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Abstract. Regularization methods are techniques for learning functions from

given data. We consider regularization problems that consist of a loss and a

regularization term with the aim of selecting a prediction function f with a fi-

nite representation f(·) =
n∑
i=1

cik(·, Xi) which minimizes the error of prediction,

whereas the regulizer avoids overfitting. In general, these are convex optimization

problems, for which we construct conjugate duals, by means of which we derive

necessary and sufficient optimality conditions. In the second part of the paper we

consider some particular cases of the general problem, namely the Support Vector

Machines problem and Support Vector Regression problem. Our approach allows

to avoid the use of pseudo-inverse matrices in case of finitely positive semidefinite

kernel functions.
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1 Some elements of statistical learning

Support Vector Machines are techniques for solving problems of learning from

a given example data set, based on the Structural Risk Minimization Principle.
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They were first mentioned by Vapnik in [15]. The reader is also referred to the

books of Vapnik [14] and [16] for a deeper insight into this field.

Evgeniou et al. ([7]) distinguish between two types of statistical learning prob-

lems: the Support Vector Machines Regression problem (SVMR) and the Regu-

larization Networks (RN). The first type has as possible application the approx-

imation and determination of a function by means of a data set. We deal here

with a particular case of this problem, the so-called Support Vector Machines

Classification (SVMC).

Consider a given set with n training data {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ Rk

and Yi ∈ R, i = 1, . . . , n, and let F be a space of functions defined on Rk with

real values. The SVMC looks for a function f ∈ F, such that for a previously

unknown value X the function f predicts the value Y .

To this end one has to define a so-called cost or loss function v : R2 → R that

indicates the penalty for predicting f(Xi) while the true value is Yi, i = 1, . . . , n.

The problem of finding an optimal function f is ill-posed since there are infinitely

many solutions. In order to get a well-posed problem, and, consequently, to be

able to choose a particular solution, we need some additional apriori information

about f . A common one is the assumption that the function f is smooth, i.e. one

controls the complexity of the function. Therefore one has to introduce a regular-

ization term λ
2 Ω(f) (cf. [2], [3], [13]), where the regularization parameter λ > 0

controls the effect of the regularization (cf. [17]). Ω is also called smoothness

functional or regulizer and it is defined such that lower values of Ω correspond

to smoother functions. The following Tikhonov regularization problem arises:

inf
f∈F

{
n∑
i=1

v(f(Xi), Yi) + λ

2Ω(f)
}
. (1)

Here
n∑
i=1

v(f(Xi), Yi)+ λ
2 Ω(f) is the so-called regularization functional. By Hk we

denote any Reproducing Kernel Hilbert Space (RKHS) introduced by a kernel

function k : Rk×k → R (cf. [1]) and, in the following, we ask f to be an element of

Hk. Let us further assume that k is symmetric, i.e. k(x, y) = k(y, x), ∀x, y ∈ Rk.
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We define a kernel matrix K ∈ Rn×n by k(Xi, Xj) = Kij, i, j = 1, . . . , n, which is

called the Gram matrix of k with respect to X1, . . . , Xn. This matrix is symmetric

and, in addition, it is positive semidefinite if we assume that the kernel k is a

finitely positive semidefinite function (see for instance [12]):

Definition 1.1. A symmetric function k : Rk×k → R which for all finite sets

{X1, . . . , Xn} ⊂ Rk gives rise to a positive semidefinite Gram matrix K, i.e.
n∑

i,j=1
aiajk(Xi, Xj) = aTKa ≥ 0, ∀n ∈ N,∀a ∈ Rn,

is called finitely positive semidefinite kernel.

It is well-known that in case of having a positive definite kernel and a Gram

matrix, respectively, one can find a RKHS Hk induced by k such that the so-

called reproducing property

∀x ∈ Rk : f(x) = 〈f(·), k(x, ·)〉

is fulfilled (cf. [1]).

