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Abstract

We discuss the asymptotic behavior of matrix sequences belonging to a special class
of non-commutative Banach algebras and study, in particular, the stability, and more
general the Fredholm property of such sequences. The abstract results are applied to
finite sections of band-dominated operators, especially in the case I?(Z), 1 < p < 0.
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Introduction

The study of operator sequences is an important task in numerical analysis and asymptotic
spectral theory. There is a bulk of papers dealing with these problems. The now classical
publications [6] and [10] were devoted to a deep study of the stability problem for projection
methods aimed at the approximate solution of convolution-type equations. The remarkable
paper [10]| contains the first appearence of the use of localization techniques in the study of
stability. The idea is to introduce a suitable Banach algebra which contains the sequences
under consideration and to take advantage of the fact that the stability of a sequence (A,)
is equivalent to the invertibility of (A,,) modulo the ideal of sequences tending to zero in the
norm. Later on, it became clear that Banach algebra techniques provide the right tools to
study the behavior of singular values, pseudospectra and numerical ranges of the matrices
which constitute the sequences under consideration. The most complete results are available
for C*-algebras (see for instance the books [3], [7], [8], [14]). These C*-algebras typically arise
as follows.

Let H be an infinite dimensional Hilbert space and (H,,) be a sequence of closed subspaces
of H such that the orthogonal projections P, from H onto H,, converge strongly to the
identity operator I on H. We denote by F the set of all bounded sequences {A,,} of operators
A, € L(H,) and equip F with a C*-algebra structure in the usual way, that is by introducing
the algebraic operations componentwise. Let G denote the closed ideal of F consisting of all
sequences {G,} € F with |G| — 0 as n — oc.

Let further T" be a (possibly infinite) index set. Suppose that for each ¢t € T we are given
an infinite dimensional Hilbert space H! with identity operator I as well as a sequence (EL)
of partial isometries E! : H — H such that

e the initial projections P! of E! converge strongly to I' as n — oo,
e the range projection of E! is P, and
e the separation condition
(E)*E! — 0 weakly as n — 0o
holds true for every s,t € T with s # t.

For brevity, we write E;; ¢ instead of (E!,)*. Let ! stand for the set of all sequences {A,} € F
for which the strong limits

s-lim B, 'A,EY and s-lim (E, ‘A, E.)*

n—oo n—oo



exist for every t € T, and define mappings W' : F1' — L(H') by

WA} :=slim E,'A, E".

The set F! forms a C*-subalgebra of F and the separation condition ensures that, for every
t € T and every compact operator K! € KC(H"), the sequence { EX K'E '} belongs to 1, and
that for all s € T

Kt ifs=t

W{E,K'E;"} = .
0 ifs#t.

A sequence {A,} € FT is said to be stable if there is an ng such that the operators
A, € L(H,,) are invertible for n > ng and

sup HA;anH < 0.

n>ng

There is a variety of concrete operator sequences which belong to algebras of the type F'
(see for instance (3], [7], [8], [14]). The importance of these algebras is given by the following
observation. Let JZ < FT be the smallest closed ideal of FL which contains all sequences
{ELK'E;'} with t € T and K' € KC(H") as well as all sequences {G,,} € G.

Theorem 1. 1. A sequence {A,} € FT is stable if and only if the operators W'{A,} are
invertible in L(H') for every t € T and if the coset {A,} + J7 is invertible in the
quotient algebra F1 ) JT.

2. If {A,} € FT is a sequence with invertible coset {Ap} + J7T then all operators W{A,}
are Fredholm on H' and the number of the non-invertible operators among them is finite.

Notice that as arule 7 /J7 is non-commutative and one often has to apply local principles
in order to prove invertibility.

If {A,} € FT is subject to condition 2 in Theorem 1 then the sequence {A,} is called
Fredholm sequence. The reason for this notion is that in case F is an algebra formed by matrix
sequences, then {A,} is invertible (in F) modulo the ideal of so-called centrally compact
sequences (see [8], Chapter 6), and such sequences are called Fredholm. It is worth noticing
that {A,} € FT' can be non-Fredholm, but {4,} € F2 with Ty C T, can be Fredholm. This
means that the ideal J7* is somewhat too small.

Now, let the spaces H,, be finite dimensional for every n € N, that is, F consists of matrix
sequences. For A € L(H,,) we put m := dimH,, and let o;(A) (for £ = 0,1,...,m) denote
the singular values of A, i.e. the eigenvalues of (A*A)% in such a way, that o1(A) < 09(A) <
. < 0m(A). The following theorem was essentially proved by S. Roch and one of the authors.

Theorem 2. 1. Let {A,} € FT be a Fredholm sequence. Then

liminfogy1(A,) >0 and lim ox(Ay,) =0,

n—oo

where k = k{An} := Y, cp dimker W' {A,}.
2. Y erind WHA,} =0 for any Fredholm sequence {A,} € FT.

3. If at least one of the operators W'{A,} for a sequence {A,} is not Fredholm, then
lim,, 00 0% (Ayn) = 0 for every k =0,1, .. ..



Later on, S. Roch proved that for the C*-algebra F the following assertions are equivalent
(see [8]):

1. {A,} € F is invertible modulo the ideal of centrally compact sequences (that is {A,} is
Fredholm).

2. There is a number k € NU {0} such that

liminf oy1(A,) > 0.
o0

n—

In general, it is a difficult task to state that a given sequence is Fredholm.

If the spaces under consideration are Banach spaces and F is merely a Banach algebra,
considerably less is known. In particular, one needs appropriate substitutes for the singular
values, which can be given by the so-called approximation numbers. For an m-dimensional
normed space X and an operator A € £(X) the k-th approximation number s;(A) of A is
defined as

sk(A) = dist(A, Fp (X)) := inf{[|A = Fllgx) : F € Frn-r(X)}, (1)

(k=0,1,...,m), where F,,,_x(X) denotes the collection of all operators from £(X) having the
image of the dimension at most m — k. It is clear that

0= So(A) < 81(A) < SQ(A) <. < Sm(A) = HAHﬁ(X)

Moreover one can show that (see 2], Proposition 9.2)
1/]At if A is invertible
s(4) = § VA lepo AT invertible 2
0 if A is not invertible.

Note also that in case X is a Hilbert space the approximation numbers coincide with the
singular values of A.

A. Bottcher studied the asymptotic behavior of the approximation numbers of the finite
sections of Toeplitz operators with scalar-valued generating functions in spaces IP(Zy), 1 <
p < o0 in [2], and obtained results like Theorem 2. His approach has the advantage that the
speed of convergence of s;(A;) to zero can be estimated. On the other hand, it seems that
his approach is limited to scalar valued generation functions.

Algebras of the type F! can also be introduced in the Banach space context. This is
well known, see for instance [4] or [7]. However one has to suppose that not only (P,) tends
strongly to the identity operator, but also (P)}). Theorem 2 holds also true in this situation
(with approximation numbers instead of singular values) as was shown by A. Rogozhin and
one of the authors in the recent paper [23|. The related proofs are quite different from the
previous ones.

As a matter of fact all these results are not applicable say to finite section sequences of
operators acting on [*°(ZX) spaces. Therefore one may ask if there is a general framework
which also includes this case. The present paper presents such a general framework with ap-
plications to the finite section method for band-dominated operators acting on spaces IP(ZX),
1 < p < . For the spaces IP(Z), 1 < p < oo the results are most complete and extend results
of S. Roch for p = 2 [21] and of the authors for 1 < p < oo [24].



The paper is organized as follows. In Section 1 we present the general framework for
the analysis of the asymptotic behavior of operator sequences in the Banach space situation.
For this we introduce a more suitable concept of convergence and "almost invertibility", the
so-called P-strong convergence and P-Fredholmness, which has already been considered in
[14] and [17], for example. Then we establish the Fredholm property for sequences in Banach
algebras of the type F7 and prove a stability result similar to Theorem 1. The main result
on the asymptotic behavior of the approximation numbers of sequences {4,} € F7 is stated
in Section 1.2.5 and generalizes Theorem 2.

Section 2 is devoted to the finite sections of band-dominated operators. An important tool
in that business and actually the link between the finite section sequences and our general
theory is given by the notion of limit operators. The book [17] provides a comprehensive
picture of the limit operator method, and [12] is also a recent introduction to this topic. The
crucial step for the study of sequences arising from a certain class of band-dominated operators
acting on spaces IP(Z) is to determine whether the Fredholm property of the sequence {A,}
is completely described by the Fredholm properties of the operators W*{4,}. This is done in
2.34

In the case K = 1 it is even possible to consider general band-dominated operators by
studying appropriate subsequences. Moreover, we present an idea how to deal with "almost
stable" sequences.

1 General theory

1.1 P-compact and P-Fredholm operators, P-strong convergence

Let X be a Banach space. We denote by £(X) the Banach algebra of all bounded and linear
operators on X and by K(X) the closed ideal of all compact operators in £(X). For A € £(X)
we put
ker A := {z € X : Az = 0},
imA = A(X) = {Az : x € X},
coker A :=X/im A.

Fredholm operators An operator A € £(X) is called Fredholm operator if dimker A <
oo and dim coker A < co. If A is Fredholm then the integer ind A := dim ker A — dim coker A
is referred to as the index of A. The collection of all Fredholm operators will be denoted by
®(X). The following theorem records some important and essentially well known properties
of such operators.

Theorem 3. Let X be a Banach space and A € L(X). Then the following are equivalent:
1. A is Fredholm.
2. dimker A < oo, dimker A* < 0o and im A is closed.
3. The coset A+ K(X) is invertible in the Calkin algebra L(X)/K(X).

4. There exist projections P, P' € K(X) s.t. im P =ker A and ker P’ = im A.



5. The following is NOT true: For each | € N and each € > 0 there exists a projection
Q € K(X) with rank Q) > [ such that ||AQ|| < € or ||QA| < e.

Moreover, we have:
o O(X) is an open subset of L(X) and for A € ®(X) we have
dimker(A + C) < dimker A, dim coker(A + C) < dim coker A

whenever C has sufficiently small norm. The mapping ind : ®(X) — Z is constant on
the connected components of ®(X).

o Let A€ ®(X) and K € K(X). Then A+ K € ®(X) and ind A + K = ind A.

o (Atkinson’s theorem). Let A,B € ®(X). Then we have AB € ®(X) and ind AB =
ind A + ind B.

Proof. The stated properties and the equivalence of the conditions 1 till 4 are well known.
Here we only consider condition 5.

Let the conditions 1 to 4 be fulfilled and let P, P’ € K(X) be projections such that
imP = ker A and ker P’ = im A. Then dimim P and dimim P’ are finite. Moreover, as a
consequence of the Banach inverse mapping theorem, the operator Al p : ker P — ker P’
is invertible. Let A1 be its inverse and B := (I — P)ACD(I — P'). Then B € £(X) and
AB =1—-P', BA =1- P. Now we assume that there is a compact projection ) with
rank Q > rank P such that [|[AQ|| < (2||B]|)~!. Then there is an z € im Q Nim(I — P) with
x # 0 hence ||(I — P)Qz| = ||z||, but on the other hand [|[(I — P)Q| = ||BAQ|| < 1/2, a
contradiction. An analogous argument for ||QA|| shows that 5 is true.

Now we prove that 5 implies 2. Assume dimker A = oco. Then for every given | € N we
can choose an [-dimensional subspace of the kernel and a bounded linear projection () onto
this subspace and we get AQ = 0, which contradicts 5.

Assume dimker A* = oo. For a given | € N we choose [ linearly independent bounded
functionals from ker A* and denote by X’ the intersection of their kernels. Obviously, X' is
a Banach space with an I-dimensional complement in X and im A C X’. Now we can choose
a bounded projection @ parallel to X’ onto one complement of X’ and get QA = 0, again a
contradiction.

