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Foreword

In the present paper we consider classes of matrices the entries of which are in a given field
F . These matrices have a special structure, they are Bezoutians. Historically, Bezoutians were
at first introduced in connection with the elimination for the solution of systems of nonlinear
algebraic equations and in connection with root localization problems. Only much later their
importance for Hankel and Toeplitz matrix inversion became clear.

We will introduce three kinds of Bezoutians: Toeplitz Bezoutians, Hankel Bezoutians, and
Toeplitz-plus-Hankel Bezoutians. The classes of Toeplitz and Hankel Bezoutians are related to
Toeplitz and Hankel matrices in two ways. First, the inverses of Toeplitz and Hankel matrices
are Toeplitz and Hankel Bezoutians, respectively. Furthermore, in case where F = C , Hermitian
Toeplitz and Hankel Bezoutians are congruent to Toeplitz and Hankel matrices. The class of
Toeplitz-plus-Hankel Bezoutians includes the inverses of Toeplitz-plus-Hankel matrices. Instead
of a summary of the content we will offer the table of contents at the end of this foreword.

The present paper is not a usual paper. It originated from the draft of one chapter of a text-
book on structured matrices planned by both authors. This textbook for graduate students was
intended to range from the basics for beginners up to recent investigations. At the beginning
of 2005 the outlines for the first three chapters were ready and parts of the text were in an
acceptable form when Georg Heinig, the head of this project, unexpectedly died of a heart
attack on May 10, 2005. We have lost one of the top experts in the field of structured matrices.
His death reveals a gap we cannot overcome. This is the tragedy of the planned book and also
of the present paper.

In the last period of our cooperation that had lasted 30 years we mainly worked on the
third chapter of the textbook, which was dedicated to Bezoutians, so that I think that this part
of the book was perhaps the favorite “child” of Georg.

Thus I felt obliged to continue and complete this text to achieve a selfcontained, improved
version which can be published separately. I started with a preliminary section to make the
presentation more selfcontained. Then I corrected and completed the other sections. Since the
Toeplitz-plus-Hankel case was not included, I added main results concerning this case in Sections
11 and 12. Moreover, I finished, as planned, with exercises – part of which were already discussed
with Georg – and then I make some short historical notes and provide hints to literature pursuing
and accentuating the topic in different directions.
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I hope I was able to do all these things in such a way that Georg would not be ashamed. In
fact it is a hard burden of responsibility for me, in particular, since Georg was an outstanding
mathematician with excellent abilities in teaching and in writing papers.

A further reason for this paper is that the topic of Bezoutians is very nice, interesting and
important with a lot of connections and applications. In the last few years, one can even observe
a revival of the interest in Bezoutians, mainly motivated by their importance in many modern
fields such as numerical computing and control theory. Thus it would be very useful to have an
introductional paper into this topic, where a lot of properties and relations are systematically
collected and explained.

I neither intend to quote a huge number of relevant papers nor to mention all corresponding
generalizations and applications. What I try and do is to appreciate Georg’s contributions, since
his legacy concerning this topic is enormously.

In 1971 Georg started his PhD studies at the State University of Moldavia in Kishinev
under the supervision of Israel Gohberg. By this time he was irretrievably cast into the realm
of structured matrices, in particular of Toeplitz and Hankel matrices as well as Bezoutians.
His very early joint papers with I. Gohberg [12], [13] dealt with the inversion of finite Toeplitz
matrices, the papers [14], [15], [16], [17], [18], [19], [20], [21] were dedicated to Bezoutians and
resultant matrices mainly for operator-valued polynomials or to continual analogs of resultants
and Bezoutians. The main results of these papers were milestones of the research in this field.

In 1975 Georg waked up my interests in the topic of Toeplitz and Hankel matrices and their
inverses. Thus, in 1981, I wrote a large part of my PhD thesis on the method of UV-reduction
for inverting structured matrices under his excellent supervision. When we started our work on
the book “Algebraic Methods for Toeplitz-like Matrices and Operators” [32], [33] he introduced
me, in particular, into the wonderful world of Bezoutians. In this book, Section 2 of Part I
is dedicated to Bezoutians and resultant matrices. Some of the results presented there are, of
course, also offered here but, as the result of new thoughts about the matter, from another point
of view.

Moreover, in Subsection 2.2, Part II of [33] we present first ideas and results concerning
matrices which are the sum of a Toeplitz and a Hankel matrix (briefly T+H matrices). In
my opinion, one of our most important joint result is that in 1986 we discovered a Bezoutian
structure also for inverses of T+H matrices (see [34]). This was the starting point of a long
interesting and fruitful joint work on these special cases of structured matrices In fact, until now
I feel a motivation given by Georg to deal with the T+H case (see [48], [64]).

Beginning with the joint paper [37] we wrote a number of papers on matrix representations
for T+H matrices and their inverses which allow fast matrix-vector multiplication (see e.g. [39],
[38], [40], [42], [43]).

Then we dealt with the problem how to connect the Toeplitz or T+H structure of matrices
with possibly additional symmetries in order to reduce the number of parameters involved in
these formulas or in the corresponding algorithms. Georg’s paper [22] showed that splitting ideas
in the spirit of Delsarte and Genin were very promising. The splitting approaches of our joint
papers [44], [45], [46] differ from those of [22].

(Note that in [34] the concept of ω-structured matrices was introduced as a generalization of
matrices possessing a Toeplitz, Hankel, or T+H structure. This class of and further investigated
in [35], [36]. But these considerations are not included in this paper.)

I was only one of a large number of Georg’s coauthors and pupils. In particular, Uwe Jung-
nickel wrote his PhD thesis under Georg’s supervision in 1986. In their joint papers [27], [28]
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they considered Routh-Hurwitz or Schur-Cohn problems of counting the roots of a given poly-
nomial in a half plane or in a circle. They investigated Hankel matrices generated by the Markov
parameters of rational functions and their importance for partial realization and Pade approxi-
mation in [30], [29]. They investigated the connection of Bezoutians and resultant matrices for
the solution of matrix equations in [26], [31].

In Section 7 of Part I of [33] some first results concerning the Bezoutian structure of
generalized inverses are presented. Georg continued this investigation together with his student
Frank Hellinger. Their results published in [23], [25], [24] have found perpetual interest by a
large community. Since they go beyond the scope of the present paper they are not included.

It is not possible to recognize the full extent and importance of Georg’s work concerning
Bezoutians. I beg your pardon for all I will forget to mention or I will not appreciate to the due
extend.

Karla Rost
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1. Preliminaries

1. Notations. Throughout the paper, F will denote an arbitrary field. In some sections we restrict
ourselves to the case that F = C or R, the fields of complex or real numbers, respectively. By
{ e1, . . . , en } the standard basis of F

n is denoted. Furthermore, 0k will stand for a zero vector
of length k. If there is no danger of misunderstanding we will omit the subscript k.

As usual, an element of the vector space F
n will be identified with the corresponding n× 1

(column) matrix. That means

(xi)
n
i=1 = (x1, . . . , xn) =



x1

...
xn


 .

In all what follows we denote by ℓn(t) , t ∈ F , the vector

ℓn(t) = (1, t, t2, . . . , tn−1) . (1.1)

The Bezoutian concept is convenient introduced in polynomial language. First we introduce
“polynomial language” for vectors. For x = (xi)

n
i=1 ∈ F

n, we consider the polynomial

x(t) = ℓn(t)T x =

n∑

k=1

xkt
k−1 ∈ F

n(t)

and call it generating polynomial of x. Polynomial language for matrices means that we introduce
the generating polynomial of an m × n matrix A = [ aij ]m n

i=1,j=1 ∈ F
m×n as the bivariate

polynomial

A(t, s) = ℓm(t)TAℓn(s) =

m∑

i=1

n∑

j=1

aij t
i−1sj−1.

At several places in this paper we will exploit symmetry properties of matrices. Besides symme-
try, skewsymmetry and Hermitian symmetry in the usual sense we also deal with persymmetry
and centrosymmetry. To be more precise we introduce some notations. Let Jn be the matrix of
the flip operator in F

n mapping (x1, x2, . . . , xn) to (xn, xn−1, . . . , x1) ,

Jn =




0 1
. .

.

1 0


 . (1.2)

For a vector x ∈ F
n we denote by xJ the vector Jnx and, in case F = C, by x# the vector Jnx ,

where x is the vector with the conjugate complex entries,

xJ = Jnx and x# = Jnx .

In polynomial language the latter looks like

xJ(t) = x(t−1)tn−1, x#(t) = x(t−1)tn−1 .

A vector is called symmetric if xJ = x, skewsymmetric if xJ = −x, and conjugate symmetric if
x# = x. Let F

n
+(Fn

−) denote the subspace of all symmetric (skewsymmetric) vectors of F
n, and

let P± be the matrices

P± =
1

2
(In ± Jn) . (1.3)

These matrices are projections onto F
n
± and

P+ + P− = In, P+ − P− = Jn .
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For an n× n matrix A, we denote

AJ = JnAJn and A# = JnAJn ,

where A is the matrix with the conjugate complex entries. An n × n matrix A is called per-
symmetric if AJ = AT . The matrix A is called centrosymmetric if AJ = A. It is called centro-
skewsymmetric if AJ = −A and centro-Hermitian if A# = A.

2. Sylvester’s inertia law. Assume that F = C. Let A be an Hermitian n× n matrix. The triple
of integers

InA = (p+, p−, p0)

in which p+ is the number of positive, p− the number of negative, and p0 the number of zero
eigenvalues, counting multiplicities, is called the inertia of A. Clearly p+ + p− + p0 = n. The
integer

sgnA = p+ − p−

is called the signature of A. Note that p− + p+ is the rank of A, so that rank and signature of
an Hermitian matrix determine its inertia.

Two Hermitian n × n matrices A and B are called congruent if there is a nonsingular
matrix C such that B = C∗AC, where C∗ denotes the conjugate transpose of C. The following
is Sylvester’s inertia law, which will frequently be applied in this paper.

Theorem 1.1. Congruent matrices have the same inertia.

We will often apply the following version of Sylvester’s inertia law.

Corollary 1.2. Let A be an Hermitian m ×m matrix and C an m × n matrix with m ≤ n and
rankC = m. Then the signatures of A and C∗AC coincide.

To see that Corollary 1.2 follows from Theorem 1.1 we extend C to a nonsingular n × n

matrix C̃ by adding rows at the bottom. Then C∗AC = C̃∗ÃC̃, where Ã is the extension of A
by n−m zero columns and zero rows on the right and at the bottom, respectively. This means

that C∗AC is congruent to Ã, and thus sgnC∗AC = sgn Ã = sgnA.

3. Toeplitz, Hankel, and Toeplitz-plus-Hankel matrices. Let Tmn be the subspace of F
m×n con-

sisting of all m× n Toeplitz matrices

Tmn(a) = [ ai−j ]m n
i=1,j=1, a = (ai)

m−1
i=1−n ∈ F

m+n−1.

The subspace of all m× n Hankel matrices

Hmn(s) = [ si+j−1 ]m n
i=1,j=1, s = (si)

m+n−1
i=1 ∈ F

m+n−1

is denoted by Hmn . The dimension of these subspaces is m+n−1 . The intersection Tmn∩Hmn

consists of all chess-board matrices,

B =




c b c · · ·
b c b · · ·
c b c · · ·
...

...
...


 (c, b ∈ F) (1.4)

which form a two-dimensional subspace of F
m×n. The subspace of all m×n matrices Rmn which

are the sum of a Toeplitz and a Hankel matrix (briefly T+H matrices)

Rmn = Tmn(a) +Hmn(s)
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is 2(m+n−2) dimensional. Since for an m×n Hankel matrix Hmn the matrix HmnJn is Toeplitz
any T+H matrix can be represented in the form

Rmn = Tmn(a) + Tmn(b)Jn (a,b ∈ F
m+n−1). (1.5)

From this another representation is derived involving the projections P± introduced in (1.3),

Rmn = Tmn(c)P+ + Tmn(d)P− (1.6)

with c = a+b,d = a−b . Obviously, all these representations are not unique (see Exercises 15
and 16).

4. Quasi-Toeplitz matrices, quasi-Hankel matrices, and quasi-T+H matrices. We consider the
transformation ∇+ in the space of n× n matrices defined by

∇+(A) = A− SnAS
T
n , (1.7)

where Sn is the forward shift in F
n mapping (x1, x2, . . . , xn) to (0, x1, . . . , xn−1) ,

Sn =




0 0 0
1 0 0

. . .
. . .

0 1 0


 . (1.8)

It can easily be checked that this transformation is one-to-one. The transformation ∇+ is called
shift displacement operator. For a Toeplitz matrix Tn = [ ai−j ]ni,j=1 we have, obviously,

∇+(Tn) =




a′0 1
a1 0
...

...
an−1 0




[
a′0 a−1 . . . a1−n

1 0 . . . 0

]
,

where a′0 = 1
2 a0. In particular, the rank of ∇+(Tn) equals 2, unless Tn is triangular. In the latter

case the rank of ∇+(Tn) equals 1, unless Tn = O.

Notice that if Tn is Hermitian, then ∇+(Tn) is also Hermitian, and the signature of ∇+(Tn)
equals zero, unless Tn is diagonal. (Obviously, Tn diagonal means Tn = a0In and sgn(∇+(Tn))
equals the signum of a0.)

Moreover, a matrix A is Toeplitz if and only if the (n − 1) × (n − 1) submatrix in the
lower right corner of ∇+(A) is the zero matrix. An n × n matrix A is called quasi-Toeplitz if
rank∇+(A) ≤ 2 .

Clearly, Toeplitz matrices are also quasi-Toeplitz, but not vice versa. The following propo-
sition gives a complete description of quasi-Toeplitz matrices. Since the proof is an elementary
calculation, we leave it to the reader.

Proposition 1.3. Suppose that ∇+(A) = g+gT
− − h+hT

−, g± = (g±i )n
i=1, h± = (h±i )n

i=1. Then A
can be represented as the sum of 2 products of triangular Toeplitz matrices,

A=



g+
1 0
...

. . .

g+
n . . . g+

1






g−1 . . . g−n

. . .
...

0 g−1


−



h+

1 0
...

. . .

h+
n . . . h+

1






h−1 . . . h−n

. . .
...

0 h−1


 . (1.9)

Conversely, if A is given by (1.9), then ∇+(A) = g+gT
− − h+hT

−.
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Analogously, we consider the transformation ∇+ : F
n −→ F

n defined by

∇+(A) = SnA−AST
n . (1.10)

A matrix A is Hankel if and only if the (n − 1) × (n − 1) submatrix in the lower right corner
of ∇+(A) is the zero matrix. We call a matrix A quasi-Hankel if rank∇+(A) ≤ 2 . A similar
representation to (1.9) can be obtained.

Let Wn be the matrix Wn = Sn + ST
n , and let ∇ : F

n −→ F
n be defiend by

∇ (A) = AWn −WnA . (1.11)

Proposition 1.4. A matrix A is a T+H matrix if and only if the (n− 2) × (n− 2) submatrix in
the center of ∇ (A) is the zero matrix.

We call a matrix A quasi-T+H if rank∇ (A) ≤ 4 . T+H matrices are also quasi-T+H, but
not vice versa.

5. Möbius transformations. The flip operator Jn introduced in (1.2) is a special case of a class

of operators which will be described in this subsection. Let φ =

[
a c
b d

]
be a nonsingular 2×2

matrix with entries from F. We associate φ with the linear fractional function

φ(t) =
at+ b

ct+ d
.

Despite we use the name “function”, φ(t) is understood here in a formal sense, i.e. t is considered
as an abstract variable. In the case where F = C, φ(t) can be seen as a function mapping the
Riemann sphere onto itself. These linear fractional functions form a group M with respect
to composition. This group is isomorphic, modulo multiples of I2, to the group GL(F2) of
nonsingular 2 × 2 matrices. The latter means that if φ = φ1φ2, then φ(t) = φ2(φ1(t)), and
φ(t) = t if and only if φ = αI2 for some α ∈ F.

We will make use of the fact that the group GL(F2) is generated by matrices of the form

(a)

[
a 0
0 1

]
(a 6= 0), (b)

[
1 0
b 1

]
, (c)

[
0 1
1 0

]
. (1.12)

For φ ∈ GL(F2) and a natural number n, let Kn(φ) denote the operator defined by

Kn(φ)x(t) = x(φ(t))(ct+ d)n−1

for x(t) ∈ F
n(t). An operator of this form will be called Möbius transformation. It is easily

checked that Kn(φ) maps F
n(t) into itself and is linear. In the special cases (1.12) we have

(a) Kn(φ)x(t) = x(at), (b) Kn(φ)x(t) = x(t+ b), (c) Kn(φ)x(t) = x(t−1)tn−1. (1.13)

The matrix representations of these transformations (called Möbius matrices) with repsect to
the standard basis in F

n(t) are

(a) Kn(φ) = diag(aj)n−1
j=0 , (b) Kn(φ) =

[ (
k

j

)
bk−j

]n−1

j,k=0

, (c) Kn(φ) = Jn. (1.14)

Furthermore, the following is true.

Proposition 1.5. If φ1, φ2 ∈ GL(F2) and φ = φ1φ2, then Kn(φ) = Kn(φ1)Kn(φ2).
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It is sufficient to prove the proposition for the special matrices (1.12). We leave this to the
reader.

According to Proposition 1.5 the Möbius transformations are all invertible and form a
subgroup of the group of invertible linear operators on F

n. Furthermore, Kn(φ)−1 = Kn(φ−1).
Möbius matrices are mostly used in connection with matrix transformations of the form

A 7→ Kn(ψ)TAKn(φ) (1.15)

for fixed φ, ψ ∈ GL(F2). In the literature special cases of such transformations are called
Frobenius-Fischer transformations. We will use this name for all transformations of this form.
Some Frobenius-Fischer transformations are mappings inside a class of structured matrices,
other build a bridge between different classes. We discuss here the situation with Hankel and
Toeplitz matrices.

Let Hn denote the class of n × n Hankel matrices Hn(s) = [ si+j−1 ]ni,j=1, where s =

(si)
2n−1
i=1 ∈ F

2n−1 . The following proposition describes Frobenius-Fischer transformations that
map Hn into itself.

Proposition 1.6. For φ ∈ GL(F2) and s ∈ F
2n−1 , the equality

Kn(φ)THn(s)Kn(φ) = Hn(s̃)

with s̃ = K2n−1(φ)T s is satisfied.

Proof. It suffices to prove the proposition for the special cases (1.12). The cases (a) and (c)
are obvious. Let φ be now of the form (b), Kn(φ)THn(s)Kn(φ) = [ gij ]n−1

i,j=0. Then

gij =

i∑

k=0

j∑

l=0

(
i

k

)(
j

l

)
bi+j−k−lsk+l+1 =

i+j∑

r=0

(
i+ j

r

)
bi+j−rsr+1 .

This implies the assertion.

Now we consider besides Hankel also Toeplitz matrices Tn = [ ai−j ]ni,j=1. The class of n×n
Toeplitz matrices will be denoted by Tn. Obviously, Tn is Toeplitz if and only if JnTn is Hankel.
Remember that Jn is the special Möbius matrix Kn(J2). Thus modifications of Propositions
1.6 can be stated about Frobenius-Fischer transformations transforming Toeplitz into Hankel,
Hankel into Toeplitz and Toeplitz into Toeplitz matrices. In particular, we have the following.

Corollary 1.7. For φ ∈ GL(F2), the transformation A 7→ Kn(ψ)TAKn(φ) maps

1.Hn into Hn if ψ = φ, 2. Tn into Hn if ψ = J2φ,
3.Hn into Tn if ψ = φJ2, 4. Tn into Tn if ψ = J2φJ2.

In the case F = C we are in particular interested in congruence transformations, i.e.
transformations that preserve Hermitian symmetry. For this we have to check under which

condition Kn(ψ)T = K∗
n(φ). In terms of the matrix φ =

[
a c
b d

]
this condition is equivalent

to

1. a, b, c, d real, 2. a = b , c = d , 3. a = c , b = d , 4. a = d , b = c

in the cases of Corollary 1.7. In terms of the linear fractional function φ(t) =
at+ b

ct+ d
this means

that

1. φ(t) maps R to R , 2. φ(t) maps T to R , 3. φ(t) maps R to T , 4. φ(t) maps T to T ,

where T denotes the unit circle. For transformations with this property the inertia of the matrix
remains invariant by Sylvester’s inertia law.
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2. Definitions and Properties for the Hankel and Toeplitz Case

1. Hankel Bezoutians. Let u(t),v(t) ∈ F
n+1(t) be two polynomials. The Hankel Bezoutian or

briefly H-Bezoutian of u(t) and v(t) is, by definition, the n×n matrix B = BezH(u,v) with the
generating polynomial

B(t, s) =
u(t)v(s) − v(t)u(s)

t− s
.

We will also say that B is the H-Bezoutian of the vectors u and v. It is easily seen that B(t, s)
is really a polynomial in t and s. A simple argumentation for this is as follows. We fix s = s0.
Then the numerator is a polynomial in t vanishing at t = s0. Hence we obtain a polynomial
after dividing the numerator by t− s0. Thus B(t, s0) is a polynomial in t. Analogously B(t0, s)
is a polynomial in s for fixed t = t0, and so the claim is proved.

For example, if u(t) = t− a and v(t) = t− b, then we have

B(t, s) =
(t− a)(s− b) − (t− b)(s− a)

t− s
= a− b .

Thus BezH(u,v) = a− b.

As a second example we consider the flip matrix Jn introduced in (1.2). The generating
function of Jn is

Jn(t) =
tn − sn

t− s
.

Thus Jn is the H-Bezoutian of the polynomials tn and 1 or, in other words, of the last and first
unit vectors en+1 and e1.

As a more general example, let us compute the H-Bezoutian Bk of a general polynomial

u(t) ∈ F
n+1(t) and ek(t) = tk−1, k = 1, . . . , n + 1. Suppose that u(t) =

n+1∑
i=1

uit
i−1. Then we

have

Bk(t, s) =

n+1∑

i=1

ui

ti−1sk−1 − tk−1si−1

t− s

=

n+1∑

i=k+1

ui

ti−k − si−k

t− s
tk−1sk−1 −

k−1∑

i=1

ui

tk−i − sk−i

t− s
ti−1si−1 .

In matrix language this means that

BezH(u, ek) =




−u1

. .
. ...

−u1 . . . −uk−1

O

O

uk+1 . . . un+1

... . .
.

un+1




. (2.1)

The case k = 1 is of particular importance. For this reason we introduce the notation

B(u) = BezH(u, e1) =




u2 . . . un+1

... . .
.

un+1


 . (2.2)
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H-Bezoutians are obviously symmetric matrices. They are skewsymmetric with respect to the
arguments, i.e.

BezH(u,v) = −BezH(v,u) .

Furthermore, BezH(u,v) is linear in each argument. That means that, for c1, c2 ∈ F,

BezH(c1u1 + c2u2,v) = c1BezH(u1,v) + c2BezH(u2,v) .

To present a product rule for H-Bezoutians we need the matrix of the multiplication operator

which is introduced as follows. Let a(t) =
m∑

k=0

akt
k ∈ F

m+1(t). For n = 1, 2, . . . , define a linear

operator Mn(a) : F
n −→ F

m+n by

(Mn(a)x)(t) = a(t)x(t) .

The matrix of this operator with respect to the standard bases is the (m+ n) × n matrix

Mn(a) =




a0

a1 a0

... a1
. . .

am

...
. . . a0

am a1

. . .
...
am








m+ n . (2.3)

Moreover, we need the following matrix. Let a(t) =
m∑

k=0

akt
k and b(t) =

n∑
k=0

bkt
k be two given

polynomials. Then

(x(t),y(t)) 7→ a(t)x(t) + b(t)y(t), x(t) ∈ F
n(t), y(t) ∈ F

m(t)

is a linear operator from the direct product F
n(t)⊗F

m(t) to F
m+n(t). The matrix of this operator

with respect to the standard bases is given by [Mn(a) Mm(b) ] . (Here we identify (x(t),y(t))
with x(t) + tny(t) .) The transpose of this matrix is called the resultant matrix (or Sylvester
matrix) of a(t) and b(t) (or of the vectros a and b) and is denoted by Res(a,b),

Res(a,b) =

[
Mn(a)T

Mm(b)T

]
. (2.4)

If we assume that am 6= 0 or bn 6= 0 then Res(a,b) is nonsingular if and only if a(t) and b(t)
are coprime (cf. Exercise 3).

Proposition 2.1. Let u,v ∈ F
n+1, u(t) = u1(t)u2(t), v(t) = v1(t)v2(t), where ui,vi ∈ F

ni+1

(i = 1, 2) and n1 + n2 = n− 1. Then

BezH(u,v) = Res (u2,v1)
T

[
BezH(u1,v1) O

O BezH(u2,v2)

]
Res (v2,u1) . (2.5)

Proof. Let B = BezH(u,v). Then, B(t, s) has the representation

u2(t)
u1(t)v1(s) − v1(t)u1(s)

t− s
v2(s) + v1(t)

u2(t)v2(s) − v2(t)u2(s)

t− s
u1(s) .

In matrix language this means

B = Mn1
(u2)BezH(u1,v1)Mn1

(v2)
T +Mn2

(v1)BezH(u2,v2)Mn2
(u1)

T .
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From this relation the assertion is immediate.

2. The transformation ∇H . Next we clarify what means for a matrix to be an H-Bezoutian in
matrix language. For this we introduce the transformation ∇H transforming an n × n matrix
A = [ aij ]n

i,j=1 into a (n+ 1) × (n+ 1) matrix according to

∇HA = [ ai−1,j − ai,j−1 ]n+1
i,j=1 .

Here we set aij = 0 if one of the integers i or j is not in the set {1, 2, . . . , n}. We have

∇HA =

[
SnA−AST

n ∗
∗ ∗

]
=

[
∗ ∗
∗ ASn − ST

nA

]
, (2.6)

where Sn is defined in (1.8). Comparing the coefficients it is easy to verify that

(∇HA)(t, s) = (t− s)A(t, s) .