Shawe-Taylor and Cristianini (cf. [12]) have shown how one can construct a

RKHS Hk for any given kernel function (even for a finitely positive semidefinite

one) such that the reproducing property is valid. To this aim they considered the

following space of functions
n∑
j=1

cjk(Xj, ·) : n ∈ N, Xj ∈ Rk, cj ∈ R, j = 1, . . . , n


along with some operations for the elements of this space. They lead to the fol-

lowing finite representation for f ∈ Hk, where k is a finitely positive semidefinite

kernel, which is important with regard to practical applications:

∀f ∈ Hk, ∃c = (c1, . . . , cn)T ∈ Rn : f(x) =
n∑
j=1

cjk(x,Xj), ∀x ∈ Rk.

This follows from the reproducing property in the Hilbert space Hk induced by

the kernel function k.
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In the following we assume for f ∈ Hk that Ω(f) is the squared norm of the func-

tion f in Hk, Ω(f) = ||f ||2k = cTKc, where c ∈ Rn comes from the representation

of f and || · ||k is the norm in Hk. From above we get

f(Xi) =
n∑
j=1

cjKij = (Kc)i, ∀i = 1, . . . , n. (2)

Thus the above optimization problem (1) can be written as:

inf
c∈Rn

{
n∑
i=1

v((Kc)i, Yi) + λ

2 c
TKc

}
. (3)

The described regularization framework includes many well-known learning meth-

ods. Depending on the application one can use different cost functions (see for

instance [7] and [10] for several examples). We give here some typical examples.

In case of the Support Vector Machine Classification problem the output Y takes

values in {1, . . . ,m}. For m = 2, i.e. Y ∈ {+1,−1}, we speak about a (binary)

classification problem, whereas for m ∈ N in general we have a ranking problem.

One can consider as cost function the hinge loss or soft margin v : R × R → R

(cf. [6], [15])

v(a, Y ) = (1− aY )+,

but also the more theoretical hard margin v : R× R→ R, given by

v(a, Y ) =

 0, 1− aY ≤ 0,

1, 1− aY > 0.

For the Support Vector Regression the output Y may take arbitrary real values

and an appropriate cost function v : R× R→ R = R ∪ {±∞} is

v(a, Y ) = δ[−ε,ε](Y − a).

Evgeniou et al. [7] takes as possible cost function for Regularization Networks

the following quadratic loss:

v : R× R→ R, v(a, Y ) = (Y − a)2.
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Of course, one can also consider generalized Tikhonov regularization problems by

choosing regularization functions different from Ω(f) = ||f ||2k.

This paper is organized as follows. In the following section we introduce some

definitions and notations from the convex analysis we use within the paper. In

Section 3 we construct a conjugate dual for a convex optimization problem (P )

and prove the weak and strong duality theorems. By using the latter we derive

necessary and sufficient optimality conditions. In the last section we present some

special optimization problems which occur in statistical learning, namely the

Support Vector Machines problem and the Support Vector Regression problem,

respectively, for which we introduce their conjugate duals and derive necessary

and sufficient optimality conditions by using the general results developed in

Section 3.

2 Notations and Preliminaries

For two vectors x, x∗ ∈ Rn we denote by 〈x∗, x〉 := (x∗)Tx its scalar product,

where the upper index T transposes a column vector into a row one and viceversa.

For a set D ⊆ Rn we denote by δD : Rn → R the indicator function of the set D,

that is defined by

δD(x) =

 0, x ∈ D,

+∞, otherwise,

and by ri(D) we denote the relative interior of the set D. For a function f : Rn →

R we consider its (Fenchel-Moreau) conjugate function, f ∗ : Rn → R, defined by

f ∗(x∗) = sup
x∈Rn
{xTx∗ − f(x)}.

We have the following inequality known as the Young-Fenchel inequality:

f(x) + f ∗(x∗)− xTx∗ ≥ 0, ∀x, x∗ ∈ Rn.
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The effective domain of a function f : Rn → R is dom(f) = {x ∈ Rn : f(x) <

+∞} and we say that f is proper if dom(f) 6= ∅ and f(x) > −∞, ∀x ∈ Rn.

The sign-function sgn : R→ {−1, 0,+1} is defined as follows for x ∈ R:

sgn(x) =


+1, x > 0,

0, x = 0,

−1, x < 0.

For a linear mapping K : Rn → Rm we denote by Im(K) the image of K, i.e.

Im(K) = {Kx : x ∈ Rn}.

For the optimization problem (P ) we denote by v(P ) its optimal objective value

and write min (max) instead of inf (sup) if the infimum (supremum) is attained.

