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Abstract

In the recent past the authors with collaborators have published convergence
rates results for regularized solutions of linear ill-posed operator equations by avoid-
ing the usual assumption that the solutions satisfy prescribed source conditions.
Instead the degree of violation of such source conditions is expressed by distance
functions d(R) depending on a radius R ≥ 0 which is an upper bound of the norm
of source elements under consideration. If d(R) tends to zero as R → ∞ an ap-
propriate balancing of occurring regularization error terms yields convergence rates
results. That approach was called method of approximate source conditions, origi-
nally developed in a Hilbert space setting.

The goal of this paper is to formulate chances and limitations of an application
of this method to nonlinear ill-posed problems in reflexive Banach spaces and to
complement the field of low order convergence rates results in nonlinear regulariza-
tion theory. In particular, we are going to establish convergence rates for a variant
of Tikhonov regularization. To keep structural nonlinearity conditions simple, we
update the concept of degree of nonlinearity in Hilbert spaces to a Bregman distance
setting in Banach spaces.

MSC2000 subject classification: 47J06, 65J20, 47A52

Keywords: Nonlinear ill-posed problems, regularization, Bregman distance, convergence
rates, approximate source conditions, degree of nonlinearity, Banach space, Young’s in-
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1 Introduction

Motivated by an idea of J. Baumeister’s monograph (see [2, Theorem 6.8]) B. Hofmann
has developed in [12] the method of approximate source conditions for inverse problems
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with linear forward operator mapping between infinite dimensional Hilbert spaces. This
is an approach for finding convergence rates of regularized solutions based on balancing
distance functions that measure the degree of violation of the solution with respect to a
prescribed benchmark source condition (see also [4, 6, 13, 18] for further results and [15]
for an extension to general linear regularization schemes). On the other hand, T. Hein
has emphasized in the paper [11] that for Banach spaces the missing tool of generalized
source conditions exploiting index functions (see [10, 24]) can also be negotiated by such
distance functions. Those functions then occur in the convergence rates instead of index
functions. Based on that idea we will expand the field of low order convergence rates
results for nonlinear regularization including logarithmic rates and Hölder rates with small
exponent, which seems to be rather poor up to now. On the one hand, in contrast to
other authors (see, e.g., [20, 23, 29]) we abstain from using Euler-Lagrange equations of
the regularization functional and hence from assuming that the solution of the nonlinear
problem is an inner point of the domain of the forward operator. On the other hand,
directional derivatives of the forward operator are only required in the solution point,
and an interplay with the derivatives in some neighbourhood frequently exploited in the
literature (see, e.g., [9, 21], and the overview of structural conditions for nonlinearities in
[20]) is not needed.

This paper tries to analyze the chances of an application of the method of approximate
source conditions with distance functions as essential tool to nonlinear ill-posed opera-
tor equations describing nonlinear inverse problems in reflexive Banach spaces. It will
be shown that structural conditions concerning the nonlinearity of the forward operator
essentially influence the success of this application (see [1, 7, 20, 21, 23] for discussions
on the variety of such nonlinearity conditions in the context of convergence rates in regu-
larization). We are going to emphasize chances of this method in the nonlinear case, but
we will not conceal the limitations of such an approach that occur whenever smallness
conditions are required. We remark that a first successful step for this method to nonlin-
ear problems was already done in [16], however under the very specific range invariance
condition.

We are going to study convergence rates for stable approximate solutions of ill-posed
operator equations

F (u) = v (1.1)

with an in general nonlinear operator F : D(F ) ⊆ U → V possessing the domain D(F )
and mapping between normed linear spaces U and V with norms ‖ · ‖U and ‖ · ‖V ,
respectively. Ill-posedness denotes here the phenomenon that solutions of (1.1) need not
exist for all right-hand sides v ∈ V , if they exist they need not be uniquely determined,
and unfortunately small perturbations on the right-hand side may cause arbitrarily large
errors in the solution. Therefore, based on noisy data vδ of the exact right-hand side
v = v0 ∈ F (D(F )) with ∥∥vδ − v∥∥

V
≤ δ (1.2)

and noise level δ > 0 we consider the variant

T v
δ

α (u) :=
∥∥F (u)− vδ

∥∥p
V

+ αΩ(u)→ min (1.3)

of Tikhonov regularization (see, e.g., [30] and more recently [14, 31]) using the stabilizing
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functional Ω : U → [0,+∞] with domain

D(Ω) := {u ∈ U : Ω(u) 6= +∞} 6= ∅ ,

regularization parameters α > 0 and minimizers uδα of (1.3). The minimization in (1.3) is
subject to u ∈ D with

D := D(F ) ∩ D(Ω).

Throughout this paper we restrict our considerations to the interval 1 < p < ∞ for the
exponent in (1.3). For the case p = 1 we refer, for example, to [5, 14] and with respect to
approximate source conditions in particular to [11].

The paper is organized as follows: In §2 we formulate the general assumptions concern-
ing the operators, functionals and associated spaces of the nonlinear model in this paper.
In particular, for covering the structure of nonlinearity under consideration we introduce
an appropriate definition of the (local) degree of nonlinearity at a solution point. Then in
§3 for the prescribed benchmark source condition we define distance functions depending
on the radius of source elements expressing the violation of that source condition. We
will prove a lemma with upper bounds of a relevant dual pairing which also applies to
the case that the source condition is only satisfied in an approximate manner. Based
on that lemma moreover in §3 errors estimates measured by the Bregman distance and
convergence rates results for Tikhonov regularized solutions are presented in a theorem
for the case that the benchmark source condition is satisfied. The two main theorems
of the paper can be found with proofs in §4. They show the chances and limitations for
applying the method of approximate source conditions to nonlinear operator equations by
balancing the occurring distance functions. Then convergence rates up to the benchmark
order can be derived when the corresponding degree of nonlinearity at the solution is a
proper one. The final §5 is devoted to some concluding remarks pointing out also two
points for future work.