Finally, assume that im A is not closed. We want to show that for every [ € N and for every
d > 0 there exists an [-dimensional subspace X; of X such that ||A|x,|| < . Fix § > 0.
Then there exists 21 € X, ||z1]| = 1 such that ||Az1]| < ¢, otherwise A would be an invertible
operator and hence its range would be closed. Assume that the assertion is true for [ — 1.
One can show that there exist a complement Y of X;_; and a projection ) onto X;_; with
ker@ =Y and ||Q] <. A(Y) is not closed (otherwise A(X) = A(X;-1) + A(Y) would be
closed). Now we can choose z; € Y with ||z;|| = 1 and ||Az;|| < ¢ and for arbitrary scalars
o, and = € X;_1 we get

[A(ex + Bay)|| < [[A(az)|| + [|ABz) || < ([la]l + [|B2])
Joz|| = [|Q(ax)|| = |Q(ax + Bay)|| < [|Qllaz + Bay|
1Bl = [[(I = Q)(Br)l| = (I = Q)(ax + Ba1)|

< (A +[1QIN e + Ball,



Le. ||A(ax + Bxp)|| < 6(1 4 20)||ax + Bxy||. Since 6 > 0 is arbitrary the assertion follows
by induction. Consequently, for every I € N and € > 0 we can choose 0 < 6 < €/, an [-

dimensional subspace of X and an appropriate projection @ onto this subspace with ||Q]| <,
such that [|AQ| < d]|Q] < e. O

Convergence A sequence (A,,) of operators A4,, € £(X) is said to converge to an operator
A e L(X)

o strongly if |A,x — Azx|| — 0 for each z € X (we write A = s-lim A4,,),

o uniformly if ||A, — Allzx) — 0.

Proposition 1. Let X be a Banach space and A, A,, € L(X). Then
o A, — A strongly & A, K — AK uniformly for every K € IC(X).
o AY — A* strongly = KA, — KA uniformly for every K € K(X).

The aim of the subsequent steps is to generalize the concepts of compactness, Fredholmness
and strong convergence.

Definition 1. Let X be a Banach space and let P = (P,)neny be a bounded sequence of
operators in £(X) with the following properties:

e For every m € N thereis an N € Ns.t. PP, = PP, = Py, if n > N,
e P,#0and P, # I for all n € N.

Then P is said to be an approximate projection. P is called approximate identity if in addition
sup,, || Pnz|| > ||z|| holds for each = € X.

Given an approximate projection P, we set S; := P, and S,, :== P, — P,,_1 for n > 1.
Further, for every bounded U C R, we define Py := ) -y Sk- P is said to be uniform if
Cp :=sup||Py|| < oo, the supremum over all bounded U C R.

P-compactness Let P be an approximate projection. A bounded linear operator K is
called P-compact if |KP, — K|, ||P.K — K|| — 0 as n — co. By K(X,P) we denote the set
of all P-compact operators on X and by £(X,P) the set of all operators A € £L(X) for which
AK and KA are P-compact whenever K is P-compact.

Theorem 4. (see [17], Proposition 1.1.8 and Theorem 1.1.9)

Let P be an approximate projection. L(X,P) is a closed subalgebra of L(X), it contains the
identity operator, and K(X,P) is a closed ideal of L(X,P). An operator A € L(X) belongs to
L(X,P) if and only if, for every k € N,

|PA(I — P,)|| — 0 and ||(I — P,)APg|| — 0 as n — oo.
If P is uniform, then L(X,P) is inverse closed in L(X).

Theorem 3 and Proposition 1 show that Fredholmness and strong convergence are closely
related to the ideal of compact operators. This suggests the definition of generalizations of
Fredholmness and strong convergence applying P-compact operators.



P-strong convergence Let P be an approximate projection and for each n € N let
Ay, € L(X,P). The sequence (A,,) converges P-strongly to A € £(X) if, for all K € (X, P),
both ||(A, — A)K|| and ||K(A, — A)|| tend to 0 as n — oo. In this case we write 4,, — A
P-strongly or A = P-lim A,,.

n—oo

Proposition 2. (see [17], Proposition 1.1.14)
If (A) is a bounded sequence in L(X,P) then (Ay) converges P-strongly to A € L(X) if and
only if

|(Ay, — A)Pp|| — 0 and || P (Ay — A)|| — 0 for every fized P, € P.

Theorem 5. (see [17], corollary 1.1.16f)
Let P be an approzimate identity and let (Ay), (Bn) C L(X,P) be sequences converging P-
strongly to A, B € L(X), respectively. Then

o A is uniquely determined and A € L(X,P). (Ay) is uniformly bounded, i.e. ||(Ay)| =
supy, [| 4z < oo, and [[A|| < [[(Py)]| Timinfy, || A,

e A, + B, > A+ B and A,B, — AB P-strongly.

P-Fredholm operators Let P be an approximate projection. An operator A € £(X,P)
is said to be P-Fredholm if the coset A + K(X,P) is invertible in the quotient algebra
L(X,P)/K(X,P).

Theorem 3 shows that the usual Fredholm property of linear bounded operators can be
described in terms of compact projections. In what follows, we want to give a description

of P-Fredholmness in terms of P-compact projections as well. For this, let P = (P,) be a
uniform approximate projection with

rank P, < oo for all n.
Then it is not hard to prove, that
KX*P*)={K": K € K(X,P)} and L(X*,P*) D{A": Ae L(X,P)}.
A sequence (4,) C L(X,P) converges P-strongly to A € L(X,P) if and only if
(A, — A)K|| — 0 and |K(A, — A)|| — 0 for all K € K(X,P).
Obviously, this is equivalent to
IK*(A; — A%)|| — 0 and [[(A4), — A")K™|| — 0 for all K* € K(X*,P"),
and thus to the P*-strong convergence of the sequence (A}) to A*.

Definition 2. An operator A € L£(X, P) is called proper P-Fredholm, if there exist projections
P,P' € K(X,P) s.t. im P = ker A and ker P/ = im A and it is called proper deficient if, for
each [ € N and each € > 0, there exists a projection @ € K(X,P) with rank @ > [ such
that ||QA|| < € or ||AQ|| < e. Further one says that A enjoys the P-dichotomy, if A is proper
P-Fredholm or proper deficient. The set of all operators A € £(X, P) having the P-dichotomy
will be denoted by D(X, P).

Obviously, all invertible operators are proper P-Fredholm.



Proposition 3. Let P = (P,)nen be a uniform approzimate projection with rank P, < oo for
alln € N. For A € D(X,P) the following are equivalent:

1. A is proper P-Fredholm.
2. A is P-Fredholm.

3. A ist Fredholm.

4. A is not proper deficient.

5. There exists a B € L(X,P) s.t. P:=1—BA,P' :=1— AB € K(X,P) are projections,
im P = ker A and ker P’ = im A.

Moreover, if A € D(X,P) is proper P-Fredholm or proper deficient then the operator A* €
D(X*,P*) is of the same kind.

The proof of this proposition is given in the appendix.

Corollary 1. Let P be a uniform approximate projection, rank P, < oo for all n € N, and
assume that P, — I, P} — I strongly. Then K(X,P) = K(X) and D(X,P) = L(X,P) =
L(X). A sequence (A,) C L(X) is P-strongly convergent if and only if (A,) as well as (A},)
are strongly convergent.

Proof. For every K € K(X, P) we have ||P,KP,— K| — 0, that is, K can be approximated by
finite-rank operators. Hence K is compact. Conversely, every compact operator is P-compact,
due to Proposition 1. Now we obviously have £(X) = £(X,P) and from Theorem 3 we obtain
D(X,P) = L(X).

A P-strongly or strongly convergent sequence (A,) is uniformly bounded (see Theorem 5
or the Banach-Steinhaus theorem). Hence Proposition 1, Proposition 2 an the relations

1(An = A)zl| < [[(An = A) Pl + [[An = Al[l[(I = P )]
1(An, = AFI < 1(A5 = A BRI+ 145 = AT = Po) A
= [1Bm(An = DA+ 1 An = AT = Pr) £l

easily complete the proof. O

Remark 1. It is still an open question under which conditions D(X,P) is really a proper
subset of £(X,P). In Section 2 we will show that the class of band-dominated operators is
contained in D(X, P).

1.2 Sequence algebras, Fredholm sequences and approximation numbers
1.2.1 Sequence algebras

Let (E,) be a sequence of finite dimensional Banach spaces and let (L, ) denote the sequence
of the identities on E,,, respectively. We denote by F the set of all bounded sequences {4, }
of bounded linear operators A,, € L(E,). Provided with the operations

a{An} + /B{Bn} = {aAn + BBN}7 {An}{Bn} = {Aan}7



and the supremum norm [{A,}|7 := sup, |4nllzE,) < 0o, F becomes a Banach algebra
with identity {L,}. The set

G:={Gn} € F: GnllcE,) — 0}

forms a closed ideal in F.

Further, let T' be a (possibly infinite) index set and suppose that, for every ¢ € T, there
is a Banach space E' with the identity I*, and a bounded sequence (L) of projections L! on
E! forming an approximate identity P! := (Lt). Then

= H(Lfl)H = sup HLleﬂ(Et) < oo for every t € T.
n

Further suppose that, for every t € T, there is a sequence (E!) of invertible homomorphisms

E!: L(im L) — L(E,),

n

such that (for brevity, we write E,* instead of (E!)™1)

M" = sup{|| B, |, | B, ||} < oo. (D
n

We denote by FT the collection of all sequences {A,} € F, for which there exist operators
WHA,} € L(E',PY) for all t € T, such that all

AW .= E7Y(A,)LL — W'{A,} Pt-strongly.
These operators are uniquely determined (see Theorem 5). It is easy to show that F7' is a
closed subalgebra of F which contains the identity and the ideal G. Both, the mappings E!,
and Wt: FT' — L(E', PY),{A,} — W'{A,} are unital homomorphisms.

Roughly spoken, the mappings E! allow us to transform a given sequence {A,} € FT
and to generate snapshots W'{A,} of {A,} from different angles. In what follows, we will
examine the connections between the properties of {A,} and the properties of its snapshots,
e.g. stability, Fredholmness, etc.

1.2.2 Fredholm sequences

Here we will introduce a class of Fredholm sequences. A sequence will be called Fredholm,
if it is "invertible modulo an ideal of compact sequences", where these "compact sequences"
will be generated by lifting P!-compact operators. For this, it turns out to be reasonable to
suppose that the perspectives from which a sequence can be looked at, and which are given
by the homomorphisms W, are separated in a sense.

Therefore, we suppose that the separation condition

K' ift=
WH{E, (L, K'Ly)} = o (I1)
0 ift#T

holds for all 7,¢ € T and every K* € Kt := IC(E!, P).

10



Definition 3. We put

J'= ({ELLEKILL) Y + {Gn} : KP € KL ||Gal — 0} (Yt eT),

JT = closzr {Z{Jﬁj} :meN, t; €T, {Jhi} e jtl} )

i=1
Proposition 4. JT and all Jt, t €T are closed ideals in Fr.

Proof. For t € T, K € K' and {A,} € FT we have

A EL (LKLL)) = BL(AVKLL)

= EL(LLW'{A}K L) + EL(LL(AD — WH{A DKL),
EL (LKLY A, = Ef (L KAD)

= EL(LLEW'{A,}L}) + BL(LLK (A — W'{A})LE),

where Wi {A,} € L(E',P") and hence W'{A,,} K, KW'{A,} € K'!. Due to the condition I
(t)

and since A;,” — W{A,} Pl-strongly, the last summands tend to zero in the norm as n — oo
in both cases. Consequently, all J! as well as J! are (two-sided) ideals in F' and J7 is
closed by the definition.