Definition 2.1 (infimal convolution). For the proper functions f1, . . . , fk : Rn →

R, the function f1� · · ·�fk : Rn → R defined by

(f1� · · ·�fk)(p) = inf
{

k∑
i=1

fi(pi) :
k∑
i=1

pi = p

}

is called the infimal convolution of fi, i = 1, . . . , k.

We recall the following result (cf. [11]):

Theorem 1. Let f1, . . . , fk : Rn → R be proper and convex functions such that
k⋂
i=1

ri(dom(fi)) 6= ∅. Then for each p ∈ Rn it holds

(
k∑
i=1

fi

)∗
(p) = (f ∗1 � · · ·�f ∗k )(p) = min

{
k∑
i=1

f ∗i (pi) :
k∑
i=1

pi = p

}
.

For x ∈ R we define x+ := max(0, x) and denote by ei = (ei1, . . . , ein)T the i-th

unit-vector in Rn, where

eij =

 1, i = j,

0, i 6= j.
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3 Duality and optimality conditions for a gen-

eral convex optimization problem

Since we want to get for the problem (3) optimality conditions by means of

duality, we will first have a look on the following convex optimization problem:

(P ) inf
c∈Rn

{
l∑

i=1
vi(Kc) + g(c)

}
,

where g : Rn → R and vi : Rm → R, i = 1, . . . , l, are proper and convex functions

and K : Rn → Rm is a linear mapping such that

K−1
(

l⋂
i=1

dom(vi)
)
∩ dom(g) 6= ∅. (4)

Here we denote by K−1(A) the set {c ∈ Rn : Kc ∈ A} and condition (4) guaran-

tees that v(P ) < +∞.

As a conjugate dual problem to (P ) we consider

(D) sup
pi∈Rm,i=1,...,l

{
−

l∑
i=1

v∗i (pi)− g∗
(
−KT

(
l∑

i=1
pi

))}
.

We prove that for (P ) and (D) weak duality always holds and give a regularity

condition which ensures strong duality.

Theorem 2. For (P ) and (D) weak duality holds, i.e. v(P ) ≥ v(D).

Proof. Let be pi ∈ Rm, i = 1, . . . , l. It holds:
l∑

i=1
v∗i (pi) + g∗

(
−KT

(
l∑

i=1
pi

))

=
l∑

i=1
sup
qi∈Rm

{qTi pi − vi(qi)}+ sup
c∈Rn

{
−cT

(
KT

l∑
i=1

pi

)
− g(c)

}

≥
l∑

i=1
sup
c∈Rn
{pTi (Kc)− vi(Kc)}+ sup

c∈Rn

−
(

l∑
i=1

pi

)T
(Kc)− g(c)


≥ sup

c∈Rn

{
−

l∑
i=1

vi(Kc)− g(c)
}
.
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From here one automatically has that

sup
pi∈Rm,
i=1,...,l

{
−

l∑
i=1

v∗i (pi)− g∗
(
−KT

(
l∑

i=1
pi

))}
≤ inf

c∈Rn

{
l∑

i=1
vi(Kc) + g(c)

}
,

and this concludes the proof. �

Now we state the strong duality result.

Theorem 3. Assume that the regularity condition

(CQ) ∃c′ ∈ ri(dom(g)) s.t. Kc′ ∈
l⋂

i=1
ri(dom(vi))

is fulfilled. Then between (P ) and (D) strong duality holds, i.e. v(P ) = v(D)

and (D) has an optimal solution.

Proof. The regularity condition (CQ) implies that (cf. [11, Theorem 6.5]):

∃c′ ∈ ri(dom(g)) s.t. Kc′ ∈ ri
(

dom
(

l∑
i=1

vi

))
.

Thus, by [11, Corollary 31.2.1], there exists p ∈ Rm such that

v(P ) = max
p∈Rm

−
(

l∑
i=1

vi

)∗
(p)− g∗(−KTp)

 = −
(

l∑
i=1

vi

)∗
(p)− g∗(−KTp).

Using again (CQ), by Theorem 1, there exist p1, . . . , pl ∈ Rm,
l∑

i=1
pi = p, such

that (
l∑

i=1
vi

)∗
(p) = min

{
l∑

i=1
v∗i (pi) :

l∑
i=1

pi = p

}
=

l∑
i=1

v∗i (pi).