The authors’ aim is to express the considered elements of progress in nonlinear reg-
ularization theory in a comprehensive manner and to present all the convergence rates
results in a stringent form. This, however, demands the introduction of a wide field of
assumptions and definitions giving the paper a rather technical outfit. In particular, we
are going to extract the deficit in the occurring convergence rates when source conditions
only hold in an approximate manner. The associated rate expressions seem to be bulky
at first view, but we refer to Remark 4.5 for interpretation and to the Examples 4.8 and
4.9 for illustration in cases where the explicit structure of distance functions makes the
formulae more transparent.

2 General assumptions and the degree of nonlinearity

In order to make the results of this paper comparable to those in [14], we pose the following
general assumptions, which are closely related to the assumptions in [14].

Assumption 2.1

1. U and V are reflexive Banach spaces with duals U∗ and V ∗, respectively. In U and
V we consider in addition to the norm convergence the associated weak convergence.
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That means in U

uk ⇀ u ⇐⇒ 〈f, uk〉U∗,U → 〈f, u〉U∗,U ∀f ∈ U∗

for the dual pairing 〈·, ·〉U∗,U with respect to U∗ and U . The weak convergence in V
is defined in an analog manner.

2. F : D(F ) ⊆ U → V is weakly continuous and D(F ) is weakly sequentially closed,
i.e.,

uk ⇀ u in U with uk ∈ D(F ) =⇒ u ∈ D(F ) and F (uk) ⇀ F (u) in V.

3. The functional Ω is convex and weakly sequentially lower semi-continuous.

4. The domain D is non-empty.

5. For every α > 0 and c ≥ 0 the sets

Mv
α(c) := {u ∈ D : T vα(u) ≤ c} , (2.1)

whenever they are non-empty, are relatively weakly sequentially compact in the fol-
lowing sense: every sequence {uk} in Mv

α(c) has a subsequence, which is weakly
convergent in U to some element from U .

As is done in numerous recent papers concerning Banach space theory of ill-posed prob-
lems, for error analysis we exploit for the functional Ω with subdifferential ∂Ω the Bregman
distance Dξ(·, u) of Ω at u ∈ D(Ω) ⊆ U and at ξ ∈ ∂Ω(u) ⊆ U∗ defined as

Dξ(ũ, u) := Ω(ũ)− Ω(u)− 〈ξ, ũ− u〉U∗,U , ũ ∈ D(Ω) ⊆ U .

The set
DB(Ω) := {u ∈ D(Ω) : ∂Ω(u) 6= ∅}

is called Bregman domain.

Example 2.2 (Norm square errors) Let U and V be a Hilbert spaces. Then for the
stabilizing functional

Ω(u) := ‖u− u∗‖2U with D(Ω) = U

we have
Dξ(ũ, u) = ‖ũ− u‖2U

with DB(Ω) = U , where the subdifferential ∂Ω(u) is a singleton everywhere characterized
by the unique element ξ = 2(u − u∗). For that example the Ω-minimizing solutions and
the classical u∗-minimum norm solutions introduced in [8, 7] coincide.

Example 2.3 (q-coercive Bregman distances) We say, for 1 < q < ∞, that the
Bregman distance Dξ(·, u) of Ω at u ∈ DB(Ω) and at ξ ∈ ∂Ω(u) is q-coercive with
constant c > 0 if we have

Dξ(ũ, u) ≥ c ‖ũ− u‖qU for all ũ ∈ D(Ω) . (2.2)
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For example, according to [3, Lemma 2.7] this is the case if

Ω(u) :=
1

q
‖u‖qU (2.3)

and U is a q-convex Banach space, where the geometry of reflexive Banach spaces in
general leads to the interval 2 ≤ q <∞ for the parameter q (for details see, e.g., [32]).

An element u† ∈ D is called an Ω-minimizing solution to (1.1) if

Ω(u†) = min {Ω(u) : F (u) = v, u ∈ D} <∞ .

Such Ω-minimizing solutions exist under Assumption 2.1 if (1.1) has a solution u ∈ D. For
the proof and further results on existence, stability and convergence of regularized solutions
uδα see [14, §3]. The requirement of [14] that ‖·‖V is sequentially lower semi-continuous
in the weak topology is satisfied automatically here, because of our specificiation of the
weak topology.

Now given δmax > 0 we fix αmax > 0, C > 0 throughout this paper and consider
only a priori parameter choices α = α(δ) with 0 < α(δ) ≤ αmax and δp

α(δ)
≤ C for all

0 < δ ≤ δmax satisfying the sufficient convergence conditions α(δ) ↘ 0 and δp

α(δ)
→ 0 as

δ → 0. Then we have by definition of uδα

∥∥F (uδα)− vδ
∥∥
V
≤
[
αmax

(
δp

α
+ Ω(u†)

)]1/p

≤
[
αmax

(
C + Ω(u†)

)]1/p
,

Ω(uδα) ≤ δp

α
+ Ω(u†) ≤ C + Ω(u†) ,

and by setting
ρ := αmax

[
2pC + 2p−1 Ω(u†)

]
with (a+ b)p ≤ 2p−1(ap + bp) (a, b ≥ 0) and T vα(uδα) ≤ T vα(u†) (α > 0) the estimate

T vαmax(u
δ
α) ≤ 2p−1

[∥∥F (uδα)− vδ
∥∥p
V

+ δp + αmaxΩ(uδα)
]

= 2p−1
[∥∥F (uδα)− vδ

∥∥p
V

+ αΩ(uδα) + (αmax − α)Ω(uδα) + δp
]

≤ 2p−1
[
T v

δ

α (u†) + (αmax − α)Ω(uδα) + δp
]
≤ 2p−1

[
δp + αΩ(u†) + (αmax − α)Ω(uδα) + δp

]
≤ 2pαmax

δp

α
+ 2p−1αmaxΩ(u†) ≤ 2pαmaxC + 2p−1αmaxΩ(u†) = ρ .

Consequently, all uδα under consideration have the property

uδα ∈Mv
αmax(ρ).

Now by assumption the setMv
αmax(ρ) is relatively weakly sequentially compact in U , and

every such set in a Banach space is bounded. Hence all elements ofMv
αmax(ρ) belong to

a ball in U, and there exists a constant 0 < Kmax <∞ such that

‖u− u†‖U ≤ Kmax ∀u ∈Mv
αmax(ρ) . (2.4)
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Moreover, we have the inequality

‖F (u)− F (u†)‖V ≤ ρ1/p ∀u ∈Mv
αmax(ρ) .