Let ({JE ) ken = ({EL(LLKELL) Y4+ {GE ) en C T be a Cauchy sequence. From Theorem
5 we obtain

| = K = W (LB (LA (KT — KDLL)} + {65 = {GL}) |
< ¢ MUN({EL (LU KELL) Y + {GE}) — (LEL(LLKTLA)} + {GL DI

therefore the sequence (K,i) ke is a Cauchy sequence in Kt and since K! is closed, it possesses
a limit K* € K!. Analogously, the estimate

G} =G < IHEL(LLERLL) Y + {GRY) — ({EL (LKL L)} +{G Dl
+ [ E (Lo (K7 — KLy
< I} = {3+ MUK = KR

shows that {G%} converges to a certain {G,,} € G. Now it’s easy to see that {E! (LLK'LL)} +
{G,} € Jt is the limit of ({J¥}); and the closedness of J* is proven. O

Definition 4. We introduce a class of Fredholm sequences by calling a sequence {4,} € FT
Fredholm if the coset {A,} + J7 is invertible in the quotient algebra F1/J7.

The following basic properties of Fredholm sequences are obvious:
e The set of Fredholm sequences is open in F'.
e The sum of a Fredholm sequence and a sequence from the ideal J7 is Fredholm.

e The product of two Fredholm sequences is Fredholm.
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In the subsequent propositions we will show that there are close relations between the Fred-
holm property of a sequence {4,} € FT and the P!-Fredholm property of the corresponding
operators W'{A,,}, which justify the notion "Fredholm sequence". Since rank L!, < co for all
n, we have ' C K(E") and every P!-Fredholm operator W*{A,} is Fredholm, i.e. possesses
finite dimensional kernel and cokernel and a finite index. We will introduce analogues to the
kernel dimension, the cokernel dimension and the index for Fredholm sequences, having very
similar properties.

We start with a result on the regularisation of Fredholm sequences.

Proposition 5. Let {A,} € F' be a Fredholm sequence. Then there exist a 6 > 0 and finite
subsets {t1,....tm}, {11, ..., 71} of T such that the following holds:

For each {A,} € FT with |[{A,}—{An}|| < & there are {B,}, {Cn} € FT and {G,},{G,} € G
as well as operators K € Kt K™ € K™ such that

{BaHAn} = {La} + ) {EG (LK L)} +{Gn}, (3)
=1
l
{AHCn} = {Ln} + ) {EF(LTKTLY)} + {Gu}. (4)
=1

In particular, all operators WH{A,} with t € T\({t1,...,tm} U{71,...,71}) are invertible.

Proof. Let {A,} be Fredholm. Then there are sequences {A,} € F' and {J,},{K,} € I
such that

{An}{An} = {Lyn} +{Jn} and {An}{An} = {Lyn} + {Kn}.

By the definition of the ideal J7T, there exist finite subsets {t1, ..., tp } and {71, ..., 7} of T and
sequences {Ji} € Jt {KTi} € J7 as well as {J,}, {K,} € J* with |[{J.}, [{Kn}|| < 1/4
such that

m l
{Jn} =D {0} + {Jn} and {K,} = Y {K7} +{K,}.
i=1 i=1
We put 6 := 1/(4||{An}|]) and for {fln} e FT with H{fln} —{An}| < 0 let
{Dn} = {An} —{A.}.
Then we get

{A}{An} = {Ln} + Z{jﬁ"} +{Jn} + {AnH{Dn}

l
{A{An} = {Ln} + Y _{K7} + {Kn} + {Du}{Ar)

i=1

where |[{J,,} + {4, H{D, HIs I{K,} + {Dn HAL}| < 1/2. Since the sequences {L,} + {J,,} +
{AM{D,} and {L,} + {K,} + {D,}{A,} are invertible in the Banach algebra F7, we can

12



define
{Bu} = ({La} + (I} + {AH{D)) " {A} € 7T,
{Cn} = {A}({Ln} + {Kpn} + {DuH{A}) " € F7,
(5 = (L} + L+ (A D)) € T80 =1, .
(K7} = (K7 ({Ln} + {Kn} + {DuH{AD € T i= 1,01

Due to the definition of the ideals J*, there are sequences {G,},{Gn} € G and operators
Kt e K%, K™ € K™ such that

{BuHAn} = {Ln} + Zm:{Jff} ={Ln} + i{EfZ(LfZK“LfZ)} +{Gn},
=1 i=1

l l
{AHCY = {La} + > {KGY = {La} + D ABF(LEKT L)} +{G}.
i=1 i=1

Finally, applying W', t € T to these equations, and with the help of the separation condition,
we arrive at

- It if t & {t1,....tm
wiB WAy = E b
I + Kb ift=t; € {t1,....tm},
It ift ¢ { } )
WHANWHC =40 e
I+ K™ lft:TiG{Tl,...,Tl}.
Thus, for each t € T\({t1,...,tm} U {71,...,71}), the operator Wt{ffn} is invertible. O]

By the equations (5) the following theorem is proven as well:

Theorem 6. If a sequence {A,} € FT is Fredholm, then all corresponding operators Wt{ A}
are Pt-Fredholm (as well as Fredholm) on E' and the number of the non-invertible operators
among them 1is finite.

Definition 5. This allows us to introduce three finite numbers for a Fredholm sequence
{A,} € FT | its nullity a({A,}), deficiency 3({A,}) and index ind({4,}), by

al{A,}) = Z dim ker W'{A,},

teT

B({An}) = dimcoker W'{A,} and

teT
ind({A,}) := a({An}) — B({An}).

Applying the well known properties of Fredholm operators (see Theorem 3) and Proposition
5, it is not hard to prove the following proposition.

Proposition 6. Let {A,} € FT be Fredholm and {B,} € F¥. Then we have:

o If |[{Bn} is sufficiently small, then a({An} + {Bn}) < a({An}),
B({An} +{Bn}) < B({An}) and ind({An} + {Bn}) = ind({4,}).

o If{B,} € JT, then ind({A,} + {B,}) = ind({4,}).
o If{B,} € FT is Fredholm, then ind({A, }{B,}) = ind({4,}) + ind({ B,}).

13



1.2.3 Stability of a sequence {4,} € Fr

In what follows, let P! be uniform approximate identities for all ¢ € T

Definition 6. A sequence {A,} € F is called stable, if there is an index ng such that all
operators A,, n > ng are invertible and sup,,>.,, [|4;1|| < .

A sequence {A,} € F7 is said to enjoy the P-dichotomy, if all operators W*{A,} have
the Pt-dichotomy, that is W*{A,} € D(E!,P!) for every t € T

It is well known, that a sequence {A,} € F is stable if and only if the coset {A,} + G is
invertible in F/G. Utilizing the higher structure of the given setting, namely the existence of
Pl-strong limits Wt{An}, we can prove a stronger result.

Theorem 7. A sequence {A,} € FT is stable and has the P-dichotomy if and only if {A,}
is a Fredholm sequence and all W{A,} (t € T) are invertible. In particular, F1 /G is inverse
closed in F/G.

Proof. Let {A,} € FT be stable and have the P-dichotomy. Then for large n, each ¢ € T and
every K € K, we have
1B, (An) L K| =

1B (AL
. 1B (An) Ly K| > 10 K-
n IE

B (At LE || W (AL
For n — oo, we obtain
HWt{An}KH > CtHKH and analogously HKWt{An}H > C’tHKH

for each t € T and every K € Kt, where C* > 1/(M'c!sup ||4,!|) > 0 is constant. Thus,
WH{ A, } must be proper P!-Fredholm (see Proposition 3). Suppose that the kernel of W*{A,}
is not trivial. Then there is a projection P € K!, P # 0 such that 0 = |W!{A4,}P| > C'||P| >
C', a contradiction. Thus W*{A,} is injective. Analogously one shows that W'{4,} is
surjective and hence invertible, due to the Banach inverse mapping theorem. Since {4, } is
stable, we get for large n and every K € K! that

(B (AT L, = (WHARD T K
E (ALY [L — BN (An) Ly (WHAD T K + [Ly, = I (WA ™

n

where the right-hand side obviously converges to zero in the norm as n — co. In the same
way we get K [E,'(A, )L, — (W'{A,})"'] — 0 in the norm. With the notation B, := A*
if A, is invertible and B, := L,, otherwise, we obtain from this the P!-strong convergence of
E;Y(Bp)LE to (WHAL}) ™! for every t € T and therefore {B,} € F'. Moreover {B,} + J*
is the inverse of {A,} + J%. Thus, {A4,} is a Fredholm sequence.

Conversely, let {A,,} be Fredholm and all W*{A,} be invertible. Then {4,} has the P-
dichotomy since every invertible operator is proper P!-Fredholm, and there are a sequence
{B,} € FT', operators K' € K (t1,...,t,, € T) as well as a sequence {G,} € G, such that
(see Proposition 5)

BpAn =Ly + Y EN(LEK'LE) + Gy .
=1

eJrT
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Defining B}, := B,, — Y it B4 (LY K (W' {A,}) " L), we get {B},} € F and

Bl Ap = Ln+ Gn+ Y EL(LE KLY — (W'{A.}) " AY)) L) = Ly + G,
=1

—0 in the norm

with {G,,} € G. Thus, A, is invertible from the left for sufficiently large n and hence invertible
from both sides since E,, is finite dimensional. Together with {B],} € F this shows the stability
of {4,}. O

This theorem discloses, that in case of Fredholm sequences, the invertibility of all limit
operators W'{ A, } ensures that also the sequence itself and the operators A,, are "sufficiently
well invertible".

In the subsequent sections we will treat the question, what consequences we have to expect
on the "almost-invertibility" of a sequence, if its limit operators are not longer invertible, but,
i.e. still Fredholm. For this we need a kind of measure for the "almost-invertibility" of the
operators A, and we will see that the approximation numbers (see (1)) provide a suitable
tool.

1.2.4 Systems of projections

For fixed t € T let X! be an m-dimensional subspace of Ef and P! € K! a P’-compact
projection with im P! = X*. We set P! := I — P* and obtain

It — (It — LY)Pt = Lt Pt + Pt

Since P! € K', there is an n; € N, such that ||(I* — LL)PY||, || P*(I* — LY)| < 1 for all n > n,.
Thus, for n > ng, we obtain the invertibility of I* — (I* — Lt ) P* and moreover the inverses are

(I' = LLYPYE € L(E!, PY).

NE

(1t = (1~ )P~ =

k=0
This justifies the following definition for n > n;:
o0
= L. P! Z — LL)PHk Z — Lt)Ph*
=:Pf =Pt
For these operators P, pr we have
oo oo
=P'PYYy ((I' = Lh)PHY =Py ((I' - LL)P')" = P,

k=0 k=0
Ptpt = pt Z((I — Lt)Phkpt = pt (Itﬁ’t + 0) = P! and

PLpty = (PLPY) P = P'PL = Pt

15



Due to the last equation, all ]5;; are projections, and from the first and second equation we get
im P! = im P!. Thus, the operators P! € K! are projections and dimim P! = m. Moreover,
we have im P! C im L, and finally

1P = Pyl = |P* = I + I' = Pyl = || B, — P'|

It~ )P
— Pt Lt Pt < Pt H( n 0
oy Z Fl<| r(l_,,(It_LmPtH -

What have we shown?
For a given m-dimensional subspace X! C E! and a corresponding P!-compact projection
P! € K we can construct a uniformly bounded sequence (P!) of projections, whose ranges
are of the dimension m, are contained in im L!, respectively, and approximate X' in a sense
(namely P! — P! uniformly).
Now, applying the homomorphisms E!, we can lift the compressions of these P! to im Lf to
a sequence in F. For this, we define for every n

Ry, = By (P, Ly)

and obtain projections R!, € L(E,), respectively. It is easy to show, that dimim R! =
dimim P! = m, that {R.} is uniformly bounded, since

1Bl = I En(Pr L)l ey < IERIIPRLnllcgm ng)y < M|l
and that {R!} € J"
IRy, — By, (L, P'Ly) | = | B (L (P, — P')Ly,)|| < M| Py — P — 0.

Definition 7. For t € T let X! be an m-dimensional subspace of E! and P! € K! a projection
with im P! = X*. The system (P!, P!, Pt Pt R!) of operators (with n > n;), which we can
construct as above, is called an X'-corresponding system of projections.

