uν(λ)n+1−m

))n

m=1

∥∥∥∥∥
2

= O

(
j

n

)
. (22)

We next consider the difference between the “main term” of y
(n)
j and sin mjπ

n+1
.

Using the elementary estimate

| sinA− sinB|2 = 4 sin2 A−B
2

cos2 A+B

2

≤ 4 sin2 A−B
2

= 2− 2 cos(A−B),
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we get

n∑
m=1

∣∣∣∣sin(mϕ(λ
(n)
j ) + θ(λ

(n)
j )
)
− sin

mjπ

n+ 1

∣∣∣∣2
≤ 2n− 2

n∑
m=1

cos

(
m

(
ϕ(λ

(n)
j )− πj

n+ 1

)
+ θ(λ

(n)
j )

)
.

To simplify the last sum, we use that

n∑
m=1

cos(mξ + ω) =
sin nξ

2
cos
(

(n+1)ξ
2

+ ω
)

sin ξ
2

= n
(
1 +O(n2ξ2)

)(
1 +O

(
(n+ 1)ξ

2
+ ω

)2
)
.

In our case

ω = θ(λ
(n)
j ) = O

(√
λ

(n)
j

)
= O

(
j

n

)
,

ξ = ϕ(λ
(n)
j )− πj

n+ 1
= −

θ(λ
(n)
j )

n+ 1
+O(e−nδ) = O

(
j

n2

)
.

Consequently,

n∑
m=1

∣∣∣∣sin(mϕ(λ
(n)
j ) + θ(λ

(n)
j )
)
− sin

mjπ

n+ 1

∣∣∣∣2 = O

(
j2

n

)
,

that is, ∥∥∥∥(sin
(
mϕ(λ

(n)
j ) + θ(λ

(n)
j )
)
− sin

mjπ

n+ 1

)n
m=1

∥∥∥∥
2

= O

(
j√
n

)
. (23)

Combining (22) and (23)we obtain that∥∥∥∥∥y(n)
j −

√
n+ 1

2
x

(n)
j

∥∥∥∥∥
2

= O

(
j

n

)
+O

(
j√
n

)
= O

(
j√
n

)
, (24)

which implies in particular that

‖y(n)
j ‖2 =

√
n+ 1

2

(
1 +O

(
j

n

))
. (25)

Clearly, estimates (24) and (25) yield the asserted estimate. This completes the
proof of Theorem 1.4.
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6 Numerical results

Given Tn(a), determine the approximate eigenvalue λ
(n)
j,∗ from the equation

(n+ 1)ϕ(λ
(n)
j,∗ ) + θ(λ

(n)
j,∗ ) = πj.

In [2], we proposed an exponentially fast iteration method for solving this equa-

tion. Let w
(n)
j (λ) ∈ Cn be as in Section 1 and put

w
(n)
j,∗ =

w
(n)
j (λ

(n)
j,∗ )

‖w(n)
j (λ

(n)
j,∗ )‖2

.

We define the distance between the normalized eigenvector v
(n)
j and the normal-

ized vector w
(n)
j,∗ by

%(v
(n)
j , w

(n)
j,∗ ) := min

τ∈T
‖τv(n)

j − w
(n)
j,∗ ‖2 =

√
2− 2〈v(n)

j , w
(n)
j,∗ 〉

and put

∆(n)
∗ = max

1≤j≤n
|λ(n)
j − λ

(n)
j,∗ |,

∆(n)
v,w = max

1≤j≤n
%(v

(n)
j , w

(n)
j,∗ ),

∆(n)
r = max

1≤j≤n
‖Tn(a)w

(n)
j,∗ )− λ(n)

j,∗w
(n)
j,∗ ‖2.

The tables following below show these errors for three concrete choices of the
generating function a.

For a(t) = 8− 5t− 5t−1 + t2 + t−2 we have

n = 10 n = 20 n = 50 n = 100 n = 150

∆
(n)
∗ 5.4 · 10−7 1.1 · 10−11 5.2 · 10−25 1.7 · 10−46 9.6 · 10−68

∆
(n)
v,w 2.0 · 10−6 1.1 · 10−10 2.0 · 10−23 1.9 · 10−44 2.0 · 10−65

∆
(n)
r 8.0 · 10−6 2.7 · 10−10 3.4 · 10−23 2.2 · 10−44 1.9 · 10−65

If a(t) = 8 + (−4− 2i)t+ (−4− 2i)t−1 + it− it−1 then

n = 10 n = 20 n = 50 n = 100 n = 150

∆
(n)
∗ 3.8 · 10−8 2.8 · 10−13 2.9 · 10−30 5.9 · 10−58 1.6 · 10−85

∆
(n)
v,w 1.8 · 10−7 4.7 · 10−13 2.0 · 10−29 7.0 · 10−57 2.4 · 10−84

∆
(n)
r 5.4 · 10−7 1.3 · 10−12 2.7 · 10−29 6.7 · 10−57 1.9 · 10−84

In the case where a(t) = 24 + (−12− 3i)t+ (−12 + 3i)t−1 + it3 − it−3 we get

n = 10 n = 20 n = 50 n = 100 n = 150

∆
(n)
∗ 6.6 · 10−6 1.2 · 10−10 7.6 · 10−24 1.4 · 10−45 3.3 · 10−67

∆
(n)
v,w 1.9 · 10−6 1.3 · 10−10 2.0 · 10−23 7.2 · 10−45 2.8 · 10−66

∆
(n)
r 2.5 · 10−5 8.6 · 10−10 7.3 · 10−23 1.9 · 10−44 5.9 · 10−66
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[5] A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz
Matrices, Universitext, Springer-Verlag, New York 1999.

[6] C. Estatico and S. Serra Capizzano, Superoptimal approximation for un-
bounded symbols, Linear Algebra Appl. 428 (2008), 564–585.
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Albrecht Böttcher, Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz,
Germany

aboettch@mathematik.tu-chemnitz.de

Sergei M. Grudsky, Departamento de Matemáticas, CINVESTAV del I.P.N.,
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Apartado Postal 14-740, 07000 México, D.F., México
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