Thus we get

v(P ) = −
l∑

i=1
v∗i (pi)− g∗

(
−KT

l∑
i=1

pi

)
= v(D),

and (p1, . . . , pl) is an optimal solution for the dual (D). �

By means of the strong duality theorem one can derive necessary and sufficient

optimality conditions for the primal-dual pair (P )-(D).
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Theorem 4. a) Let c ∈ Rn be an optimal solution for (P ) and assume that

(CQ) is fulfilled. Then the problem (D) has an optimal solution (p1, . . . , pl), pi ∈

Rm, i = 1, . . . , l, and the following optimality conditions are satisfied:

(i) vi(Kc) + v∗i (pi)− pTi (Kc) = 0, i = 1, . . . , l,

(ii) g(c) + g∗
(
−

l∑
i=1

KTpi

)
+ (Kc)T

(
l∑

i=1
pi

)
= 0.

b) If c ∈ Rn and (p1, . . . , pl) is feasible to (D) fulfilling the optimality conditions

(i) and (ii), then v(P ) = v(D) and the mentioned feasible points are optimal

solutions of (P ) and (D), respectively.

Proof. a) Assume that c is an optimal solution for (P ). Since (CQ) is fulfilled,

(D) has an optimal solution (p1, . . . , pl) (cf. Theorem 3) and we have the following

relations fulfilled:

v(P ) = v(D)

⇔
l∑

i=1
vi(Kc) + g(c) = −

l∑
i=1

v∗i (pi)− g∗
(
−KT

(
l∑

i=1
pi

))

⇔
[

l∑
i=1

vi(Kc) +
l∑

i=1
v∗i (pi)−

l∑
i=1

pTi (Kc)
]

+
l∑

i=1
pTi (Kc)

+
[
g(c) + g∗

(
−KT

(
l∑

i=1
pi

))
+ (Kc)T

(
l∑

i=1
pi

)]
− (Kc)T

(
l∑

i=1
pi

)
= 0

⇔
l∑

i=1

[
vi(Kc) + v∗i (pi)− pTi (Kc)

]

+
[
g(c) + g∗

(
l∑

i=1
KTpi

)
+ (Kc)T

(
l∑

i=1
pi

)]
= 0.

We get a sum of l+1 nonnegative terms (by the Young-Fenchel inequality) which

is zero. Thus equality in these inequalities must hold and so we get (i) and (ii).

(b) All calculations done within part (a) can be carried out in reverse direction

and therefore the proof is complete. �

9



4 Application to statistical learning

In this section we consider as primal problems some optimization problems which

are particular instances of

inf
c∈Rn

{
n∑
i=1

v((Kc)i, Yi) + g(c)
}
.

Here v : R × R → R is a cost function, K ∈ Rn×n is a symmetric positive

semidefinite matrix and the function g is chosen due to Tikhonov regularization,

namely as being g : Rn → R, g(c) = λ
2 c
TKc, where λ > 0. In the following we fix

the values Yi, i = 1, . . . , n, and define vi : Rn → R by

vi(Kc) := v((Kc)i, Yi), i = 1, . . . , n. (5)

As one can see in Section 3 it is possible to derive a dual for the above prob-

lem and optimality conditions for the primal-dual pair without assuming that

K is invertible as done in [10]. So we do not need any pseudo-inverse in the

case of having a singular matrix K, which avoids additional expense in practical

situations.

Further one can see that, using our approach, it is also possible to consider

optimality conditions for the two involved functions (regularization and loss)

separately. If needed, on can combine these afterwards (see also [10]).

4.1 The Support Vector Machines problem

The first particular instance that we consider is the Support Vector Machines

problem. We consider the training data set

{(X1, Y1), . . . , (Xn, Yn)} ⊆ Rk × {−1,+1}.

Thus we get a problem from the class of binary classification problems, more

precisely we are looking for a function f : Rk → R such that f(Xi) > 0 if

Yi = +1 and f(Xi) < 0 if Yi = −1. Therefore the classification is realized by the
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sign-function, i.e. for a given value X the predicted value is Y = sgn(f(X)) for

f(X) 6= 0, whereas for f(X) = 0 we have to specify the allocation to one of the

two classes. The set of points {X ∈ Rk : f(X) = 0} is called decision boundary.