The following proposition shows that, applying such X'-corresponding systems of projec-
tions, certain properties of boundedness of the operators W'{A,} can be devolved to the
sequence {4, }.

Proposition 7. Let {A,} € FT and X' be an m-dimensional subspace of E' which possesses
a corresponding system of projections (P, Pt, Pt Pt R!). Then

limsup [|AnRL | < MW AP,

limsup [[RL A, || < MY PHALY.

Proof. From the above considerations we get
AR || = 1A B (PLLY) | 2,y = 14 (A PLLb) | 2,

< MUAD P s 1y < MUADPYS (I — L) PYYH|
k=0
Mt
<
S ToT - P

AP — MY WA},
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since [|AVPY| < [WHA P + [[(AY — Wt{A,})Pt||, where the last term tends to 0 as

n — o0o. Analogously

1B Anll < MUY PLAD | 1y < M P (I = Ly ) PYRAD)|

k=0
= M| (Z(Pt(ft - Li))’“) PtAQD|
k=0
Mtct

IPPAD | — M| PWH ALY

<
T L= [P = L)l

1.2.5 The approximation numbers of {4,} and the operators W'{A4,}

Theorem 8. Let {A,} € FL andt € T such that W'{A,} is a proper P'-Fredholm operator.
Then si(A,) — 0 for all k € N with k < dimker W'{A,} or k < dimcoker W'{A,} as
n — oo.

If, for one t € T, the operator W'{ A, } is proper deficient then si(Ay) — 0 for every k € N.

Proof. Let X' C E! be an m-dimensional subspace and (P, Pt, Pt ]572, R!) an X'-correspond-
ing system of projections. Due to Proposition 7 we obtain for the m-th approximation numbers
of {A,} (for n > n;) that

Sm(An) = lnf{HAn + FHL(En) F e fdimEnfm(En)}
[An = An(Ln = Rl £w,) = [An Ry

Mt
1—|[(I* = L},) P
Sm(An) = lnf{HAn =+ FHE(EH) cF e fdimEn—m(En)}
[An = (Ln = Ry, Anll£(m,) = R A

Mtct
1—[[PHI" = L)

A

IAS PY| — MY W*{A,}PYl, and

IN

IN

IPPA | — M| PWH{ AL}

IN

If Wt{A,} is proper Pt-Fredholm, then there are projections P, P’ € K! such that im P =
ker W'{A,} and ker P" = imW*{A,}. From this we obtain systems of projections which
correspond to ker W'{A,} or to a complement of im W*{A,}, respectively. In view of (6),
this shows the first assertion.

Now, suppose that W'{A,} is proper deficient. Then for each k € N and each € > 0 there
is a projection Q € K!, rank @ > k such that |[W'{A,}Q| < € or |QW!{A,}|| < e. With
X! :=im@Q, P! := @ and due to the inequalities (6) we arrive at limsup,, si(A4,) = 0, since €
can be chosen arbitrarily. O

Note that the inequalities (6) give us an estimate for the convergence speed of the approx-
imation numbers.
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Main theorem From Theorem 6, Theorem 8 and the subsequent two sections (see
Propositions 9 and 10) we obtain an important generalization of our stability result.

Theorem 9. Let {A,} € FT have the P-dichotomy.

If{A,} is a Fredholm sequence then all operators W'{ A, } are Fredholm operators, the number
of the non-invertible operators among them is finite and the approximation numbers of { Ay}
have the k-splitting-property with k = a({Ay}), i.e.

lim sq(14,})(A4n) =0 and liminf s, 14,1)41(An) > 0.

Howewver, if one operator Wt{An} is not Fredholm, then lim,,_,o sp(Ay) = 0 for every k € N.

1.2.6 The o({A,})-th approximation numbers of Fredholm sequences {4, }
Let {A,} € FT be a Fredholm sequence having the P-dichotomy. Due to equation (3)

i=1

from Proposition 5, all operators Wt{ A, } with t € T\{t1, ..., t;, } have a trivial kernel. Defining
ki := dimker W% {A,} (i =1,...,m) we obtain

m

a({An}) =D ki
i=1
For each i = 1,...,m let X’ := ker W*{A,} and (P?, P*, P}, P}, R%) be an X'-correspond-
ing system of projections where, due to the P-dichotomy of {A,}, we can choose P’ € K.
For each ¢ and every n > max; n; let {xfﬁf;l denote a basis of im R!,, respectively, such
that for arbitrary scalars o' the following hold:

ki

iyl <l ZaijZjH forall p=1,.. k. (7)
j=1

It is a simple consequence of Auerbach’s Lemma (see [13], B.4.8) that such a basis always
exists.

In the next proposition we show for each sufficiently large n that, thanks to the separation
condition, all of these z}', are linearly independent. In other words: the lifted projections R},
are essentially different from each other and span a vectorspace of the dimension a({An}).

Proposition 8. There exists a number N € N, such that

m  k;
gl DD awgaiyl, where 5 =2 max M|,
i=1 =1 S

forallj=1,...m, k=1,...k;, n > N and all scalars o ;.
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Proof. Let i # j. Due to the separation condition II, since HR{ — PJ|| — 0 and P/ € K%, we
have
o R
IR BN = | EG (P L) Ed (PAL) || (i)
< MY B, (B (PLy))PIL| — 0.

Hence, for every € € (0, 1), there exists a number N € N such that

m . .

> kR R} < € and

J=1,5 (8)
|RLI < MY||PL| < (1+e) MY || P

foralli=1,....,mand n > N.
Now let a;; be arbitrary but fixed scalars and i,y be fixed indices such that |o, | =
max; | ;|. Thanks to (7) and (8) we obtain

m k;
IR D iy

i=1 [=1

kg m k;
| > 1> iRy =1 Y. > e Rl
=1

i=1,i#ig =1

kiO m k‘i
>3 cioawhoall = D0 Y lewll Ry Ryl
=1

i=1,i#ig I=1
m . .
> |vig 10| = lvig o] > Kil | RIORE|
i=1,i#io
> (1 - 6)‘ai07lo|'

Thus
IBR ]\ S~ X
il < levigaol < 371 DO |
i=1 [=1
1+e€ m
< :mgx (MtlHPZH) |l ZZ%’,WZZ
=1 [=1
for alln > N, for all j =1,...,m and all k =1,...,k;. € =1/3 gives the assertion. OJ

Now we are in a position to study the a({Ay})-th approximation numbers of {A,}.

Proposition 9. Let {A,} € FT be a Fredholm sequence which has the P-dichotomy. Then
Sa({An})(An) — 0 asn — oo,

Proof. For each n > N we introduce functionals f}; : span{x’f’l, T km} — C by the rule

m kg
17 (ZZa};lwzl) =al; 1<i<m, 1<j<k.

k=11=1
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By the preceding proposition we have || f!" H < ~. These functlonals can be extended to the
whole Banach spaces E,, by the Hahn- Ba,nach theorem such that f; € Ej, and [|f}| < 7.
Further, we denote by R,, € L(E,,) the linear operators

ki

Row =3 f25 (@),

i=1 j=1

The operators R,, are projections of the rank dimim R,, = a({A4,}) and they are uniformly

bounded with respect to n. Moreover, for any x € E;, we have (since zj; = =Rix i)

m ks
ARz = [[An Y Y fls(@)aiy|| < ZZI )| An Ry |

i=1 j=1 i=1 j=1

ki

ZZVH%HIIA Ryl —vllwllzk 1An R -

Since, for each i, || A, R% || — 0 (see Proposition 7) it follows that

Sa({An})(An) = inf{HAn + FH/:(En) (F e fdimEnfa({An})(En)}
< |4n — An(Ln — Ryl c(e,)

= || AnRx H<WZ/'€HAR | —0.
=1

O

Note that these inequalities and Proposition 7 give us an estimate for the convergence
speed of the approximation numbers: (n > N)

m Mbik, )
t; 7 1 t; 7
sattan(Ae) < 2 s (MU -2 sz pry g 140 P
- (9)
< const ZHA%)P’H — 0.
i=1

Starting with equation (4) instead of (3) and considering systems of projections that
correspond to the cokernels, that is to complements of the images, one can analogously prove
the assertion of this proposition for sg14,})(Axn). (For this, we extend the functionals i’ by

1o R! and not by Hahn-Banach).

1.2.7 The a({A,}) + 1-st approximation numbers of Fredholm sequences {4, }

Proposition 10. Let {A,} € F1 be a Fredholm sequence which has the P-dichotomy. Then
liminf, Sa({An})+1(An) > 0.

Proof. Due to equation (3)

{BaHAn} = {La} + Y _{EF(LEK L)} + {Gn)

=1
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from Proposition 5, all operators W{ A, } are Fredholm operators and in case t € T\{t1, ..., tm }
the operator Wt{4,} has a trivial kernel.

Moreover, for every i = 1,...,m, there is an operator B* € L(E",P%) such that P’ :=
It — B'W'{A,} € K' is a projection onto the kernel of W% {A,} (see Proposition 3). Define
Pt .= i — Pt and furthermore, for every n € N:

m
Dy =B, — Y ES(LEK“B'LY).
i=1

It’s obvious that {D,} € F. Due to the P'-strong convergence of Agf’ ") we obtain
| (B (LK BLY) A, — B (LYK P'LY)) |
= | By (Ly K" BY AL = WAL — 0

for all 4, i.e. {37, BU(LLE K BILE)A, — 37 BL(LE K4 PULE)} € G.
Thus

m
DnAy = B, Ay, — Y ES(LEKYB'LE)A,
=1
m m )
=Ln+ Y EL(LEKSLYE) =Y ENLGKYPLY) + H,
=1 =1
m .
=Ln+ Y EJ(LUK“P'LY)+ H,
=1
with {H,} € G. Since dimim P’ = dimker W' {A,} for all i, we have
m .
dim im (Z Et (Lf{K“P%f{)) < a({4,)}).
=1

For sufficiently large n we have ||Hy,| < 1/2 and, applying (2), it follows

1 _ _
5 = (I(Ln + Hy) Yemay) = s1(Ln + Hy)
= inf{|[Ln + Hy + Fllzg,) : F € Faime,—1(En)}

!
<inf{||Lp + Hy + F+ Y B (LEK"PLY)| o, -
i=1

F € FaimEn—a({An})—1(En)}
= inf{|[DnAdn + Fllz®,) : F € FaimEn—a({an})—1(En)}
< inf{HDnAn + DnF”E(En) tF e fdimEn—a({An})fl(En)}
< |IDullz(g,) nf{l|An + Fllzg,) - F € FaimEBn—a({an))-1(En)}
< [{Dn}sa(ta,p)+1(An).
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Starting with equation (4) and considering the cokernels, one can analogously prove that
lim inf,, 5,8({An})+1(An) > 0.

Theorem 10. The index of a Fredholm sequence having the P-dichotomy is equal to zero.
Proof. The previous considerations and remarks show that s, A1) (An) — 0 as well as

liminf,, sg((a,})41(An) > 0, hence a({A,}) < B({A,}). Similarly, we get sgga,})(An) — 0
and liminfy, s, ({4, })+1(An) > 0, hence a({A,}) > B({An}). This proves the assertion. O

1.3 Localization

Let A be a unital Banach algebra. The center Cen A of A is the set of all elements x € A with
the property that za = ax for all a € A. Let C be a closed subalgebra of Cen.A containing
the identity. Further, let M¢ denote the maximal ideal space of C. If i € M¢ is a maximal
ideal, then J; will denote the smallest closed (two-sided) ideal of A containing i, and ®; the
quotient mapping A — A/J;.

Theorem 11. (Allan, [17], Theorem 2.3.16)
A € A is invertible if and only if ®;(A) is invertible in A/ J; for every i € Mec.

2 Finite sections of band-dominated operators

In this section we illustrate the results of this paper by an interesting example.