Hence the Bezoutians B = BezH(u,v) can be characterized with the help of ∇H by

∇HB = [u v ]

[
0 1
−1 0

]
[u v ]T . (2.7)

In particular, the rank of ∇BH is equal to 2, unless u and v are linearly dependent. In the latter
case the H-Bezoutian is the zero matrix. The representation (2.6) shows that the transformation
∇+ introduced in (1.10) is a restriction of ∇H . Thus, H-Bezoutians are quasi-Hankel matrices.

3. Uniqueness. Different pairs of polynomials may produce the same H-Bezoutian. However, from
(2.7) one can conclude that if BezH(u,v) = BezH(u1,v1) 6= O, then span{u,v} = span{u1,v1}.
In the latter case there is a nonsingular 2 × 2 matrix ϕ such that

[u1 v1 ] = [u v ]ϕ . (2.8)

Lemma 2.2. Let u,v,u1,v1 ∈ F
n+1 related via (2.8). Then

BezH (u1,v1) = (detϕ) BezH (u,v) .

Proof. Suppose that ϕ =

[
a c
b d

]
, B1 = BezH (u1,v1). Then

(t− s)B1(t, s) = (au(t) + bv(t))(cu(s) + dv(s)) − (cu(t) + dv(t))(au(s) + bv(s))

= (ad− bc)(u(t)v(s) − v(t)u(s)) ,

which proves the lemma.

Corollary 2.3. The H-Bezoutians BezH(u,v) 6= O and BezH(u1,v1) coincide if and only if the
vectors u,v and u1, v1 are related via (2.8) with detϕ = 1.

From Corollary 2.3 we can conclude that the H-Bezoutian BezH(u,v) is equal to a H-
Bezoutian BezH(ũ, ṽ) in which the last coefficient of ṽ vanishes, i.e. ṽ(t) ∈ F

n(t).

4. Quasi-H-Bezoutians. A matrix B is called quasi-H-Bezoutian if rank∇HB ≤ 2. We give a
general representation of quasi-H-Bezoutians that is also important for H-Bezoutians.

Proposition 2.4. A quasi-H-Bezoutian B 6= O of order n admits a representation

B = Mr(p) BezH(u,v)Mr(q)T , (2.9)

where u(t),v(t) ∈ F
r+1(t) are coprime and r ≤ n . Here Mr( · ) is defined in (2.3).
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Proof. For B is a quasi-H-Bezoutian, there exist a,b, c,d ∈ F
n+1 such that

(t− s)B(t, s) = a(t)d(s) − b(t)c(s) .

Since for t = s the left-hand side vanishes, we have a(t)d(t) = b(t)c(t). Let p(t) be the greatest
common divisor of a(t) and b(t) and q(t) the greatest common divisor of c(t) and d(t). Then
a(t) = p(t)u(t) and b(t) = p(t)v(t) for some coprime u(t),v(t) ∈ F

r+1(t) (r ≤ n). Furthermore,
c(t) = q(t)u1(t) and d(t) = q(t)v1(t) for some coprime u1(t), v1(t) ∈ F

r1+1(t) (r1 ≤ n). Since

a(t)

b(t)
=

u(t)

v(t)
=

c(t)

d(t)
=

u1(t)

v1(t)
,

we conclude that, for some γ 6= 0, u1 = γu, v1 = γv, and r = r1. Now we have

a(t)d(s) − b(t)c(s) = γ p(t)(u(t)v(s) − v(t)u(s))q(s) .

We can replace γ p by p. Now it remains to translate this into matrix language to obtain (2.9).

The matrix on the right-hand side of (2.9) has rank r at most. Hence if r < n, then B is
singular. This leads to the following somehow surprising conclusion.

Corollary 2.5. Any nonsingular quasi-H-Bezoutian is an H-Bezoutian of two coprime polynomi-
als.

Later we will show that, vice versa, the H-Bezoutian of two coprime polynomials is non-
singular (cf. Corollary 3.4).

If the quasi-H-Bezoutian is symmetric, then in (2.9) we must have q = p, since the middle
factor is symmetric. This implies the following.

Corollary 2.6. Any symmetric quasi-H-Bezoutian is an H-Bezoutian

B = BezH(a,b) .

In particular, (2.9) can be written in the form

B = Mr(p) BezH(u,v)Mr(p)T , (2.10)

where p(t) is the greatest common divisor of a(t) and b(t) .

5. Frobenius-Fischer transformations. We show now that Frobenius-Fischer transformations in-
troduced in Section 1 transform the class of H-Bezoutians into itself. In particular, the following
result is the Bezoutian counterpart of Proposition 1.6.

Theorem 2.7. For any ϕ ∈ GL(F2), the transformation

B 7→ Kn(ϕ)BKn(ϕ)T

maps H-Bezoutians into H-Bezoutians. Moreover

Kn(ϕ)BezH(u,v)Kn(ϕ)T =
1

detϕ
BezH(ũ, ṽ) , (2.11)

where ũ = Kn+1(ϕ)u and ṽ = Kn+1(ϕ)v.
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Proof. Let B = BezH(u,v) and B̃ = BezH(ũ, ṽ). It is sufficient to prove the theorem for

the matrices (1.12) that generate GL(F2). If ϕ =

[
a 0
0 1

]
, then

B̃(t, s) = a
u(at)v(as) − v(at)u(as)

at− as
= aB(at, as) = a (Kn(ϕ)BKn(ϕ)T )(t, s) ,

which is equivalent to (2.11). If ϕ =

[
1 0
b 1

]
, then

B̃(t, s) =
u(t+ b)v(s+ b) − v(t+ b)u(s+ b)

t− s
= B(t+ b, s+ b)

= (Kn(ϕ)BKn(ϕ)T )(t, s) ,

which is equivalent to (2.11). Finally, let ϕ = J2. Then

B̃(t, s) =
u(t−1)tnv(s−1)sn − v(t−1)tnu(s−1)sn

t− s
= −B(t−1, s−1)(ts)n−1

= −BJ(t, s) ,

which is again equivalent to (2.11).

6. Splitting of H-Bezoutians. In some applications, like stability tests for real polynomials, u(t)
and v(t) have the special form

u(t) = a(t2) and v(t) = tb(t2). (2.12)

That means u(t) has only even powers and v(t) only odd powers. In this case we have for the
generating polynomial of B = BezH (u,v) after multiplying numerator and denominator by
(t+ s)

B(t, s) =
ts(a(t2)b(s2) − b(t2)a(s2)) + a(t2)s2b(s2) − t2b(t2)a(s2)

t2 − s2

= tsB1(t
2, s2) +B0(t

2, s2) ,

where B1 = BezH (a,b) and B0 = BezH (a, tb). To translate this into matrix language we
introduce the matrix Σn of the even-odd shuffle operator:

Σn(xi)
n
i=1 = (x1, x3, . . . , x2, x4, . . . ) .

Proposition 2.8. Let u(t) ∈ F
n(t) and v(t) ∈ F

n(t) be given by (2.12). Then

ΣT
nBezH (u,v)Σn =

[
BezH (a, tb) O

O BezH (a,b)

]
.

7. Toeplitz Bezoutians. We introduce the Toeplitz analogue of the H-Bezoutian. The Toeplitz
Bezoutian or briefly T-Bezoutian of the two polynomials u(t) ∈ F

n+1(t) and v(t) ∈ F
n+1(t) is,

by definition, the matrix B = BezT (u,v) with the generating polynomial

B(t, s) =
u(t)vJ(s) − v(t)uJ (s)

1 − ts
.

Like for H-Bezoutians, it is easily checked that B(t, s) is really a polynomial in t and s. If, for
example, the polynomials u(t) = t− a and v(t) = t− b of F

n+1(t) are given, then for n = 1

B(t, s) =
(t− a)(1 − bs) − (t− b)(1 − as)

1 − ts
= b− a .
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Hence BezT (u,v) = b− a . But in case n > 1 we have

BezT (u,v) =

[
O b− a
O O

]
.

We state that the definition of a T-Bezoutian of two polynomials depends, in contrast to the
H-Bezoutian, essentially on the integer n. That means if we consider u(t) and v(t) as elements
of F

N+1(t) for N > n, then we will have a different T-Bezoutian. Indeed, let BN denote the
T-Bezoutian in this sense. Then we obtain

BN (t, s) =
u(t)v(s−1)sN − v(t)u(s−1)sN

1 − ts
= B(t, s)sN−n ,

where B is the T-Bezoutian of u and v in the original sense. Thus, BN is of the form

BN =

[
O B
O O

]
.

If t = 0 is a common zero of u(t) and v(t), u(t) = tru0(t), v(t) = trv0(t) (r > 0) , then B is of
the form

B =

[
O O
B0 O

]

where B0 is the (n− r) × (n− r) T-Bezoutian of u0 and v0.
As an example, we compute the T-Bezoutian of a polynomial and a power of t. Let B(k) =

BezT (u, ek) and u = (ui)
n+1
i=1 . Then

B(k)(t, s) =

n+1∑

i=1

ui

ti−1sn−k+1 − tk−1sn−i+1

1 − ts

=

k−1∑

i=1

ui t
i−1sn−k+1 1 − (ts)k−i

1 − ts
+

n+1∑

i=k+1

ui t
k−1sn−i+1 (ts)i−k − 1

1 − ts
.

We take into account that
1 − (ts)k

1 − ts
is the generating polynomial of Ik and obtain in matrix

form

BezT (u, ek) =




u1

O
...

. . .

uk−1 . . . u1

−un+1 . . . −uk+1

. . .
... O

−un+1




. (2.13)

For the special cases k = 1 and k = n+ 1 we introduce the notations

B+(u) = −



un+1 . . . u2

. . .
...

un+1


 , B−(u) =



u1

...
. . .

un . . . u1


 . (2.14)

Obviously, the T-Bezoutian is, like the H-Bezoutian, linear in its arguments. Furthermore, it is
skewsymmetric with respect to the arguments, i.e.

BezT (u,v) = −BezT (v,u) .
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Moreover, we have
BezT (u,v)T = −BezT (uJ ,vJ ) (2.15)

and

BezT (u,v)J (t, s) =
u(t−1)v(s)s−n − v(t−1)u(s)s−n

1 − t−1s−1
tn−1sn−1

=
u(t−1)tnv(s) − v(t−1)tnu(s)

ts− 1
,

which means that
BezT (u,v)J = −BezT (uJ ,vJ) . (2.16)

From (2.15) and (2.16) we conclude that

BezT (u,v)T = BezT (u,v)J .

Hence T-Bezoutians are, like Toeplitz matrices, persymmetric.
The discussion about uniqueness of H-Bezoutians in Section 2,1 can be immediately trans-

ferred to T-Bezoutians. In fact, there is a Toeplitz analogue of Lemma 2.2.

Lemma 2.9. If [u1 v1 ] = [u v ]ϕ for some 2 × 2 matrix ϕ, then

BezT (u1,v1) = (detϕ) BezT (u,v) .

Hence the following is true.

Corollary 2.10. The T-Bezoutians BezT (u,v) 6= O and BezT (u1,v1) coincide if and only if

[u1 v1 ] = [u v ]ϕ

for some matrix ϕ with detϕ = 1 .

8. The transformation ∇T . The Toeplitz analogue of the transformation ∇H is the transforma-
tion ∇T transforming an n× n matrix A = [ aij ]ni,j=1 into a (n+ 1)× (n+ 1) matrix according
to

∇TA = [ aij − ai−1,j−1 ]n+1
i,j=1 .

Here we set aij = 0 if one of the integers i or j is not in the set {1, 2, . . . , n}. Obviously,

∇TA =

[
A− SnAS

T
n ∗

∗ ∗

]
=

[
∗ ∗
∗ ST

nASn −A

]
. (2.17)

In polynomial language the transformation ∇T is given by

(∇TA)(t, s) = (1 − ts)A(t, s) .

That means the T-Bezoutian B = BezT (u,v) is characterized by

∇TB = [u v ]

[
0 1
−1 0

]
[uJ vJ ]T .

Taking into account (2.16) we observe that (∇TB)J = −∇TB
J .

The representation (2.17) shows that the transformation ∇+ introduced in (1.7) is a re-
striction of ∇T . In particular, we conclude that T-Bezoutians are quasi-Toeplitz matrices. Fur-
thermore, if B is a T-Bezoutian, then BJ is also a quasi-Toeplitz matrix.

9. Symmetric and skewsymmetric T-Bezoutians. We discuss now how symmetric and skewsym-
metric T-Bezoutians can be characterized. First we observe that (2.16) implies that BezT (u,v)
is symmetric if one of the vectors u or v is symmetric and the other one is skewsymmetric.
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Furthermore, BezT (u,v) is skewsymmetric if both vectors u and v are symmetric or both are
skewsymmetric. We show that the converse is also true. For simplicity of notation we write
B(u,v) instead of BezT (u,v).

Let u,v ∈ F
n+1 be any vectors, u = u+ + u− and v = v+ + v−, where u+,v+ are

symmetric and u−,v− are skewsymmetric. Then B(u,v) = B+ +B−, where

B+ = B(u+,v−) +B(u−,v+) , B− = B(u+,v+) +B(u−,v−) ,

B+ is symmetric, and B− is skewsymmetric. Suppose that B = B(u,v) is symmetric. Then
B− = O. Hence

B(u+,v+) = B(v−,u−) .

Since the vectors u+ and v+ cannot be linear combinations of u− and v− from Corollary 2.10
it becomes clear that

B(u+,v+) = B(v−,u−) = O .

Thus v± = α±u± for some α± ∈ F or B(u,v) = O. We conclude that

B = B+ = B((α− − α+)u+,u−) .

That means that B is the T-Bezoutian of a symmetric and a skewsymmetric vector.

Suppose now that B = B(u,v) 6= O is skewsymmetric. Then B+ = O. Hence

B(u+,v−) = B(v+,u−) .

From Corollary 2.10 and the symmetry properties of the vectors we conclude that either {u+,v+}
as well as {u−,v−} are linearly dependent or

B(u+,v−) = B(v+,u−) = O .

In the former case we would have B− = O, so we have the latter case. Using again the symmetry
properties of the vectors we find that either u− = v− = 0 or u+ = v+ = 0. That means that B
is the Bezoutian of two symmetric or two skewsymmetric vectors. Let us summarize.

Proposition 2.11. A T-Bezoutian is symmetric if and only if it is the T-Bezoutian of a symmetric
and a skewsymmetric vector. A T-Bezoutian is skewsymmetric if and only if it is the T-Bezoutian
of two symmetric vectors or two skewsymmetric vectors.

Note that the T-Bezoutian B(u,v) of two skewsymmetric vectors cannot be nonsingular.
In fact, in this case we have u(1) = v(1) = 0 such that u(t) = (t−1)u1(t) and v(t) = (t−1)v1(t).
Then u1 and v1 are symmetric, and as in Proposition 2.4 we obtain

B(u,v) = Mn−1(t− 1)BezT (u1,v1)Mn−1(t− 1)T .

Thus B(u,v) has rank n− 1 at most.

There is an alternative representation for symmetric T-Bezoutians, which has no skewsym-
metric counterpart. Suppose that B = B(u+,u−). We set v = − 1

2 u+ + u−. Then

B(v,vJ) = B .

On the other hand, B(v,vJ) is symmetric for any vector v ∈ F
n+1. Thus the following is true.

Corollary 2.12. A T-Bezoutian B is symmetric if and only if it can be represented in the form
B = BezT (v,vJ ) for some v ∈ F

n+1.
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10. Hermitian T-Bezoutians. Now we characterize Hermitian T-Bezoutians. Suppose that the
vectors u+,u− ∈ C

n+1 are conjugate-symmetric. Then we conclude from (2.15) that the matrix
iB(u+,u−) is Hermitian. Conversely, let B = B(u,v) be Hermitian, u = u+ + iu− and v =
v+ + iv−, where u±,v± are conjugate-symmetric. Then B(u,v) = B+ + iB−, where

B+ = i(B(u+,v−) +B(u−,v+)) , B− = i(B(u−,v−) −B(u+,v+)) .

The matrices B+ and iB− are Hermitian. Since B = B(u,v) is assumed to be Hermitian, we
have B− = O, which means

B(u+,v+) = B(u−,v−) .

Using Corollary 2.10 we conclude that

[u− v− ] = [u+ v+ ]

[
a c
b d

]

for some a, b, c, d with ad−bc = 1. Since all vectors under consideration are conjugate-symmetric,
these numbers must be real. We obtain after elementary calculations

B(u,v) = iB(u+,−(a+ d)v+) = B(u+,−(a+ d)iv+) .

Thus, B is the Bezoutian of a conjugate-symmetric and a conjugate-skewsymmetric vector. Let
us summarize.

Proposition 2.13. A T-Bezoutian B is Hermitian if and only if it is of the form

B = iBezT (u+,u−)

for conjugate-symmetric vectors u+ and u−.

As for symmetric T-Bezoutians, we have an alternative form. Suppose that B = iB(u+,u−)
and set v = − 1

2 u+ + iu−. Then B(v,v#) = B . Since, on the other hand, the matrix B(v,v#)

is Hermitian for any vector v ∈ F
n+1, which is easily checked, the following is true.

Corollary 2.14. A T-Bezoutian B is Hermitian if and only if it can be represented in the form
B = BezT (v,v#) for some v ∈ C

n+1.

11. Splitting of symmetric T-Bezoutians. It was mentioned in Section 2,7 that T-Bezoutians
are persymmetric. Hence a symmetric T-Bezoutian B is also centrosymmetric. That means that
the subspaces of symmetric or skewsymmetric vectors F

n
± are invariant under B. We show that

the restrictions of a symmetric T-Bezoutian to F
n
± can be characterized by another kind of

Bezoutians which is introduced next.
Let p,q ∈ F

n+2 be either both symmetric or both skewsymmetric. Then

Bsplit(t, s) =
p(t)q(s) − q(t)p(s)

(t− s)(ts− 1)

is a polynomial in t and s. The n× n matrix with the generating polynomial Bsplit(t, s) will be
called split Bezoutian of p(t) and q(t) and denoted by

Bezsplit(p,q) .

Obviously, Bezsplit(p,q) is a symmetric and centrosymmetric matrix. If p and q are symmetric,
then we will speak about a split Bezoutian of (+)-type and if these vectors are skewsymmetric
about a split Bezoutian of (−)-type. Instead of Bsplit we write B+ or B−, respectively.

The columns and rows of a split Bezoutian of (+)-type are all symmmetric and of a split
Bezoutian of (−)-type are all skewsymmetric, so that its rank is at most 1

2 (n + 1) in the (+)
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case and 1
2n in the (−) case. As an example we consider the case p(t) = t2k + 1 ∈ F

2k+1(t) and

q(t) = tk ∈ F
2k+1(t). In this case

B+(t, s) =
(t2k + 1)sk − tk(s2k + 1)

(t− s)(ts− 1)
=
tk − sk

t− s

(ts)k − 1

ts− 1

= (tk−1 + tk−2s+ · · · + sk−1)(1 + ts+ · · · + tk−1sk−1) .

For k = 3, the matrix with this generating polynomial is

B+ =




1
1 1

1 1 1
1 1

1



.

For a general symmetric p = (pi)
7
i=1 ∈ F

7 and q as before, q = e4, the split Bezoutian of p and
q is given by

B+ =




p1

p1 p2 p1

p1 p2 p1 + p3 p2 p1

p1 p2 p1

p1



.

Moreover, from this special case it is clear how the split Bezoutian of a general p ∈ F
2k+1
+ and

q = ek+1 looks like.

Recall that P± = 1
2 (In ± Jn) are the projections from F

n onto F
n
± along F

n
∓. Our aim

is to describe BP± = P±BP± for a symmetric T-Bezoutian B. As we know from Proposition
2.11, a symmetric T-Bezoutian B is the T-Bezoutian of a symmetric vector u+ ∈ F

n+1
+ and a

skewsymmetric vector v− ∈ F
n+1
− . From these vectors we form the polynomials

p±(t) = (t± 1)u+(t) and q±(t) = (t∓ 1)v−(t) .

Clearly, p+ and q+ are symmetric, and p− and q− are skewsymmetric.

Proposition 2.15. The symmetric T-Bezoutian B = BezT (u+,v−) can be represented as B =
B+ +B−, where B± = BP± and

B± = ∓
1

2
Bezsplit(p±,q±) .

Proof. We compute the generating polynomial B+(t, s) of B+ = BP+. By definition we
have

B+(t, s) =
1

2
(B(t, s) +B(t, s−1)sn−1)

= −
1

2

(
u+(t)v−(s) + v−(t)u+(s)

1 − ts
+

u+(t)v−(s) − v−(t)u+(s)

t− s

)

= −
1

2

(t+ 1)u+(t)(s− 1)v−(s) − (t− 1)v−(t)(s+ 1)u+(s)

(t− s)(ts− 1)
.
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This is just the generating polynomial of the matrix − 1
2 Bezsplit(p+,q+). The other case is

proved analogously.

12. Relations between H- and T-Bezoutians. There is a simple relation between H- and T-
Bezoutians, namely

BezT (u,v) = −BezH(u,v)Jn .

More general relations can be described with the help of Frobenius-Fischer transformations.
Analogously to Theorem 2.7 we obtain the following.

Theorem 2.16. For any ϕ ∈ GL(F2), the transformation

Φ : B 7→ Kn(ϕ)BKn(J2ϕ)T

maps T-Bezoutians into H-Bezoutians. Moreover,

Kn(ϕ)BezT (u,v)Kn(J2ϕ)T =
1

det(ϕJ2)
BezH(ũ, ṽ) =

1

detϕ
BezH(ṽ, ũ) , (2.18)

where ũ = Kn+1(ϕ)u and ṽ = Kn+1(ϕ)v .

In the case F = C it is of particular interest to describe congruence transformations that
transform Hermitian T-Bezoutians into real symmetric H-Bezoutians, in other words to describe
a coordinate transformation that transforms Hermitian T-Bezoutian forms into real quadratic
H-Bezoutian forms. The transformation Φ has this property if and only if Kn(J2ϕ)T = Kn(ϕ)∗

(up to multiples of I2), which is equivalent to J2ϕ = ϕ. Suppose that ϕ =

[
a c
b d

]
, then this

is equivalent to a = b and c = d. It can be easily checked that ϕ has this property if and only

if the linear fractional function ϕ(t) =
at+ b

ct+ d
maps the unit circle onto the real line (compare

Section 1,5). Hence we have the following.

Corollary 2.17. If ϕ(t) maps the unit circle onto the real line, then the transformation Φ : B 7→
Kn(ϕ)BKn(ϕ)∗ maps Hermitian T-Bezoutians into real symmetric H-Bezoutians. In particular,
the signatures of B and Φ(B) coincide.

3. Resultant Matrices and Matrix Representations
of Bezoutians

In this section we show that Bezoutians are closely related to resultant matrices and that the
relations between these two classes can be used to derive important matrix representations of
Bezoutians. We present two kinds of relations between resultant matrices and Bezoutians. The
first is due to Kravitsky and Russakovsky, the second an interpretation of Bezoutians as Schur
complements in resultant matrices.

The resultant matrix Res(u,v) of two polynomials u(t) ∈ F
m+1,v(t) ∈ F

n+1(t) was intro-
duced in (2.4) as the (m+ n) × (m+ n) matrix

Res (u,v) =

[
Mn(u)T

Mm(v)T

]
.

In this section we restrict ourselves to the case m = n, which is no restriction of generality when
speaking about nonsingularity, rank and related quantities. Recall that Res (u,v) is nonsingular
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if and only if the polynomials u(t) and v(t) are coprime and at least one of the leading coefficients
of u(t) or v(t) is not zero.

1. Kravitsky-Russakovsky formulas. To begin with we generalize the resultant concept. Let u(t)
and v(t) be polynomials of degree n. The p-resultant matrix (p = 0, 1, . . . ) of u(t) and v(t) is,
by definition, the (2n+ 2p) × (2n+ p) matrix

Resp(u,v) =

[
Mn+p(u)T

Mn+p(v)T

]
.

In the case p = 0 we have the resultant matrix in the former sense. For the sequel it is important
to observe that

Resp(u,v)ℓ2n+p(t) =

[
u(t)ℓn+p(t)
v(t)ℓn+p(t)

]
, (3.1)

where ℓm(t) = (ti−1)m
i=1.

Theorem 3.1. Let u(t) and v(t) be polynomials of degree n. Then

1.

Resp(u,v)T

[
O Jn+p

−Jn+p O

]
Resp(u,v) =




O O −BH

O O O
BH O O


 , (3.2)

where BH = BezH(u,v) , and
2.

Resp(u,v)T

[
In+p O
O −In+p

]
Resp(v

J ,uJ ) =



BT O O
O O O
O O −BT


 , (3.3)

where BT = BezT (u,v) .

Proof. We compare the generating polynomials of the right-hand and of the left-hand sides.
According to (3.1) we have

ℓ2n+p(t)
T Resp(u,v)T

[
O Jn+p

−Jn+p O

]
Resp(v,u) ℓ2n+p(s)

= (u(t)v(s) − v(t)u(s))ℓn+p(t)
TJn+p ℓn+p(s)

= (u(t)v(s) − v(t)u(s))
tn+p − sn+p

t− s

= (tn+p − sn+p)BezH(u,v)(t, s) ,

which is the polynomial form of the first assertion.
To prove the second relation we observe that (3.1) implies

ℓ2n+p(t)
T Resp(u,v)T

[
In+p O
O −In+p

]
Resp(v

J ,uJ )ℓ2n+p(s)

=
1 − (ts)n+p

1 − ts
(u(t)vJ (s) − v(t)uJ (s)) .

This leads to the second assertion.