As cost function we consider first the hinge loss function v(a, Y ) = (1 − aY )+,

which is one of the typical functions used in applications for Support Vector

Machines Classification. Values for which aY ≤ 1 are penalized linearly whereas

the loss function is indifferent to aY > 1. Thus we get the following optimization

problem:

(P1) inf
c∈Rn

{
n∑
i=1

(1− (Kc)iYi)+ + λ

2 c
TKc

}
.

Rifkin and Lippert have considered in [10] the same example, but they converted

(P1) by defining y := Kc into

inf
y∈Rn

{
n∑
i=1

(1− yiYi)+ + λ

2y
TK−1y

}
,

under usage of the fact that K is invertible with K−1 its inverse matrix. As

one can notice in the following one can derive a dual problem and optimality

conditions for (P1) by avoiding this restrictive assumption.

The conjugate function of g is (cf. [9]):

g∗(c∗) = sup
c∈Rn

{
cT c∗ − λ

2 c
TKc

}
= λ

(1
2 ·

T K·
)∗ (c∗

λ

)

=


1

2λ(c
∗)TK−c∗, c∗ ∈ Im(K),

+∞, otherwise,

where K− is the Moore-Penrose pseudo-inverse of K. On the other hand, we get

for any fixed pi ∈ Rn the conjugate function of vi : Rn → R, vi(p) = (1− piYi)+
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for i = 1, . . . n, by means of Lagrange duality:

−v∗i (pi) = inf
w∈Rn
{−wTpi + (1− wiYi)+} = inf

w∈Rn,z∈R,
z≥0,z≥1−wiYi

{−wTpi + z}

= sup
q≥0,p≥0

inf
w∈Rn,z∈R

{−wTpi + z − qz + p(1− wiYi − z)}

= sup
q≥0,p≥0

{
inf
w∈Rn
{wT (−pi − peiYi)}+ inf

z∈R
{z(1− q − p)}+ p

}

= sup
p,q≥0,p+q=1,
−pi−peiYi=0

p = sup
p∈[0,1],

−pi−peiYi=0

p =

 −
pii
Yi
, if − pii

Yi
∈ [0, 1], pij = 0,∀j 6= i,

−∞, otherwise.

These relations lead to the following dual problem to (P1):

(D1) sup
pi∈Rn,i=1,...,n

{
−

n∑
i=1

v∗i (pi)− g∗
(
−K

(
n∑
i=1

pi

))}

= sup
pi∈Rn,Pi∈R,i=1,...,n,
pi=eiPi,−

pii
Yi
∈[0,1],

K

(
n∑
i=1

pi

)
∈Im(K)

−
n∑
i=1

pii
Yi
− 1

2λ

(
n∑
i=1

pi

)T
KK−K

(
n∑
i=1

pi

) .

Since the condition K
(

n∑
i=1

pi

)
∈ Im(K) is always fulfilled and it holds

KK−
(
K

(
n∑
i=1

pi

))
= pIm(K)

(
K

(
n∑
i=1

pi

))
= K

(
n∑
i=1

pi

)
,

where the operator pIm(K) is the orthogonal projection onto Im(K) and fulfills

(cf. [9])

pIm(K)(x) = x, ∀x ∈ Im(K),

we get the following dual:

(D1) sup
pi∈Rn,Pi∈R,i=1,...,n,
pi=eiPi,−

pii
Yi
∈[0,1]

−
n∑
i=1

pii
Yi
− 1

2λ

(
n∑
i=1

pi

)T
K

(
n∑
i=1

pi

) .

By defining P := (P1, . . . , Pn)T ∈ Rn we get pii = Pi and
n∑
i=1

pi = P and thus the

dual looks like

(D1) sup
Pi∈R,−Pi

Yi
∈[0,1],

i=1,...,n

{
−

n∑
i=1

Pi
Yi
− 1

2λP
TKP

}
.
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In this way one obtains the dual given for (P1) in [10]. The regularity condi-

tion (CQ) is always fulfilled, since ri(dom(g)) = Rn and ri(dom(vi)) = Rn, i =

1, . . . , n.

We can state now the following theorem, which gives necessary and sufficient

optimality conditions for (P1) and (D1).