2.1 Function spaces on Z¥

Let K, N be positive integers and p > 1. Then we denote by 1P = [P(Z*,C") the Banach
space of all functions f : Z¥ — CV such that

N
N
11 = D I @)} < oo, where [|2|[p = [|(z)4 ]I} =D _ |=if".

xeZK =1
Further, let [ = [*°(ZX C") denote the Banach space of all functions f with

[ flliee == sup [[f(2)]loo < o0, Where [[2]lco = [[(2:)iL1]lo0 := max |z].
zeZX i=1..N

19 =19(Z%,CN) refers to the closed subspace of all functions f € [ with
lim [ f(2)lloc = 0.
T—00

For 1 < p < oo the dual space of [P can be identified with [? where 1/p + 1/q = 1 and the
dual space of [ is isomorphic to I'.

Finally let I3y = (°P(ZX,CVN*N) (for p € {0} U [1,00]) denote the Banach algebra of
all matrix-valued functions a : Z¥ — CN*N with

lallier = sup [la(@)| v ), < oo
zeZK
Every function a € Iy gives rise to an operator al € L(IP) (a so called multiplication
operator) via
(af)(z) = a(e)f(z), =eZ".

Evidently, [lal| sy = Ha”l?\]o,xpN. By this means, the functions in [°°(Z¥ C) induce multipli-
cation operators as well.
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2.2 Band-dominated operators and limit operators

For every subset F' C R¥ let xr denote the characteristic function of F and for a function
f:RE — CN let f denote the restriction of f to Z%.

Band-dominated operators A band operator A is a finite sum of the form A =
Ea Qo Ve, Wwhere a € ZK, aq € l?\?fN and V,, denotes the shift operator

(Vaf)(z) = f(z —a), =eZ”.

An operator is called band-dominated if it is the uniform limit of a sequence of band operators.
We denote the class of all band-dominated operators by A;p.

Let Q C RX be a compact and convex polytope with vertices in Z%X and suppose that
0 € ZX is an inner point of . Further, let

T N
Xma(x) == xaq <E> and Ly, := xmal (m €N).

Obviously, all L,, € L(IP) are projections with ||[L,|| = 1 and P := (Lp)nen is a uniform
approximate identity.
Here is a collection of important properties of band-dominated operators:

Theorem 12. (see [17], Propositions 2.1.7ff)
o A C L(IP,P) C L(IP) are closed algebras.
o Ap C L(IP,P) C L(IP) are inverse closed.
e The set K := K(IP,P) of all P-compact operators is a closed ideal in Ap.
o Ap/K is inverse closed in the quotient algebra L(IP,P)/K.

Theorem 13. ([17], Theorem 2.1.6)
Let A € L(IP,P). A is band-dominated if and only if, for every e > 0, there exists an M, such
that whenever F,G are subsets of ZX with dist(F,G) > M then

IXpAXGI | cary <€

Proposition 11. (Duality)

Forp=01letq=1, and for 1 <p < oo let 1 < g < oo such that 1/p+ 1/p = 1, respectively.
Then (K(IP,P))* = K(19,P) and (Ap)* = Apj.

A sequence (Ayp) C Ap converges P-strongly to an operator A € Ap if and only if (A) C Aja
converges P*-strongly to A* € Ajq.

Proof. The relations (IC(IP, P))* = K(12,P*) and (L(IP,P))* C L(1%,P*), as well as the duality
of P-strong convergence and P*-strong convergence were already mentioned in Section 1.1.
Let a € I37y and 2z € ZE. Then (aV,)* = V}a*I* = bV_. where b is given by b(z) =
a*(z + z). Thus, the adjoint A* of a band operator A is a band operator again, and for every
band operator B there is a so called preadjoint band operator (*B) with (*B)* = B. Since
passing to adjoints is an isometry, we obtain this for band-dominated operators as well. Thus

(Aw)* = Ap. O
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Limit operators Let A € L(I”,P) and h = (hp)nen C ZX be a sequence tending to
infinity, i.e. ||hy|| — 0o as n — oo. The operator Ay, is called limit operator of A with respect
to h if

V_n, AVy, — Aj, P-strongly.

The set o(A) of all limit operators of A is called the operator spectrum of A.
Proposition 12. ¢(K) = {0} for each K € K.

Proof. We fix P, and obtain for every P that

IVorn K Vi, Pl < IV, K PV, Pl + Vo, K(I — Pi) Vi, Prn|
< K| PV, Pl + | K (I = P

For every given € > 0 there is a k, such that the second summand is smaller than e. Afterwards
it is easy to see that the first summand is equal to zero for sufficiently large n.
Analogously we show || P, V_p, KV}, || — 0 and the assertion is proved. O

We will see, that limit operators are a very important tool for the examination of band-
dominated operators. As a first remarkable result there is the following characterization of
Fredholm band-dominated operators:

Theorem 14. Each band-dominated operator A has the P-dichotomy and the following are
equivalent:

1. A is Fredholm.
2. A is P-Fredholm.
3. A is proper P-Fredholm.

4. There exists a reqularizer B € Ap such that P:=1 — BA € K and P':=1—- AB € K
are projections with im P = ker A and ker P = im A.

5. All limit operators of A are invertible and their inverses are uniformly bounded, i.e.

sup{[[(An) 7Y : Ap € 0(A)} < oo.

Proof. At first, let us consider the cases p ¢ {1,00}. Then (L,) as well as (L}) converge
strongly to the identity, hence Corollary 1 yields the P-dichotomy and Proposition 3 shows
the equivalence of 1, 2, 3 and 4, since A;p/K is inverse closed. The (non-trivial) proof for
assertion 5 can be found in [17], Theorem 2.2.1.

Now, let p = 1. Since Ap = (Ap)*, each band-dominated operator A € A; enjoys the
P-dichotomy and 1, 2, 3 and 4 are equivalent (see again Proposition 3). For every A € Apn
there is a preadjoint operator (*A) € Ajp, i.e. (*A)* = A, and A, (*A) are Fredholm at the
same time. Moreover, it is easy to see that there is a one-to-one correspondence between the
limit operators of A and the limit operators of (*A). More precisely, the limit operator Ay,
of A with respect to a sequence h tending to infinity exists, if and only if (*A)y, exists. Then
((*A)p)* = Ap (see Proposition 11). Hence, these limit operators are uniformly invertible
at the same time. Therefore A is Fredholm if and only if its limit operators are uniformly
invertible.

The case p = oo can be treated analogously, utilizing the duality between Ao and A4;. O
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Proposition 13. Let A be a Fredholm band-dominated operator, B be a reqularizer of A, i.e.
AB —1,BA—1 € K, and h = (hy) be a sequence tending to infinity, such that the limit
operator Ay, of A exists. Then the limit operator of B with respect to h exists too, and equals

(Ap)~.

Proof. Ay, is invertible due to Theorem 14, and since BA — I = K € K we have

V_pn, BV, — (Ah)il
= Vo4, BVi, (I =V, AV, (Ap)™1) + Vo KV, (Ap) ™
= V_hnBth (Ah - V_hnAth)(Ah)_l + V_hnKth (Ah)_l

and hence ||(V_p, BVy, — (A)"1)J| — 0 for every J € K. Analogously, we can show that
| J(V_n, BV, — (An)~1)|| — 0 and obtain the P-strong convergence of V_j BV} to (A,)~L.
OJ

Proposition 14. (Strong convergence)
Let p # 00, A € Ap and h be a sequence tending to infinity. The operator sequence (A,) :=
(V_n, AVy,) converges P-strongly to the limit operator Ay, if and only if it converges strongly.

Proof. We note that for p ¢ {1,00} Corollary 1 tells us that strong convergence and P-
strong convergence coincide, and that for p = 1 every P-strong convergent sequence converges
strongly, too.

Finally, we consider strongly convergent sequences (A4,,) in case p = 1. Obviously, ||(A, —
Ap)Lp|| — 0 for every Ly, (which is compact) and it remains to show that || Ly, (A, —Ap)|| — 0.
For this, we fix L,, and € > 0. Then Theorem 13 yields an [ with || L, (A, — Ap)(I — Ly)|| < €
for all n. Together with

1L (An = Ap) | < [ Lm(An — Ap) Lil| + [[Lin (A — An)(I = Li)|

and the observation that the first summand tends to zero as n — oo, due to the compactness
of L;, this proves the P-strong convergence of (A,,). O

Remark 2. Let ' ¢ RX be another compact and convex polytope with vertices in ZX and 0
as its inner point and let P’ = (L!,) denote the corresponding approximate projection. Then

nlerolo Lp,L,, = nh_)rglo L, Ly, = Ly, and nlgglo L,L,, = nh_)r{)lo L. L,=1L,.

Therefore P and P’ are said to be equivalent and [17], Lemma 1.1.10 tells us that
K(P,P) =K, P").

Thus, L(IP,P) = L(IP,P") and the notations P-Fredholmness, P’-Fredholmness and P-strong
convergence, P’-strong convergence coincide.

This shows that the properties of band-dominated operators or operator sequences do not
depend on the concrete choice of €.
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2.3 Finite sections of band-dominated operators
2.3.1 Definitions

Let x € Q\{0}. Then we can write = as a convex linear combination of the vertices (extreme
points) uy of Q (Krein-Milman theorem):

x:Zaiui, a; > 0, Zai =1.
i i

We choose an iy such that a;, # 0. Then we denote by [a] the integer part of the real o and

for each n € N we set
Ty 1= Z [nag] ui + (n — Z [na] ) ui, -
ijiio ii#io

Obviously x,, € Z* for every n € N and ||nz — x| is uniformly bounded with respect to n
and z, thus nz and z,, are at close quarters. More precisely, the sequences (nx) and (x,) both
tend into the direction of ﬁ in the sense of Section 2.3.1. in [17]. For z = 0 we put z,, := 0.

The boundary 62 of €2 consists of a finite number of (K — 1)-dimensional polytopes P;.
To each of these polytopes we can assign a uniquely determined K-dimensional half space H;
as follows: P; C H; and 0 is an inner point of H;. In what follows, we assume that H; # H},
whenever j # k. Finally, we set H]Q := Hj — uj, where u; is a vertex of P;.
According to the considered theory above, we introduce the following notations:

E, :=imL,, T :=06QU{0}, K; := Njwesu, H; CZ*, I := Yk, I and

E° .= 7(z%, ") L =1L,
E%: £(imL%) — L(E,),B— B
E* :=imI” Ly =V 4, LyVy,

EY: L(imLY) — L(E,),Bw— V,, BV_,.

for every x € 6€) and every n € N.
It is easy to check that for each x € T the following holds:

e E¥ is a Banach space.

The set K% := K(E*, P*) equals {I*KI* : K € K(I?,P)} C K(E®"). In case p ¢ {0,000}
we have £ = C(E”).

LE € L(E®) are projections of norm 1 and L¥ — I* strongly if p # occ.
o P?:= (L}),en is a uniform approximate identity.
e B are surjective isometries, in particular condition I is fulfilled.

We note, that the sets K* do not depend on the concrete choice of 2, which can be seen as in
Remark 2, hence the notions of P*-Fredholmness and P*-strong convergence are consistent,
too.

The general theory now provides the sequence algebras F and F', as well as the ideals G
and J7T. Utilizing the results of Section 1.2 we want to study the finite sections {L, AL} of
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band-dominated operators A. For this, we certainly require the existence of the limit operators
W*{L,AL,} = P-limV, AV_, that do not exist for general band-dominated operators.
Obviously, the shape of the spaces E,,, the transformations E¥ and the arising limit operators
now depend on 2. Therefore, we will restict our considerations to appropriate subclasses of
band-dominated operators, which we will introduce in the next step.

2.3.2 Algebras of band-dominated operators

In what follows we define a subclass of band-dominated operators A which can, roughly spoken,
be lifted to sequences {E¥X(LEALY)} in an appropriate algebra for which the techniques of
Section 1.2 are applicable. More precisely, these sequences need to possess all required limit
operators. Moreover, these limit operators as well as their inverses or regularizers, if they
exist, should be of the same kind.