2. Matrix representations of Bezoutians. The Kravitsky-Russakovsky formulas (3.2) and (3.3)
provide an elegant way to obtain matrix representations of Bezoutians in terms of triangular
Toeplitz matrices. These formulas are very important in connection with inversion of Toeplitz
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and Hankel matrices. They represent so-called “inversion formulas”. Note that from computa-
tional point of view the formulas presented here are not the most efficient ones. Other, more
efficient formulas for the cases F = C or F = R can be found in [38], [40], [41], [42], [43].

We define, for u = (ui)
n+1
i=1 , the lower triangular n× n Toeplitz matrix

T (u) =



u1

...
. . .

un . . . u1


 .

Note that T (u) is the T-Bezoutian B−(u) of u(t) and tn, which was introduced in (2.14).
Note also that the matrix T (u) is related to the H-Bezoutian B(u) defined by (2.2) and the
T-Bezoutian B+(u) defined by (2.14) via

B(u) = JnT (uJ) , B+(u) = −T (uJ )T .

Furthermore, let us mention that we have commutativity

T (u1)T (u2) = T (u2)T (u1)

and the relation T (u)T = T (u)J . The nonsingular matrices T (u) form a commutative subgroup
of GL(Fn) . With this notation the resultant matrix Res(u,v) for u,v ∈ F

n+1 can be written in
the form

Res(u,v) =

[
T (u)T T (uJ)
T (v)T T (vJ)

]
.

The application of Theorem 3.1 for p = 0 leads now to the following.

Theorem 3.2. The H-Bezoutian of two polynomials u(t),v(t) ∈ F
n+1 admits

1. the representations

BezH(u,v) = T (v)JnT (uJ ) − T (u)JnT (vJ)

and

BezH(u,v) = T (uJ )TJnT (v)T − T (vJ)TJnT (u)T .

2. the representations

BezT (u,v) = T (u)T (vJ )T − T (v)T (uJ )T

and

BezT (u,v) = T (vJ)T (u)T − T (uJ )T (v)T .

3. Bezoutians as Schur complements. We assume that the polynomial u(t) has degree n. Then
the matrix T (uJ ) is nonsingular. Now the second expression for BezH(u,v) in Theorem 3.2,1
can be written in the form

C = T (uJ )−1JnBezH(u,v) = T (v)T − T (vJ)T (uJ )−1T (u)T .

We see that C is the Schur complement of the left upper block in

R̃ = Res (u,v)

[
O In
In O

]
=

[
T (uJ ) T (u)T

T (vJ) T (v)T

]
.

Recall that the concept of Schur complement is defined in connection with the factorization of
a block matrix

G =

[
A B
C D

]
=

[
In O

CA−1 In

] [
A O
O D − CA−1B

] [
In A−1B
O In

]
,
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where A is assumed to be invertible. Here D−CA−1B is said to be the Schur complement of A
in G. Applying this factorization to our case we obtain the following.

Proposition 3.3. Let u(t) ∈ F
n+1(t) be a polynomial of degree n , v(t) ∈ F

n+1(t). Then the
resultant of u(t) and v(t) can be represented in the form

Res (u,v)=

[
T (uJ ) O
T (vJ) T (uJ )−1Jn

] [
In O
O BezH(u,v)

] [
T (uJ)−1T (u)T In

In O

]
.

From this proposition we see that Res(u,v) is nonsingular if and only if BezH(u,v) has
this property. Hence BezH(u,v) is nonsingular if and only if the polynomials u(t) and v(t) are
coprime. Taking (2.10) into account we conclude the following.

Corollary 3.4. The nullity of BezH(u,v) is equal to the degree of the greatest common divisor
of u(t) and v(t).

Clearly, the same is also true for T-Bezoutians.

4. Inverses of Hankel and Toeplitz Matrices

The most striking property of H- and T-Bezoutians is that inverses of Hankel and Toeplitz
matrices belong to these classes. In view of Theorem 3.2 a consequence of this fact is that
inverses of Toeplitz and Hankel matrices can be represented as product sum of triangular Toeplitz
matrices, which is important for fast matrix-vector multiplication. Later, in Section 7,6 and
Section 8,7 we will see that, vice versa, inverses of H- and T-Bezoutians are Hankel or Toeplitz
matrices, respectively. Let us start with the Hankel case.

1. Inverses of Hankel matrices. Let Hn = [ si+j−1 ]ni,j=1 be a nonsingular Hankel matrix. Besides
Hn we consider the (n−1)×(n+1) Hankel matrix ∂Hn which is obtained from Hn after deleting
the last row and adding another column on the right so that the Hankel structure is preserved.
That means

∂Hn =




s1 . . . sn+1

... . .
. ...

sn−1 . . . s2n−1


 . (4.1)

For Hn is nonsingular, ∂Hn has a two-dimensional nullspace. A basis {u,v } of the nullspace of
∂Hn will be called fundamental system for Hn. We consider for fixed s ∈ F the linear system of
equations

Hnxs = ℓn(s) , (4.2)

where ℓn(s) is introduced in (1.1). It can be checked that

∂Hn

[
xs

0

]
= ℓn−1(s) and ∂Hn

[
0
xs

]
= sℓn−1(s) .

Hence

[
0
xs

]
−s

[
xs

0

]
belongs to the kernel of ∂Hn. In polynomial language, this means that

there are constants as and bs such that

(t− s)xs(t) = asu(t) − bsv(t) .

Now we consider s as a variable. From (4.2) it is clear that xs(t) = ℓn(t)TH−1
n ℓn(s) is a polyno-

mial in s of degree n− 1. (It is just the generating polynomial of the matrix H−1
n .) We conclude

that as = a(s) and bs = b(s) ∈ F
n+1(s). Thus, H−1

n is a quasi-H-Bezoutian. According to
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Corollary 2.5, this implies that H−1
n is an H-Bezoutian, which means that a(t) = γv(t) and

b(t) = γu(t), and H−1
n = γ BezH (u,v) for some nonzero constant γ. It remains to compute γ.

For this we introduce the 2 × (n+ 1) matrix

F =

[
sn . . . s2n−1 s2n

0 . . . 0 1

]
.

Here s2n ∈ F is arbitrary. A fundamental system {u,v} will be called canonical if

F [u v ] = I2 .

Let {u,v} be canonical. Then, in particular, u := eT
n+1u = 0 and v = eT

n+1v = 1. Furthermore,
if we consider u as a vector in F

n, then it is just the last column of H−1
n , i.e.

Hnu = en. (4.3)

We compare u with the last column of BezH (u,v), which is equal to vu−uv = −u (cf. Theorem

3.2). Thus, γ = −1. Note that v is of the form v =

[
−z

1

]
, where z is the solution of the system

Hnz = g with g = (sn+i )n
i=1 . (4.4)

Hereafter we need the following fact.

Proposition 4.1. Let the equations (4.3) and (4.4) be solvable. Then Hn is nonsingular.

Proof. Assume that Hn is singular, and let v = (vj)
n
j=1 be a nontrivial vector such that

Hnv = 0 . Then applying vT from the left side to the equations (4.3) and (4.4) leads to

vTHnu = vT en = 0 and vTHnz = vT g = 0,

which means, in particular, that vn = 0 . Taking into account

HnSn − ST
nHn = engT − geT

n

we conclude (Snv)THn = 0. Repeating the above arguments for the Snv instead of v shows that
vn−1 = 0, and so on. Finally we have v = 0 which is a contradiction. Thus, the nonsingularity
of Hn is proved.

Now we consider a general fundamental system {u,v}. The matrix ϕ = F [u v ] is nonsin-
gular. In fact, suppose it is singular. Then there is a nontrivial linear combination w(t) of u(t)
and v(t) such that Fw = 0. In particular the highest order coefficient vanishes, i.e. w ∈ F

n.
Since w ∈ ker ∂Hn we conclude that Hnw = 0, which means that Hn is singular. The columns
of [u v ]ϕ−1 form now a canonical fundamental system. It remains to apply Lemma 2.2 to
obtain the following.

Theorem 4.2. Let {u,v} be a fundamental system for Hn. Then

H−1
n =

1

detϕ
BezH(v,u) , (4.5)

where ϕ = F [u v ].

Since BezH(u,v) is nonsingular, the polynomials u(t) and v(t) must be coprime (cf. Corol-
lary 3.4). Hence the following is true.

Corollary 4.3. If {u,v} is a fundamental system for a nonsingular Hankel matrix, then the
polynomials u(t) and v(t) are coprime.
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2. Characterization of fundamental systems. There are several possibilities to characterize fun-
damental systems via solutions of special linear systems. We are mainly interested in character-
izations by vectors that will be computed recursively using Levinson algorithms. In the Hankel
case these vectors are the last columns xk of H−1

k or alternatively the monic solutions uk of the
Yule-Walker equations Hkuk = ρkek , where ρk is so that eT

k uk = 1 .

It is convenient to consider an (n+1)×(n+1) extension Hn+1 = [ si+j−1 ]n+1
i,j=1. The matrix

Hn+1 is for almost all choices of s2n and s2n+1 nonsingular. In fact, Hn+1 is nonsingular if the
Schur complement of the leading principal submatrix Hn in Hn+1 is nonsingular. This Schur
complement is equal to

s2n+1 − gTH−1
n g.

That means, for any s2n there is only one value of s2n+1 for which Hn+1 is singular. Now,

since the vector

[
un

0

]
, which will be also denoted by un, and the vector un+1 are linearly

independent and belong both to the kernel of ∂Hn they form a fundamental system for Hn. To

compute the factor
1

detϕ
in (4.5) we observe that

F
[

un un+1

]
=

[
ρn 0
0 1

]
.

For the corresponding vectors xn and xn+1 we find that

F
[

xn xn+1

]
=

[
1 0
0 ξn+1

]
,

where ξn+1 is the last component of xn+1.

Corollary 4.4. The inverse of the Hankel matrix Hn is given by

H−1
n =

1

ρn

BezH(un+1,un) =
1

ξn+1
BezH(xn+1,xn) .

3. Christoffel-Darboux formula. We compare the first Bezoutian formula for Hankel matrix
inversion of Corollary 4.4 with the UL-factorization of H−1

n (see e.g. [33]) which can be written
in polynomial language as

H−1
n (t, s) =

n∑

k=1

1

ρk

uk(t)uk(s) .

We conclude
n∑

k=1

1

ρk

uk(t)uk(s) =
1

ρn

un+1(t)un(s) − un(t)un+1(s)

t− s
. (4.6)

This relation is called Christoffel-Darboux formula. It is important in the theory of orthogonal
polynomials.

4. Inverses of Toeplitz matrices. The proof of the fact that inverses of Toeplitz matrices are T-
Bezoutians follows the same lines as that for Hankel matrices. We introduce the (n−1)× (n+1)
Toeplitz matrix ∂Tn obtained from Tn = [ ai−j ]n

i,j=1 after deleting the first row and adding
another column to the right by preserving the Toeplitz structure,

∂Tn =




a1 a0 . . . a2−n a1−n

...
...

. . .
...

...
an−1 an−2 . . . a0 a−1


 . (4.7)
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If Tn is nonsingular, then ∂Tn has a two-dimensional nullspace. Each basis of this subspace is
called fundamental system for Tn. The role of the matrix F is taken by

F =

[
a0 . . . a1−n a−n

0 . . . 0 1

]
,

where a−n is arbitrary.

Theorem 4.5. Let {u,v} be a fundamental system for Tn. Then

T−1
n =

1

detϕ
BezT (u,v) ,

where ϕ = F [u v ].

The Toeplitz analogue of Proposition 4.1 is now as follows.

Proposition 4.6. Let the equations

Tny = e1 and Tnz = fJ

with f = (a−i)
n
i=1 be solvable. Then Tn is nonsingular.

Taking into account that

TnSn − SnTn = e1f
T − fJeT

n

the proof of this proposition is analogous to that one of Proposition 4.1.

5. Characterization of fundamental systems. In the Toeplitz case the Levinson algorithm com-
putes recursively the first and last columns x−

k and x+
k of T−1

k or alternatively the solutions u±
k

of the Yule-Walker equations

Tku
−
k = ρ−k e1, and Tku

+
k = ρ+

k ek , (4.8)

where ρ±k ∈ F are so that

eT
1 u−

k = 1 and eT
k u+

k = 1 .

(In other words u+
k (t) is assumed to be monic and u−

k (t) comonic, which means that (u−
k )J(t)

is monic.) So it is reasonable to describe the fundamental system with these vectors.

It can easily be seen that

[
x−

n

0

]
and

[
0

x+
n

]
belong to the nullspace of ∂Tn and in the

case where Tn−1 is nonsingular they are linearly independent. Thus, they form a fundamental

system. Likewise

[
u−

n

0

]
and

[
0

u+
n

]
form a fundamental system. We find that

F

[
u−

n 0
0 u+

n

]
=

[
ρn ∗
0 1

]
, F

[
x−

n 0
0 x+

n

]
=

[
1 ∗
0 ξn

]
,

where ξn is the first component of x−
n which equals the last component of x+

n . Consequently,
ρ+

n = ρ−n = ρn .
We will have a problem with these systems, if the submatrix Tn−1 is singular. For example,

in this case the solution u+
n does not exist and ξn = 0. For this reason we also consider, like in

the Hankel case, an (n + 1) × (n + 1) Toeplitz extension Tn+1 = [ ai−j ]n+1
i,j=1. This extension is

nonsingular for almost all choices of a±n. The proof of this fact is, however, less trivial than in
the Hankel case.

The Schur complement of Tn in Tn+1 is given by

σ = a0 − (g+ + ane1)
TT−1

n (g− + a−ne1) ,
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where g± = [ 0 a±(n−1) . . . a±1 ]T . Hence

−σ = ξana−n + η−an + η+a−n + ζ , (4.9)

where ξ = eT
1 T

−1
n e1 = eT

1 x−
n , ζ = gT

+T
−1
n g− − a0, and

η− = eT
1 T

−1
n g− = gT

−x+
n , η+ = gT

+T
−1
n e1 = gT

+x−
n .

If ξ 6= 0, which is equivalent to the nonsingularity of Tn−1 , the set of pairs (an, a−n) for which
Tn+1 is singular is a quadratic curve in F

2 . (Choosing, for example, an = a−n there are at most
2 values of an for which Tn+1 is singular.)

We show that if ξ = 0, then η± 6= 0. In fact, in the case where ξ = 0 we have TnS
T
n x−

n =
η+en. Since Tn is assumed to be nonsingular, we have η+ 6= 0. Analogously, η− 6= 0. That means
in the case ξ = 0 the pairs (an, a−n) for which Tn+1 is singular are on the graph of a polynomial
of first degree. (Choose, for example, a−n = 0 , then Tn+1 is nonsingular with the exception of
one value of an .)

Let now Tn+1 be a nonsingular Toeplitz extension of Tn, x−
n+1 the first and x+

n+1 the

last column of T−1
n+1. Furthermore, let u±

n+1 be the solutions of the corresponding Yule-Walker

equations(4.8) for k = n+1. Then {x−
n+1,x

+
n+1} and {u−

n+1,u
+
n+1} are fundamental systems for

Tn and

F
[

x−
n+1 x+

n+1

]
=

[
1 0
∗ ξn+1

]
, F

[
u−

n+1 u+
n+1

]
=

[
ρn+1 0
∗ 1

]
. (4.10)

Corollary 4.7. The inverse of the Toeplitz matrix Tn is given by

T−1
n =

1

ξn+1
BezT (x−

n+1,x
+
n+1) =

1

ρn+1
BezT (u−

n+1,u
+
n+1) .

6. Inverses of symmetric Toeplitz matrices. We discuss now the case of a symmetric Toeplitz
matrix Tn. Let Tn+1 be a symmetric Toeplitz extension of Tn. Since in this case g+ = g− we
have in (4.9) η+ = η−. From this we conclude that Tn+1 is nonsingular with the exception of at
most two values of an. Thus, we may assume that Tn+1 is nonsingular.

Since we have xn+1 := x+
n+1 = (x−

n+1)
J , the vectors w+

n+1 = xn+1 + xJ
n+1 and w−

n+1 =

xn+1−xJ
n+1 form a fundamental system consisting of a symmetric and a skewsymmetric vector.

The vectors w±
n+1 are the solutions of Tn+1w

±
n+1 = en+1 ± e1 and

F
[

w−
n+1 w+

n+1

]
=

[
−1 1

−w−
n+1(0) w+

n+1(0)

]
.

Corollary 4.8. The inverse of a nonsingular symmetric Toeplitz matrix Tn is given by

T−1
n =

1

γ
BezT (w−

n+1,w
+
n+1) ,

where γ = w−
n+1(0) − w+

n+1(0).

One can show that for solving a system Tnz = b it is sufficient to compute the vectors w+
k .

So it is reasonable to ask whether it is possible to describe w−
n+1 in terms of w+

k . The following
proposition gives an answer to this question. Let Tn+2 be a nonsingular (n+2)×(n+2) symmetric
Toeplitz extension of Tn+1 and w±

n+2 the solutions of Tn+2w
±
n+2 = en+2 ± e1.
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Proposition 4.9. The polynomials w±
n+1 are given by

w±
n+1(t) =

tw+
n (t) − c±w+

n+2(t)

1 ± t
, (4.11)

where w+
n+2(1) 6= 0 and c− = w+

n (1)/w+
n+2(1). If n is odd, then w+

n+2(−1) 6= 0 and c+ =

−w+
n (−1)/w+

n+2(−1). If n is even, then w+
n+2(−1) = 0 and c+ is not determined by w+

n and

w+
n+2 alone.

Proof. We have

Tn+2

[
w±

n+1 0
0 w±

n+1

]
=




±1 ±a±
0 ±1
0 0

1 0
a± 1



, Tn+2




0
w+

n w+
n+2

0


 =




b 1
1 0
0 0

1 0
b 1




for some a±, b ∈ F. Consequently,

[
w±

n+1

0

]
±

[
0

w±
n+1

]
=




0
w+

n

0


− c±w

+
n+2

for some c± ∈ F . Writing this in polynomial language, we see that w±
n+1(t) ± tw±

n+1(t) =

tw+
n (t) − c±w+

n+2(t) and obtain (4.11).

To prove the rest of the proposition we recall that the polynomials w+
n+1(t) and w−

n+1(t)

form a fundamental system. Therefore, they are coprime. Suppose that w+
n+2(1) = 0. Then

(4.11) implies w+
n+1(1) = 0. But we have also w−

n+1(1) = 0, since w−
n+1 is skewsymmetric. This

contradicts the coprimeness of w+
n+1(t) and w−

n+1(t). Consequently, w+
n+2(1) 6= 0. Analogously, if

n is odd and w+
n+2(−1) = 0, then (4.11) implies w−

n+1(−1) = 0. But we have also w+
n+1(−1) = 0,

since w+
n+1 is symmetric and has an even length. This contradiction shows that w+

n+2(−1) 6= 0.
If n is even, then Tn is not completely determined by its restriction to symmetric vectors. That
means w+

n+1 is not completely given by w+
n and w+

n+2.

If n is even, then the constant c+ can be obtained by applying a test functional, which
could be the multiplication by any row of Tn+1.

7. Inverses of skewsymmetric Toeplitz matrices. In the case of a nonsingular skewsymmetric
Toeplitz matrix Tn, n = 2m, the Levinson-type algorithm can be used to compute vectors
spanning the nullspace of T2k−1 for k = 1, . . . ,m. So it is reasonable to ask for a fundamental
system {u,v} consisting of vectors of this kind.

Let x be any vector spanning the nullspace of Tn−1. From the relation T J
n−1 = −Tn−1

follows that also the vector xJ belongs to the nullspace of Tn−1. Thus x is either symmetric or
skewsymmetric. We show that the latter is not possible.

Lemma 4.10. The vector x is symmetric.

Proof. Let fj denote the jth row of Tn−1 , n = 2m. State that the row fm in the middle of
Tn−1 is skewsymmetric. We introduce vectors f±j = fj ∓ fn−j for j = 1, . . . ,m− 1 . Then the f+

j

are symmetric, the f−j are skewsymmetric, f±j ∈ F
n−1
± , and the system Tn−1v = O is equivalent

to f±j v = 0 for j = 1, . . . ,m − 1 and fmv = 0 . Since dim F
n−1
+ = n

2 , there exists a symmetric

vector v 6= O such that f+
j v = 0 for j = 1, . . . ,m− 1 . Since, obviously, f−j v = O and fmv = 0
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we have Tn−1v = O . Taking into account that dim kerTn−1 = 1 we conclude that x = cv for
some c ∈ F . Thus, x ∈ F

n−1
+ .

Now, by Lemma 4.10, x is symmetric and

u =




0
x

0


 ∈ ker ∂Tn .

(Since we do not want to assume that Tn−2 is nonsingular, we cannot assume that x is monic.)
Furthermore, let Tn+1 be any (n+ 1) × (n+ 1) skewsymmetric Toeplitz extension of Tn and v

a (symmetric) vector spanning the nullspace of Tn+1. Since Tn is nonsingular, we may assume
that v is monic. Now {u,v} is a fundamental system, and

F
[

u v
]

=

[
γ 0
0 1

]
, γ = [ a1 . . . an−1 ]x .

(Here γ 6= 0 since otherwise

[
0
x

]
belongs to the kernel of Tn.) Thus we obtain the following.

Corollary 4.11. The inverse of the nonsingular skewsymmetric Toeplitz matrix Tn is given by

T−1
n =

1

γ
BezT (u,v) .

8. Inverses of Hermitian Toeplitz matrices. Finally we discuss the case of a nonsingular Hermitian
Toeplitz matrix Tn. Besides Tn we consider an (n + 1) × (n + 1) Hermitian Toeplitz extension
Tn+1 of Tn. With similar arguments as above one can show that for almost all values of an the
matrix Tn+1 is nonsingular, so we may assume this. In the Hermitian case we have for the first
and last columns x−

n+1,x
+
n+1 of T−1

n+1 that

xn+1 := x−
n+1 = (x+

n+1)
#

and for the solutions u±
n+1 of the Yule-Walker equations

un+1 := u−
n+1 = (u+

n+1)
#.

Taking Corollary 4.7 into account we obtain

T−1
n =

1

ξn+1
BezT (xn+1,x

#
n+1) =

1

ρn+1
BezT (un+1,u

#
n+1) , (4.12)

where ξn+1 is the first component of xn+1 and ρn+1 is so that un+1(t) is comonic.

In the Levinson-type algorithm described in [53], [47] not the vectors xk are computed
but the solutions of the equations Tkqk = e, where e is the vector all components of which are
equal to 1. For an inversion formula we need the vectors qn and qn+1. Since qn+1 and qn are
conjugate-symmetric, qn+1(t) − tqn(t) is not identically equal to zero. Hence

xn+1(t) = b(qn+1(t) − tqn(t)) (4.13)

for some nonzero b ∈ C.

Besides qn we consider the coefficient vector w of w(t) = i (t− 1)qn(t), which is obviously
conjugate-symmetric.
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Proposition 4.12. The inverse of a nonsingular Hermitian Toeplitz matrix Tn is given by

T−1
n =

i

c
BezT (w,qn+1) −

1

c
qnqT

n , (4.14)

where c is the real constant qn+1(1) − qn(1).

Proof. We insert (4.13) into (4.12) and obtain, after an elementary calculation, formula

(4.14) with c =
ξn+1

|b|2
6= 0. Taking into account that qn(t) = (T−1

n e)(t) = T−1
n (t, 1) and that,

due to (4.14), T−1
n (t, 1) =

1

c
qn(t)(qn+1(1) − qn(1)) we find that c = c = qn+1(1) − qn(1).

9. Solution of systems. The formulas for the inverses of Toeplitz and Hankel matrices presented
in this section can be used in combination with the matrix representations of Bezoutians to solve
Toeplitz and Hankel systems. This is in particular convenient if systems have to be solved with
different right-hand sides and one and the same coefficient matrix. The advantage compared
with factorization methods is that only O(n) parameters have to be stored.

The application of the formulas requires 4 matrix-vector multiplications by triangular
Toeplitz matrices. If these multiplications are carried out in the classical way, then 2n2 multi-
plications and 2n2 additions are needed, which is more than, for example, if back substitution
in the LU-factorization is applied. However, due to the Toeplitz structure of the matrices there
are faster methods, actually methods with a complexity less than O(n2), to do this. In the
cases F = C and F = R the Fast Fourier and related real trigonometric transformations with a
computational complexity of O(n log n) can be applied.

5. Generalized Triangular Factorizations of Bezoutians

In this section we describe algorithms that lead to a generalized UL-factorization of Bezoutians.
In the case of H-Bezoutians the algorithm is just the Euclidian algorithm.

1. Division with remainder. Suppose that u = (ui)
n+1
i=1 ∈ F

n+1,v = (vi)
m+1
i=1 ∈ F

m+1, m ≤ n ,
and that the last components of u and v are not zero. Division with remainder means to find
polynomials q(t) ∈ F

n−m+1(t) and r(t) ∈ F
m(t) such

u(t) = q(t)v(t) + r(t) . (5.1)

In matrix language this means that we first solve the (n − m + 1) × (n − m + 1) triangular
Toeplitz system 


vm+1 . . . vn−2m+1

. . .
...

vm+1


q =



um+1

...
un+1


 ,

where we put vi = 0 for i /∈ {1, . . . ,m+ 1}. With the notation (2.3) we find r via
[

r

0

]
= u −Mn−m+1(v)q .

2. Factorization step for H-Bezoutians. We clarify what means division with remainder in terms
of the H-Bezoutian. From (5.1) we obtain for B = BezH (u,v)

B(t, s) = v(t)
q(t) − q(s)

t− s
v(s) +

r(t)v(s) − v(t)r(s)

t− s
,
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which can be written in the form

BezH(u,v) = Mn−m(v)B(q)Mn−m(v)T + BezH(r,v) ,

where B(q) is defined in (2.2). This is equivalent to

BezH(u,v)=

[
Im
O

Mn−m(v)

][
BezH(r,v) O

O B(q)

][
Im
O

Mn−m(v)

]T

. (5.2)

Note that in this equation the left factor is upper triangular and the right factor is lower
triangular.