Theorem 5. a) Let c ∈ Rn be an optimal solution of (P1). Then (D1) has

an optimal solution P = (P 1, . . . , P n)T ∈ Rn such that the following optimality

conditions are satisfied:

(i) (1− (Kc)iYi)+ + P i

Yi
− P ie

T
i Kc = 0, i = 1, . . . , n,

(ii) 0 ≤ −P i

Yi
≤ 1, i = 1, . . . , n,

(iii) λ

2 c
TKc+ 1

2λP
T
KP + cT (KP ) = 0.

b) If c ∈ Rn and P = (P 1, . . . , P n)T is feasible to (D1) fulfilling the optimality

conditions (i) − (iii), then v(P1) = v(D1) and the mentioned feasible points are

optimal solutions of (P1) and (D1), respectively.

As mentioned e.g. in [5] one can consider a more general loss function, the so-

called generalized hinge loss v : R× R→ R, given by

ṽ(a, Y ) = (1− aY )u+,

where u > 1, and consider the following primal problem (P2):

(P2) inf
c∈Rn

{
n∑
i=1

(1− (Kc)iYi)u+ + λ

2 c
TKc

}
.

Above we have considered the case u = 1. Now we define ṽi(p) = (1 − piYi)u+,

ṽi : Rn → R, i = 1, . . . , n. This loss function can be written as ṽi = h ◦ vi, i =

1, . . . , n, where vi was given above and the function h : R→ R is defined by

h(x) =

 xu, x ≥ 0,

+∞, otherwise.

13



The conjugate function of vi, i = 1, . . . , n, can be obtained by using the formula

existing in the literature for the conjugate of a composed convex function.

Theorem 6. ([18]) Let Z be a separated locally convex space and f : Z →

R, h : R→ R be convex functions such that h is increasing on f(Z) + [0,+∞).

We assume that there exists x′ ∈ Z such that f(x′) ∈ dom(h) and h is continuous

at f(x′). Then for all x∗ ∈ Z∗ one has

(h ◦ f)∗(x∗) = min
β≥0
{h∗(β) + (βf)∗(x∗)}. (6)

In our case we have Z = Rn, f = vi and h is increasing on vi(Z) + [0,+∞) =

[0,+∞). Further we assume that for all i = 1, . . . , n we have

∃x′ ∈ Rn : vi(x′) ∈ dom(h) = R+ and h is continuous at vi(x′)

⇔ ∃x′ ∈ Rn : vi(x′) > 0. (7)

We have (cf. [4]):

h∗(β) =

 (u− 1)
(
β
u

) u
u−1 , β ≥ 0,

+∞, otherwise.

Further we need (βvi)∗(pi). For β > 0 we get the following:

(βvi)∗(pi) = βv∗i

(
pi
β

)
=


pii
Yi
, if − pii

Yi
∈ [0, β], pij = 0,∀j 6= i,

+∞, otherwise.
(8)

For β = 0 it holds:

(−βvi)∗(pi) = inf
w∈Rn
{−wTpi + β(1− wiYi)+} = inf

w∈Rn
{−wTpi}

=

 0, pi = 0,

−∞, otherwise.

In conclusion for all β ≥ 0 formula (8) holds and by Theorem 6 and assumption
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(7) we get for all i = 1, . . . , n:

ṽi
∗(pi) = (h ◦ vi)∗(pi) = min

β≥0
{h∗(β) + (βvi)∗(pi)}

= min
β≥0,

− pii
Yi
∈[0,β],

pij=0,∀j 6=i

(u− 1)
(
β

u

) u
u−1

+ pii
Yi

 .

Thus one can derive, by defining P = (P1, . . . , Pn)T ∈ Rn as above, the following

dual problem (D2):

(D2) sup
Pi∈R,i=1...,n

−
n∑
i=1

min
βi≥0,

−Pi
Yi
∈[0,βi]

(u− 1)
(
βi
u

) u
u−1

+ Pi
Yi

− 1
2λP

TKP


= sup

Pi∈R,βi≥0,
−Pi
Yi
∈[0,βi],

i=1...,n


n∑
i=1

(1− u)
(
βi
u

) u
u−1

− Pi
Yi

− 1
2λP

TKP

 .