For our studies we need some more assumptions which are under discussion in [14]
partially as special cases.

Assumption 2.4 Let F , Ω, U , V and D satisfy Assumption 2.1.

1. There exist an Ω-minimizing solution u† which is an element of the Bregman domain
DB(Ω).

2. D(F ) is starlike with respect to u†, that is, for every u ∈ D(F ) there exists t0 > 0
such that

u† + t (u− u†) ∈ D(F ) for all 0 ≤ t ≤ t0.

3. There is a bounded linear operator F ′(u†) : U → V such that we have for the one-
sided directional derivative at u† and for every u ∈ D the equality

lim
t→0+

1

t

(
F (u† + t(u− u†))− F (u†)

)
= F ′(u†)(u− u†) .

With respect to Assumption 2.4 we should note that because of the convexity of Ω
the domain D is also starlike. The operator F ′(u†) has Gâteaux derivative like properties,
and there is an adjoint operator F ′(u†)∗ : V ∗ → U∗ defined by〈

F ′(u†)∗v∗, u
〉
U∗,U

=
〈
v∗, F ′(u†)u

〉
V ∗,V

, u ∈ U, v∗ ∈ V ∗ .

Now it seems to be useful to update the definition of the degree of nonlinearity from
[17, Definition 1] to the current situation of this paper.

Definition 2.5 Let 0 ≤ c1, c2 ≤ 1 and 0 < c1 + c2 ≤ 1. We define F to be nonlinear of
degree (c1, c2) for the Bregman distance Dξ(·, u†) of Ω at u† ∈ D(F ) ∩DB(Ω) ⊆ U and at
ξ ∈ ∂Ω(u†) ⊆ U∗ if there is a constant K > 0 such that∥∥F (u)− F (u†)− F ′(u†)(u− u†)

∥∥
V
≤ K

∥∥F (u)− F (u†)
∥∥ c1
V
Dξ(u, u

†) c2 (2.5)

for all u ∈Mv
αmax(ρ).

Note that the degree of nonlinearity of Definition 2.5 has local character. For short
we say that F is of degree (c1, c2) at u† and ξ if the requirements of the above definition
are satisfied.

Remark 2.6 Different combinations of exponents c1 and c2 in the (local) degree of nonlin-
earity characterize the variety of structural conditions imposed on the nonlinear operator
F in a neighbourhood of u†. We are going to distinguish the following cases:
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(A) Case c1 = 1, c2 = 0. This first extremal case expresses a very high potential of the
linear operator F ′(u†) to characterize the behaviour of the nonlinear operator F in
a neighbourhood of u† (see, e.g., the discussion in [17]). Somewhat stronger than
our condition of this case is the tangential cone condition (also called η-inequality,
see [7, Chapt. 11, formula (11.6)]) being an important structural condition for the
convergence rate analysis of the nonlinear Landweber method. On the other hand,
by choosing Ω from Example 2.2, for the Tikhonov regularization with p = 2 of
ill-posed nonlinear equations (1.1) in Hilbert spaces U and V one can formulate
results with low order Hölder rates under low order source conditions, i.e., as δ → 0
we find for all 0 < η ≤ 1 with the priori parameter choice α(δ) ∼ δ2/(1+η) the rate
result∥∥uδα − u†∥∥U = O

(
δ

η
1+η

)
, when u† − u∗ = [F ′(u†)∗F ′(u†)]η/2w̃, w̃ ∈ U (2.6)

as a consequence of Theorem 1 in [17]. Namely, the sufficient condition of this
theorem, which can be formulated in our notation as inequality chain

c1 ≥ 1 + η(1− c1 − 2c2) > 0 , (2.7)

is satisfied for all 0 < η ≤ 1 in the case (A).

With respect to the general Bregman distance setting in Tikhonov regularization
(1.3) with p = 2 we remark that this Case (A) is sufficient for satisfying the structural
assumption〈

F (u)− F (u†)− F ′(u†)(u− u†), w
〉
V
≤ γ ‖w‖V

∥∥F (u)− F (u†)
∥∥
V

of [5] with Banach space U and Hilbert space V yielding a convergence rate
Dξ(u

δ
α, u

†) = O (δ) under the source condition

∃w ∈ V : F ′(u†)∗w ∈ ∂Ω(u†).

The Case (A) was also considered in the convergence rate analysis in [11] for the
exponent p = 1 in (1.3).

(B) Case 0 < c1 < 1. For this case the operator F ′(u†) has less than in Case (A) but
still enough potential to characterize F in a neighbourhood of u† to a certain extent.
Here, for Ω from Example 2.2 and for the Tikhonov regularization with p = 2 in
Hilbert spaces U and V , Theorem 1 from [17] also applies, but (2.7) cannot hold
whenever 0 < η < 1. However, for η = 1 the condition (2.7) holds if and only if

c1 + c2 = 1 . (2.8)

Hence under the source conditions u† − u∗ = [F ′(u†)∗F ′(u†)]1/2w̃, w̃ ∈ U, which are
equivalent to u† − u∗ = F ′(u†)∗w, w ∈ V, in Hilbert spaces, a rate

∥∥uδα − u†∥∥U =

O
(
δ1/2
)
can be found without any additional smallness condition for the combina-

tion (2.8) of exponents in the degree of nonlinearity.

(C) Case c1 = 0, c2 = 1. The inequality∥∥F (u)− F (u†)− F ′(u†)(u− u†)
∥∥
V
≤ K Dξ(u, u

†) , (2.9)
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which is of interest in that second extremal case, characterizes the classical situation
occurring for the Bregman distance setting in Banach spaces in [27] and for Ω from
Example 2.2 in Hilbert spaces occurring in [8] and [7, Chap.10]. To obtain the rate
Dξ(u

δ
α, u

†) = O (δ) under source conditions ξ = F ′(u†)∗w, w ∈ V ∗, a smallness
condition K‖w‖V ∗ < 1 is required. The necessity of such an additional condition
shows the rather loose connection between the nonlinear operator F at u† and its
linearization F ′(u†).