3. Euclidian algorithm. The Euclidian algorithm is the successive application of division with
remainder. We set u0(t) = u(t) and u1(t) = v(t). Then, for i = 1, 2, . . . we find −ui+1(t) as
remainder of the division of ui−1(t) by ui(t), i.e.

ui+1(t) = qi(t)ui(t) − ui−1(t) . (5.3)

We take the minus sign with ui+1(t) for convenience. With this definition one factorization
step (5.2) reduces BezH(ui−1,ui) to BezH(ui,ui+1), without the minus to BezH(ui+1,ui). If
for some i = l we have ul+1(t) = 0, then the algorithm is terminated and ul(t) is the greatest
common divisor of u(t) and v(t).

There are modifications of the Euclidian algorithm with different normalizations. One could
assume, for example, that the polynomials ui(t) are monic or that the polynomials qi(t) are
monic. For these two possibilities one has to admit a constant factor at ui−1.

4. Generalized UL-factorization of H-Bezoutians. Applying (5.2) successively to the polynomials
ui(t) appearing in the Euclidian algorithm (5.3) we arrive at the following.

Theorem 5.1. Let u(t),v(t) ∈ F
n+1(t) where u(t) has a nonzero leading coefficient. Then

BezH(u,v) admits the factorization

BezH(u,v) = UDUT (5.4)

where

U =

[
Id Mnl

(ul) . . . Mn1−n2
(u2)

O O O
Mn−n1

(u1)

]
,

ni = deg ui(t), d is the degree of the greatest common divisor of u(t) and v(t), and

D = diag (Od, B(ql), . . . , B(q1) ) . (5.5)

Note that U is a nonsingular upper triangular matrix, B(qi) are nonsingular upper trian-
gular Hankel matrices defined by (2.2). From the theorem we can again conclude that the nullity
of BezH(u,v) is equal to d (cf. Corollary 3.4).

Let us discuss the case, in which u(t) and v(t) are coprime and all polynomials qi(t) have
degree 1. This is called the generic case. Suppose that qi(t) = ρit+ δi. Then (5.4) turns into an
UL-factorization of the H-Bezoutian in which, U is the upper triangular matrix the kth row of

which is equal to the transpose of

[
un+1−k

0k−1

]
and D = diag (ρn+1−i)

n
i=1 . The UL-factorization

of the H-Bezoutian exists if and only if the matrix BezH(u,v)J is strongly nonsingular. That
means in the generic case the matrix has this property. The converse is also true, since in the
non-generic case the matrix BezH(u,v)J has singular leading principal submatrices.

5. Inertia computation. It is an important consequence of Theorem 5.1 that the signature of a
real H-Bezoutian can be computed via running the Euclidian algorithm. In fact, in the case of
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real polynomials u(t) and v(t) the matrix BezH(u,v) is congruent to the block diagonal matrix
D given by (5.5). It remains to compute the signature of B(qi).

Let ρi denote the leading coefficient of qi(t). Then the signature of B(qi) is equal to
the signature of ρiJmi

, mi = ni−1 − ni. This can be shown using a homotopy argument. Let
H(t) = tρiJmi

+(1−t)B(qi) for 0 ≤ t ≤ 1. Then H(0) = B(qi) and H(1) = ρiJmi
. Furthermore,

H(t) is nonsingular for all t and depends continuously on t. Hence sgnH(t) is constant for
0 ≤ t ≤ 1. The signature of ρiJmi

is obviously equal to zero if mi is even and is equal to the
sign of ρi if mi is odd. Applying Sylvester’s inertia law we conclude the following.

Corollary 5.2. The signature of the real H-Bezoutian BezH(u,v) is given by

sgn BezH(u,v) =
∑

ni−1−ni odd

sgn ρi ,

where ρi are the antidiagonal entries of B(qi).

Since the Euclidian algorithm computes besides the signature s also the rank r of the
H-Bezoutian, it gives a complete picture about the inertia of BezH(u,v),

In BezH(u,v) = (s+, s−, d),

where s± = n−d±s
2 and d = n− r .

6. Factorization step for T-Bezoutians in the generic case. We consider the problem of triangular
factorization of a T-Bezoutian B = BezT (u,v), where u,v ∈ F

n+1. This problem is more
complicated than for H-Bezoutians, unless the matrix is strongly nonsingular. We introduce the
2 × 2 matrix

Γ = Γ(u,v) =

[
eT
1 u eT

1 v

eT
n+1u eT

n+1v

]
.

The case of nonsingular Γ is referred to as generic case, the case of singular Γ as non-generic
case. In this subsection we consider the generic case. Observe that γ := B(0, 0) = det Γ. That
means that γ is the entry in the left upper corner of B. Thus, we have the generic case if B is
strongly nonsingular. Note that γ is also the entry in the right lower corner of B, due to the
persymmetry of B. In the generic case,

[
ũ ṽ

]
=
[

u v
]
Γ−1 is of the form

[
ũ ṽ

]
=

[
u1 0
0 v1

]
, u1,v1 ∈ F

n .

According to Lemma 2.9 we have

BezT (ũ, ṽ) =
1

γ
BezT (u,v) .

Furthermore, for B̃ = BezT (ũ, ṽ) we obtain

B̃(t, s) =
u1(t)v1(s

−1)sn−1 − tsv1(t)u1(s
−1)sn−1

1 − ts

= B1(t, s) + v1(t)u1(s
−1)sn−1 ,

where B1 = BezT (u1,v1). We also have

B̃(t, s) = tsB1(t, s) + u1(t)v1(s
−1)sn−1 .

In matrix language this can be written as

BezT (u,v) =

[
In−1

0T v1

] [
γ BezT (u1,v1) 0

0T γ

] [
In−1

0T uJ
1

]T
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or

BezT (u,v) =

[
u1

In−1

0T

] [
γ 0T

0 γ BezT (u1,v1)

] [
vJ

1
In−1

0T

]T

. (5.6)

7. LU-factorization of T-Bezoutians. Let B = BezT (u,v) be strongly nonsingular, which is
equivalent to the strongly nonsingularity of BJ , due to persymmetry. We can apply now the
factorization step of the previous subsection, since the property of strongly nonsingularity is
inherited after a factorization step. If we carry out the factorization step successively, then we
obtain the following algorithm. We set u1 = u and v1 = v and find recursively polynomials
uk(t) and vk(t) via

[
uk+1(t) vk+1(t)

]
=
[

uk(t) vk(t)
]
Γ−1

k

[
1 0
0 t−1

]
, (5.7)

where Γk = Γ(uk,vk). This algorithm has the same structure as the Schur algorithm for Toeplitz
matrices. We call it also Schur algorithm. Like for Toeplitz matrices, it can be slightly modified

by replacing the matrix Γ−1
k by a matrix of the form

[
1 ∗
∗ 1

]
. This will reduce the number of

operations.
To simplify the notation we agree upon the following. For a sequence (wj)

n
j=1 with wj ∈

F
n+1−j , by L(wj)

n
j=1 will be denoted the lower triangular matrix the kth column of which is

equal to

L(wj)
n
j=1ek =

[
0k−1

wk

]
.

Now we conclude the following from (5.6).

Theorem 5.3. Let B = BezT (u,v) be strongly nonsingular, and let uk(t) and vk(t) be the
polynomials obtained by the Schur algorithm (5.7). Then B admits an LU-factorization

B = LDU ,

where
L = L(ui)

n
i=1 , U = (L(vi)

n
i=1)

T

and

D = diag (γ̃−1
i )n

i=1 , γ̃i =

i∏

j=1

γj , γj = det Γj .

8. Non-generic case for T-Bezoutians. Now we consider the case where the matrix Γ = Γ(u,v)
is singular. If Γ has a zero row, then u(t) and v(t) or uJ (t) and vJ(t) have a common factor t.
Suppose that u(t) = tµ−u0(t), v(t) = tµ−v0(t), uJ (t) = tµ+uJ

0 (t), and vJ(t) = tµ+vJ
0 (t) such

that Γ(u0,v0) has no zero row. Then B(t, s) = tµ−sµ+ B0(t, s), where B0 = BezT (u0,v0) or, in
matrix language

B =



O O O
O B0 O
O O O


 ,

where the zero matrix in the left upper corner is µ− × µ+.
Now we assume that Γ is singular but has no zero row. Then there is a 2 × 2 matrix Φ

with detΦ = 1 such that the last column of ΓΦ is zero, but the first column consists of nonzero
elements. We set [

ũ(t) ṽ(t)
]

=
[

u(t) v(t)
]
Φ.



Bezoutians 35

Then, according to Lemma 2.9, we have B = BezT (ũ, ṽ) = BezT (u,v). Furthermore, let us
write ṽ in the form

ṽ =




0ν−

w

0ν+




with some vector w = (wi)
m+1
i=1 ∈ F

m+1,m+ν++ν− = n, with nonzero first and last components.
We apply now a two-sided division with remainder to find polynomials q−(t) ∈ F

ν−(t) , q+(t) ∈
F

ν++1(t) , and r(t) ∈ F
m(t) such that

ũ(t) = (tν−q+(t) + q−(t))w(t) + tν−r(t) .

The vectors q± can be found by solving the triangular Toeplitz systems



w1

...
. . .

wν−
. . . w1


q− =




ũ1

...
ũν−


 ,



wm+1 . . . wm−ν++1

. . .
...

wm+1


q+ =



ũn−ν++1

...
ũn+1


 .

Then we have

uJ(t) = (tν++1qJ
−(t) + qJ

+(t))wJ (t) + tν++1rJ(t)

and

B(t, s) = w(t)

(
q−(t) − tν−qJ

−(s)s

1 − ts
sν+ + tν−

q+(t)sν+ − qJ
+(s)

1 − ts

)
wJ(s)

+tν−

r(t)wJ (s) − w(t)rJ (s)s

1 − ts
sν+

= w(t)
(
BezT (q−, eν−+1)(t, s)s

ν+ + tν−BezT (q+, e1)(t, s)
)
wJ(s)

+tν−BezT (r,w)(t, s)sν+ .

In matrix form this can be written as

B = Mν++ν−
(w)

[
O B−(q−)

B+(q+) O

]
Mν++ν−

(wJ )T +



O O O
O B1 O
O O O


 ,

where B1 = BezT (r,w) is of order m, B+(q+) = BezT (q+, e1) and B−(q−) = BezT (q,eν−+1)
are of order ν± (cf. (2.14)), and the zero matrix in the left upper corner of the last term has size
ν− × ν+ .

9. Hermitian T-Bezoutians. We discuss now the specifics of the case of an Hermitian T-Bezoutian
B. Our main attention is dedicated to the question how to compute the signature, because this
is the most important application of the procedure. First we remember that there are two
possibilities to represent Hermitian T-Bezoutian. The first is B = BezT (u,u#) for a general
vector u ∈ C

n+1, the second is B = iBezT (u+,u−) for two conjugate-symmetric vectors u±

(see Section 2,10).
In the generic case we use the first representation. In the representation (5.6) we have

vJ
1 = u1 , and γ is real. Thus, for a strongly nonsingular B, Theorem 5.3 provides a factorization
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B = LDL∗. Consequently,

sgnB =

n∑

i=1

sgn γ̃i .

That means that the signature of B can be computed via the Schur algorithm in O(n2) opera-
tions.

In the non-generic case, i.e. in the case where Γ is singular, we switch from the first
representation of B to the second one. This is done as follows. Suppose B is given as B =
BezT (u,u#). Then Γ is centro-Hermitian. Hence the homogeneous equation

Γ

[
α
β

]
=

[
0
0

]

has a nontrivial conjugate-symmetric solution, which is a solution with β = α. We can assume
that |α| = 1. We set

Φ =

[
αi α
−αi α

]

and
[

u+(t) u−(t)
]

=
[

u(t) u#(t))
]
Φ .

Then u± are conjugate-symmetric and according to Lemma 2.9 we obtain

B =
1

2i
BezT (u+,u−) .

We can now apply the reduction step described in Section 5,8 for ũ = u+ and ṽ = u− . Due

to the Hermitian symmetry we have ν− = ν+ =: ν . The vector q
#
− is just the vector q+ after

cancelling its first component. The vectors w and r , both considered as elements of F
m+1 , are

conjugate-symmetric. This leads to

2iB = M2ν(w)

[
O B−(q−)

(B−(q−))∗ O

]
M2ν(w)∗ +



O O O
O B1 O
O O O


 ,

where B1 = BezT (r,w) is m×m. Taking into account that B−(q) and the zero matrices in the
corners of the last term are ν × ν matrices, the sum of the ranks of the two terms on the right
hand side is equal to the rank of B. This is also true for the signature. The signature of the first
term is equal to zero. Hence

sgnB = sgnB1 .

If BezT (r,w) is singular, then we carry out another non-generic step. If BezT (r,w) is nonsingular
we go over to the first Bezoutian representation by introducing v = 1

2 (r − iw) and obtain

B1 = BezT (v,v#). Now we can apply a generic step. Summing up, we have described a procedure
that computes the signature of an arbitrary Hermitian T-Bezoutian in O(n2) operations.

6. Bezoutians and Companion Matrices

In this section we show that Bezoutians are related to functions of companion matrices.
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1. Factorization of the companion. The companion matrix of the monic polynomial u(t) =∑n+1
k=1 ukt

k−1 ∈ F
n+1 is, by definition, the n× n matrix

C(u) =




0 1
. . .

1
−u1 −u2 . . . −un




It is easy to show that the characteristic polynomial of C(u) , det(tIn −C(u)) , is equal to u(t).
This is also a consequence of the following useful relation.

Lemma 6.1. We have

tIn − C(u)=




0 −1
. . .

−1
1 u1(t) . . . un−1(t)




[
u(t)

In−1

]



1
−t 1

. . .
. . .

−t 1


 , (6.1)

where uk(t) = uk+1 + uk+2t+ · · · + un+1t
n−k.

Proof. It is immediately checked that

(tIn − C(u))




1
t 1
t2 t 1
...

...
. . .

. . .

tn−1 tn−2 . . . t 1




=




0 −1
. . .

−1
u(t) u1(t) . . . un−1(t)



.

This equality can be rearranged to (6.1).

The polynomials uk(t) appearing in the first factor of the right side of (6.1) are the Horner
polynomials of uJ(t) . They satisfy the recursion

uk(t) = tuk+1(t) + uk+1

and can be represented as
[u1(t) . . . un(t) ] = ℓn(t)TB(u) .

where B(u) is introduced in (2.2). For t0 ∈ F, the matrix t0In − C(u) is a special case of a
resultant matrix (cf. (2.4)). In fact,

t0In − C(u) = Res(t0 − t,u(t) + tn−1(t0 − t)) .

Since the resultant matrix is nonsingular if and only if the polynomials are coprime, we conclude
again that t0In − C(u) is singular if and only if t− t0 is a divisor of u(t), i.e. u(t0) = 0 .

2. Functional calculus. Before we continue with companions and Bezoutians we recall some
general definitions and facts concerning functions of a matrix. Let A be an n × n matrix and

u(t) =
m∑

k=1

ukt
k−1 a polynomial. Then u(A) denotes the matrix

u(A) =

m∑

k=1

ukA
k−1

in which we set A0 = In. The matrices of the form u(A) form a commutative matrix algebra and
the transformation u(t) 7→ u(A) is a linear operator and a ring homomorphism. In particular,
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if u(t) = u1(t)u2(t), then u(A) = u1(A)u2(A). If u(t) is the characteristic polynomial of A,
then, according to the Cayley-Hamilton theorem, u(A) = O. Let a polynomial v(t) and the
characteristic polynomial u(t) of A be coprime. Then the Bezout equation

v(t)x(t) + u(t)y(t) = 1 (6.2)

has a solution (x(t),y(t)). Replacing t by A we obtain that v(A)x(A) = In. That means v(A)
is nonsingular and x(A) is its inverse.

3. Barnett’s formula. The following remarkable formula is due to S. Barnett.

Theorem 6.2. Let u(t),v(t) ∈ F
n+1(t) and u(t) be monic. Then

BezH(u,v) = B(u)v(C(u)) , (6.3)

where B(u) is introduced in (2.2).

Proof. Due to linearity, it is sufficient to prove the formula for v(t) = ek(t) = tk−1. We
set Bk = BezH(u, ek). Since Bk = B(u)C(u)k−1 is true for k = 1 we still have to show that
Bk+1 = BkC(u). Taking into account that

C(u)ℓn(s) = sℓn(s) − u(s)en ,

we obtain

ℓn(t)TBkC(u)ℓn(s) = sBk(t, s) − u(s)ℓn(t)TBken = sBk(t, s) − tk−1u(s) . (6.4)

On the other hand,

Bk+1(t, s) =
(u(t)sk−1 − tk−1u(s))s

t− s
− tk−1u(s) = sBk(t, s) − tk−1u(s) . (6.5)

Comparing (6.4) and (6.5) we obtain the recursion Bk+1 = BkC(u).

From this theorem we can conclude again (cf. Corollary 3.4) that the H-Bezoutian of u(t)
and v(t) is nonsingular if u(t) and v(t) (u(t) ∈ F

n+1(t) monic) are coprime and that its inverse
is given by

BezH(u,v)−1 = x(C(u))B(u)−1 , (6.6)

where x(t) is from the solution of the Bezout equation (6.2). In the next subsection we will show
that x(C(u)) is actually a Hankel matrix.

4. Barnett’s formula for T-Bezoutians. Now we consider T-Bezoutians. Let u(t) be a comonic
polynomial of degree ≤ n and Bk = BezT (u, ek). Then

Bk(t, s) = Bk+1(t, s)s− tk−1uJ (s) .

This can be written as
Bk = Bk+1C(uJ ) .

With the notation of (2.14) we obtain the Toeplitz analogue of Barnett’s formula.

Theorem 6.3. Let u(t),v(t) ∈ F
n+1(t), where u(t) is comonic. Then

BezT (u,v) = B−(u)vJ (C(uJ )) .

In particular, for v(t) = 1 we obtain the equality

B+(u) = B−(u)C(uJ )n , (6.7)

which yields an LU-factorization of C(uJ )n and will be applied below to prove an inversion
formula for T-Bezoutions.
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7. Hankel Matrices Generated by Rational Functions

In this section we consider Hankel matrices generated by rational functions and show that they
are closely related to H-Bezoutians. We understand “rational functions” in an abstract sense as
elements of the quotient field of the ring of polynomials. But occasionally, in particular if we
restrict ourselves to the case F = C, we interpret them in the analytic sense as functions defined
in F.

By a proper rational function we mean a rational function for which the degree of the
numerator polynomial is not greater than the degree of the denominator polynomial. We say

that the representation f(t) = p(t)
u(t) is in reduced form if u(t) and p(t) are coprime and u(t) is

monic. This representation is unique. The degree of a proper rational function is the degree of
the denominator polynomial in the reduced representation.

1. Generating functions of Hankel matrices. A proper rational function f(t) can be represented
as

f(t) = h0 + h1t
−1 + h2t

−2 + . . . . (7.1)

If F = C, then (7.1) can be interpreted as the Laurent series expansion of f(t) at infinity
converging outside a disk with center 0. For a general field F (7.1) has a meaning as quotient of
two formal power series. The coefficients hi can be obtained recursively by an obvious formula.
For f(t) having a Laurent expansion (7.1), we set f(∞) = h0 and write f(t) = O(t−m) if
h0 = · · · = hm−1 = 0.

Note that if f(t) is given by (7.1), then we have

f(t) − f(s)

t− s
=

∞∑

k=1

hk

t−k − s−k

t− s
= −

∞∑

i,j=1

hi+j−1 t
−is−j . (7.2)

This relation suggests the following definition. For n = 1, 2, . . . , the n×n Hankel matrix generated
by f(t) is, by definition, the matrix

Hn(f) = [hi+j−1 ]ni,j=1.

Let us point out that the entry h0 does not enter the definition of Hn(f). If for some n × n
Hankel matrix Hn there is a function f so that Hn = Hn(f), then f(t) will be called generating
function of Hn.

Example 7.1. As an example, let us compute the Hankel matrices generated by a partial fraction
1

(t− c)m
(c ∈ F, m = 1, 2, . . . , 2n− 1). We denote

Ln(c,m) =
1

(m− 1)!
Hn

(
1

(t− c)m

)

and write Ln(c) instead of Ln(c, 1). In view of

1

t− c
= t−1 + c t−2 + c2 t−3 + . . . (7.3)

we have

Ln(c) = [ ci+j−2 ]ni,j=1 . (7.4)

Differentiating the equality (7.3) we obtain

Ln(c, 2) = [ (i+ j − 2)ci+j−3 ]ni,j=1
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and in general, for m = 1, . . . , 2n− 1,

Ln(c,m) =

[ (
i+ j − 2
m− 1

)
ci+j−1−m

]n

i,j=1

.

It is obvious that the rank of Ln(c,m) is equal to m.

The matrices Ln(c,m) are called elementary Hankel matrices.

Example 7.2. For our second example we assume that F is algebraically closed. Let u(t) be a
polynomial of degree n and let t1, . . . , tn be the zeros of u(t). The Newton sums si (i = 1, 2, . . . )
are given by

si =

n∑

k=1

ti−1
k .

We form the Hankel matrix Hn = [ si+j−1 ]ni,j=1. Then we have

Hn = Hn

(
u′(t)

u(t)

)
.

This follows from the obvious relation

u′(t)

u(t)
=

n∑

k=1

1

t− tk
.

The transformation

H : f(t) −→ Hn(f)

is clearly a linear operator from the vector space of all proper rational functions to the space of
n × n Hankel matrices. The kernel of this operator consists of all proper rational function f(t)
for which f(t) − f(∞) = O(t−2n). We show that this transformation is onto. That means any
k × k Hankel matrix can be regarded as generated by a proper rational function.

Proposition 7.3. Let u(t) be a fixed monic polynomial of degree 2n− 1. Then any n× n Hankel
matrix Hn can be represented uniquely in the form

Hn = Hn

(p

u

)
(7.5)

for some p ∈ F
2n−1.

Proof. Clearly, a matrix of the form (7.5) with p ∈ F
2n−1 does not belong to the kernel

of the transformation H. That means that the mapping of the vector p ∈ F
2n−1 to the Hankel

matrix Hn

(
p

u

)
is one-to-one. Hence the dimension of its range equals 2n − 1. This is just the

dimension of the space of n× n Hankel matrices. Thus the mapping is onto.

Since in an algebraically closed field F any proper rational function has a partial fraction
decomposition we conclude that in this case any Hankel matrix can be represented as a linear
combination of elementary Hankel matrices. The reader may observe that the problem to find
the generating function of a Hankel matrix is closely related to the Padé approximation problem
at infinity and the partial realization problem.

In connection with these and other problems the question about a generating function
of minimal degree arises. We will see later that the degree of the generating function is at
least equal to the rank of Hn. But it can be bigger. For example, the rank-one Hankel matrix
Hn = eneT

n has no generating function of degree less than 2n− 1. Here we restrict ourselves to
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the nonsingular case. For a nonsingular n× n Hankel matrix, a generating function of degree n
always exists, as the next proposition shows. Let us use the notation of Section 4,1.

Theorem 7.4. Let Hn = [ si+j−1 ]ni,j=1 be a nonsingular Hankel matrix, {u(t),v(t)} be a funda-
mental system of Hn, where u(t) is monic and deg v(t) < n. Then, for any α ∈ F , there is a
vector p ∈ F

n such that

Hn = Hn

(
p(t)

u(t) − αv(t)

)
.

Proof. We consider the (n− 1) × (n+ 1) matrix ∂Hn, which was introduced in (4.1). The
vector w = u − αv is a monic vector belonging to the nullspace of ∂Hn. We set

p =




0 s1 . . . sn

. . .
. . .

...
0 s1


w .

From this definition and from w ∈ ker ∂Hn we can see that in the expansion

p(t)

w(t)
= h1t

−1 + h2t
−2 + . . .

we have hi = si , i = 1, . . . , 2n− 1 . Hence, Hn = Hn

(
p(t)
w(t)

)
.

Example 7.5. Let us find generating functions of degree n of the matrix Hn = Jn. For this matrix
{en+1, e1} is a fundamental system. Furthermore, p = e1. Thus, for any α ∈ F,

Jn = Hn

(
1

tn − α

)
.

Let us present a special case of Theorem 7.4 involving the solutions of the equations

Hkuk = ρkek , eT
k uk = 1 (7.6)

for k = n, n+1 . Here Hn+1 is a nonsingular extension of Hn . As we already know from Section
4,2 these monic solutions form a fundamental system for Hn. Thus, the following is immediately
clear.

Corollary 7.6. Let Hn and Hn+1 be as above and un,un+1 be the solutions of (7.6) for k =
n, n+ 1 . Then, for an α ∈ F , there are vectors pn+1 ∈ F

n and pn ∈ F
n−1 such that

Hn = Hn

(
pn+1(t) − αpn(t)

un+1(t) − αun(t)

)
.

2. Vandermonde factorization of Hankel matrices. In this subsection we assume that F = C. Let
Hn be an n×n nonsingular Hankel matrix. Then, by Theorem 7.4, it has a generating function
of degree n. We can assume that the denominator polynomial of this function has only simple
roots, which follows from the following lemma. Recall from Corollary 4.3 that the polynomials
forming a fundamental system of a nonsingular Hankel matrix are coprime.

Lemma 7.7. Let u(t) and v(t) be coprime. Then for all α ∈ C, with the exception of a finite
number of points, the polynomial w(t) = u(t) − αv(t) has only simple roots.
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Proof. Suppose that τ0 is a multiple root of w(t). Then u(τ0) = αv(τ0) and u′(τ0) =
αv′(τ0). Since u(t) and v(t) are coprime, v(τ0) 6= 0. Hence τ0 is a root of the nonzero polynomial
z(t) = u(t)v′(t) − v(t)u′(t). Now we choose α such that u(τ) 6= αv(τ) for all roots τ of z(t).
Then none of the τ is a root of w(t), so w(t) has no multiple roots.