Since the (generalized) hinge loss penalizes only values aY ≤ 1 but is indifferent

to values aY > 1 one can take as loss function also the negative binomial log-

likelihood deviance (see [8]). In Figure 1 a comparison between this and the

(generalized) hinge loss (for u = 1 and u = 3) is made. The negative binomial

log-likelihood deviance is a convex function and is given by:

v : R× R→ R, v(a, Y ) = ln(1 + exp(−aY )).

Again we use the notation v((Kc)i, Yi) = vi(Kc). For the calculation of the dual

problem of

(P3) inf
c∈Rn

{
n∑
i=1

ln(1 + exp(−(Kc)iYi)) + λ

2 c
TKc

}

we need the conjugate function v∗i of vi(p) = ln(1 + exp(−piYi)), vi : Rn → R,
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for fixed pi ∈ Rn, i = 1, . . . , n. It holds:

−v∗i (pi) = inf
w∈Rn
{−wTpi + ln(1 + exp(−wiYi))}

=


inf
w∈R
{−wpii + ln(1 + exp(−wYi))}, pij = 0, ∀j 6= i,

−∞, otherwise,

=


pii
Yi

ln
(
− pii
Yi+pii

)
+ ln

(
Yi

Yi+pii

)
, pij = 0, ∀j 6= i, pii

pii+Yi < 0, pii 6= −Yi,∀i,

0, pij = 0, ∀j 6= i, pii = −Yi, ∀i

−∞, otherwise.

For the dual problem of (P3) we have to calculate sup
pi∈Rn,
i=1,...,n

−v∗i (pi). Therefore we

have to show, that under the condition

pij = 0, ∀j 6= i,
pii

pii + Yi
< 0, pii 6= −Yi,∀i.

we have

f(pii) := pii
Yi

ln
(
− pii
Yi + pii

)
+ ln

(
Yi

Yi + pii

)
≥ 0.

Since Yi ∈ {−1,+1} we consider two cases. First we have Yi = +1 and it follows

pii
pii + Yi

= pii
pii + 1 < 0 ⇔ pii ∈ (−1, 0).

Thus we get f(pii) > 0. Second we consider Yi = −1. There we have

pii
pii + Yi

= pii
pii − 1 < 0 ⇔ pii ∈ (0, 1),

and we get f(pii) > 0.

16



We get the following dual (D3):

(D3) sup
pi∈Rn,i=1,...,n

{
−

n∑
i=1

v∗i (pi)− g∗
(
−K

(
n∑
i=1

pi

))}

= sup
pi∈Rn, ∃Pi∈R:pi=eiPi,
pii
pii+Yi

<0, pii 6=−Yi,∀i=1,...,n,

K

(
n∑
i=1

pi

)
∈Im(K)

{
n∑
i=1

(
pii
Yi

ln
(
− pii
pii + Yi

)
+ ln

(
Yi

pii + Yi

))

− 1
2λ

(
n∑
i=1

pi

)T
KK−K

(
n∑
i=1

pi

)}

= sup
pi∈Rn, ∃Pi∈R:pi=eiPi,
pii
pii+Yi

<0, pii 6=−Yi,∀i=1,...,n

{
n∑
i=1

(
pii
Yi

ln
(
− pii
pii + Yi

)
+ ln

(
Yi

pii + Yi

))

− 1
2λ

(
n∑
i=1

pi

)T
K

(
n∑
i=1

pi

)}
.

Again, by defining P := (P1, . . . , Pn)T ∈ Rn we get pii = Pi and
n∑
i=1

pi = P and

thus the dual looks like

(D3) sup
Pi∈R, Pi

Pi+Yi
<0,

Pi 6=−Yi, i=1,...,n

{
n∑
i=1

(
Pi
Yi

ln
(
− Pi
Pi + Yi

)
+ ln

(
Yi

Pi + Yi

))
− 1

2λP
TKP

}
.

When formulating the optimality conditions for the primal-dual pair (P3)− (D3),

instead of the conditions (i) and (ii) in Theorem 5, we have the following ones:

(i) ln(1 + exp(−(Kc)iYi))−
P i

Yi
ln
(
− P i

P i + Yi

)
− ln

(
Yi

P i + Yi

)
− P ie

T
i Kc = 0,

i = 1, . . . , n,

(ii) Pi
Pi + Yi

< 0, i = 1, . . . , n,

(iii) Pi 6= −Yi, i = 1, . . . , n.