We have excluded the situation 0 < c2 < 1 and c1 = 0, because used techniques fail for
that situation and moreover results on that case seem to be missing up to now in the
literature.

3 Assertions for the benchmark source condition and
error estimates for approximate source conditions

Only in very specific situations it can be expected that for given ξ ∈ ∂Ω(u†) ⊆ U∗ and
Ω-minimizing solution u† ∈ DB(Ω) a source condition

ξ = F ′(u†)∗w , w ∈ V ∗ , (3.1)

is satisfied. In this context, (3.1) is considered in a classical way as benchmark source
condition of nonlinear regularization theory. However, such source condition is always
fulfilled in an approximate manner as

ξ = F ′(u†)∗w + r , w ∈ V ∗, r ∈ U∗ , (3.2)

where the elements w and r are not determined uniquely. If we restrict the source elements
to closed balls in V ∗ with radius R ≥ 0 by ‖w‖V ∗ ≤ R, then we can define the distance
function d(R) = dξ,u†(R), R ≥ 0, as

d(R) := min
w∈V ∗: ‖w‖V ∗≤R

‖ξ − F ′(u†)∗w‖U∗ . (3.3)

The distance function is well-defined. In particular due to the reflexivity of V implying the
reflexivity of V ∗, we have for all non-negative R an element wR ∈ V ∗ with ‖wR‖V ∗ ≤ R
such that, for rR = ξ − F ′(u†)∗wR, the equality ‖rR‖U∗ = d(R) gets valid ([33, Section
38.3]). Obviously d(R) is non-increasing. Moreover, the decay properties of the distance
function measure the degree of violation of ξ with respect to the benchmark source condi-
tion (3.1). If the source condition (3.1) is satisfied for some w ∈ V ∗ with ‖w‖V ∗ = R, then
we have d(R) = 0 for R ≤ R <∞. Otherwise d(R) is strictly positive for all 0 ≤ R <∞.

For an additive decomposition (3.2) of ξ the following lemma can be stated.

Lemma 3.1 Let 0 ≤ c1, c2 ≤ 1 such that 0 < c1 + c2 ≤ 1 and c2 = 1 if c1 = 0. Moreover,
let F be of degree (c1, c2) at u† and ξ, and let the approximate source condition (3.2) hold.
Then the estimate

|
〈
ξ, u− u†

〉
U∗,U
| ≤ β1Dξ(u, u

†) + β2

∥∥F (u)− F (u†)
∥∥κ
V

+ ‖r‖U∗
∥∥u− u†∥∥

U
(3.4)
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is valid for all u ∈Mv
αmax(ρ) with exponent 0 < κ ≤ 1 of the form

κ =

{
c1

1−c2 for 0 ≤ c2 < 1

1 for c2 = 1

and values β1, β2 ≥ 0 which may depend on ‖w‖V ∗. In the case c1 > 0 implying 0 ≤ c2 < 1
the value β1 is independent of ‖w‖V ∗ and we have β1 = c2 < 1.

Proof: We can estimate for u ∈Mv
αmax(ρ)

|
〈
ξ, u− u†

〉
U∗,U
| = |

〈
F ′(u†)∗w + r, u− u†

〉
U∗,U
| = |

〈
w,F ′(u†)(u− u†)

〉
V ∗,V

+
〈
r, u− u†

〉
U∗,U
|.

≤ ‖w‖V ∗
∥∥F ′(u†)(u− u†)∥∥

V
+ ‖r‖U∗

∥∥u− u†∥∥
U

≤ ‖w‖V ∗
∥∥F (u)− F (u†)− F ′(u†)(u− u†)

∥∥
V

+ ‖w‖V ∗
∥∥F (u)− F (u†)

∥∥
V

+ ‖r‖U∗
∥∥u− u†∥∥

U

≤ K‖w‖V ∗
∥∥F (u)− F (u†)

∥∥ c1
V
Dξ(u, u

†) c2 + ‖w‖V ∗
∥∥F (u)− F (u†)

∥∥
V

+ ‖r‖U∗
∥∥u− u†∥∥

U
.

We recall that
∥∥F (u)− F (u†)

∥∥
V
≤ ρ1/p for u ∈ Mv

αmax(ρ). Then in the case c2 = 1 and
c1 = 0 we have (3.4) with constants β1 = K‖w‖V ∗ , β2 = ‖w‖V ∗ and κ = 1. In the case
c2 = 0 and 0 < c1 ≤ 1 we have (3.4) with β1 = 0, β2 = ‖w‖V ∗(K + ρ

1−c1
p ) and κ = c1.

On the other hand, for 0 < c2 < 1 we have c1 > 0 and can exploit a variant of Young’s
inequality

a b ≤ ε ap1 +
bp2

(ε p1)p2/p1p2

, a, b ≥ 0, ε > 0, (3.5)

with conjugate exponents p1, p2 > 1 that fulfil the equality 1
p1

+ 1
p2

= 1. Precisely, let
p1 := 1

c2
, p2 := 1

1−c2 , ε := 1
p1
, a := Dξ(u, u

†) c2 and b := K‖w‖V ∗
∥∥F (u)− F (u†)

∥∥ c1
V
. Then

we obtain

K‖w‖V ∗
∥∥F (u)− F (u†)

∥∥ c1
V
Dξ(u, u

†) c2 ≤ c2Dξ(u, u
†)+(1−c2)(K‖w‖V ∗)

1
1−c2
∥∥F (u)− F (u†)

∥∥ c1
1−c2
V .

Thus in general for c1 > 0 (3.4) holds with

0 ≤ β1 = c2 < 1, β2 = ρ
1−κ
p ‖w‖V ∗ + (1− c2)K

1
1−c2 ‖w‖

1
1−c2
V ∗ , κ =

c1
1− c2

. (3.6)

Remark 3.2 We emphasize that the inequality (3.4) with r = 0, 0 ≤ β1 < 1, β2 ≥ 0 and
κ = 1 occurs as an assumption in [14], for which in [14, Remark 4.2] sufficient conditions
along the lines of Assumption 2.4 were formulated.