Let f(t) = p(t)
w(t) with (∞) = 0 be a proper rational function in reduced form such that w(t)

has simple roots t1, . . . , tn. Then f(t) has a partial fraction decomposition

f(t) =
n∑

i=1

δi
t− ti

,

where

δi =
p(ti)

w′(ti)
=

((
1

f

)′

(ti)

)−1

. (7.7)

Hence Hk(f) can be represented as a linear combination of elementary Hankel matrices Lk(ti)
defined by (7.4)

Hk(f) =
n∑

i=1

δiLk(ti) . (7.8)

This relation can be stated as a matrix factorization. In fact, observe that Lk(ti) is equal

to ℓk(ti)ℓk(ti)
T , where ℓk(ti) = ( tj−1

i )k
j=1. We form the n × k Vandermonde matrix Vk(t),

t = (ti)
n
i=1, with the rows ℓk(ti)

T (i = 1, . . . , n, )

Vk(t) = [ tj−1
i ]n k

i=1,j=1 .

Now (7.8) is equivalent to the following.

Proposition 7.8. Let f(t) and t be as above. Then for k ≥ n, the Hankel matrix Hk = Hk(f)
admits a representation

Hk = Vk(t)TDVk(t) , (7.9)

where D = diag (δi)
n
i=1 and the δi are given by (7.7).

Example 7.9. For the Hankel matrix of Example 7.2 we obtain the following factorization,

Hn

(
u′

u

)
= Vn(t̃)T diag (νi)

r
i=1Vn(t̃) , (7.10)

where t̃ is the vector of different zeros t̃i (i = 1, . . . , r) of u(t), and νi are their multiplicities.

A consequence of this Proposition 7.8 is that rankHk(f) = n for all k ≥ n. In Section 7,5
we will show that this is true for a general field F. Combining Proposition 7.8 with Proposition
7.4 we obtain the following.

Corollary 7.10. Let Hn be a nonsingular n× n Hankel matrix, {u,v} a fundamental system of
Hn , and α ∈ C such that w(t) = u(t) − αv(t) has simple roots t1, . . . , tn. Then Hn admits a
representation

Hn = Vn(t)TDVn(t)

with a diagonal matrix D.
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Let us find the Vandermonde factorization for Example 7.5, i.e. for Hn = Jn. The polyno-
mial tn − α has simple roots for all α 6= 0, and these roots ti are the nth complex roots of α.
The diagonal matrix is given by

D =
1

n
diag (t1−n

1 , . . . , t1−n
n ) .

3. Real Hankel matrices. We consider the special case of a real, nonsingular Hankel matrix Hn.
In this case the fundamental system of Hn is also real. We choose α ∈ R, since then the non-real
roots of w(t) = u(t) − αv(t) appear in conjugate complex pairs. Let t1, . . . , tr be the real roots
and tr+1, tr+2 = tr+1, . . . , tn−1, tn = tn−1 be the non-real roots of w(t). Then

Vn(t)T = Vn(t)∗diag(Ir, J2, . . . , J2︸ ︷︷ ︸
l

) ,

where r + 2l = n. Thus, we obtain from Proposition 7.8 the following.

Corollary 7.11. If the Hankel matrix Hk (k ≥ n) in Proposition 7.8 is real, then it admits a
representation

Hk = Vk(t)∗D1Vk(t) ,

where

D1 = diag

(
δ1, . . . , δr,

[
0 δr+1

δr+1 0

]
, . . . ,

[
0 δn−1

δn−1 0

])
.

In particular, the matrices Hn and D1 are congruent.

Combining this with Sylvester’s inertia law, with (7.9), and with the fact that the signature

of a matrix

[
0 δ
δ 0

]
equals 0, we conclude the following.

Corollary 7.12. Let f(t) be a real rational function of degree n with simple poles t1, . . . , tn, where
t1, . . . , tr are real and the other poles non-real. Then for k ≥ n the signature of the Hankel matrix
Hk = Hk(f) is given by

sgnHk =

r∑

i=1

sgn δi ,

where δi is defined by (7.7). In particular, Hn is positive definite if and only if all roots of w(t)
are real and δi > 0 for all i.

Let us specify the criterion of positive definiteness further.

4. The Cauchy index. Let C be an oriented closed curve in the extended complex plane C∪{∞}
and f(t) a rational function with real values on C with the exception of poles. A pole c of f(t)
on C is said to be of positive type if

lim
t → c−
t ∈ C

f(t) = −∞ and lim
t → c+
t ∈ C

f(t) = ∞ .

It is said to be of negative type if c is of positive type for −f(t). If a pole is not of positive or
negative type, then it is called neutral. The Cauchy index of f(t) along C is, by definition, the
integer

indC f(t) = p+ − p−

where p+ is the number of poles of positive and p− the number of poles of negative type. The
pole c is of positive (negative) type if and only if the function 1

f(t) is increasing (decreasing) in

a neighborhood of c .
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It is clear that if c is a pole of positive or negative type on C, then a small perturbation
of the coefficients of f(t) leads only to a small change of the pole on C by preserving its type
(which is not true for neutral poles). Now we are in the position to relate the signature of Hankel
matrices generated by a rational function with the Cauchy index of this function along R.

Proposition 7.13. Let f(t) be a real proper rational function of degree n . Then

sgnHn(f) = indR f(t) .

Proof. Suppose that f(t) = p(t)
u(t) is the reduced representation as quotient of polynomials.

Let us first assume that u(t) has simple roots t1, . . . , tn, i.e. f(t) has simple poles. Simple poles

cannot be neutral. If ti is a simple pole of positive type, then
(

1
f

)′
(ti) > 0. Comparing this with

(7.7) we conclude that δi > 0. Analogously, we have δi < 0 for a pole ti of negative type. Now
it remains to apply Corollary 7.12.

Now let u(t) have multiple roots. Neutral poles of f(t) correspond to roots of u(t) of even
order and do not contribute to the Cauchy index of f(t) . It is easy to see that we can disturb
u(t) additively with an α ∈ R as small as we want such that the disturbed roots of even order
disappear or become simple roots of u(t) + α , so that the respective pairs of poles do not

contribute to the Cauchy index of fα(t) = p(t)
u(t)+α

. The other poles remain simple and of the

same type. So the first part of the proof applies to fα(t) . Due to Proposition 7.17 below Hn(f) is
nonsingular. Taking into account that the signature of a nonsingular Hankel matrix is invariant
with respect to small perturbations the assertion follows.

Some readers might be unsatisfied with the analytic argument in the proof of the algebraic
Proposition 7.13. For those readers we note that a purely algebraic proof of this proposition is
possible if more general Vandermonde representations of Hankel matrices are considered.

Let us discuss the question how positive definiteness of Hn(f) can be characterized in terms
of f(t). According to Proposition 7.13, Hn(f) is positive definite if and only if the Cauchy index
of f(t) along R is equal to n. That means that f(t) must have n poles of positive type. Between
two poles of positive type there must be a zero of f(t), i.e. a root of the numerator polynomial.
In other words, the poles and zeros of f(t) must interlace.

We say that the real roots of two polynomials u(t) and p(t) interlace if between two roots
of u(t) there is exactly one root of p(t). Polynomials with roots that interlace are coprime. Let
us summarize our discussion.

Corollary 7.14. Let f(t) be a real rational function of degree n, and let f(t) = p(t)
u(t) be its reduced

representation. Then Hn(f) is positive definite if and only if the polynomials u(t) and p(t) have
only real simple roots that interlace.

5. Congruence to H-Bezoutians. In Section 4 we showed that inverses of Hankel matrices are
H-Bezoutians. Now we are going to explain another relation between Hankel matrices and H-
Bezoutians. In the real case this relation just means that Hankel matrices and H-Bezoutians are
congruent.

Throughout this subsection, let u(t) be a polynomial of degree n, v(t) ∈ F
n+1(t), and

f(t) = v(t)
u(t) . Then B = BezH(u,v) is an n × n matrix. For k > n, we identify this matrix with

the k × k matrix obtained from B by adding k − n zero rows and zero columns at the bottom
and on the right. The same we do for B(u) = BezH(u, e1) introduced in (2.2).
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Proposition 7.15. For k ≥ n, the k × k Hankel matrix generated by f(t) = v(t)
u(t) is related to the

H-Bezoutian of u(t) and v(t) via

BezH(u,v) = B(u)Hk (f)B(u) . (7.11)

Proof. For B = BezH(u,v) and u = (ui)
n+1
i=1 we have in view of (7.2)

B(t, s) = −u(t)
f(t) − f(s)

t− s
u(s)

=

n+1∑

i,j=1

∞∑

p,q=1

ui hp+q−1 uj t
i−p−1sj−q−1

=

n∑

m,l=1

∞∑

p,q=1

um+p hp+q−1 uq+l t
m−1sl−1 ,

where we set uj = 0 for j > n+ 1. The coefficient matrix of this polynomial can be written as
a product of three matrices, as it is claimed.

Recall from Corollary 3.4 that the nullity of BezH(u,v) is equal to the degree of the greatest
common divisor of u(t) and v(t). This implies that the rank of BezH(u,v) is equal to the degree
of the rational function f(t).

Corollary 7.16. In the real case the matrices BezH(u,v) and Hn

(
u
v

)
are congruent.

Proposition 7.17. Let f(t) be a rational function of degree n. Then, for k ≥ n, the rank of Hk(f)
is equal to n. In particular, Hn(f) is nonsingular.

Proof. Let f(t) = v(t)
u(t) be in reduced form and degu(t) = n . Since the matrix B(u) in

(7.11) as an k× k matrix is singular for k > n , the assertion cannot be concluded directly from
Proposition 7.15. Thus, for k > n , define uk and vk by uk(t) = tku(t) and vk(t) = tkv(t) ,

respectively. The f(t) = vk(t)
uk(t) and, due to Proposition 7.15,

BezH(uk,vk) = B(uk)Hk(f)B(uk) , (7.12)

where B(uk) is nonsingular. Since the nullity of BezH(uk,vk) equals k , we have that

rankBezH(uk,vk) = n = rankHk(f) .

Note that under the assumptions of Proposition 7.8 the assertion of Proposition 7.17 follows
already from the Vandermonde factorization of Hk(f) given in (7.9).

In the real case, (7.12) is a congruence relation. Applying Sylvester’s inertia law we can
conclude the following for the case F = R.

Proposition 7.18. If u(t) ∈ R
n+1(t) with deg u(t) = n and v(t) ∈ R

n+1(t), then the matrices
BezH(u,v) (considered as k × k matrix) and Hk

(
v
u

)
have the same inertia.

Proof. Due to formula (7.12), which is also true if v(t)
u(t) is not in reduced form, and since

BezH(u,v) and BezH(uk,vk) have the same rank it remains to show that these two Bezoutians
have the same signature. But, this follows from

BezH(uk,vk) = Mn(ek+1)BezH(u,v)Mn(ek+1)
T
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and from Corollary 1.2.

6. Inverses of H-Bezoutians. Comparing (7.11) with Barnett’s formula (6.3) we obtain that the
Hankel matrix Hn

(
p

u

)
admits a representation

Hn

(p

u

)
= p(C(u))B(u)−1 . (7.13)

Together with (6.6) this immediately leads to the following.

Theorem 7.19. Let u(t) and v(t) be coprime and (q(t),p(t)), be the (unique) solution of the
Bezout equation

u(t)q(t) + v(t)p(t) = 1 (7.14)

with q(t),p(t) ∈ F
n(t). Then

BezH(u,v)−1 = Hn

(p

u

)
.

An immediate consequence of this theorem is the converse of Theorem 4.2.

Corollary 7.20. The inverse of a nonsingular H-Bezoutian is a Hankel matrix.

Furthermore, Theorem 7.19 tells us that the inverse of a Bezoutian or the inverse of a
Hankel matrix generated by a rational function can be computed with an algorithm which
solves the Bezout equation (7.14). We show next that this equation can be solved with the help
of the Euclidian algorithm.

7. Solving the Bezout equation. Let ui(t) be the polynomials computed by the Euclidian algo-
rithm, as described in Section 5,3, then with the help of the data of the Euclidian algorithm we
can recursively solve the Bezout equations

u(t)xi(t) + v(t)yi(t) = ui(t) (i = 0, 1, . . . ), (7.15)

where, for initialization, we have

x0(t) = 1
y0(t) = 0

,
x1(t) = 0
y1(t) = 1

.

The recursion is given by

xi+1(t) = xi−1(t) − qi(t)xi(t) (7.16)

yi+1(t) = yi−1(t) − qi(t)yi(t) .

In fact,

u(t)xi+1(t) + v(t)yi+1(t) = u(t)(xi−1 − qi(t)xi(t)) + v(t)(yi−1(t) − qi(t)yi(t))

= ui−1(t) − qi(t)ui(t) = ui+1(t) .

Introducing the 2 × 2 matrix polynomials

Xi(t) =

[
xi−1(t) xi(t)
yi−1(t) yi(t)

]
and Φi(t) =

[
0 1
1 −qi(t)

]

we can write the recursion (7.16) as

Xi+1(t) = Xi(t)Φi(t) , X1(t) = I2 .

If u(t) and v(t) are coprime, then we have for some i = l that ul(t) = c = const. Thus, the
solution of (7.14) is obtained from (xl(t),yl(t)) by dividing by c.
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As mentioned in Section 5,3 the Euclidian algorithm for finding the greatest common
divisor of two polynomials is closely related to a Schur-type algorithm for Hankel matrices. The
Euclidian algorithm for solving the Bezout equation is related to a mixed Levinson-Schur-type
algorithm for Hankel matrices. It is also possible to design a pure Levinson-type algorithm for
the solution of the Bezout equation.

8. Toeplitz Matrices Generated by Rational Functions

This section is the Toeplitz counterpart of the previous one. We define and study Toeplitz
matrices generated by rational functions and show that they are closely related to T-Bezoutians.
Some features are completely analogous to the Hankel case, but there are also some significant
differences.

1. Generating functions of Toeplitz matrices. Let f(t) = p(t)
u(t) be a proper rational function with

u(0) 6= 0. Then f(t) admits series expansions in powers of t and as well as in powers of t−1 ,

f(t) = a+
0 + a1t+ a2t

2 + . . . , f(t) = −a−0 − a−1t
−1 − a−2t

−2 − . . . . (8.1)

If F = C, then (8.1) can be understood as the Laurent series expansion at t = 0 and at t = ∞,
respectively. For a general F , (8.1) makes sense as the quotient of two formal Laurent series.
The coefficients can be obtained recursively by obvious relations. Note that, in a formal sense,

f(t) − f(s−1)

1 − ts
=

∞∑

i,j=0

ai−jt
isj , (8.2)

where a0 = a+
0 + a−0 . The latter follows from the obvious relation

(1 − ts)T (t, s) = a0 +

∞∑

i=1

ait
i +

∞∑

j=1

a−js
j ,

where T = [ ai−j ]∞i,j=1. This relation makes the following definition natural.

For n = 1, 2, . . . the n×n Toeplitz matrix generated by f(t) with the expansions (8.1) is, by
definition, the matrix Tn(f) = [ ai−j ]ni,j=1, where a0 = a+

0 +a−0 . If Tn = Tn(f), then the function
f(t) is called generating function of Tn. Obviously, Tn(f) is the zero matrix if f is a constant
function. Note that finding the generating function of a given Toeplitz matrix is a two-point
Padé approximation problem for the points 0 and ∞.

Example 8.1. Since for c 6= 0

1

1 − ct
=

∞∑

k=0

cktk and
1

1 − ct
= −

∞∑

k=1

c−kt−k ,

we have

Tn

(
1

1 − ct

)
= [ ci−j ]ni,j=1 = ℓn(c)ℓn

(
c−1
)T

, (8.3)

where ℓn(c) is defined in (1.1).

Example 8.2. Our second example is the Toeplitz analogue of Example 7.2. Let F be algebraically
closed and u(t) a polynomial of degree n with the roots t1, . . . , tn and u(0) 6= 0. We define

ci =

n∑

k=1

tik (i = 0,±1,±2, . . . )
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and form the Toeplitz matrix Tn = [ ci−j ]ni,j=1. Then Tn = Tn(f) for

f(t) =

n∑

k=1

1

1 − tkt
.

Taking uJ(t) =
∏n

k=1(1 − tkt) into account we find that

f(t) =
(u′)J (t)

uJ (t)
.

Here u′ has to be considered as a vector in F
n, that means (u′)J (t) = tn−1u′(t−1) .

Like for Hankel matrices, it can be shown that, for any given polynomial u(t) of degree
2n − 2 with u(0) 6= 0 , any n × n Toeplitz matrix has a generating function with denominator
polynomial u(t). More important is the following Toeplitz analogue of Theorem 7.4 about gen-
erating functions of nonsingular Hankel matrices. Note that its proof is somehow different to
the Hankel case.

Theorem 8.3. Let Tn = [ ai−j ]ni,j=1 be a nonsingular Toeplitz matrix, {u(t),v(t)} be a funda-
mental system of Tn. Furthermore, let α, β ∈ F be such that w(t) = αu(t) + βv(t) is of degree
n and w(0) 6= 0. Then there is a p ∈ F

n+1 such that

Tn = Tn

( p

w

)
.

Proof. Let ∂Tn be the matrix defined in (4.7). Then w belongs to the nullspace of ∂Tn. We
find an and a−n via the equations

[
an an−1 . . . a0

]
w =

[
a0 . . . a1−n a−n

]
w = 0

and form the (n+ 1) × (n+ 1) Toeplitz matrix Tn+1 = [ ai−j ]n+1
i,j=1. Then we have Tn+1w = 0.

Now we represent Tn+1 as Tn+1 = T+
n+1 + T−

n+1, where T+
n+1 is a lower triangular and T−

n+1 is
an upper triangular Toeplitz matrix and define

p = T+
n+1w . (8.4)

We have also p = −T−
n+1w. A comparison of coefficients reveals that

p(t)

w(t)
= a+

0 + a1t+ · · · + ant
n + . . . and

p(t)

w(t)
= −a−0 − a−1t

−1 − · · · − a−nt
−n − . . . ,

where a±0 are the diagonal entries of T±
n+1, respectively. Thus Tn = Tn(f) for f(t) = p(t)

w(t) .

Example 8.4. Let us compute generating functions for the identity matrix In. We observe first
that {e1, en+1} is a fundamental system. To meet the conditions of the theorem we choose α 6=

0, β 6= 0. Then we find that an = −β
α

and a−n = −α
β
. We can choose now

T+
n+1 = γIn+1 −

β

α
en+1e

T
1 ,

where γ is arbitrary. For γ = 0 this leads to p = −βen+1. Thus generating functions for In are
given by

f(t) =
−βtn

α+ βtn
.

If we choose a different γ, then the resulting function differs from that function only by a con-
stant.
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2. Matrices with symmetry properties. It is a little bit surprising that if f(t) is symmetric in
the sense that

f(t−1) = f(t) , (8.5)

then the matrix Tn(f) becomes skewsymmetric. Symmetric matrices Tn(f) are obtained if f(t)
satisfies

f(t−1) = −f(t) . (8.6)

In the case F = C the matrices Tn(f) are Hermitian if

f( t
−1

) = −f(t) . (8.7)

This is equivalent to saying that f(t) takes purely imaginary values on the unit circle. We show
that the converse is, in a sense, also true.

Proposition 8.5. If Tn is a nonsingular symmetric, skewsymmetric or Hermitian Toeplitz matrix,
then there exists a generating function f(t) for Tn of degree n that satisfies the conditions (8.6),
(8.5), (8.7), respectively.

Proof. If Tn is symmetric, then the fundamental system consists of a symmetric vector u

and a skewsymmetric vector v. If the last component of u does not vanish, then we can choose
w = u to satisfy the conditions of Theorem 8.3. Further, we obtain a−n = an, thus Tn+1 is
symmetric, and the choice T−

n+1 = (T+
n+1)

T is possible. Hence we have

p = T+
n+1u = −(T+

n+1)
T u = −T+

n+1u
J = −pJ .

That means that p is skewsymmetric, which implies that f(t) = p(t)
u(t) satisfies (8.6).

If the last component of u vanishes, then the last component of v must be nonzero and
we can choose w = v. Again we obtain a−n = an, so that Tn+1 is symmetric. With the choice
T−

n+1 = (T+
n+1)

T we have

p = T+
n+1v = −(T+

n+1)
T v = −T+

n+1v
J = pJ .

Thus, p is symmetric and f(t) = p(t)
v(t) satisfies (8.6). The proof of the other cases is analogous. We

have to take into account that a fundamental system of a nonsingular skewsymmetric Toeplitz
matrix consists of two symmetric vectors and the fundamental system of a nonsingular Hermitian
Toeplitz matrix of two conjugate-symmetric vectors.

To discuss this proposition we consider the Examples 8.1, 8.4. The Toeplitz matrix Tn =
[ ci−j ]ni,j=1 in Example 8.1 is Hermitian if c is on the unit circle, but its generating function 1

1−ct

does not satisfy (8.7). However, since 1
1−ct

= 1
2

(
1+ct
1−ct

+ 1
)

we have also

Tn = Tn

(
1

2

1 + ct

1 − ct

)
,

and this generating function satisfies (8.7). Generating functions for the identity matrix In
satisfying (8.6) and so reflecting its symmetry are

f(t) =
1

2

1 − tn

1 + tn
and f(t) =

1

2

1 + tn

1 − tn
.

3. Vandermonde factorization of nonsingular Toeplitz matrices. Let Tn be a nonsingular n× n

Toeplitz matrix with complex entries and f(t) = p(t)
w(t) be a generating function of degree n with

f(∞) = 0 . According to Theorem 8.3 and Lemma 7.7 such a function exists and, due to the
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freedom in the choice of w(t) we can assume that w(t) has only simple roots t1, . . . , tn. Using
the partial fraction decomposition of f(t) in the form

f(t) =

n∑

i=1

−
1

ti

γi

1 − t−1
i t

as well as (8.3) we can conclude, in analogy to the Hankel case, the following.

Proposition 8.6. Let Tn be a nonsingular n × n Toeplitz matrix, {u,v} a fundamental system
of Tn and α, β ∈ C such that w(t) = αu(t) + βv(t) is of degree n, satisfies w(0) 6= 0, and has
simple roots t1, . . . , tn. Then Tn admits a representation

Tn = Vn(t−1)TDVn(t) (8.8)

where t = (ti)
n
i=1 and t−1 = (t−1

i )n
i=1, and D is diagonal, D = diag

(
−t−1

k γk

)n
k=1

.

The diagonal matrix can be expressed in terms of the generating function. If we set D =
diag (δi)

n
i=1, then

δi = −
1

ti

p(ti)

w′(ti)
= −

1

ti

((
1

f

)′

(ti)

)−1

. (8.9)

Note that, like for Hankel matrices, the Vandermonde factorization for a nonsingular Toeplitz
matrix Tn(f) extends to all Toeplitz matrices Tk(f) with k ≥ n as

Tk(f) = Vk(t−1)TDVk(t) . (8.10)

4. Hermitian Toeplitz matrices. Let the assumptions of Proposition 8.6 be satisfied. We consider
the special case of an Hermitian Toeplitz matrix Tn. In this case Tn has a fundamental system
consisting of two conjugate-symmetric vectors. If we choose α and β as reals, then the vector
w in Proposition 8.6 is also conjugate-symmetric. For a polynomial with a conjugate-symmetric
coefficient vector the roots are symmetric with respect to the unit circle T. That means if t0 is a

root, then t
−1
0 is also a root. In particular, the roots not on T appear in pairs that are symmetric

with respect to T.

Let t1, . . . , tr be the roots of w(t) on T and tr+1, tr+2 = t
−1
r+1, . . . , tn−1, tn = t

−1
n−1 be

the roots of w(t) which are not on T. Note that for the coefficients γi in the partial fraction
decomposition of f(t), which are the residuals at ti, we have δr+2 = δr+1, . . . , δn = δn−1.
Furthermore,

Vn(t−1)T = Vn(t)∗diag(Ir, J2, . . . , J2︸ ︷︷ ︸
l

) ,

where r + 2l = n. Now Proposition 8.6 leads to the following.

Corollary 8.7. If the Toeplitz matrix in Proposition 8.6 is Hermitian, then it admits a represen-
tation

Tn = Vn(t)∗D1Vn(t) ,

where

D1 = diag

(
δ1, . . . , δr,

[
0 δr+1

δr+1 0

]
, . . . ,

[
0 δn−1

δn−1 0

])

In particular, the matrices Tn and D1 are congruent.
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5. Signature and Cauchy index. Corollary 8.7 allows us to express the signature of Tn in terms
of the signs of the diagonal elements δi (i = 1, . . . , r) of D1 (cf. Corollary 7.12). Our aim is now
to express it in terms of the Cauchy index.

Let f(t) be a rational function of degree n satisfying (8.7). Then the function 1
i f(t) takes

real values on the unit circle, thus the Cauchy index (see Section 7,4) indT
1
i f(t) is well defined.

It is the difference of the number of poles on T of positive type and the number of poles of
negative type. Let tj = eiθj be a pole on T. Then tj is of positive (negative) type if and only if
the (real-valued) function

ϕ(θ) =
i

f(eiθ)

is increasing (decreasing) in a neighborhood of θj . For a simple pole this is equivalent to ϕ′(θj) >
0 (ϕ′(θj) < 0). We have

ϕ′(θj) = −tj

(
1

f

)′

(tj) .

Comparing this with (8.9) we conclude that ϕ(θj) = δ−1
j . We arrive at the following statement

for the case of simple poles. It can be generalized to multiple poles by using the continuity
arguments from the proof of Proposition 7.13.