Definition 8. For every x € T let Aj, denote the set of all band-dominated operators A € A;»
with the property that for every m € N, 4° := x and arbitrary y', 32, ...,y™ € T the following
limit operators exist

Ayi := P-lim V_ygl Vy%—lAyi—l V_y%—l Vyz (’L =1,..., m) (10)

n—oo
Notice, that A, is the limit operator of A -1 with respect to the sequence (vl — v h).
Proposition 15. Let x € T and A € Aj,. Then

o A7, is a closed subalgebra of A, containing the ideal K as well as the operators I and

I”.
o A7, is inverse closed.
o AJ, /K is inverse closed in A /KC and L(IP,P)/K.
o LetyeT. Then Ay € Aj,.

Proof. For A, B € A}, and «, 8 € C we have
(A + /BB)yi = Oszz' + ﬂByi, (AB)yi = AyiByi,

due to Theorem 5. Therefore A, is an algebra. Let (Aj) C Aj, be a Cauchy sequence and
A € Ap its limit. Again from Theorem 5, we obtain that ((Ax),:) is a Cauchy sequence.
Thus, there exists a band-dominated operator A, such that (Ak)yl — A, and moreover
Vo Vo, AV_y, Vi — A P-strongly. Iterating this idea, we obtain operators Ay for all
and hence A € A7,. This proves the closedness of Aj,. I,I” € Aj, is obvious and due to
Proposition 12 we have K C Aj,. Thus, the first assertion is proved.

Let A € Aj, be a Fredholm operator and B a regularizer of A. B is band-dominated, since
Ap /K is inverse closed in L(IP, P)/K. Due to Proposition 13 the P-strong limit of the sequence
V_yVa, BV_3, V. exists and equals (A,)~! for each y € T,y # z. This is particularly true if
A is invertible with B = A~!. Iterating this argument to all limit operators (10) of B leads
to B € A}, and shows the inverse closedness of A}, and A7, /K.

Ay € A, is an immediate consequence from the definition. O
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To be able to consider the liftings {EZ(LEAL%)} of band-dominated operators A, we
actually need algebras of operators acting on E*:

Definition 9. For every = € T, let B}, denote the set of the restrictions of all operators in
i» to the space E”, i.e.

Bj, = {I*AI"|g= : A € A},} C L(E*, P7).

Corollary 2. Bj, is an inverse closed Banach algebra of operators on E®, containing the
identity I* and the ideal IC*.
B}, /K* is inverse closed in L(E*,P*)/KC*.

Proof. Obviously, BY, is a closed algebra with the identity I* which contains the ideal K. Let
B be the inverse (or a regulariser) of A € Bjj,, respectively. Then I*BI* 4 (I — I*) € Ap is
the inverse (a regulariser) of I*AI* + (I — I*) € Aj,, thus I*"BI* + (I — I*) € Aj,, that is
B e B, O

Continuous coefficients Here we consider the set C (EK, CN*N) of all continuous func-
tions a : RE — CN*N such that the following limits exist uniformly with respect to n:

a®(n) := lim a(tn), neS*

where SK~1 denotes the unit sphere in R¥.
Let A;»(C) denote the smallest closed subalgebra of A containing {V, : o € ZX} and

{a :a € CR",CN*N)},

Proposition 16. A;»(C) is a closed subalgebra of A}, for every x € T. In particular, A (C) C
BY, — AL

Proof. For o € Z¥ and A =V, it’s clear, that A € Af.
Let z,y € T and x # y, a € C(ﬁK,(CNXN) be given and A = al. We want to show, that

the limit operator A, = P-imV_, V, AV_, V, exists and equals a®(n)l, where 1) := ﬁ
For this we define a sequence (a,) of functions a, by a, : z — a(z + y, — z,,). The sequences
(an(2)) converge to a™(n) for every fixed z € ZX, due to the continuity of a. Thus,

lim [[(and —a®(n)I)Lp| =0

n—oo
for every L,,. Since the multiplication operators (a,I — a®°(n)I) and L,, commute, the P-
strong convergence of (G,/) to a®(n)I is proven. Thanks to a,I = V_,, V; alV_, V,, it is
now easy to see, that all generators of Aj;»(C') are contained in Aj,. O

For A =5",4V] (a1 € C’(@K,(CNXN)) we have Ay = >, a7°(n)V;, and it easily follows,
that all limit operators A, (y # x) of operators A € A;p(C) C Aj, are shift-invariant, that is
Ay = V_oAyV, for arbitrary o € ZX . The set of all shift-invariant band-dominated operators
will be denoted by A;»(C).
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Half spaces and cones Let Zso denote the set of all points in §€2 which are relatively
inner points of P; with respect to H; for one j (where P, H; are as in 2.3.1). By Hq we
denote the set of all closed half spaces H C RX| such that §H is a (K — 1)-dimensional linear
space and does not contain any point from Zsn. For H € Hgq let x g denote the characteristic
function of H and Py := xpgl the related projection.

Proposition 17. Let H € Hq. Then Py € Aj, whenever x € T NdH. In particular,
Py € B?p = A?p.

Proof. Let = 0 and y € T. We have to distinguish between different cases: y € int H, y ¢ H

ory € 6H. It is easy to check that the operators V_,, PV, converge P-strongly to I or 0 for

y € int H or y ¢ H, respectively. The case y = 0 is trivial. For y € 0H, y # 0 we have, due to

the definition of €2 and H, that y € P; N P, C 6H with some j # k and every representation

of y as a convex linear combination of vertices of €} only contains vertices in P; N P, C 6H.

Hence, y,, € 0H and consequently V_,, PgV,, = Py for every n. This proves (Py), = Py.
For arbitrary x € T'NJdH we note that V,, PgV_,, = Py and obtain again

Py ifyedH
(Pu)y =<1 ifyecintH (11)
0 ifyd¢ H.
Now the assertion easily follows. O

Remark 3. As an explanation for the above definition of the appropriate half spaces H € Hq
we consider the case K = 3: In this situation the definition just means, that dH intersects
the boundary of 2 only in its edges and vertices.

Thus, we can consider band-dominated operators on half spaces and, by combination of
different half spaces, on cones. Moreover we can compose the restrictions of A;» (C')-operators
to cones. Note that Aj;»(C) is independent of the choice of €, but there is a close relation
between €2 and the half spaces in Hgq.

2.3.3 The sequence algebra Fp,

The sequences EF{L} AL} } with A € By, are good candidates to be generators of an appropri-
ate sequence algebra which allows us to apply the general theory. In fact, we will need some
more sequences.

Definition 10. Let g € C(Q2) be a continuous complex valued function on §2. By the functions
gn(x) := g(3) we define an operator sequence {L,g,L,} € F and we denote by Cq the set of
all such sequences arising from continuous complex valued functions.

Proposition 18. Let {L,g,L,} € Cq and x € Q. Then P-limV_,, G,L, V., ezists for all
x € Q and equals g(x)I*, respectively, where I* := I for x € int Q.

Proof. We have V_y, gnLnVe, = faV_u, LaVe, with fo(y) := g(LE2). Obviously, fn(y)
converges to g(x) as n — oo for every fixed y € ZX, due to the continuity of g. Thus,
N(V_s, GnLnVz, — g(x)I*)Ly,|| — 0 for every L, and also || Ly, (V_z, §nLn Vs, — g(x)I¥)| — 0,
since these operators commute. This proves the P-strong convergence. O
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We recall some notations from Section 1.2: F denotes the Banach algebra of all bounded
sequences {A,} of bounded linear operators A4, € L(E,), and F denotes the closed subal-
gebra of all sequences {4, } € F for which there exist operators W*{A, } € L(E*, P*) for all
x € T, such that

E “(An) LY — W*{A,} PT-strongly.

n

Condition I and, due to Proposition 12, also condition II are fulfilled. The sets

G :={Gn}: [|Gull — 0},
J =J" .= closspan{{EZ(LEKL%)},{G,} : z € T, K € K*,{G,} € G}

are closed ideals in 77 and a sequence {A,} € F7 is called Fredholm sequence, if {A,} +J
is invertible in 1/ 7.

Definition 11. Let Fp, denote the smallest closed subalgebra of F, containing all sequences
of the form {E} (L} AL}Y)} with o € T and A € By, as well as all sequences from Cq and G.

It is clear, that for {A,} € Fp, all limit operators W*{A,} exist and are contained in
By, respectively, hence Fp, C F T Moreover, the ideals G and J are contained in Fp, and
all sequences in Fp,, have the P-dichotomy (see Theorem 14). With the help of Proposition
14 it is easy to see that in case p # 0o the P-strong convergence to the limit operators is just
the strong convergence.

2.3.4 Localization and a finite section algebra F 4, )

For every Fredholm sequence we obtain the Fredholm property of all its limit operators from
Theorem 6. The aim of this section is to determine an appropriate subalgebra of Fp,,, for
which the converse is true, namely that a sequence {A,} is Fredholm, if all W*{A4,} are
Fredholm.

Proposition 19. The set Cg of all {LyngnLyn} + T with {LpgnLyn} € Cq is a C*-subalgebra
of the center of ]-“glp = T, /T, and CF is isometrically *-isomorphic to C(Q).

Proof. At first, we have to show, that the elements of Cg commute with all elements of ‘7:1‘371 .
Since

{LngnLn}{Eﬁ(LﬁALi)} - {Eg<LﬁALﬁ)}{LngnLn}
={LngnLnVy, AV_y, Ly — L,V AV_y LpgnLy}
forx e T, A € B}, and {L,gnLn} € Cq, and since By, is generated by shifts and multiplication
operators, it suffices to consider the cases A = al and A =V, where a € 37y and y € ZX.
Obviously, we have §,V,, aV_; =V, aV_, G, and furthermore
Lo (gnLnVe,VyV_z,, = Va, VyVu,,Gn) L, = Ly (GnLnVy — Vygn)Ln
= Ln(gnLn — VyGnLnV_y)VyLy,
= Ly foVyLn
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with f,,(2) = XnotyXna(9(E) — g(*¥)). The continuous function g on the compact set €
is uniformly countinuous and therefore ||f,|| — 0. Thus, the considered commutators form
sequences in G and C’g is a central subalgebra of fBJl b

By * : {LngnLn} + J — {L,G,Ln} + J an involution in Cg is given and the mapping
c) — C’g g — {LngnLn}+J is a surjective s-homomorphism. The assertion can be easily
proved, if this mapping is shown to be isometric. For this we fix g € C(Q) and {J,} € J.
Then, for every € > 0, there exist a sequence {G,} € G, a k € N, certain z1,...,x; € T and
K* € K%, such that

k
D ER (L K Ly) + G} — {Jn}] < €/4.

i=1
Moreover, it is easy to see that there are a number m € N and a function f € 7, ||f| = 1,
such that
1Gmll < €/4,
k‘ .
I (LK L)) f]| < /4 and
i=1
I(Lmgm L) fI| > (9]l = €/4,

hence

2 [[(LnGm L) 1| = [ T L f ]
k

> ([(London L) Il = T = Y B (L K L) + G| £
=1

k
— 1) En (L K L) Lin | = | G111
i=1

> [lgll = e

Since {Jy,} and e were chosen arbitrarily, we have

lgll < inf |{LngnLn + Jn}l < I{LngnLn}ll = 9l
{In}ed

hence |[{LngnLn} + T = 9] -

Consequently, the maximal ideal space M(Cg ) is homeomorphic to €2, that is the maximal
ideals are exactly the sets

iy = {{Lngnln} + T : g(2) =0}, z€.

For z € Q) let 7, denote the smallest closed ideal in .7-"1‘;71 . which contains i, and let ®, denote

the canonical homomorphism @, : .7-"3‘71 b fsz » /T
Let {A,} € Fp,. The coset {A,} + J is invertible (that is {A4,} is a Fredholm sequence), if
all o,({4,} +J) (z € Q) are invertible, due to Theorem 11 (Allan localisation).
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Applying this observation, we will tighten the relations between Fredholmness of sequences
and Fredholmess of their limit operators. For this, we define

Fap(cy =alg{{LnALn}, { Ly Py Ln}, { E; (Ly K°Ly) },{Gn}
Ae Ap(C),H € Ho,K* € K*,x € 6Q,{G,} € G}

and obtain

Proposition 20. A sequence {A,} € F 4, (c) is Fredholm, if and only if all operators W*{ A, }
are Fredholm.