In a first step we formulate the consequences of Lemma 3.1 in the following theorem
for the case r = 0 of fulfilled exact benchmark source condition. This theorem extends
some assertions of the recent literature in particular from κ = 1 to the case 0 < κ < 1.
Its proof is formulated in analogy to the proof of Theorem 4.4 in [14].
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Theorem 3.3 Assume that F,Ω,D, U and V satisfy the Assumptions 2.1 and 2.4. With
some 0 ≤ c1, c2 ≤ 1 such that 0 < c1 +c2 ≤ 1 and c2 = 1 if c1 = 0 let F be of degree (c1, c2)
for the Bregman distance Dξ(·, u†) of Ω at the Ω-minimizing solution u† ∈ DB(Ω) ⊆ U of
(1.1) and at ξ ∈ ∂Ω(u†) ⊆ U∗. Furthermore let the source condition (3.1) hold and let κ
be defined as in Lemma 3.1. In the case c1 > 0 we then have the convergence rate

Dξ(u
δ
α, u

†) = O (δκ) as δ → 0 (3.7)

for an a priori parameter choice α � δp−κ. This result is also true in the alternative case
c1 = 0, c2 = 1 when the additional smallness condition K ‖w‖V ∗ < 1 holds.

Proof: To prove the assertion of the theorem we apply Lemma 3.1 with r = 0 yielding
for some 0 ≤ β1 < 1 and β2 ≥ 0 the inequality

|
〈
ξ, u− u†

〉
U∗,U
| ≤ β1Dξ(u, u

†) + β2

∥∥F (u)− F (u†)
∥∥κ
V

(3.8)

for all u ∈Mv
αmax(ρ). From the definition of uδα and (1.2) it follows that∥∥F (uδα)− vδ

∥∥p
V

+ αDξ(u
δ
α, u

†) ≤ δp + α
(
Ω(u†)− Ω(uδα) +Dξ(u

δ
α, u

†)
)
. (3.9)

Moreover, by the definition of the Bregman distance and by the inequality (a+b)κ ≤ aκ+bκ

for a, b > 0 and 0 < κ ≤ 1 we obtain that

Ω(u†)− Ω(uδα) +Dξ(u
δ
α, u

†)

=−
〈
ξ, uδα − u†

〉
U∗,U
≤ |
〈
ξ, uδα − u†

〉
U∗,U
|

≤ β1Dξ(u
δ
α, u

†) + β2

∥∥F (uδα)− F (u†)
∥∥κ
V

≤ β1Dξ(u
δ
α, u

†) + β2

(∥∥F (uδα)− vδ
∥∥κ
V

+ δκ
)
.

Therefore from (3.9) it follows that∥∥F (uδα)− vδ
∥∥p
V

+ αDξ(u
δ
α, u

†) ≤ δp + α
(
β1Dξ(u

δ
α, u

†) + β2

(∥∥F (uδα)− vδ
∥∥κ
V

+ δκ
))
.

(3.10)
Using (3.5) twice with p1 := p/κ, p2 := p/(p− κ), ε = 1, b := αβ2, on the one hand with
a := ‖F (uδα)− u†‖κV and on the other hand with a := δκ, the inequalities

αDξ(u
δ
α, u

†) ≤ 2δp + αβ1Dξ(u
δ
α, u

†) +
2(p− κ)

(p/κ)κ/(p−κ) p
(αβ2)

p/(p−κ)

and

Dξ(u
δ
α, u

†) ≤
2δp + 2(p−κ)

(p/κ)κ/(p−κ) p
(αβ2)

p/(p−κ)

α (1− β1)
(3.11)

hold. This yields (3.7) for the a priori parameter choice α � δp−κ and proves the theorem.
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4 Convergence rates for approximate source conditions

In the second step we formulate as main theorem the consequences of Lemma 3.1 for the
case that ξ belongs to the closure of the range R(F ′(u†)∗) of the bounded linear operator
F ′(u†)∗ : V ∗ → U∗ with respect to the strong norm in U∗ provided that ξ does not fulfill
the benchmark source condition (3.1) for any w ∈ V ∗. This theorem complements the
corresponding assertions made in [11] for κ = 1 and p = 1 in (1.3) to the cases 1 < p <∞
and 0 < κ < 1.

Therefore, our focus will be now on elements ξ ∈ U∗ satisfying the condition

ξ ∈ R(F ′(u†)∗)
‖·‖U∗ \ R(F ′(u†)∗) . (4.1)

Then immediately from the definition of the distance function (3.3) we obtain the next
lemma.

Lemma 4.1 Let ξ satisfy the requirement (4.1). Then the non-increasing distance func-
tion d(R) is strictly positive for all 0 ≤ R <∞, and it tends to zero as R→∞.

Remark 4.2 We shortly discuss the strength of the assumption (4.1) in Lemma 4.1.

(a) If U is a Hilbert space, then with U = N (F ′(u†))⊕R(F ′(u†)∗) the assumption (4.1)
requires that ξ is orthogonal to the null-space of F ′(u†), which is always satisfied for an
injective operator F ′(u†).
(b) More general an assumption ξ ∈ R(F ′(u†)∗)

‖·‖U∗ is even always fulfilled for an arbi-
trary reflexive Banach space if F ′(u†) : U → V is injective. Namely, we then have by
separation theorem R(F ′(u†)∗)

‖·‖U∗
= U∗.

(c) If U is a q-convex Banach space with 2 ≤ q < ∞ and if the stabilizing functional
(2.3) from Example 2.3 is chosen, then we learned by [28, Lemma 2.10] that at least for
equations (1.1) with bounded linear operators F : U → V the subdifferential ξ at any
Ω-minimum norm solution u† satisfies the condition ξ ∈ R(F ∗)

‖·‖U∗ .