Proposition 8.8. Let f(t) be a proper rational function with degree n that takes imaginary values
on the unit circle. Then

sgnTn(f) = indT

1

i
f(t) .

We also obtain a criterion of positive definiteness.

Corollary 8.9. Let f(t) be a proper rational function of degree n, and let

f(t) =
ip(t)

u(t)

be its reduced representation in which u and p are conjugate-symmetric. Then Tn(f) is positive
definite if and only if the polynomials u(t) and p(t) have only roots on the unit circle, these
roots are simple and interlaced.

6. Congruence to T-Bezoutians. The Toeplitz analogue of Proposition 7.15 is as follows. (Con-
cerning the order of BezT (u,v) and of B±(u) compare the remarks before Proposition 7.15.)

Proposition 8.10. Let u,v ∈ F
n+1, where u has nonvanishing first and last components. Then,

for k ≥ n, the T-Bezoutian of u(t) and v(t) is related to the k×k Toeplitz matrix Tk(f) generated

by f(t) = v(t)
u(t) via

BezT (u,v) = B−(u)Tk(f)B+(u) ,

where B±(u) are introduced in (2.14).

Proof. For B = BezT (u,v) we have

B(t, s) = u(t)
f(t) − f(s−1)

1 − ts
(−uJ (s)) .
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Applying (8.2) we obtain

B =



u1

...
. . . O

un . . . u1


T




−un+1 . . . −u2

. . .
...

−un+1

O


 ,

where u = (ui)
n+1
i=1 and T = [ ai−j ]∞i,j=1. Hence B = B−(u)Tk(f)B+(u) .

Corollary 8.11. If Tn

(
v
u

)
is Hermitian and if u is a conjugate-symmetric (or conjugate-skew-

symmetric) polynomial of degree n+1 then BezT (v,u)(or BezT (u,v)) and Tn(f) are congruent.

Corollary 8.12. For k ≥ n the rank of Tk(f) is equal to the degree of f(t). In particular, if f(t)
has degree n, then Tn(f) is nonsingular.

If we combine Proposition 8.10 with Barnett’s formula in Theorem 6.3, then we obtain the
representation

Tn

(v

u

)
= vJ(C(uJ ))B+(u)−1 , (8.11)

where we assume that u(t) is comonic.

7. Inverses of T-Bezoutians. Now we show that relation (8.11) leads to an inversion formula for
T-Bezoutians.

Theorem 8.13. Let u,v ∈ F
n+1 be such that u(t) and v(t) are coprime and the first and last

components of u do not vanish. If (q(t),p(t)), q,p ∈ F
n+1, is the solution of the Diophantine

equation

u(t)q(t) + v(t)p(t) = tn , (8.12)

then BezT (u,v) is invertible and the inverse is given by

BezT (u,v)−1 = Tn

(p

u

)
.

Proof. First we note that (8.12) is equivalent to

uJ(t)qJ (t) + vJ(t)pJ (t) = tn .

Thus, vJ(t)pJ (t) ≡ tn modulo uJ (t). From Theorem 6.3, the representation (8.11), and the
Cayley-Hamilton theorem, now we obtain

BezT (u,v)Tn

(p

u

)
= B−(u)vJ (C(uJ ))pJ (C(uJ ))B+(u)−1

= B−(u)C(uJ )nB+(u)−1 .

Taking (6.7) into account this leads to

BezT (u,v)Tn

(p

u

)
= B+(u)B+(u)−1 = In ,

and the theorem is proved.

8. Relations between Toeplitz and Hankel matrices. We know that if Tk is a k × k Toeplitz
matrix, then JkTk is Hankel, and vice versa. We show how the generating functions are related.
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Proposition 8.14. Let u,q ∈ F
n+1, where u has nonvanishing first and last components, and let

q(t)
u(t) be a generating function of Tk. For k ≥ n , let p ∈ F

n be such that −p(t) ∈ F
n(t) is the

remainder polynomial of tkqJ(t) divided by uJ(t) . Then

JkTk

(q

u

)
= Hk

(p

u

)
.

Proof. According to the definition of p we have

tkqJ(t) = −pJ(t) + r(t)uJ (t)

for some r(t) ∈ F
k+1(t). This is equivalent to q(t) = −tkp(t) + tkr(t−1)u(t) , and we obtain

q(t)

u(t)
= −tk

p(t)

u(t)
+ tkr(t−1).

Thus

tkr(t−1) = a+
0 + a1t+ · · · + akt

k .

On the other hand,

p(t)

u(t)
= r(t−1) − t−k q(t)

u(t)
.

Consequently,

p(t)

u(t)
= ak + ak−1t

−1 + · · · + a0t
−ka−1t

−k−1 + . . . ,

where a0 = a+
0 + a−0 . This means that

Hk = Hk

(p

u

)
=




ak−1 ak−2 . . . a0

ak−2 . .
.

... . .
. ...

a0 . . . a1−k


 .

Thus Hk = Jk Tk

(
q

u

)
.

9. Vandermonde Reduction of Bezoutians

In this section the underlying field is the field of complex numbers, F = C. Some of the results
can be extended to general algebraically closed fields.

In Sections 7 and 8 we showed that nonsingular Hankel and Toeplitz matrices can be
represented as a product of the transpose of a Vandermonde matrix V T

n , a diagonal matrix, and
the Vandermonde matrix Vn, and we called this Vandermonde factorization. Since inverses of
Hankel and Toeplitz matrices are H- and T-Bezoutians, respectively, this is equivalent to the fact
that nonsingular Bezoutians can be reduced to diagonal form by multiplying them by Vn from
the left and by V T

n from the right. We call this kind of factorization Vandermonde reduction of
Bezoutians. In this section we give a direct derivation of Vandermonde reduction of Bezoutians
and generalize it to general, not necessarily nonsingular Bezoutians.

Hereafter, the notations confluent and non-confluent are used in connection with confluent
and non-confluent Vandermonde matrices, respectively.
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1. Non-confluent Hankel case. To begin with, let us recall that, for t = (ti)
n
i=1, the (non-

confluent) Vandermonde matrix Vm(t) is defined by

Vm(t) =




1 t1 . . . tm−1
1

1 t2 . . . tm−1
2

...
...

...
1 tn . . . tm−1

n


 .

If m = n and the ti are distinct, then Vn(t) is nonsingular.

Obviously, for x ∈ C
m, Vm(t)x = (x(ti))

n
i=1. Furthermore, for an n × n matrix B and

s = (sj)
n
j=1,

Vn(t)BVn(s)T = [B(ti, sj) ]ni,j=1 . (9.1)

We specify this for t = s with pairwise distinct components and an H-Bezoutian B = BezH(u,v),
where u(t),v(t) ∈ C

n+1(t) and u(t) has degree n . In this case the off diagonal entries cij of
C = Vn(t)BVn(t)T are given by

cij =
u(ti)v(tj) − v(ti)u(tj)

ti − tj
. (9.2)

Our aim is to find t such that C is diagonal. One possibility is to choose the zeros of u(t). This
is possible if u(t) has only simple zeros. A more general case is presented next.

Proposition 9.1. Let α ∈ C be such that w(t) = u(t)− αv(t) has simple roots t1, . . . , tn, and let
t = (ti)

n
i=1. Then

Vn(t)BezH(u,v)Vn(t)T = diag(γi)
n
i=1 , (9.3)

where

γi = u′(ti)v(ti) − u(ti)v
′(ti) . (9.4)

Proof. According to Lemma 2.2 we have BezH(u,v) = BezH(w,v). From (9.2) we see that
the off diagonal elements of the matrix Vn(t)BezH(u,v)Vn(t)T vanish. The expression (9.4)

follows from (9.2), γi = lim
t→ti

u(t)v(ti)−v(t)u(ti)
t−ti

.

Remark 9.2. If u(t) and v(t) are coprime, which is the same as saying that BezH(u,v) is
nonsingular, then according to Lemma 7.7 for almost all values of α the polynomial w(t) has
simple roots.

Remarkably the special case v(t) = 1 of (9.3) leads to a conclusion concerning the inverse
of a Vandermonde matrix.

Corollary 9.3. Let t = (ti)
n
i=1 have pairwise distinct components, and let u(t) be defined by

u(t) =
∏n

i=1(t− ti). Then the inverse of Vn(t) is given by

Vn(t)−1 = B(u)Vn(t)T diag

(
1

u′(ti)

)n

i=1

, (9.5)

where B(u) is the upper triangular Hankel matrix introduced in (2.2).

Now we consider the H-Bezoutian of real polynomials u(t) and v(t), which is an Hermitian
matrix. Similarly to Corollary 7.11, Proposition 9.1 leads to a matrix congruence.
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Corollary 9.4. Let in Proposition 9.1 the polynomials u(t) and v(t) be real and α ∈ R. Further-
more, let t1, . . . , tr be the (simple) real and (tr+1, tr+1), . . . , (tn−1, tn−1) the (simple) non-real
roots of w(t). Then

Vn(t)BezH(u,v)Vn(t)∗=diag

(
γ1, . . . , γr,

[
0 γr+1

γr+1 0

]
, . . . ,

[
0 γn−1

γn−1 0

])
.

In particular,

sgn BezH(u,v) =

r∑

i=1

sgn γi .

Note that it follows from the Hermitian symmetry of the matrix that the numbers γ1, . . . , γr

are real.

2. Non-confluent Toeplitz case. Let t = (ti)
n
i=1 have distinct nonzero components, t−1 =(

1
ti

)n

i=1
. If we specify (9.1) for a T-Bezoutian BezT (u,v), then we obtain for the off diago-

nal entries cij of C = Vn(t)BezT (u,v)Vn(t−1)T the relation

cij = −
u(ti)v(tj) − v(ti)u(tj)

ti − tj
t1−n
j .

For the diagonal entries we obtain using l’Hospital’s rule

cii = (v′(ti)u(ti) − u′(ti)v(ti))t
1−n
i .

In the same way as in Proposition 9.1 we derive the following.

Proposition 9.5. Let α ∈ C be such that w(t) = u(t)−αv(t) has simple nonzero roots t1, . . . , tn,
and let t = (ti)

n
i=1. Then

Vn(t)BezT (u,v)Vn(t−1)T = diag(γi)
n
i=1 ,

where

γi = (v′(ti)u(ti) − u′(ti)v(ti))t
1−n
i .

Let u be conjugate-symmetric, v conjugate-skewsymmetric. Then the matrix BezT (u,v) is
Hermitian. For purely imaginary α, the roots of w(t) = u(t) − αv(t) are located symmetrically
with respect to the unit circle T.

Corollary 9.6. Let in Proposition 9.5 the polynomial u be conjugate-symmetric and v(t) be
conjugate-skewsymmetric, and let α ∈ iR. Furthermore, let t1, . . . , tr be the (simple) roots of

w(t) on T and tr+1, tr+2 = t
−1
r+1, . . . , tn−1, tn = t

−1
n−1 the (simple) roots of w(t) outside T. Then

Vn(t)BezT (u,v)Vn(t)∗=diag

(
γ1, . . . , γr,

[
0 γr+1

γr+1 0

]
, . . . ,

[
0 γn−1

γn−1 0

])
.

In particular,

sgn BezT (u,v) =
r∑

i=1

sgn γi .
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3. Confluent case. Here we need the following generalization of a Vandermonde matrix. Let
t = (ti)

m
i=1 and r = (ri)

m
i=1 ∈ N

m. We denote by Vn(ti, ri) the ri × n matrix

Vn(ti, ri) =




1 ti t2i . . . tn−1
i

0 1 2ti . . . (n− 1)tn−2
i

...
. . .

...

0 . . . 0 1 . . .
(

n−1
ri−1

)
tn−ri

i




and introduce the matrix

Vn(t, r) =




Vn(t1, r1)
...

Vn(tm, rm)


 ,

which is called confluent Vandermonde matrix.
Now we show that in case that u(t) has multiple roots Bezoutians can be reduced to block

diagonal form with the help of confluent Vandermonde matrices Vn(t, r) . We restrict ourselves
to the case of H-Bezoutians. The case of T-Bezoutians is analogous.

First we consider the special single node case t = 0, r = r. Suppose that u = (ui)
n+1
i=1

and u(t) has the root t = 0 with multiplicity r, i.e. u1 = u2 = · · · = ur = 0. Obviously,
Vn(0, r) =

[
Ir O

]
. Hence Vn(0, r)BVn(0, r)T is the r × r leading principal submatrix of

B = BezH(u,v). We denote this matrix by Γ(0) and observe, taking Theorem 3.2 into account,
that

Γ(0) =



v1
...

. . .

vr . . . v1







ur+1

. .
. ...

ur+1 . . . u2r+1


 =




w1

. .
. ...

w1 . . . wr


 ,

where
2n−r+1∑

i=1

wit
i−1 = u(t)v(t)t−r .

Taylor expansion gives us

ui =
1

(i− 1)!
u(i−1)(0)

and an analogous expression for vi.
Suppose now that t0 is a root of u(t) with multiplicity r. We consider the polynomials

ũ(t) = u(t− t0) and ṽ(t) = v(t− t0) and B̃ = [ b̃ij ]ni,j=1 = BezH(ũ, ṽ). Then, for k = 0, 1, . . . ,

ũ(k)(0) = u(k)(t0) , ṽ(k)(0) = v(k)(t0)

and

b̃ij =
1

(i− 1)!(j − 1)!

∂i+j−2

∂ti−1∂sj−1
B̃(t, s) |(0,0)

=
1

(i− 1)!(j − 1)!

∂i+j−2

∂ti−1∂sj−1
B(t, s) |(t0,t0) .

Hence

Γ(t0) =



ṽ1
...

. . .

ṽr . . . ṽ1







ũr+1

. .
. ...

ũr+1 . . . ũ2r+1


 =




w1

. .
. ...

w1 . . . wr


 ,
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where ũi =
1

(i− 1)!
u(i−1)(t0), analogously for ṽi, and

2n−r+1∑
i=1

wi(t− t0)
i−1 = u(t)v(t)(t− t0)

−r.

We arrive at the following.

Proposition 9.7. Let t1, . . . , tm be the (different) roots of u(t) and r1, . . . , rm the corresponding
multiplicities, t = (ti)

m
i=1 and r = (ri)

m
i=1. Then

Vn(t, r)BezH(u,v)Vn(t, r)T = diag(Γi)
m
i=1 ,

where

Γi =




wi1

. .
. ...

wi1 . . . wiri


 and

2n−ri+1∑

j=1

wij(t− ti)
j−1 = u(t)v(t)(t− ti)

−ri .

The case v(t) = 1 provides a formula for the inverse of confluent Vandermonde matrices.

Corollary 9.8. Let t = (t1, . . . , tq) have distinct components, and let

u(t) =

q∏

i=1

(t− ti)
ri ,

where n = r1 + · · · + rq. Then the inverse of the confluent Vandermonde matrix Vn(t, r), r =
(r, . . . , rq), is given by

Vn(t, r)−1 = B(u)Vn(t, r)T diag (Γ−1
i )m

i=1 ,

where Γi =




wi1

. .
. ...

wi1 . . . wiri


 with wij = u(j+ri)(ti)

(j+ri−1)! .

We leave it to the reader to state the analogous properties of T-Bezoutians.

10. Root Localization Problems

In this section we show the importance of Bezoutians, Hankel and Toeplitz matrices for root
localization problems. Throughout the section, let F = C.

1. Inertia of polynomials. Let C be a simple oriented closed curve in the extended complex plane
C

∞ = C ∪ {∞} dividing it into an “interior” part Ω+ and an “exterior” part Ω−. We assume
that the domain Ω+ is situated left from C if a point moves along C in positive direction. The
inertia of the polynomial u(t) ∈ C

n+1(t) with respect to C is, by definition, a triple of nonnegative
integers

inC(u) = (π+(u), π−(u), π0(u)) ,

where π±(u) is the number of zeros of u(t) in Ω±, respectively, and π0(u) is the number of zeros
on C. In all cases multiplicities are counted. We say that u(t) ∈ C

n+1(t) has a zero at ∞ with
multiplicity r if the r leading coefficients of u(t) are zero. By a root localization problem we mean
the problem to find the inertia of a given polynomial with respect to a curve C.

In the sequel we deal only with the cases that C is the real line R, the imaginary line i R, or
the unit circle T. We relate the inertia of polynomials to inertias of Hermitian matrices, namely
to Bezoutians. Recall that the inertia of an Hermitian matrix A is the triple

InA = (p+(A), p−(A), p0(A)) ,
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where p+(A) is the number of positive, p−(A) the number of negative eigenvalues (counting
multiplicities), and p0(A) the nullity of A. Clearly, the inertia of A is completely determined
by the rank and the signature of A. The importance of the relation consists in the fact that
the inertia of Bezoutians can be computed via recursive algorithms for triangular factorization,
which were described in Section 5.

2. Inertia with respect to the real line. Let u(t) be a given monic polynomial of degree n, q(t)
its real and p(t) its imaginary part, i.e. u(t) = q(t) + ip(t). We consider the matrix

B =
1

2i
BezH(u,u). (10.1)

For example, if u(t) = t − c, then B = 1
2i (c − c) = Im c. Hence c is in the upper half plane if

and only if B > 0 . In general, we have

(t− s)B(t, s) =

[
1

2i
(q(t) + ip(t))(q(s) − ip(s)) − (q(t) − ip(t))(q(s) + ip(s))

]

= p(t)q(s) − q(t)p(s) .

Hence,
B = BezH(p,q) . (10.2)

In particular, we see that B is a real symmetric matrix. The following is usually referred to as
Hermite’s theorem.

Theorem 10.1. Let u(t) be a monic polynomial of degree n,

inR(u) = (π+(u), π−(u), π0(u)),

and B be defined by (10.1) or (10.2). Then the signature of B is given by

sgnB = π+(u) − π−(u) .

In particular, B is positive definite if and only if u(t) has all its roots in the upper half-plane.
Furthermore, if u(t) and u(t) are coprime, then InB = inR(u).

Proof. Let d(t) be the greatest common divisor of u(t) and u(t) and δ its degree. Then
d(t) is also the greatest common divisor of p(t) and q(t), and let u(t) = d(t)u0(t). Then
u(t) = d(t)u0(t), since d(t) is real. According to (2.5) we have

B = Res (d,u0)
∗

[
B0 O
O O

]
Res(d,u0) ,

where B0 = 1
2i BezH(u0,u0). Since d(t) and u0(t) are coprime, Res(d,u0) is nonsingular. By

Sylvester’s inertia law we have sgnB = sgnB0. We find now sgnB0.
Let z1 be a root of u0(t) and u0(t) = (t− z1)u1(t). Then u0(t) = (t− z1)u1(t). Taking into

account that
1

2i

(t− z1)(s− z1) − (t− z1)(s− z1)

t− s
= Im z1

we obtain using (2.5)

B0 = Res (t− z1,u1)
∗

[
B1 0

0T Im z1

]
Res (t− z1,u1) ,

where B1 = 1
2i BezH(u1,u1) . Repeating these arguments for the other roots zk of u0(t) (k =

2, . . . , n− δ) we conclude that there is a matrix R such that

B0 = R∗diag (Im z1, . . . , Im zn−δ)R .
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Thus, B0 is congruent to the diagonal matrix of the Im zi. Applying Sylvester’s inertia law we
obtain

sgnB = sgnB0 =

n−δ∑

i=1

sgn (Im zi) = π+(u) − π−(u) ,

which proves the main part of the theorem.
If u(t) and u(t) are coprime, then B is nonsingular, thus p0(B) = 0, and π0(u) = 0. Hence

π+(u) + π−(u) = n. Consequently π±(u) = p±(B), and the theorem is proved.

If u(t) is a real polynomial, then the Bezoutian B is zero, so all information about the
polynomial is lost. It is remarkable that in the other cases information about the polynomial is
still contained in B.

Example 10.2. Let u(t) = (t− z0)d(t), where d(t) is real and z0 is in the upper half-plane. Then
B = Im z0 dd∗. This matrix has signature 1 saying that π+(u) − π−(u) = 1 but not specifying
the location of the roots of d(t). Nevertheless, the polynomial d(t) and so information about u(t)
can be recovered from B.

Recall that according to the results in Section 5 the Euclidian algorithm applied to the
polynomials p(t) and q(t) provides a method to compute the signature of B in O(n2) operations.

We know from Proposition 7.18 that the Bezoutian B = BezH(p,q) and the Hankel matrix

Hn = Hn

(
−p

q

)
have the same inertia. Hence we can conclude the following.

Corollary 10.3. Let p(t) , q(t) ∈ R
n+1(t) be two coprime polynomials, where q(t) is monic with

degree n and u(t) = q(t) + ip(t). Then

inR(u) = InHn

(
−

p

q

)
.

Theorem 10.1, gives a complete answer to the problem to find the inertia of a polynomial
only if u(t) has no real and conjugate complex roots. In the other cases we have only partial
information. More precisely, if δ denotes the number of real roots of u(t), then

π±(u) = p±(B) +
1

2
(p0(B) − δ).

Note that 1
2 (p0(B) − δ) is the number of conjugate complex pairs of roots of u(t). The number

δ is also the number of real roots of the greatest common divisor d(t) of u(t) and u(t). Clearly,
d(t) is a real polynomial. Thus we are led to the problem to count the number of real roots of
a real polynomial. This problem will be discussed next.

3. Real roots of real polynomials. Let p(t) be a real polynomial of degree n. We consider the

rational function p′(t)
p(t) and the Hankel matrixHn

(
p′(t)
p(t)

)
. This is just our Example 7.2. According

to Proposition 7.17 the rank of this matrix is equal to the number of different roots of p(t) and,
due to Corollaries 7.11 and 1.2, the signature is the number of different real roots of p(t). Let
π′

0(p) denote the number of different real roots of p(t). Taking also into account Proposition
7.18, we have now the following Theorem of Jacobi-Borchardt.

Theorem 10.4. The number of different real roots π′
0(p) of the real polynomial p is given by

π′
0(p) = sgnBezH(p,p′) = sgnHn

(
p′(t)

p(t)

)
.
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Example 10.5. Let p(t) = t4 − 1. Then

H4

(
p′(t)

p(t)

)
= 4




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 , BezH(p,p′) = 4




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 .

Both matrices have signature 2, which confirms Theorem 10.4.

Theorem 10.4 completely solves the root localization problem for real polynomials in case
of simple roots. The multiple roots are just the roots of the greatest common divisor p1(t) of
p(t) and p′(t). If we find the numbers of different real roots of p1(t) by Theorem 10.4, then we
can obtain the number of real roots with multiplicity of at least two. If we continue we obtain
the number of different real roots with multiplicity of at least 3, and so on.

From the algorithmic view point we have to apply the Euclidian algorithm again and
again. If it terminates at a certain polynomial d(t), then we continue with d(t) and d′(t) until
the remainder is a constant. It is remarkable that all together there are not more than n steps.

This also concerns the general root localization problem for a complex polynomial u(t)
which was discussed above in Section 10,2. First we apply the Euclidian algorithm to the real
and imaginary parts of u(t), and when it terminates at a non-constant d(t), then we continue
with the Euclidian algorithm for d(t) and d′(t). Again we have at most n steps if the degree of
the original polynomial is n .

4. Inertia with respect to the imaginary axis. To find the inertia of a real polynomial with
respect to the imaginary axis iR is a very important task in many applications, because it is
related to the question of stability of systems. In order to avoid confusion, let us point out that
if iniR(u) = (π+(u), π−(u), π0(u)) , then according to the definition above π+(u) is the number
of roots of u(t) with negative real part and π−(u) those with positive real part.

Clearly, the imaginary axis case can easily be transformed into the real line case by a
transformation of the variable. It remains to study the specifics that arises from the fact that
the polynomial under investigation is real. Suppose that p(t) is a real polynomial of degree n.
We set u(t) = p(it). Then

in iR(p) = in R(u) .

Furthermore, if p(t) =
∑n+1

j=1 pjt
j−1, then u(t) admits a representation

u(t) = a(t2) + i tb(t2) ,

where, for odd n = 2m+ 1 ,

a(t) = p1 − p3t+ · · · + (−1)mp2m+1t
m, b(t) = p2 − p4t+ · · · + (−1)mp2m+2t

m , (10.3)

and for even n = 2m,

a(t) = p1 − p3t+ · · · + (−1)mp2m+1t
m, b(t) = p2 − p4t+ · · · + (−1)m−1p2mt

m−1 . (10.4)

From (10.2) and Proposition 2.8 we conclude that the matrix B = 1
2i BezH(u,u) is congruent

to the direct sum of the matrices

B0 = BezH(tb,a) and B1 = BezH(b,a) . (10.5)

Using Theorem 10.1 we arrive at the following.
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Theorem 10.6. Let p(t) be a real polynomial of degree n and let a(t) and b(t) be defined by
(10.3) or (10.4), depending on whether n is odd or even, and let B0 and B1 be given by (10.5).
Then

sgnB0 + sgnB1 = π+(p) − π−(p),

where π+(p) denotes the number of roots of p(t) in the left and π−(p) the number of roots in
the right half plane. In particular, the roots of p(t) lie entirely in the left half-plane if and only
both matrices B0 and B1 are positive definite. Furthermore, if a(t) and b(t) are coprime, then

iniR(p) = InB0 + InB1.

5. Roots on the imaginary axis and positive real roots of real polynomials. In order to get a full
picture about the location of the roots of the real polynomial p(t) with respect to the imaginary
axis we have to find the number π0 of all roots on the imaginary axis, counting multiplicities. As
a first step we find the number π′

0 of different roots on iR. This number is equal to the number
of different real roots of the greatest common divisor of a(t2) and tb(t2), where a(t) and b(t)
are defined by (10.3) or (10.4). Let p(0) 6= 0 and d(t) be the greatest common divisor of a(t)
and b(t). Then the greatest common divisor of a(t2) and tb(t2) equals d(t2). The number of
real roots of the polynomial d(t2) equals twice the number of positive real roots of d(t). Thus,
we are led to the problem to count the roots of a real polynomial on the positive real half axis.