4.2 The Support Vector Regression problem

The next particular instance we treat is the problem of Support Vector Regres-

sion. This is a technique of predictive data analysis, where one tries to estimate
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the dependencies between the points {X1, . . . , Xn} ⊂ Rk and {Y1, . . . , Yn} ⊂ R

of the data set, represented by a function f . Later for some given point X we

predict Y by Y = f(X).

We consider a loss function typical for Support Vector Regression problems, which

was also mentioned in the introduction, v : R× R→ R,

v(a, Y ) = δ[−ε,ε](Y − a).

We use again the representation (2) and get the following primal problem (P4):

(P4) inf
c∈Rn

{
n∑
i=1

δ[−ε,ε](Yi − (Kc)i) + λ

2 c
TKc

}
.

In order to get strong duality and derive necessary and sufficient optimality con-

ditions one has to derive a regularity condition from the general problem in

Theorem 3. Therefore we have w ∈ dom(vi)⇔ wi ∈ [Yi − ε, Yi + ε] and get

ri(dom(vi)) = R× . . .× R× (Yi − ε, Yi + ε)× R× . . .× R, i = 1, . . . , n,

and
n⋂
i=1

ri(dom(vi)) =
n∏
i=1

(Yi − ε, Yi + ε),

which becomes part of the regularity condition.

In order to calculate the dual problem we need the conjugate function of vi for

i = 1, . . . , n:

v∗i (pi) = sup
w∈Rn
{wTpi − δ[−ε,ε](Yi − wi)} = sup

w∈Rn
{wTpi − δ[Yi−ε,Yi+ε](wi)}

=

 max{pii(Yi − ε), pii(Yi + ε)}, pij = 0, j 6= i,

+∞, otherwise,

=

 piiYi − εmax{pii,−pii}, pij = 0, j 6= i,

+∞, otherwise,

=

 piiYi − ε|pii|, if ∃Pi ∈ R : pi = eiPi,

+∞, otherwise.
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Taking P = (P1, . . . , Pn)T leads to
n∑
i=1

pi = P , and we get the following dual

problem to (P4):

(D4) sup
pi∈Rn,i=1,...,n

{
−

n∑
i=1

v∗i (pi)− g∗
(
−K

(
n∑
i=1

pi

))}

= sup
Pi∈R,i=1,...,n

{
n∑
i=1

(ε|Pi| − PiYi)−
1
2λP

TKP

}
.

By Theorem 3 we obtain the following result:

Theorem 7. a) Let c ∈ Rn be an optimal solution of (P4) and assume that the

regularity condition

(CQ) ∃c′ ∈ Rn : Kc′ ∈
n∏
i=1

(Yi − ε, Yi + ε)

is fulfilled. Then the problem (D4) has an optimal solution P = (P 1, . . . , P n)T ∈

Rn and the following optimality conditions are satisfied:

(i) P iYi − ε|P i| − P ie
T
i Kc = 0, i = 1, . . . , n,

(ii) |Yi − (Kc)i| ≤ ε, i = 1, . . . , n,

(iii) λ

2 c
TKc+ 1

2λP
T
KP + cT (KP ) = 0.

b) If c is feasible to (P4) and (P 1, . . . , P n)T is feasible to (D4) fulfilling the opti-

mality conditions (i) - (iii), then v(P4) = v(D4) and the mentioned feasible points

are optimal solutions of (P4) and (D4), respectively.

Remark 4.1. As one can see, the regularity condition (CQ) is not always ful-

filled. The given example is a good sample to realize the importance of the given

condition for having strong duality. This is a decisive improvement towards the

paper of Rifkin and Lippert [10].
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Figure 1: Comparison of the loss functions v(a, Y ) = (1 − aY )+, v(a, Y ) =

(1− aY )3
+ and v(a, Y ) = ln(1 + exp(−aY )).

22


	Some elements of statistical learning
	Notations and Preliminaries
	Duality and optimality conditions for a general convex optimization problem
	Application to statistical learning
	The Support Vector Machines problem
	The Support Vector Regression problem