Now we recall the specific variant

ξ = F ′(u†)∗wR + rR, wR ∈ V ∗, ‖wR‖V ∗ ≤ R, ‖rR‖U∗ = d(R) , (4.2)

of the additive decomposition (3.2) of ξ for arbitrary radii R > 0. We assume c1 > 0.
This implies 0 ≤ c2 < 1 and hence 1

1−c2 ≥ 1. Then taking into account (3.4) for arbitrarily
fixed R0 > 0 we obtain from (3.6)

β2 ≤ ρ
1−κ
p R + (1− c2)K

1
1−c2R

1
1−c2

≤
(
ρ

1−κ
p R

− c2
1−c2

0 + (1− c2)K
1

1−c2

)
R

1
1−c2

for all R ≥ R0 > 0. Thus we can find a constant 0 < K̃ <∞ independent of R such that

|
〈
ξ, u− u†

〉
U∗,U
| ≤ c2Dξ(u, u

†) + K̃R
1

1−c2
∥∥F (u)− F (u†)

∥∥ c1
1−c2
V + d(R)

∥∥u− u†∥∥
U

(4.3)
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holds for all u ∈ Mv
αmax(ρ) and all R ≥ R0 > 0. If d(R) → 0 as R → ∞ this estimate

allows us to balance R and α in an appropriate manner such that the additional term
d(R)

∥∥u− u†∥∥
U
can be handled in order to obtain error estimates of regularized solutions.

Now we are ready to formulate our first main theorem:

Theorem 4.3 Assume that F,Ω,D, U and V satisfy the Assumptions 2.1 and 2.4. For
some 0 < c1 ≤ 1, 0 ≤ c2 < 1 such that c1 + c2 ≤ 1 let F be of degree (c1, c2) for the
Bregman distance Dξ(·, u†) of Ω at the Ω-minimizing solution u† ∈ DB(Ω) ⊆ U of (1.1)
and at ξ ∈ ∂Ω(u†) ⊆ U∗ satisfying the condition (4.1). Moreover, we set

κ :=
c1

1− c2
(4.4)

and introduce for R > 0 the functions Ψ(R) := d(R)
p−κ
κ

R
p
c1

, Φ(R) := d(R)
1
κ

R
1
c1

. Then we have
the convergence rate

Dξ(u
δ
α, u

†) = O
(
d
(
Φ−1(δ)

))
as δ → 0 (4.5)

when α = α(δ) satisfies the equation δ = (αd(Ψ−1(α)))
1
p for sufficiently small δ > 0.

To prove this theorem we use the following lemma:

Lemma 4.4 Under the assumptions of Theorem 4.3 there exist constants K1, K2, K3 > 0
for arbitrary R > 0 such that the estimate

Dξ(u
δ
α, u

†) ≤ K1
δp

α
+K2 α

κ
p−κR

p
(p−κ)(1−c2) +K3 d(R) (4.6)

holds for all R ≥ R0 > 0 and all sufficiently small α > 0. If, additionally, the Bregman
distance is q-coercive in u†, i.e. (2.2) holds for u = u† with constant c > 0 and for some
1 < q <∞, then we can further estimate as

Dξ(u
δ
α, u

†) ≤ q

q − 1
K1

δp

α
+

q

q − 1
K2 α

κ
p−κR

p
(p−κ)(1−c2) +

(
c−

1
q

1− c2

) q
q−1

d(R)
q
q−1 . (4.7)

Proof: By definition we have 0 ≤ β1 = c2 < 1. Following the lines of the proof of
Theorem 3.3 by using inequality (4.3) instead of (3.8) we arrive at

Dξ(u
δ
α, u

†) ≤ 2

1− c2
δp

α
+

2(p− κ)

(p/κ)κ/(p−κ)p(1− c2)
α

κ
p−κβ

p
p−κ
2 +

Kmax

1− c2
d(R).

Here, we additionally used ‖uδα − u†‖U ≤ Kmax. Moreover, from the considerations
above we have β

p
p−κ
2 ≤ K̃

p
p−κR

p
p−κ . Thus, estimate (4.6) holds with K1 := 2

1−c2 , K2 :=
2(p−κ)

(p/κ)κ/(p−κ)p(1−c2)
K̃

p
p−κ and K3 := Kmax

1−c2 .

Under the additional q-coercivity condition (2.2) we can further conclude

Dξ(u
δ
α, u

†) ≤ K1
δp

α
+K2α

κ
p−κR

p
(p−κ)(1−c2) +

‖uδα − u†‖U
1− c2

d(R)

≤ K1
δp

α
+K2α

κ
p−κR

p
(p−κ)(1−c2) +

c−
1
q

1− c2
Dξ(u

δ
α, u

†)
1
q d(R).
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Now we apply once more the inequality (3.5) with p1 := q, p2 := q/(q−1), a := Dξ(u
δ
α, u

†)
1
q

and b := c
− 1
q

1−c2d(R). This yields

c−
1
q

1− c2
Dξ(u

δ
α, u

†)
1
q d(R) ≤ 1

q
Dξ(u

δ
α, u

†) +

(
q − 1

q

)(
c−

1
q

1− c2

) q
q−1

d(R)
q
q−1 ,

and hence(
1− 1

q

)
Dξ(u

δ
α, u

†) ≤ K1
δp

α
+K2α

κ
(p−κ)(1−c2)R

p
p−κ +

(
q − 1

q

)(
c−

1
q

1− c2

) q
q−1

d(R)
q
q−1

completing the proof of the lemma.

Proof of Theorem 4.3: Now we complete the proof of the theorem based on the result of
Lemma 4.4. First we note that all exponents occurring in the functions Φ and Ψ are strictly
positive. Since d(R) is non-increasing and tends to zero as R→∞ because of Lemma 4.1,
it is an immediate consequence that both functions Φ(R) and Ψ(R) are strictly decreasing
for all R > 0 and tend to zero as R → ∞. Furthermore, the inverse functions Φ−1 and
Ψ−1 are well-defined and strictly decreasing for sufficiently small positive arguments. We
can balance now in (4.6) the last two terms as d(R) = α

κ
p−κR

p
(p−κ)(1−c2) or equivalently

Ψ(R) = d(R)
p−κ
κ

R
p
c1

= α. Evidently, we find for sufficiently small α > 0 a uniquely determined
R = R(α) > 0 satisfying the equation Ψ(R) = α, where R(α) tends to infinity as α→ 0.
Thus we can estimate further with some more constant K0 > 0 and for sufficiently small
α > 0 as

Dξ(u
δ
α, u

†) ≤ K1
δp

α
+K0 d(Ψ−1(α)) .