Let p(t) be a real polynomial of degree n and p(0) 6= 0. We consider the function f1(t) =
tp′(t)
p(t) . This function has a partial fraction decomposition

f1(t) =
n∑

i=1

t

t− ti
= n+

n∑

i=1

ti
t− ti

,

where t1, . . . , tn are the roots of p(t). This leads to a Vandermonde factorization similar to the
factorization (7.10) in Example 7.9. From this factorization we conclude that

sgnHn(f1) = δ+ − δ− ,

where δ+ denotes the number of different positive and δ− the number of different negative real
roots of p(t). Using Proposition 7.18 and the result of Theorem 10.4, which is sgn BezH(p,p′) =
δ+ + δ−, we conclude the following.

Theorem 10.7. Let p(t) be as in Theorem 10.6 with p(0) 6= 0 . The number of positive real roots
δ+ of p(t) is given by

δ+ =
1

2
(sgn BezH(p,p′) + sgn BezH(p, tp′)) .

Furthermore, all roots of p(t) are real and positive if and only if BezH(p, tp′) is positive definite.

Example 10.8. For p(t) = t4 − 1 we obtain

BezH(p, tp′) = 4J4 .

This matrix has a signature equal to zero. Thus (cf. Example 10.5),

1

2
(sgnBezH(p,p′) + sgnBezH(p, tp′)) = 1

which confirms Theorem 10.7.
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6. Inertia with respect to the unit circle. Now we discuss the problem how to find the inertia
inT(u) = (π+(u), π−(u), π0(u)) of a complex monic polynomial u(t) of degree n with respect to
the unit circle T. According to the definition in Section 10,1, π+(u) is the number of roots inside
the unit circle, π−(u) is the number of roots outside the unit circle, and π0(u) the number of
roots on the unit circle. We consider the matrix

B = BezT (u#,u) . (10.6)

For example, if n = 1 and u(t) = t− c, then B = 1 − |c|2. Thus c belongs to the open unit disk
if and only if B > 0. A general u(t) can be represented as u(t) = u+(t) + iu−(t), where u± are
conjugate symmetric. We have now that the polynomial (1 − ts)B(t, s) is equal to

(u+(t) − iu−(t))(u+(s) + iu−(s)) − ((u+(t) + iu−(t))(u+(s) − iu−(s))).

Thus (1 − ts)B(t, s) = 2i(u+(t)u−(s) − u−(t)u+(s)) , which means

B = 2iBezT (u+,u−) . (10.7)

The following is usually referred to as the Schur-Cohn theorem. It can be proved with the same
arguments as Hermite’s theorem (Theorem 10.1).

Theorem 10.9. Let u(t) be a monic polynomial of degree n and B be defined by (10.6) or (10.7).
Then the signature of B is given by

sgnB = π+(u) − π−(u) .

In particular, B is positive definite if and only if u(t) has all its roots in the open unit disk.
Furthermore, if u(t) and u#(t) are coprime, then InB = inT(u).

Theorem 10.9 provides full information about the inertia of u(t) only if u(t) has no roots
on the unit circle and symmetric with respect to the unit circle or, what is the same if u(t)
and u#(t) are coprime. To complete the picture we still have to find the inertia of the greatest
common divisor of u(t) and u#(t), which is a conjugate-symmetric polynomial.

7. Roots of conjugate-symmetric polynomials. Let w(t) be a monic conjugate-symmetric poly-
nomial of degree n and t1, . . . , tn its roots. Then

w(t) =

n∏

k=1

(t− tk) = w#(t) =

n∏

k=1

(1 − tkt) ,

which implies t
−1
k = tk , k = 1, . . . , n . We consider the function f(t) = (w′)#(t)

w#(t)
, where (w′)# =

Jnw′ This function has a partial fraction decomposition (cf. Example 8.2)

f(t) =
n∑

k=1

1

1 − tkt
.

From this representation we can see that the Toeplitz matrix Tn(f) is Hermitian and its signature
is equal to the number of different roots of w(t) on T (cf. Corollary 8.7, (8.10), and Corollary
1.2).

Theorem 10.10. For a conjugate-symmetric polynomial w(t), BezT ((w′)#,w#) is Hermitian,
and its signature is equal to the number of different roots of w(t) on the unit circle.
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11. Toeplitz-plus-Hankel Bezoutians

Some important results for the Toeplitz and Hankel case can be generalized to matrices which
are the sum of such structured matrices. In particular, we will show that the inverse of a (nonsin-
gular) matrix which is the sum of a Toeplitz plus a Hankel matrix possesses again a (generalized)
Bezoutian structure. To be more precise we define the following.

1. Definition. An n × n matrix B is called Toeplitz-plus-Hankel Bezoutian (T+H-Bezoutian) if
there are eight polynomials gi(t), fi(t) (i = 1, 2, 3, 4) of F

n+2(t) such that

B(t, s) =

4∑
i=1

gi(t)fi(s)

(t− s)(1 − ts)
. (11.1)

In analogy to the Hankel or Toeplitz case we use here the notation

B = BezT+H((gi, fi)
4
1).

H-Bezoutians or T-Bezoutians are also T+H-Bezoutians. For example, the flip matrix Jn intro-
duced in (1.2) is an H-Bezoutian, Jn(t, s) can be written as

Jn(t, s) =
tn − sn

t− s
=
tn − sn − tn+1s+ tsn+1

(t− s)(1 − ts)
,

which shows that Jn is the T+H-Bezoutian (11.1), where

g1 = −f2 = en+1, g2 = f1 = 1, g3 = f4 = en+2, g4 = −f3 = e2 .

The shift matrix (1.8) is a T-Bezoutian and a T+H-Bezoutian,

Sn(t, s) =
t− tnsn−1

1 − ts
=
t2 − tn+1sn−1 − ts+ tnsn

(t− s)(1 − ts)
.

For these examples the sum Sn + Jn is also a T+H-Bezoutian,

(Sn + Jn)(t, s) =
(tn + t2) − tn+1(s+ sn−1) + (tn − 1)sn + t(sn+1 − s)

(t− s)(1 − ts)
.

But for any vectors u,v,g,h ∈ F
n+1, n > 3, the rank of the matrix with the generating polyno-

mial

(1 − ts)(u(t)v(s) − v(t)u(s)) + (t− s)(g(t)hJ (s) − h(t)gJ (s))

is not expected to be less or equal to 4. This means that the sum of a T- and an H-Bezoutian
BezH(u,v) + BezT (g, f) is, in general, not a T+H-Bezoutian.

2. The transformation ∇T+H . The T+H analogue of the transformations ∇H or ∇T (introduced
in Section 2,2 and in Section 2,8) is the transformation ∇T+H mapping a matrix A = [ aij ]ni,j=1

of order n onto a matrix of order n+ 2 according to

A = [ ai−1,j − ai,j−1 + ai−1,j−2 − ai−2,j−1 ]
n+2
i,j=1 .

Here we put aij = 0 if i /∈ {1, 2, . . . , n} or j /∈ {1, 2, . . . , n}. Denoting Wn = Sn + ST
n we have

∇T+HA =




0 −eT
1 A 0

Ae1 AWn −WnA Aen

0 −eT
nA 0


 . (11.2)

The generating polynomial of ∇T+HA is

(∇T+HA)(t, s) = (t− s)(1 − ts)A(t, s) . (11.3)
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Hence a matrix B is a T+H-Bezoutian if and only if

rank∇T+HB ≤ 4 .

Recall that the n× n matrix in the center of (11.2) is the matrix ∇(A) introduced in (1.11). In
other words, the transformation ∇ is a restriction of ∇T+H , and it is clear that T+H-Bezoutians
are quasi-T+H matrices, but not vice versa.

3. Uniqueness. Different vector systems {gi, fi}
4
i=1 , {g̃i, f̃i}

4
i=1 may produce the same T+H-

Bezoutian.
Note that B = BezT+H((gi, fi)

4
1) is equal to B̃ = BezT+H((g̃i, f̃i)

4
1) if and only if ∇T+HB =

∇T+HB̃ . To answer the questions under which conditions this happens we use the following
lemma.

Lemma 11.1. Let Gj , Fj (j = 1, 2) be full rank matrices of order m × r, n × r, respectively,
r = rankGj = rankFj. Then

G1F
T
1 = G2F

T
2 (11.4)

if and only if there is a nonsingular r × r matrix ϕ such that

G2 = G1ϕ , F1 = F2ϕ
T . (11.5)

Proof. Assume there is a nonsingular ϕ so that G2 = G1ϕ and FT
2 = ϕ−1FT

1 , then G1F
T
1 =

G2F
T
2 . Now let (11.4) be satisfied and A = G1F

T
1 . The image of A is spanned by the columns

of G1 as well as of G2. Thus there exists a nonsingular matrix ϕ so that G2 = G1ϕ. With the
same arguments for AT we obtain that there is a nonsingular matrix ψ so that F2 = F1ψ. Hence

G1F
T
1 = G2F

T
2 = G1ϕψ

TFT
1 . (11.6)

Since G1, F1 are of full rank they are one-sided invertible, and we conclude from (11.6) that
ϕ · ψT = Ir .

Let B, B̃ be n× n T+H-Bezoutians and G, G̃, F, F̃ be full rank matrices with

r = rankG = rankF ≤ 4 , r̃ = rank G̃ = rank F̃ ≤ 4

such that the matrices ∇T+HB and ∇T+HB̃ allow the following rank decompositions

∇T+HB = GFT , ∇T+HB̃ = G̃F̃T .

Proposition 11.2. The T+H-Bezoutians B and B̃ coincide if and only if r = r̃, and there is a
nonsingular r × r matrix ϕ so that

G̃ = Gϕ , F = F̃ϕT .

To specify this for nonsingular Bezoutians we make the following observation.

Proposition 11.3. Let B be an n×n matrix (n ≥ 2) with rank ∇T+HB < 4. Then B is a singular
matrix.

Proof. Let us prove this by contradiction. Assume B is nonsingular and ∇T+HB < 4.
Taking (11.2) into account elementary considerations show that ∇T+HB allows the following
decomposition

∇T+HB=




0
Be1

0


 [1 ∗ 0 ] +




0
Ben

0


 [ 0 ∗ 1] −




1
∗
0


 [ 0 eT

1B 0 ] −




0
∗
1


 [ 0 eT

nB 0 ], (11.7)
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where ∗ stands for some vector of F
n. Due to the nonsingularity of B its first and last rows as

well as its first and last columns are linearly independent. Thus,

rank




0 0 1 0

Be1 Ben ∗ ∗

0 0 0 1


 = rank




1 ∗ 0

0 ∗ 1

0 eT
1 B 0

0 eT
nB 0




= 4 ,

which contradicts rank ∇T+HB < 4.

Corollary 11.4. If rank ∇T+HB < 4 then the first and the last rows (or the first and the last
columns) of B are linearly dependent.

For T-(or H-)Bezoutians B , the condition rank ∇TB < 2 (or rank ∇HB < 2) leads to
B ≡ 0. But in the T+H case nontrivial T+H-Bezoutians B with rank ∇T+HB < 4 exist.
Examples are B = In + Jn (n ≥ 2) and split Bezoutians introduced in Section 2,11. In these
cases rank ∇B ≤ 2 . Now we present the result for the nonsingular case.

Proposition 11.5. The nonsingular T+H-Bezoutians

B = BezT+H((gi, fi)
4
1) and B̃ = BezT+H((g̃i, f̃i)

4
1)

coincide if and only if there is a nonsingular 4 × 4 matrix ϕ such that

[g1 g2 g3 g4 ]ϕ = [ g̃1 g̃2 g̃3 g̃4 ]

and

[ f̃1 f̃2 f̃3 f̃4 ]ϕT = [ f1 f2 f3 f4 ] .

4. Inverses of T+H-Bezoutians. Recall that in the Hankel and Toeplitz cases we proved that a
nonsingular matrix is an H- or a T-Bezoutian if and only if it is the inverse of a Hankel or of
a Toeplitz matrix, respectively (see Sections 4,1, 4,4, 7,6, 8,7). Such an assertion is also true in
the T+H case. We start with proving the following part of it.

Theorem 11.6. Let B be a nonsingular T+H-Bezoutian. Then B−1 is a T+H matrix.

Proof. Taking Proposition 11.3 into account we have rank ∇T+HB = 4 , and a rank de-
composition of ∇T+HB is of the form (11.7). In particular, this means that there are vectors
zi ∈ F

n, i = 1, 2, 3, 4, such that

BWn −WnB = Be1 zT
1 +Ben zT

2 + z3 eT
1 B + z4 eT

nB .

Applying B−1 from both sides this equality leads to

B−1Wn −WnB
−1 = −(e1 zT

1 B
−1 + en zT

2 B
−1 +B−1z3 eT

1 +B−1z4 eT
n ) .

Thus, the matrix of order n− 2 in the center of ∇(B−1) is the zero matrix. By Proposition 1.4
this proves that B−1 is a T+H matrix.

In the next section we will show that the converse is also true, i.e., the inverse of a (non-
singular) T+H matrix is a T+H-Bezoutian.
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12. Inverses of T+H-matrices

We consider now n × n matrices Rn which are the sum of a Toeplitz matrix Tn and a Hankel
matrix Hn. For our purposes it is convenient to use a representation (1.5) for m = n,

Tn = Tn(a) , a = (ai)
n−1
i=1−n , Hn = Tn(b)Jn , b = (bi)

n−1
i=1−n ,

Rn = Tn(a) + Tn(b)Jn =




a0 . . . a1−n

...
. . .

...
an−1 . . . a0


+



b1−n . . . b0

... . .
. ...

b0 . . . bn−1


 . (12.1)

We want to prove that the inverse of a T+H matrix Rn is a T+H-Bezoutian and even more, we
want to present inversion formulas

R−1
n = BezT+H((gi, fi)

4
1) .

Thus, we have to answer the question how to obtain the vectors gi, fi , i = 1, 2, 3, 4. Note
that representations of inverses of T+H matrices as T+H-Bezoutians allow fast matrix-vector
multiplication by these matrices (in case F = C see [38], in case F = R [40], [42]).

1. Fundamental systems. Besides the nonsingular T+H matrix Rn of (12.1) we consider the
(n− 2)× (n+2) T+H matrices ∂Rn, ∂R

T
n obtained from Rn, R

T
n after deleting the first and last

rows and adding one column to the right and to the left by preserving the T+H structure,

∂Rn =




a2 a1 . . . a2−n a1−n

a3 a2 . . . a3−n a2−n

...
...

...
...

an−1 an−2 . . . a−1 a−2


+




b1−n b2−n . . . b1 b2
b2−n b3−n . . . b2 b3

...
...

...
...

b−2 b−1 . . . bn−2 bn−1


 , (12.2)

∂RT
n =




a−2 a−1 . . . an−2 an−1

a−3 a−2 . . . an−3 an−2

...
...

...
...

a1−n a2−n . . . a1 a2


+




b1−n b2−n . . . b1 b2
b2−n b3−n . . . b2 b3

...
...

...
...

b−2 b−1 . . . bn−2 bn−1


 . (12.3)

Since Rn is nonsingular both matrices ∂Rn and ∂RT
n are of full rank, which means

dim ker ∂Rn = dim ker ∂RT
n = 4 .

Any system of eight vectors {ui}
4
i=1, {vi}

4
i=1, where {ui}

4
i=1 is a basis of ker ∂Rn and {vi}

4
i=1

is a basis of ker ∂RT
n , is called fundamental system for Rn. The reason for this notation is that

these vectors completely determine the inverse R−1
n . In order to understand this we consider

first a special fundamental system.

Hereafter we use the following notation. For a given vector a = (aj)
n−1
j=1−n we define

a± = (a±j)
n
j=1 , (12.4)

where a±n can be arbitrarily chosen. The matrix ∇(Rn) = RnWn −WnRn allows a rank de-
composition of the form,

∇(Rn) = −(a+ + bJ
−)eT

1 − (aJ
− + b+)eT

n + e1(a− + bJ
−)T + en(aJ

+ + b+)T . (12.5)

Multiplying (12.5) from both sides by R−1
n we obtain a rank decomposition of ∇(R−1

n ).
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Proposition 12.1. We have

∇
(
R−1

n

)
= x1y

T
1 + x2y

T
2 − x3y

T
3 − x4y

T
4 , (12.6)

where xi (i = 1, 2, 3, 4) are the solutions of

Rnx1 = a+ + bJ
− , Rnx2 = aJ

− + b+ , Rnx3 = e1 , Rnx4 = en , (12.7)

and yi (i = 1, 2, 3, 4) are the solutions of

RT
ny1 = e1 , R

T
ny2 = en , R

T
ny3 = a− + bJ

− , R
T
ny4 = aJ

+ + b+ . (12.8)

According to (12.2), (12.3) we obtain the following fundamental system for Rn.

Proposition 12.2. Let xi,yi ∈ F
n be defined by (12.7), (12.8). The vector system



u1 =




1
−x1

0


 , u2 =




0
−x2

1


 , u3 =




0
x3

0


 , u4 =




0
x4

0






 (12.9)

is a basis of ker ∂Rn, the vector system


v1 =




0
y1

0


 , v2 =




0
y2

0


 , v3 =




1
−y3

0


 , v4 =




0
−y4

1






 (12.10)

is a basis of ker ∂RT
n .

2. Inversion of T+H matrices. The special fundamental system of Proposition 12.2 deliver the
parameters needed in a Bezoutian formula for R−1

n . This is the initial point for our further
considerations.

Theorem 12.3. Let Rn be the nonsingular T+H matrix (12.1) and {ui}
4
i=1, {vi}

4
i=1 be the funda-

mental system for Rn given by (12.9), (12.7), (12.10), (12.8). Then R−1
n is the T+H-Bezoutian

defined by its generating polynomial as follows,

R−1
n (t, s) =

u3(t)v3(s) + u4(t)v4(s) − u1(t)v1(s) − u2(t)v2(s)

(t− s)(1 − ts)
. (12.11)

Proof. Since x3 is the first, x4 the last column, yT
1 is the first, yT

2 the last row of R−1
n we

conclude from (11.2)

∇T+HR
−1
n =




0 −yT
1 0

x3 ∇(R−1
n ) x4

0 −yT
2 0


 .

Taking (12.6) into account this leads to

∇T+HR
−1
n = [−u1 − u2 u3 u4 ] [v1 v2 v3 v4 ]T ,

where the vectors ui and vi are defined in (12.9), (12.10). The inversion formula follows now
from (11.3).

In particular, this theorem shows that if we want to use the vectors of any fundamental
system in a Bezoutian formula for R−1

n a “normalization” of them is necessary. For this purpose
we introduce the following (n+ 2) × 4 matrices

F = [ e1 en+2 f1 f2 ] , G = [g1 g2 e1 en+2 ] ,
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where
f1 = (a1−i + bi−n)

n+1
i=0 , f2 = (an−i + bi−1)

n+1
i=0 ,

g1 = (ai−1 + bi−n)
n+1
i=0 , g2 = (ai−n + bi−1)

n+1
i=0 ,

whith a±n, b±n arbitrarily chosen. We call a fundamental system {ui}
4
i=1 , {vi}

4
i=1 for Rn canon-

ical if

FT [u1 u2 u3 u4 ] = GT [v1 v2 v3 v4 ] = I4 . (12.12)

Proposition 12.4. A fundamental system {ui}
4
i=1 , {vi}

4
i=1 for Rn is canonical if and only if ui

is of the form (12.9), (12.7) and vi is of the form (12.10), (12.8) for i = 1, 2, 3, 4 .

Proof. If {ui}
4
i=1 and {vi}

4
i=1 are canonical then (12.12) means, in particular, that the first

component of u1 and v3 as well as the last components of u2 and v4 are one. The first and last
components of the other vectors are zero. Hence there are vectors xi,yi ∈ F

n such that ui,vi

are of the form (12.9), (12.10). Now by (12.12) we have

[ I+−f1 I+−f2 ]T [x3 x4 ] =

[
1 0
0 1

]
. (12.13)

Here, for a given vector h = (hi)
n+1
i=0 ∈ F

n+2 the vector I+−h ∈ F
n is defined by

I+−h = (hi)
n
i=1. (12.14)

Since

(I+−f1)
T = eT

1 Rn , (I+−f2)
T = eT

nRn

and since




0
x3

0


 ,




0
x4

0


 are in ker ∂Rn equality (12.13) leads to

Rnx3 = e1 , Rnx4 = en .

Moreover,




1
−x1

0


 ∈ ker ∂Rn means that Rnx1 = a+ + bJ

− and




0
−x2

1


 ∈ ker ∂Rn means

that Rnx2 = aJ
− +b+. Similar arguments show that yi , i = 1, 2, 3, 4 , are the solutions of (12.8),

and the necessity part of the proof is complete.
If {ui}

4
i=1 , {vi}

4
i=1 are of the form (12.9), (12.7), and (12.10), (12.8) then, obviously, (12.12)

is satisfied.

Given an arbitrary fundamental system {ũi}
4
i=1 , {ṽi}

4
i=1 we define two 4 × 4 nonsingular

matrices ΓF ,ΓG,

FT [ ũ1 ũ2 ũ3 ũ4 ] = ΓF , GT [ ṽ1 ṽ2 ṽ3 ṽ4 ] = ΓG .

We conclude that by

[u1 u2 u3 u4 ] = [ ũ1 ũ2 ũ3 ũ4 ] Γ−1
F (12.15)

and

[v1 v2 v3 v4 ] = [ ṽ1 ṽ2 ṽ3 ṽ4 ] Γ−1
G (12.16)

a canonical fundamental system {ui}
4
i=1, {vi}

4
i=1 is given. Note that for fixed a±n, b±n the

canonical fundamental system is unique. The following becomes clear.

Theorem 12.5. Let Rn be the nonsingular T+H matrix (12.1) and {ũi}
4
i=1 , {ṽi}

4
i=1 be a funda-

mental system of Rn. Then the inverse R−1
n is the T+H-Bezoutian (12.11), where {ui}

4
i=1 and

{vi}
4
i=1 are given by (12.15) and (12.16), respectively.
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Let Rn be given by (12.1). Hereafter we use also a representation of Rn which involves the
projections P± = 1

2 (In ± Jn) onto F
n
± introduced in (1.3) and the vectors

c = (cj)
n−1
j=1−n = a + b , d = (dj)

n−1
j=1−n = a − b ,

namely
Rn = Tn(c)P+ + Tn(d)P− . (12.17)

Instead of the solutions xi of (12.7) and the solutions yi of (12.8) we consider now the solutions of

the following equations the right hand sides of which depend on c,d and c̃ = aJ +b , d̃ = aJ −b,

Rnw1 =
1

2
(c+ + cJ

−) , Rnw2 =
1

2
(d+ − dJ

−) , Rnw3 = P+e1 , Rnw4 = P−e1 (12.18)

and

RT
nz1 = P+e1 , R

T
nz2 = P−e1 , R

T
nz3 =

1

2
(c̃+ + c̃J

−) , RT
nz4 =

1

2
(d̃+ − d̃J

−) . (12.19)

Here we use the notation (12.4). We introduce the vectors

ŭ1 =




1
−2w1

1


 , ŭ2 =




1
−2w2

−1


 , ŭ3 =




0
w3

0


 , ŭ4 =




0
w4

0


 ,

v̆1 =




0
z1

0


 , v̆2 =




0
z2

0


 , v̆3 =




1
−2z3

1


 , v̆4 =




1
−2z4

−1


 .

(12.20)

Now an inversion formula which involves these vectors follows from formula (12.11).

Proposition 12.6. Let Rn be the nonsingular T+H matrix (12.17). Then the inverse R−1
n is given

by

R−1
n (t, s) =

ŭ3(t)v̆3(s) + ŭ4(t)v̆4(s) − ŭ1(t)v̆1(s) − ŭ2(t)v̆2(s)

(t− s)(1 − ts)
, (12.21)

where {ŭi}
4
i=1 , {v̆i}

4
i=1 are defined in (12.20).

Proof. Since
[ ŭ1 ŭ2 ŭ3 ŭ4 ] = [u1 u2 u3 u4 ]ϕ

and
[ v̆1 v̆2 v̆3 v̆4 ] = [v1 v2 v3 v4 ]ϕ−1 ,

where ϕ is the block diagonal matrix

ϕ = diag

([
1 1
1 −1

]
,
1

2

[
1 1
1 −1

])
,

the proposition follows from Proposition 11.5 and (12.11).

3. Inversion of symmetric T+H matrices. It is easy to see that a T+H matrix is symmetric if
and only if the Toeplitz part has this property. Let Rn be a nonsingular, symmetric T+H matrix
(12.1). Then the solutions of (12.7) and (12.8) coincide,

y1 = x3 , y2 = x4 , y3 = x1 , y4 = x2 .

Using the inversion formula (12.11) R−1
n is given by the vectors {ui}

4
i=1 of (12.9),

R−1
n (t, s) =

u3(t)u1(s) − u1(t)u3(s) + u4(t)u2(s) − u2(t)u4(s)

(t− s)(1 − ts)
. (12.22)
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Since a = aJ we have c = c̃ , d = d̃ , and the inversion formula (12.21) can be simplified as well,

R−1
n (t, s) =

ŭ3(t)ŭ1(s) − ŭ1(t)ŭ3(s) + ŭ4(t)ŭ2(s) − ŭ2(t)ŭ4(s)

(t− s)(1 − ts)
. (12.23)

If we have any basis {ũi}
4
i−1 of ker ∂Rn, it remains to compute ΓF , and {ui}

4
i=1 is given by

(12.15).
We will not consider the skewsymmetric case, since a skewsymmetric T+H matrix is always

a pure Toeplitz matrix. (For the skewsymmetric Toeplitz case see Section 4,7.)