Proof. 1. For z € Q2 we put z := z and if z € intQ we put z := 0. If {4,} is a Fredholm
sequence, then all W*{A,} are Fredholm, due to Theorem 6 and for the reverse implication
it suffices to show that the invertibility of W*{A,} + K% implies the invertibility of the
corresponding cosets @, ({A,} + J).

2. At first we consider z € € and show for A, B € B}, that

. ({ER(LpABLY)} + T) = @ ({ER (LR ALL) HER (L BLy) ) + J). (12)

For every € > 0 there is an ng € N and an open bounded neighborhood U of z, such that for
all n > ng
Vi Xt Va, A" — L) B|| <'e, (13)

as Theorem 13 shows. Let g € C(Q) with ||g|| = 1, g(2) = 1 and ¢g(1 — xy) = 0. Then
{LngnLyn} € Cq and ®,({L,, — LpgnLyn}+J) = 0. Moreover, we have Ly, gn Ly, = Lygn LnXnuU-
Thus

{En(LRABLY) — Ey(Ly AL By (Ly BLy) Y + T
= {ER (LR A" — Ly)BLy)} + T
= {Ln = LagnLn L By (Ly ALY = Ly) BLy)} + T
+ {Lngn Ln HER (LR AL = Ly)BLy)} + T
= {Ln = Lngn Lo {5 (L A(I® — L) BLy)} + T
+ {Lngn Lo HE (L3 Vs, Xnv Va, A(I" — Ly) BLy) } + T

The first summand belongs to the kernel of ®, and the operators of the latter sequence are
smaller than e in the norm for sufficiently large n, due to (13). This proves the assertion of
step 2.

3. Let z € Q. We show: If W*{A,} is Fredholm (i.e. W*{A,} + K is invertible in
B, /K*), then the cosets ®,({E} (LW {A,}L)} + J) are invertible. For this we choose
B € (W*{A,} +K*)~! and obtain from (12) that

. ({En (LW {An} L) HER (L BLy) Y + T)
= Q. ({ER(LyW{An} BLy)} + J) = @.({Ln} + J)

as well as &, ({E2 (LI BLY) HEL (LW {A}LE)} + T) = @.({L} + T).
4. Now it remains to prove that

. ({An} + J) = @({ER (LW {An} Ly)} + T) (14)
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for all generating sequences {A,} of F 4, (c), since (12) yields that this equality then holds
true for all sequences in F 4,,(c)-

At first we consider the case {L, AL, } with A € A;p(C). If z € int Q then (14) is obvious,
since WO{L,AL,} = A. In the case z € 0Q let, at first, A = aVj, with a € C(@K,CNXN),
y € ZK. We put n := ﬁ = ||in and obtain W*{L,AL,} = I*a*>(n)V,I*. Moreover, for
every € > 0, there exist numbers ng, dp > 0 such that ||a(nu) —a®>(n)| < € for all n > ny and
all u € Us,(z).

Let g € C(Q) with ||g|| =1, g(2) =1 and ¢g(Q \ Us,(z)) = {0}. Then

(LaAL, — BL(LEW* (L ALY LD + T
={L,aV,L, — L,a™(n)V,L,} + T
= {gnLn(a—a*m)VyLn} + T +{(1 = Gn)Ln(a —a™(n)VyLn} + T

where the first summand is smaller than € and the second one is contained in the kernel of
®,. Since € was chosen arbitrarily, and the kernel of @, is closed, we obtain (14) for A = aV,,
as well as for sums of such operators, that is for band operators and, due to the continuity of
®,, for all band-dominated operators in App(C).

Now let H € Hq. Due to equation (11) we have W*{L,PyL,} = I*PyI® if v € dH,
and equation (14) obviously holds for all z € intQ and z € QN JH. For z € int H N 52
or z € H® N 69 the operator W*{L, PyL,} equals I” or 0, respectively, and we can choose
a continuous function g € C(Q2) with ||g|| = 1 and g(z) = 1, whose support is contained in
an open ball, which does not intersect 0 H, i.e. its support is located completely on one side
of §H. The observation that {g,L,PyL,} then equals {g,L,} or {OL,} for z € int H or
z € HY, respectively, yields (14) again. O

2.3.5 Main theorem

Since all sequences {A,} € Fp,, enjoy the P-dichotomy, Theorems 7, 9 and 10 and Proposition
20 yield the following picture for the finite sections of band-dominated operators.

Theorem 15. Let {A,} € Fp,-

o If{A,} is Fredholm, then all W*{A,} are Fredholm, the number of non-invertible oper-
ators among them is finite and the approzimation numbers of {A,} have the k-splitting-
property with k =% o dimker W*{A,}. Moreover,

> indW*{A,} = 0.

zeT

o [f one W*{A,} is not Fredholm, then lim,,_,~ s;(Ay) =0 for each | € N.
o {A,} is stable, iff {An} is Fredholm and all W*{A,} are invertible.
o If{An} € Fa,(c), then {An} is Fredholm iff all W*{A,} are Fredholm.

Remark 4. Let {A,} be a Fredholm sequence, let k% := dimker W*{A,,} denote the kernel
dimension of W#{A4,} and let P* € L(E®*,P*) denote a projection onto the kernel of W*{A,,}
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for each x € T', respectively. This definition is correct, since all limit operators are proper P*-
Fredholm. In view of (9) the following estimate for the convergence speed of the a({A4,})-th
approximation numbers holds:

k®
< x| . -z T pT
Sa({An})(An) = 21:?68%( HP H E : 1— ||(Ix — L%)PxH HEn (ATL)LnP H
zeT (15)
< const E |E, “(An) Ly P*|| — 0.

zeT
Note, that just a finite number of the projections P* are non-trivial.

Remark 5. This result particularly treats finite sections {L,, AL, } of operators A € A;»(C),
which are usually called convolution operators. Since these operators are shift-invariant, it is
clear, that the limit operators W*{L,, AL} coincide for all points = € 6 that are relatively
inner points of the same polytope P; (i.e. lateral surfaces), or the same intersection of two or
more P}, (i.e. edges and vertices), and so on. Hence there is just a finite number of different
limit operators, one for each lateral surface, edge, vertex, ...

Thanks to the fact that the sequences {L, PyL,} for H € Hq are contained in F A (C)s
we can consider convolution operators on half spaces and cones as well.

Such stability results for finite sections were obtained for the first time in [10] and [11] for
p #F 0.

2.4 Band-dominated operators on [P(Z,C")
2.4.1 Sequences and subsequences

In the preceding section we were able to apply the general theory on stability and approxi-
mation numbers to the finite sections of a certain class of band-dominated operators acting
on [P(ZX CN). In this section we consider general band-dominated operators in the case
K =1 and we will obtain a fairly complete theory concerning the asymptotical behavior of
the finite sections of general band-dominated operators. As the subsequent example shows,
this situation is more sophisticated.

First of all, we put Q = [—1, 1] and denote by P = (L,,) the uniform approximate identity,
which we can deduce from §2.

Example We consider the band-dominated operator A on [P(Z, C), whose matrix repre-
sentation with respect to the canonical basis is as follows:

A = diag(..., B, B, B, ...), where B = ((1) (1))

Obviously, A is invertible as well as all of its limit operators, and its finite section L, AL, is
invertible if and only if n is even, thus {L,, AL, } is not stable. Moreover, we have V_, AV,, = A
if n is even and V_,, AV,, = V_1AVj if n is odd, thus the operators W*{L,AL,} does not
exist at all.

But, if we consider Q = [~2,2] and P = (L,) = (La,), the corresponding finite section
sequence becomes {f/nAf/n} = {Lon ALy, }, that is a stable sequence, all desired operators
W+ L,AL,} exist and they are invertible on Z, respectively.
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Let Hy (H_) denote the set of all sequences h: N — N (h: N — Z \ N) tending to +oo
(—00). Moreover, let H := H, UH_. In the example the convenient choice of Q leads to a
subsequence of P, such that the required limit operators of A actually exist and the known
results are applicable. In general the following holds (see [17], Corollary 2.1.17).

Proposition 21. Let A € Ap. Then every sequence h € H contains a subsequence g € 'H
such that the limit operator A, of A with respect to g exists.

For a band-dominated operator A and a sequence h € H there is a subsequence j of h such
that A; exists. By the same argument, j itself contains a subsequence g such that the limit
operator A_, exists, too.

Therefore, it seens to be feasible and valuable to pass to appropriate subsequences for
which the limit operators exist and hence the ideas of the general theory apply:

For a given sequence h = (hy,)nen € H4 we define operators Ly, := X[_p, 1, ] and obtain
a uniform approximate identity Pj, := (Lp,) of projections Ly, of finite rank. Obviously,
Py, and P are equivalent, and thus all "Pp-notations" coincide with their corresponding "P-
notations".

Let Ep, :=im Ly, T := {-1,0,1}, I" :=1, I*! := xz_I and

E’ .= 7(z,CY) L) =Ly,
Ej :L(mL) )— L(E,,),B+— B
E*! = im [*! Li' = Ven, L, Vin,

E;': L(m L") — L(Ey,), B Vin, BV,
for every n. I* are the identities in E*, respectively, and the uniform approximate identities
Py = (L ) are equivalent to P* := (L3). Thus K(E*,Py) = K(E",P*) =: K forz € T

Again, we let FI denote the set of all bounded sequences {Ap, } of bounded linear operators
Ap, € L(Ey,) for which there exist operators W*{ A, } € L(E®, P*) such that for n — oo

E}?f (An, )Ly — W*{Ap,} P* — strongly
The sets
Gn 1= {{Gin } + |G | — O,
are closed ideals in | and a sequence {4y} € F[ is said to be Fredholm, if {Ay,} + Jj is

invertible in F' /.

The finite section algebra F4,, Let F be the algebra of all bounded sequences {4}
of bounded linear operators A, € L(E,) and let F 4,, denote the smallest closed subalgebra
of F containing all sequences {L, ALy} with A € Ap. For A = {A,} € F4, and a sequence
h = (hn)nen € Hy let Aj, denote the subsequence {Ay, }. It is obvious, that for each A =
(Ap) € Fa, the operator

W(A) = Plim Ay Ly = WO{Ap, } = P-lim Ay, Ly,

n—oo n

exists for every h € H, and is independent from the choice of h.
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Appropriate subsequences Let A € F4, and h € Hi. By Ha, we denote the
collection of all subsequences g of h such that the following holds

1. Ay € FgT (which means that the operators W (A) and W*L(A,) exist).
2. Ag - {LgnW(A)Lgn} € "79'
Furthermore, we put Q' := {L,,_;} and P! := {L,} — Q.

Proposition 22. Let A € F 4, and let h € Hy. Then there exists a subsequence g € Ha,
of h. If W(A) is Fredholm then A4 is a Fredholm sequence in ]:gT and if B is a reqularizer of

W(A) then {Lg,BLg,} € FL, too. Moreover
T (& — {LoW ()L Q) = im [ QA — {L,W (&)L, =0.

Proof. First of all, we prove that for every sequence g € Hy and for each pair of operators
B,C € Ap with {Lg, BLg, },{Lg,CLg,} € F] there are operators K1, € K*! and a sequence
{Gy,} € Gy, such that

{Dg,} == {Lg,BCLy,} — {Lg,BLg, }{Lg,CLy,} (16)

= {E,, (Lg, K1Lg,)} + {Ey (L K-1Ly 1)} +{Gy,} € Ty
Since the limit operators By4, Ctq exist, we also have {Lg, BCLy, } € .7:;, hence {Dy, } € ]:gT.
For every m the sequence {Dg, }P{" is contained in J; and

I{Dg, }Qg"ll < [[Bl[sup |[(Z = Lg, )CLgy —mll

which can be chosen arbitrarily small, due to Theorem 13. Thus, the closedness of 7, implies
(16).