The function d(Ψ−1(α)) in the last term of that estimate defined for sufficiently small
α > 0 is strictly increasing and tends to zero as α→ 0.

In a last step we have to balance α and δ in the sense of an a priori parameter choice
α = α(δ). For δ > 0 sufficiently small, this can be done by choosing α > 0 such that

δ =
(
αd(Ψ−1(α))

) 1
p =

(
d(R)

p
κ

R
p
c1

) 1
p

= Φ(R).

Hence we obtain the rate (4.5).

Remark 4.5 In order to interpret the convergence rate (4.5) and to compare it with the
rate (3.7) occurring in case that the benchmark source condition (3.1) is satisfied, we
introduce the quotient function

ζ(δ) :=
δκ

d(Φ−1(δ))
(4.8)

defined for sufficiently small δ > 0. Following the steps of the proof of Theorem 4.3
presented above we find with δ = Φ(R) the equations

ζ(δ) =
Φ(R)κ

d(R)
=

(
d(R)

1
κ

R
1
c1

)κ
1

d(R)
= R

− κ
c1 =

(
Φ−1(δ)

)− κ
c1 → 0 as δ → 0.
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Hence there is a deficit in the convergence rate expressed by the function ζ coming from
the violation of the benchmark source condition. The slower the distance function d(R)
declines to zero as R → ∞ the greater is the deficit. For illustration we refer to Exam-
ple 4.9.

If the Bregman distance is q-coercive we are able present another result with improved
convergence rates. This is done in a second main theorem:

Theorem 4.6 Let the assumptions of Theorem 4.3 hold including the setting (4.4) of
κ and let the Bregman distance be q-coercive in u† with constant c > 0 and for some

1 < q < ∞. Moreover, we introduce for R > 0 the functions Ψq(R) := d(R)
q(p−κ)
(q−1)κ

R
p
c1

and

Φq(R) := d(R)
q

(q−1)κ

R
1
c1

. Then we have the convergence rate

Dξ(u
δ
α, u

†) = O
(
d
(
Φ−1
q (δ)

) q
q−1

)
as δ → 0 (4.9)

when α = α(δ) satisfies the equation δ = α
1
pd(Ψ−1

q (α))
q

p(q−1) for sufficiently small δ > 0.

Proof: We consider the estimate (4.7) and balance the last two terms in the right-
hand side as an appropriate one-to-one correspondence between sufficiently large R and
sufficiently small α > 0:

α
κ
p−κR

p
(p−κ)(1−c2) = d(R)

q
q−1 , or equivalently Ψq(R) =

d(R)
q(p−κ)
(q−1)κ

R
p
c1

= α .

In a second step we equilibrate the remaining terms in δ and α as

d(R)
q
q−1 =

δp

α
=

δp

d(R)
q(p−κ)
(q−1)κ

R
p
c1 ,

which gives
δpR

p
c1 = d(R)

q
q−1(1+ p−κ

κ ) = d(R)
q p

(q−1)κ

and yields with Φq(R) = d(R)q/((q−1)κ)R(−1/c1) = δ and

δ = α
1
pd
(
Ψ−1
q (α)

) q
(q−1)p = α

1
pd(R)

q
(q−1)p

the estimate (4.9) when the corresponding a priori parameter choice is taken. This proves
the theorem.

The q-coercivity of the Bregman distance also allows us to derive convergence rates
with respect to the norm ‖ · ‖U instead of Dξ(u

δ
α, u

†). This is an immediate consequence
of the formulae (4.9) and (2.2).

Corollary 4.7 Under the conditions and notations of Theorem 4.6 we have the conver-
gence rate

‖uδα − u†‖U = O
(
d
(
Φ−1
q (δ)

) 1
q−1

)
as δ → 0. (4.10)
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There are different ways to obtain distance functions d(R) or at least appropriate ma-
jorants based on link conditions, for example range inclusions, between the linearization
operator F ′(u†) and self-adjoint positive operators G : U → U that express well-known
or assumed smoothness properties of the solution in the form ξ ∈ R(G) (see [4, 15, 18]).

In [12, p. 358-9] both situations of slow logarithmic decay rates and of faster power
decay rates of d(R) were discussed in a more simpler setting. Below we outline the
consequences of these situations in two examples .

Example 4.8 (Logarithmic convergence rates) First we consider a slow decay rate

d(R) ≤ C

(logR)µ

of logarithmic type for the distance function considered for sufficiently large R > 0 and
some exponent µ > 0. This expresses the fact that ξ violates the benchmark source
condition (3.1) in a strong manner. If U was a Hilbert space, then one should expect that
ξ would satisfy only a logarithmic source condition (cf. [19])

ξ = ϕ(F ′(u†)∗F ′(u†))w , w ∈ U , with ϕ(t) = 1/(log(1/t))µ.

Now in our Banach space world we apply the estimate (4.6) from Lemma 4.4. We set
R := α−ν with 0 < ν < κ(1−c2)

p
to obtain an estimate

Dξ(u
δ
α, u

†) ≤ K1
δp

α
+

K4

(log(1/α))µ

for sufficiently small α > 0. Here we used that for small α the logarithmic rate is slower
than any power rate with positive exponent. Now for any a priori parameter choice α � δγ

with exponent 0 < γ < p in the sense of Theorem 4.3 we arrive at the convergence rate

Dξ(u
δ
α, u

†) = O
(

1

(log(1/δ))µ

)
as δ → 0 . (4.11)

If the additional condition (2.2) is valid and we estimate in the sense of Theorem 4.6
starting with the estimate (4.7), then we arrive at the logarithmic rate

Dξ(u
δ
α, u

†) = O

(
1

(log(1/δ))
µq
q−1

)
as δ → 0 . (4.12)

For all 2 ≤ q <∞ the convergence rate (4.12) is better than the rate (4.11).