4. Inversion of centrosymmetric T+H matrices. If Rn from (12.1) is centrosymmetric, i.e. RJ
n =

Rn , then in view of JnTn(a)Jn = Tn(aJ) ,

Rn =
1

2
(Rn +RJ

n) = Tn

(
1

2
(a + aJ)

)
+ Tn

(
1

2
(b + bJ )

)
Jn .

Together with Exercises 15, 16 we conclude the following.

Proposition 12.7. Let Rn be an n×n T+H matrix. Then the following assertions are equivalent.

1. Rn is centrosymmetric.
2. In the representation (12.1) (resp. (12.17)) the Toeplitz matrices Tn(a) and Tn(b) (resp.
Tn(c) and Tn(d)) are symmetric.

3. In the representation (12.1) (resp. 12.17)) a and b (resp. c and d) are symmetric vectors.

Corollary 12.8. A centrosymmetric T+H matrix Rn is also symmetric.

Moreover, in the centrosymmetric case the representation (12.17) can be written in the
form

Rn = P+Tn(c)P+ + P−Tn(d)P− . (12.24)

Now we specify the results for general T+H matrices to centrosymmetric T+H matrices Rn.
Since Rn is symmetric we can use the simplifications of the previous subsection. To begin with
we observe that the right hand sides of the first and the third equations of (12.18) are symmetric
and of the second and the fourth equations are skewsymmetric if we choose

cn = c−n, dn = d−n .

Since centrosymmetric matrices map symmetric (skewsymmetric) vectors into symmetric (skew-
symmetric) vectors, we conclude that the solutions w1,w3 of (12.18) as well as their extensions
ŭ1, ŭ3 of (12.20) are symmetric, whereas w2,w4 and ŭ2, ŭ4 are skewsymmetric vectors. This
leads to further simplications of the inversion formula (12.23). But before presenting this for-
mula let us introduce a more unified notation, where the subscript + designates symmetric, −
skewsymmetric vectors in the fundamental system,

u+ =




0
w3

0


 , u− =




0
w4

0


 , v+ =




1
−2w1

1


 , v− =




1
−2w2

−1


 . (12.25)

Here wi are the solutions of (12.18) which turn obviously into pure Toeplitz equations,

Tn(c)w1 = P+c+ , Tn(d)w2 = P−d+ , Tn(c)w3 = P+e1 , Tn(d)w4 = P−e1 . (12.26)

Note that these equations have unique symmetric or skewsymmetric solutions. Thus, the in-
version formula (12.23) can be rewritten as a sum of a split Bezoutian of (+)-type and a split
Bezoutian of (−)-type. These special Bezoutians were introduced in Section 2,11. Let us use the
notations adopted there.
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Theorem 12.9. Let Rn be a nonsingular, centrosymmetric T+H matrix given by (12.17) and
u±,v± be the vectors of F

n+2
± defined in (12.25), where the wi are the unique symmetric or

skewsymmetric solutions of(12.26). Then

R−1
n = B+ +B− ,

where B± are the split Bezoutians of (±)-type

B± = Bezsplit(v±,u±) .

Similar ideas as those of Section 4,5 lead to a slight modification of the last theorem.
We extend the nonsingular centrosymmetric T+H matrix Rn given by (12.17) to a nonsingular
centrosymmetric T+H matrix Rn+2, such that Rn is its central submatrix of order n.

Rn+2 = Tn+2(c)P+ + Tn+2(d)P− . (12.27)

Here c and d are extensions of the original vectors c and d by corresponding components
c−n = cn , d−n = dn , c−n−1 = cn+1 , d−n−1 = dn+1. Let x±

n+2,x
±
n be the unique symmetric or

skewsymmetric solutions of

Tn+2(c)x
+
n+2 = P+e1 , Tn(c)x+

n = P+e1 ,
Tn+2(d)x−

n+2 = P−e1 , Tn(d)x−
n = P−e1 .

(12.28)

(Note that x+
n = w3 ,x

−
n = w4. The solutions x±

n+2 are up to a constant factor equal to the
vectors v±.)

Corollary 12.10. Let Rn+2 be a nonsingular, centrosymmetric extension (12.27) of Rn. Then
the equations (12.28) have unique symmetric or skewsymmetric solutions and

R−1
n =

1

r+
Bezsplit(x

+
n+2,u+) +

1

r−
Bezsplit(x

−
n+2,u−) ,

where r± are the first components of x±
n+2 and u± =




0
x±

n

0


 .

If Tn(c) and Tn(d) are nonsingular then Rn is nonsingular. Indeed, taking (12.24) into
account Rnu = 0 leads to

P+Tn(c)P+u = −P−Tn(d)P−u .

Hence P+u = 0 and P−u = 0 which means u = 0. The converse is not true. Take, for example,
c = (1, 1, 1) and d = (−1, 1,−1), then T2(c) and T2(d) are singular, whereas R2 = 2I2 is
nonsingular. One might conjecture that for a nonsingular Rn there is always a representation
(12.17) with nonsingular Tn(c) and Tn(d). For n = 2 this is true. But this fails to be true for
n = 3. Consider, for example,

c = (1, 0, 1, 0, 1) and d = (0, 0, 1, 0, 0) .

Then

R3 = T3(c)P+ + T3(d)P− =
1

2




3 0 1
0 2 0
1 0 3




is nonsingular. But T3(c) is a chess-board matrix (1.4) with c = 1, b = 0 which is singular and
uniquely determined in the representation of R3 (cf. Exercise 16).
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Let us consider besides Rn = Tn(a) + Tn(b)Jn the matrix R−
n = T (a) − T (b)Jn. If Rn is

represented in the form (12.24) then the corresponding representation of R−
n is

R−
n = P+Tn(d)P+ + P−Tn(c)P− ,

which means that the roles of c and d are interchanged. We conclude the following

Proposition 12.11. The (symmetric) Toeplitz matrices Tn(c) and Tn(d) are nonsingular if and
only if both Rn and R−

n are nonsingular.

Proof. We have already shown that the nonsingularity of Tn(c) and Tn(d) implies the
nonsingularity of Rn. The nonsingularity of R−

n follows with the same arguments. It remains to
show that the singularity of Tn(c) (or Tn(d)) leads to the singularity of Rn or R−

n . Let u be a
nontrivial vector such that Tn(c)u = 0 . We split u into its symmetric and skewsymmetric parts

u = u+ + u− (u± ∈ F
n
±).

Clearly, at least one of the vectors u+ or u− is nonzero, and Tn(c)u+ = Tn(c)u− = 0 . Since

Rnu+ = Tn(c)u+ , R−
n u− = Tn(c)u−

we obtain that Rn or R−
n is singular. This is also obtained if we assume that Tn(d) is singular.

5. Inversion of centro-skewsymmetric T+H matrices. In this subsection let us consider T+H ma-
trices Rn which are centro-skewsymmetric, Rn = −RJ

n. Since for an n×n centro-skewsymmetric
matrix A, detA = (−1)n detA, all centro-skewsymmetric matrices of odd order are singular.
Hence we consider here mainly matrices of even order. The centro-skewsymmetric counterpart
of Proposition 12.7 is as follows.

Proposition 12.12. Let Rn be an n×n T+H matrix. Then the following assertions are equivalent.

1. Rn is centro-skewsymmetric.
2. There is a representation (12.1) (resp. (12.17)) such that the Toeplitz matrices Tn(a) and
Tn(b) (resp. Tn(c) and Tn(d)) are skewsymmetric.

3. There is a representation (12.1) (resp. (12.17)) such that a and b (resp. c and d) are
skewsymmetric vectors.

In the remaining part of this subsection we only use such representations. In this case
(12.17) can be rewritten as

Rn = P−Tn(c)P+ + P+Tn(d)P− .

Its transposed matrix is given by

RT
n = −(P−Tn(d)P+ + P+Tn(c)P−) .

In the equations (12.19) we have c̃ = −d and d̃ = −c.
In general, Rn is neither symmetric nor skewsymmetric, thus a connection between the

solutions of (12.18) and (12.19) is not obvious. If we choose cn = −c−n and dn = −d−n than
c− = −c+ , d− = −d+. Hence the right-hand sides of the equations (12.18), (12.19) are either
symmetric or skewsymmetric. Since Rn as a centro-skewsymmetric matrix maps F

n
± to F

n
∓, we

obtain that the solutions are also either symmetric or skewsymmetric. Let us indicate these
symmetry properties again by denoting

w+ = w1 ,w− = w2 ,x− = w3 ,x+ = w4,
x̃− = z1 , x̃+ = z2 , w̃+ = z3 , w̃− = z4.
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Since these symmetries pass to the augmented vectors ŭj , v̆j of (12.20) we set

v+ = ŭ1 , v− = ŭ2 , u− = ŭ3 , u+ = ŭ4 ,
ṽ+ = v̆3 , ṽ− = v̆4 , ũ− = v̆1 , ũ+ = v̆2 .

(12.29)

The equations (12.18), (12.19) turn into Toeplitz equations,

Tn(c)x+ = P−e1 , Tn(c)w+ = P−c+ , Tn(d)x− = P+e1 , Tn(d)w− = P+d+ (12.30)

and

Tn(c)x̃− = −P+e1 , Tn(c)w̃− = P+c+ , Tn(d)x̃+ = −P−e1 , Tn(d)w̃+ = P−d+ . (12.31)

According to Proposition 12.6 and (11.3) R−1
n given by the augmented vectors (12.29) of these

solutions via

∇T+HR
−1
n = u−ṽT

+ − v+ũT
− − v−ũT

+ + u+ṽT
− . (12.32)

Now we show how the solutions of (12.30) and (12.31) are related. First we compare the equations
Tn(c)x̃− = P+e1 and Tn(c)x+ = P−e1 for any c ∈ F

2n−1
− . The following lemma shows that there

is an essential difference between the centrosymmetric and centro-skewsymmetric cases.

Lemma 12.13. Let Tn(c) be skewsymmetric. If the equation Tn(c)x̃− = −P+e1 is solvable, then
equation Tn(c)x+ = P−e1 is also solvable, and if n is even, then the converse is also true. If
x̃− is a skewsymmetric solution of the first equation, then a solution of the second equation is
given by

x+(t) =
1 + t

1 − t
x̃−(t) (12.33)

Proof. If Tn(c)x̃− = −P+e1 is solvable, then there exists a skewsymmetric solution x̃−.
Since x̃− is skewsymmetric, we have x̃−(1) = 0. Hence (12.33) defines a polynomial x+(t).
Moreover, the coefficient vector x+ is symmetric.

Let z ∈ F
n be defined by z(t) = 1

t−1 x̃−(t) and z1(t) = tz(t). If now Tn(c)z = (rk)n
k=1, then

Tn(c)z1 = (rk−1)
n
k=1, where r0 is some number. In view of Tn(c)(z1 − z) = −P+e1, we have

r0 − r1 = −
1

2
, r1 = r2 = · · · = rn−1, rn−1 − rn = −

1

2
.

Since the (n− 1) × (n− 1) principal submatrix Tn−1 of Tn(c) is skewsymmetric and the vector
z′ ∈ F

n−1 obtained from z by deleting the last (zero) component is symmetric, the vector
Tn−1z

′ = (rk)n−1
k=1 is skewsymmetric. Hence

r0 = −
1

2
, r1 = r2 = · · · = rn−1 = 0, rn =

1

2
.

We conclude that Tn(c)(z + z1) = −P−e1. This means that x+ = z + z1 .
The proof of the converse direction follows the same lines. One has to take into account

that if n is even and x+ is symmetric, then x+(−1) = 0. Hence z(t) = 1
t+1x+(t) is a polynomial.

Note that the converse direction of Lemma 12.13 is not true if n is odd. If, for example,

T3(c) =




0 −1 0
1 0 −1
0 1 0




then T3(c)x+ = P−e1 is solvable but Tn(c)x̃− = P+e1 is not.
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The relation between the solutions x+ and x̃− extends to the augmented vectors u+ and
ũ−. We have

u+(t) =
1 + t

1 − t
ũ−(t).

Replacing c by d we obtain

ũ+(t) =
1 + t

1 − t
u−(t).

Now we compare the equations Tn(c)w+ = P−c+ and Tn(c)w̃− = P+c+. More precisely, we
compare the augmented vectors v+ and ṽ−.

Lemma 12.14. Let Tn(c) be skewsymmetric. If the equation Tn(c)w̃− = P+c+ is solvable, then
the equation Tn(c)w+ = P−c+ is also solvable, and the augmented vectors of these solutions are
related via

v+(t) =
1 + t

1 − t
ṽ−(t). (12.34)

If n is even, then the solvability of Tn(c)w+ = P−c+ implies the solvability of Tn(c)w̃− = P+c+.

Proof. Let T̃ denote the n×(n+2) matrix T̃ = [ci−j+1]
n−1 n+1
i=0 j=0 with c−n = cn . If Tn(c)w̃− =

P+c+, then T̃ ṽ− = 0. Furthermore, if w̃− is skewsymmetric, then ṽ− is skewsymmetric. Hence
ṽ−(1) = 0 and z(t) = 1

1−t
ṽ−(t) is a polynomial. We consider the coefficient vector z of z(t) as

a vector in F
n+2 and denote the coefficient vector of tz(t) by z1.

Suppose that T̃z = (rk)n
1 , then T̃z1 = (rk−1)

n
1 , where r0 is some number. Since z−z1 = ṽ−

and T̃ ṽ− = 0, we conclude that r0 = · · · = rn.

Let Tn+1(c) denote the (n + 1) × (n + 1) matrix [ci−j ]
n

i,j=0 and z′ ∈ F
n+1 the vector

obtained from z deleting the last (zero) component. Then Tn+1(c)z
′ = (rk)n

k=0. Here Tn+1(c)
is skewsymmetric and z′ is symmetric, thus the vector (rk)n

k=0 is skewsymmetric. Since all

components are equal, it must be the zero vector. We obtain T̃ (z+ z1) = 0. Observe that z+ z1

is symmetric and that its first component is equal to 1. Therefore, z+z1 = v+ = [ 1 −2wT
+ 1 ]T for

some symmetric vector w+ ∈ F
n. This vector is now a solution of the equation Tn(c)w+ = P−c+ .

The converse direction is proved analogously taking into account that if n is even, then the
length of v+, which is n + 2, is even. Hence v+(−1) = 0 and z(t) = 1

1+t
v+(t) is well defined.

Replacing c by d we obtain

ṽ+(t) =
1 + t

1 − t
v−(t).

Taking (12.32), Lemma 12.13 and Lemma 12.14 together we arrive at

∇T+H(R−1
n )(t, s) = u−(t)

1 + s

1 − s
v−(s) − v−(t)

1 + s

1 − s
u−(s)

(12.35)

−v+(t)
1 − s

1 + s
u+(s) + u+(t)

1 − s

1 + s
v+(s) ,

which finally leads to the following theorem taking (11.3) into account.
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Theorem 12.15. Let the centro-skewsymmetric T+H matrix Rn be nonsingular and given by
(12.17). Then the equations (12.30) are solvable and the generating function of the inverse
matrix is given by the augmented vectors of the solutions of these equations via

R−1
n (t, s) = B+(t, s)

s− 1

s+ 1
+B−(t, s)

s+ 1

s− 1

and
B± = Bezsplit(u±,v±) .

Note that for a nonsingular matrix Rn all equations (12.30) and (12.31) are uniquely
solvable. Moreover, we observe that x = x+− x̃− is a solution of Tn(c)x = e1 and w = w+−w̃−

is a solution of Tn(c)w = cJ
− . Taking Proposition 4.6 into account we obtain the nonsingularity

of Tn(c). Analogously, Tn(d) is nonsingular. This leads to the following surprising conclusion.

Corollary 12.16. For a centro-skewsymmetric T+H matrix

Rn = T (a) + T (b)Jn = T (c)P+ + T (d)P−

with skewsymmetric vectors a,b, c,d , the following assertions are equivalent:

1. Rn is nonsingular.
2. R−

n = T (a) − T (b)Jn is nonsingular.
3. T (c) and T (d) are nonsingular.

To present the counterpart of Corollary 12.10 let us extend the nonsingular centro-skew-
symmetric T+H matrix Rn given by (12.17) to a nonsingular centro-skewsymmetric T+H matrix
Rn+2, such that Rn is its central submatrix of order n.

Rn+2 = Tn+2(c)P+ + Tn+2(d)P− , (12.36)

where c and d are extensions of the original vectors c and d by corresponding components c−n =
−cn , d−n = −dn , c−n−1 = −cn+1 , d−n−1 = −dn+1. Let x±

n+2,x
±
n be the unique symmetric or

skewsymmetric solutions of

Tn+2(c)x
−
n+2 = P+e1 , Tn(c)x−

n = P+e1 ,
Tn+2(d)x+

n+2 = P−e1 , Tn(d)x+
n = P−e1 .

(12.37)

Note that x±
n = −x̃± , (solutions of (12.31)), thus −u± are the augmented vectors defined by

u±(t) = tx±
n (t) . The solutions x±

n+2 are up to a constant factor equal to the vectors v±.

Corollary 12.17. Let Rn+2 be a nonsingular and centro-skewsymmetric extension (12.36) of Rn.
Then the equations (12.37) have unique symmetric or skewsymmetric solutions and

R−1
n =

1

r+
Bezsplit(x

+
n+2,u+)

s− 1

s+ 1
+

1

r−
Bezsplit(x

−
n+2,u−)

s+ 1

s− 1
,

where r± are the first components of x±
n+2.
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13. Exercises

1. An n× n matrix B is called quasi-T-Bezoutian if ∇TB introduced in (2.17) has rank 2 at
most.
(a) Show that B is a quasi-T-Bezoutian if and only if BJn is a quasi-H-Bezoutian (intro-

duced in Section 2,4).
(b) State and prove a proposition about the representation of a quasi-T-Bezoutian that

is analogous to Proposition 2.4.
2. The special Toeplitz matrix

Zα
n (a) =




a0 αan−1 . . . αa1

a1 a0
. . .

...
...

. . .
. . . αan−1

an−1 . . . a1 a0




(α ∈ F)

is called α-circulant.
(a) Show that the T-Bezoutian of a polynomial u(t) ∈ F

n+1 and tn − α is an α-circulant
and each α-circulant is of this form.

(b) Show that a T-Bezoutian is a Toeplitz matrix if and only if it is an α-circulant for
some α or an upper triangular Toeplitz matrix.

3. Let u(t) be a polynomial of degree n and v(t) a polynomial of degree ≤ n. Describe
the nullspace of the transpose of Resp(u,v) (introduced in Section 3,1) in terms of the
greatest common divisor of u(t) and v(t). Use this to show that the nullity of Resp(u,v)
is, independently of p, equal to the degree of the greatest common divisor of u(t) and v(t).

4. (a) Show that an n × n matrix A is Toeplitz if and only if I+−∇T (A)IT
+− is the zero

matrix, where I+− is introduced in (12.14).
(b) Show that the product of two nonzero Toeplitz matrices is Toeplitz again if and only

if both factors are α-circulants for the same α or both are upper (or lower) triangular
Toeplitz matrices.

5. Prove that the nonsingularity of a Toeplitz matrix Tn = [ ai−j ]ni,j=1 follows from the
solvability of the equations

Tny = e1 and Tnz = (a−n+j−1)
n
j=1 ,

where a−n is arbitrarily chosen. Construct a fundamental system from these solutions.
6. Design a Levinson-type algorithm for the solution of the Bezout equation (7.14), i.e. an

algorithm that does not rely on successive polynomial division. Compare the complexity
of this algorithm with the complexity of the algorithm described in Section 7,7.

Hint. Consider first the “regular” case in which the degrees of all quotients qi(t) are
equal to 1.

7. Let p(t) = p1 + p2t+ p3t
2 + t3 be a monic real polynomial. Show the following theorem of

Vyshnegradsky. The polynomial p(t) has all its roots in the left half plane if and only if all
coefficients are positive and p2p3 > p1.

8. The factorizations presented in this paper can be used to derive formulas for the deter-
minants of Bezoutians, Hankel, Toeplitz and resultant matrices. To solve the following
problems one can use Vandermonde factorization or reduction and take into account that

detVn(t) =
∏

i>j

(ti − tj) ,
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where t = (t1, . . . , tn) or apply Barnett’s formula and

detp(C(u)) =

n∏

i=1

p(ti)

if u(t) =
∏n

i=1(t − ti). Suppose that v(t) =
∏m

i=1(t − si) and u(t) =
∏n

i=1(t − ti) are
complex polynomials and m ≤ n.
(a) Show that

detHn

(v

u

)
= (−1)

n(n−1)
2

n∏

i=1

m∏

j=1

(ti − sj) ,

and find an analogous formula for detTn

(
v
u

)
.

(b) Derive from (a) formulas for the determinants of BezH(u,v), BezT (u,v), Res (u,v).
9. Find the Toeplitz matrices

Tn

(
1

(1 − ct)m

)
and Tn

((
1 + ct

1 − ct

)m)

10. Let u(t) and v(t) = v1(t)v2(t) be polynomials of degree n.
(a) Show that

BezH(u,v) = BezH(u,v1)B(u)−1BezH(u,v2)

(b) If u(t) and v(t) are monic, show that

BezH(u,v) = B(u)JnB(v)(C(u)n − C(v)n) .

11. Let u(t) and v(t) be complex polynomials of degree n and m, respectively, where m ≤ n,
and let t1, . . . , tr be the different roots of the greatest common divisor of u(t) and v(t) and
ν1, . . . , νr their multiplicities. Let vectors ℓk(c, ν) be defined by

ℓk(c, ν) =

((
i− 1

ν − 1

)
ci−k

)k

i=1

.

Show that the vectors ℓn(ti, k), where k = 1, . . . , νi, i = 1, . . . , r form a basis of the
nullspace of BezH(u,v) and the corresponding vectors ℓm+n+p(ti, k) a basis of the nullspace
of Resp(u,v) introduced in Section 3,1.

12. Let u(t) and p(t) be coprime polynomials and degp(t) ≤ deg u(t) = n. Show that for
k > n the coefficient vectors of tju(t), j = 1, . . . , k − n form a basis of the nullspace of
Hk

(
p

u

)
.

13. Let u(t) be a polynomial with real coefficients of degree n.
(a) Describe the number of different positive real roots in terms of the signatures of the

matrices Hn

(
tu′(t)
u(t)

)
and Hn

(
u′

u

)
.

(b) Let a and b be real numbers, a < b. Describe the number of different real roots of u(t)

in the interval [ a, b ] in terms of the signatures of the matrices Hn (g) and Hn

(
u′

u

)
,

where

g(t) =
(t− a)(b− t)u′(t) + nt2u(t)

u(t)
.

(c) Prove a representation of Res(u,v) which is analoguos to that one of Proposition 3.3
but involves BezT (u,v) instead of BezH(u,v) .

14. Prove that a matrix A is a T+H matrix if and only if the matrix I+−∇ (A)IT
+− is the zero

matrix, where ∇ (A) is introduced in (1.11) and I+− in (12.14).
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15. Let e and eσ denote the vectors of F
2n−1

e = ( 1, 1 . . . , 1 ) and eσ = ( (−1)i )2n−1
i=1 .

Show that a T+H matrix Rn = Tn(a)+Tn(b)Jn is equal to R′
n = Tn(a′)+Tn(b′)Jn if and

only if, for some α, β ∈ F, a′ = a + αe + βeσ and b′ = b − αe − β(−1)n−1eσ.
16. Let Rn be an n×n T+H matrix given by (12.17) and by Rn = Tn(c′)P+ +Tn(d′)P−. Show

that
(a) If n is odd, then c′ = c, i.e. c is unique, and d′ is of the form d′ = d + αe + βeσ for

α, β ∈ F.
(b) If n is even, then c′ is of the form c′ = c + αeσ and d′ of the form d′ = d + βe for

α, β ∈ F.
Here e and eσ are as above.

17. Let Rn be an n×n nonsingular, centro-skewsymmetric T+H matrix given by (12.17). Show
that

R−1
n = Tn(c)−1P− + Tn(d)−1P+ .

14. Notes

1. The Bezoutian and the resultant matrix have a long history, which goes back to the 18th
century. Both concepts grew up from the work of Euler [5] in connection with the elim-
ination of variables for the solution of systems of nonlinear algebraic equations. In 1764,
Bezout generalized a result of Euler [1]. In his solution the determinant of a matrix occured
which was only in 1857 shown by Cayley [3] to be the same as that being today called the
(Hankel) Bezoutian. For more detailed information see [66].

2. The classical studies of Jacobi [51] and Sylvester [65] utilized Bezoutians in the theory of
separation of polynomial roots. Hermite [49] studied the problem of counting the roots of
a polynomial in the upper half-plane. Clearly, this is equivalent to finding the number of
roots in the left half-plane, which is important for stability considerations. A nice review
of classical results concerning root localization problems is given in the survey paper [52];
see also [50], [8], [63], [61], [60].

3. The importance of Bezoutians for the inversion of Hankel and Toeplitz matrices became
clear much later. Only in 1974, Lander [55] established the fundamental result that the
inverses of a (nonsingular) Hankel matrix can be represented as a Bezoutian of two poly-
nomials and that, conversely, any nonsingular Bezoutian is the inverse of a Hankel matrix.
Similar results are true for Toeplitz matrices. In [55] also a Vandermonde factorization of
Bezoutians was presented.

4. There is a huge number of papers and books dedicated to Bezoutians, resultant matrices
and connected problems. Let me recommend some books and survey papers (see also the
references therein) to light the younger history and recent developments, to pursue and to
accentuate the topic in different directions. (This list is far away from being complete!)

Books: Gohberg, Lancaster, and Rodman [10], Heinig and Rost [33], Lancaster and
Tismenetsky [54], Bini and Pan [2], Fuhrmann [6], Pan [62], Lascoux [56].

Papers: Gohberg, Kaashoek, Lerer, and Rodman [9], Lerer and Tismenetsky [58],
Lerer and Rodman [57], Fuhrmann and Datta [7], Gohberg and Shalom [11], Emiris and
Mourrain [4], Mourrain and Pan [59].
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