Example 4.9 (Hölder convergence rates) As second situation we consider a power-
type decay rate

d(R) ≤ C

R
µ

1−µ
, 0 < µ < 1, (4.13)

for the distance function considered for sufficiently large R > 0. This expresses the
fact that ξ violates the benchmark source condition (3.1) in a medium manner. If the
parameter µ varies through the range 0 < µ < 1, then all possible powers Rθ, 0 < θ <∞,
occur in the denominator of the right-hand side of (4.13).
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If U, V were Hilbert spaces, then under the situation of Example 2.2 by the converse
result of Corollary 3.3 in [6] the decay rate (4.13) of the distance function would imply
the range condition u† − u∗ ∈ R

(
(F ′(u†)∗F ′(u†))ν/2

)
for all 0 < ν < µ. Then with

c1 = 1, c2 = 0 we also would find low order convergence rates
∥∥uδα − u†∥∥U = O

(
δ

ν
1+ν

)
for all 0 < ν < µ. However for 0 < c1 < 1 no such results would come from [17,
Theorem 1]. Noting that by [6, Theorem 3.1] on the other hand a low order source
condition u† − u∗ ∈ R

(
(F ′(u†)∗F ′(u†))µ/2

)
would imply a decay rate of type (4.13) for

the distance function, we can compare now the Hilbert space results with the convergence
rates obtained by Theorems 4.3 and 4.6.

For the Bregman distance and Banach space setting we find with (4.13) from Theo-
rem 4.3 a function Φ(R) = CR

1−µc2
(µ−1)c1 in the case 0 < c1 ≤ 1 with 0 < c1 + c2 ≤ 1, which

yields with κ = c1
1−c2 the convergence rate

Dξ(u
δ
α, u

†) = O
(
δ

µc1
1−µc2

)
= O

(
δ
κ

“
µ−µc2
1−µc2

”)
as δ → 0 . (4.14)

Even if κ = c1
1−c2 = 1, i.e. c1 + c2 = 1, the corresponding Hölder rate exponent

0 < µc1
µc1+(1−µ)

< 1 tends to zero as c1 → 0, whereas the rate δκ of Theorem 3.3 remains
valid for arbitrarily small c1 > 0.

The behaviour of the function (4.8) introduced in Remark 4.5 can be illustrated in
this example by the explicit order expression

ζ(δ) =
(
Φ−1(δ)

) κ
c1 ∼ δ

κ( 1−µ
1−µc2

)

This function characterizes the rate deficit caused by violating the benchmark source
condition, where the deficit grows with growing exponents of δ and ζ(δ) ∼ δκ would
express the limiting worst case. Now the exponent grows with the amplification factor
1−µ

1−µc2 which increases for fixed c2 when µ decreases. The slower the distance function
d(R) declines to zero as R→∞ the greater is the deficit.

On the other hand, under the additional q-coercivity condition (2.2) for the Bregman
distance Theorem 4.6 yields the rate

Dξ(u
δ
α, u

†) = O
(
δ

µc1 q
(1−µc2) q+µ−1

)
as δ → 0 , (4.15)

which is better than (4.14). Provided that the situation of Example 2.2 arises we have
q = 2, and (4.15) gives here the rate

‖uδα − u†‖U = O
(
δ

µc1
1+µ(1−2c2)

)
= O

(
δ

µc1
(1−µc2)+µ(1−c2)

)
as δ → 0.

Evidently, the low order rate results of Theorems 4.3 and 4.6 are more general than the
older ones in Hilbert space, because they include the variation of all three parameters c1, c2
and µ. In particular, Theorem 4.6 even leads to optimal convergence rate

∥∥uδα − u†∥∥U =

O
(
δ

µ
1+µ

)
for c1 = 1, c2 = 0 in case of Example 2.2.

Remark 4.10 In the process of balancing the distance functions d(R) the proofs of The-
orem 4.3 and Theorem 4.6 both exploited the estimate (4.3) with last term d(R)

∥∥u− u†∥∥
U
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in the right-hand side. The proof of the latter theorem used the fact that
∥∥u− u†∥∥

U
tends

to zero for u := uδα and α(δ)→ 0, whereas the proof of the former only used the bounded-
ness (2.4). So it is not amazing that the rate (4.9) tends to be better than the rate (4.5)
as the Examples 4.8 and 4.9 show. However, one should note that the q-coercivity (2.2)
in Theorem 4.6 may be a strong additional requirement.

5 Conclusions

As the proofs of Lemma 4.4 and of Theorem 4.3 show, for the applicability of the method
of approximate source conditions based on balancing large R and small α as developed
for linear ill-posed problems in [12, 13, 15] to nonlinear ill-posed problems the exponent
c1 in Definition 2.5 has to be strictly positive. Only for such cases we have automatically
β1 < 1 in the estimate (3.4) which allows us to use arbitrarily large values R. In the
alternative case c1 = 0 and c2 = 1 as in the classical theory of [8] an additional smallness
condition

K ‖w‖V ∗ = K R < 1

is required that restricts the radii R by R ≤ Rmax < ∞ for ensuring β1 < 1. This
restriction destroys the success of the balancing approach, and hence convergence rates
cannot be derived in such a way. It is a simple consequence of our ideas using (3.1)
as benchmark source condition that we can present here only results with low order
convergence rates, i.e., the rate is not better thanDξ(u

δ
α, u

†) = O (δ). However, we cannot
answer the question whether for nonlinear ill-posed equations the method of approximate
source conditions may yield higher convergence rates when benchmark source conditions
with more smoothness are exploited. For linear ill-posed equations an extension of the
method to general index functions as benchmark was successful (see [6, 15]). On the
other hand, as a rule faster convergence rates for nonlinear ill-posed equations require
additional conditions associated with smallness (see for details [25] and [22, 26, 29]).

Finally let us mention two points for future work. First in any case the abstract theory
presented here has to be complemented by illustrative examples with concrete nonlinear
forward operators and concrete Banach spaces. In particular, examples with fractional
exponents 0 < c1 < 1 would be of interest. Second, we assumed c1 + c2 ≤ 1 throughout
the paper. It is open whether the case c1 = 1, c2 > 0 can lead to further convergence rates
results. At least for Example 2.2 in Hilbert spaces U and V inequalities of the form∥∥F (u)− F (u†)− F ′(u†)(u− u†)

∥∥
V
≤ K

∥∥F (u)− F (u†)
∥∥
V
‖u− u†‖U

have numerous applications which corresponds to c1 = 1, c2 = 1/2 in our notation.
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