Let A and h be given. By definition there is a sequence (A(m)) C F.a,p such that A A
in the norm (of F,,) as n — oo, and such that all A(™ are of the form

km lm
A = SCTHERAT LY, AT € Ap.

i=1 j=1

Applying Proposition 21 several times, it is easy to see that there exists a subsequence g!
of h such that {LQ%AE;)LQ}L} € ]-"971 for all ¢ = 1,....,k1 and j = 1,...,l;. Relation (16)
yields ¢' € H,y. Repeating this argument we obtain a subsequence g° of ¢g' such that
g% € H2), and so on. Hence, there are sequences h D g' D ¢g>D ... D g™ D .. such that
g™ € Hpay, ..y g™ € Hymy for every m. Now let the sequence g = (g,) be defined by
gn = gp. Then it follows that g € Hym for all m € N. Since A; is the norm limit of
the sequence (Agm))meN, we easily obtain A, € fg and Ay — {Ly, W(A)Ly,} € Jy, that is
g < HAh-

Now let W(A) be Fredholm, B be a regularizer and g € Hy,. Then Proposition 13
immediately shows that {L,, BLy,} € fg. Applying equation (16) to the operators W (A)
and B proves the Fredholmness of {L, W (A)Ly,}, that is the Fredholmness of A, since
Ag —{Ly,W(A)Ly,} € Ty
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Finally, we assume that limsup,_, . [|[(A — {L, W (A)L,})Q!|| > ¢ > 0, i.e.

I(A = {LaW(A) L H)Q" || = (17)

€
2
for a strongly increasing sequence (lg)ren of positive integers. If we pass to a subsequence
g € Hpa then (17) is of the form

|({ES, (L, KaLy, )} + LB, (L KLy} +{Gy, DQM| = 5

with operators K41 € K*! and {Gy,} € G, for every k. This yields a contradiction since for
every P*-compact operator K and every [ we have

B, (Ly, KLy )YQ'|| = {E, " (Lg, K(I — Liy) Ly )} < [|K(I — Li—y)|| and
Gy, }Q :SlelglngnLgn—ZH < s [|G,|

neEN:gn >

which tend to 0 as [ goes to co. The second part of the last assertion can be proved analogously.
O

Now Theorems 7, 9, 10 and 14 provide the following result.
Theorem 16. Let A = {A,} € F4, and g € Ha.
o If W(A) is Fredholm, then WEY(A,) are Fredholm. Moreover
ind W(A) = —ind W(A,) —ind W (A,)
and the approzimation numbers of Ay have the k-splitting-property with

k = dim ker W (A) + dim ker W' (A,) + dim ker W1 (A,).

o If W(A) is not Fredholm, then lim, .o s;(Ag,) =0 for each | € N.
e A, is stable if and only if W(A) and WEL(A,) are invertible.

Proposition 14 reveals that in case p # oo the P*-strong convergence to the limit operators
is just the strong convergence.
2.4.2 Finite sections and the a-number

The previous theorem provides some information on the behavior of subsequences of a sequence
A € Fu,,. We now want to state a similar result for A itself.

Definition 12. Let A = {A4,} € F4,,. If there is a finite number a € Z4 with

liminf s, (A4,) =0 and liminf s,11(4,) > 0,

n—oo n—

then this number is called the a-number of A and it is denoted by a(A).

Theorem 17. Let A = {A,} € Fu,,.
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e A has an a-number if and only if W (A) is a Fredholm operator. In this case the operators
W*L(Ay,) are Fredholm for each h € Hy, the formula ind W(A) = —ind W(A,) —
ind W~Y(Ay,) holds and

a(A) = dimker W(A) + Inax (dimker W'(Ay) + dimker W1 (Ap)). (18)

EHa

e A is a stable sequence if and only if W(A) and all operators WEL(Ay,) with h € Hy are
invertible.

Proof. Suppose W (A) is Fredholm, but for each n € N there is a number h,, such that
hp > hp—1 and sp(Ap,) < % Due to Proposition 22, there is a subsequence g € Hy, and
since W (A) is Fredholm, Theorem 16 provides a splitting number & for the sequence A, and
a constant ¢ > 0 such that

1

0 <c<spr1(Ay,,) < sm(Ag,) < p-
for all sufficiently large m. This is a contradiction.

On the other hand, let a(A) < oo be given. Then there exists a sequence h € Hy such
that limy, o0 Sq(a) (Ap,) = 0 and there is again a subsequence g € Hy, of h. Hence, Theorem
16 applies to Ay and in view of the relation lim inf,, . Sq(a)+1(Ag,) > 0 it implies that W (A)
is Fredholm. Moreover, this proves the relation "<" in equation (18). To prove the equality
in (18), we assume that there is a sequence h € H, such that

a(A) + 1 < dimker W(A) + dim ker W (A) + dim ker W™ (Ay,).

Then we obtain again from Theorem 16 that liminf, oo s4(a)41(An,) = 0, a contradiction.
If A is a stable sequence, then every subsequence A; of A is stable, hence the operator
W(A) and all operators W*!(Ay,) with h € Hy are invertible, due to Theorem 16. Suppose
A is not stable, then there is a sequence h € H such that ||A}7nl|| — 00 (where ||[B7! := o0
whenever B is not invertible). Choosing g € H,,, we obtain a non-stable sequence A, € ng
and Theorem 16 yields that at least one of its limit operators is not invertible. O

In some sense, the a-number provides a measure for the almost stability of an operator
sequence. Later on, we will present an idea for modifications of the finite section method, that
admits to handle such almost stable sequences.

2.4.3 Stability and the index formula

The stability of finite section sequences for band-dominated operators has already been con-
sidered in [16] for continuous coefficients, in [21] for general band-dominated operators in case
p = 2 and in chapter 6 of [17] also for the cases p € (1,00), where the results read as follows:
The sequence {L,, AL} is stable if and only if A and certain limit operators of A are invertible
and if the norms of their inverses are uniformly bounded. In [18] the uniform boundedness
condition could be shown to be redundant for band-dominated operators on IP(Z,C) with
p € (1,00).

To be consistent with these results, we should introduce some further notations.

Let P := xz,. I and Q := I — P. For A € Ap we easily check that PAQ and QAP are
P-compact (see Theorem 13), and we put A, := PAP + @ as well as A_ := P+ QAQ. The
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equality PAP 4+ QAQ = AL A_ = A_A, shows that the operators Ay and A_ are Fredholm,
if and only if A is Fredholm and

ind A =ind™ A +ind~ A, (19)

where ind* A := ind A, are called the plus- and the minus-index of A, respectively. Let ot (A)
denote the set of all limit operators of A € Aj;p with respect to sequences in H.

Corollary 3. Let A € Ap. The sequence {L, ALy} is stable if and only if A and all operators
By, C_, with B € 0_(A) and C € 04+ (A), respectively, are invertible.

Proof. In view of Theorem 17 it suffices to annotate that for each B € o_(A) there is a
sequence h € Hy such that B = A_j. Passing to g € Hyy, ar, y we get that By and
WYL, AL, } are simultaneously invertible. The operators C' € o4 (A) can be treated in
the same way, because C' € o (A) if and only if V_11CV1 € 04(A), and for h € Hyy, a1}
with C' = A, we get the invertibility of (V_1CV;i)_ and W{L; ALy, } at the same time. [

Corollary 4. Let A € Ap be Fredholm.

o All operators in o4 (A) have the same plus-index and this number coincides with the
plus-index of A. Similarly, A and all operators in o_(A) have the same minus-index.

e For arbitrarily taken B € o_(A), C € o (A) the following always holds
ind A =ind~ B +ind ™" C.

Proof. Tt needs only to prove ind” A = ind~ B and ind" A = ind™ C for each B € o_(A)
and C € 0, (A). For a given B € 0_(A) there is a sequence g € Hyy, 4_r,} such that the
limit operator W~'{L, A_L,,} coincides with PBP. Since B is invertible, we obtain from
theorem 16 and equation (19) that

ind~ A=indA_ = W{L,A_L,} = -W YL, A L, }=—ind" B=ind™ B.
C can be treated analogously. O

Remark 6. This index formula was proved in [15] in case p = 2 via K-theory. A general-
ization to IP(Z,C), p € (1,00) was done in [20] and recently, by a different approach, in [19].
Notice that it can be used to get new insight into the stability problem for the finite section
method concerning band-dominated operators with slowly oscillating coefficients which belong
to IP(Z,C), 1 < p < oo. The particular case 1 < p < co was already treated in [20].

2.4.4 Modified finite sections

In what follows we want to present a method to handle sequences A € F 4,,, which have an
invertible limit operator W (A), but which are unfortunately not stable. The main idea is to
study modified sequences and the convergence of their generalized inverses. Modified finite
sections for Toeplitz operators were already considered in [9] and [25]. The results here are a
straightforward extension of Section 5 in [24].

Definition 13. For a given sequence A = {4, } € F4,, let A™ denote the modified sequence

AT = (AT} = AQ™.
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If we interpret A, as a matrix with respect to the standard basis, then we obtain the
matrix A" from A, by putting m columns at the left and at the right of A,, to 0.

Theorem 18. Let A = {A,} € Fu,, and W(A) be Fredholm. Then there is a number m € Z
such that

lim Sgimker w(a)+2m (A7) =0 and  lminf gy ker wa)+2me1(AnY) > 0.

n—oo n—oo

Proof. We firstly consider the sequence B = {B,,} := {L,W(A)L,}. Then there is a number
k > 0 such that

ker WI(IBB%) = ker(W(A)un I*(I — Lyy—1)I* =ker I(I — Lyp—1)I”
forall h € Hp, x € {—1,1} and m > k (see [24], Proposition 5.1). Since W (B™) equals W (A),
Theorem 17 now implies for all m > k that
a(B™) = dimker W(A) + 2m.
Furthermore, for every m > k we have
5; (A7)

>inf{|[|B+ F|| : dimim F <2n+1—j} — | B — AZ||

> inf{||BE + (B2 — BE) + F| : dimim F < 2n 41 — j} — | B — A%

> inf{||BE4+ G| : dimim G < 2n+1—j +2(m — k)} — ||BZ — A2

= s;_2m+20(BE) — |(B — A)Q™||

for all n > m and all j < 2n + 1. Thus,
lim inf s g, ker W(A)+2m+1(A7) > d — [|(B —A)Q™||

for all m > k, where d := liminf,,_, sdimkerW(A)HkH(B%) > 0. Assume that inf;> |[|(B —

A)Q!|| > d. Since the first 2/ entries of Q' = {Q!,} are equal to 0, it is easy to show that there
is a sequence h € H4 such that

N

1By — An)Qh, | = (Bry = An)(I = Liy)| = 5 for every 1€ N. (20)

Passing to a subsequence g € Hp, 4, , we obtain that
By — Ag)Q' = ({E}, (L} KiL} )} +{E; (L K L)} + {Gy, HQ!
={E, (Ly K:i(I - Li_1)L, )}
+ By, (Lg, K—1(I = Lisa) Ly )} 4 (G, (T — Li1)

which tends to 0 in the norm as [ — oo. This contradicts (20). Thus, we have proved that
there is a number m € Z, such that o(A™) = dim ker W (A) + 2m, that is

lim inf Sgim er w(a)+2m (A7) =0 and - Hminf sgim er w(a)+2m+1 (457 > 0.

n— n—
Assume that the first lim inf cannot be replaced by lim. Then there is a sequence h € H, such
that the limit limy,— oo Sdim ker W A)+2m(‘4hmn ) > 0 exists and there is again a subsequence g €
Ha,, of h. Applying Theorem 16 to the sequence Ag* leads to lim,—co Sqim ker W ( A)Hm(A;n*n) =
0, which is a contradiction.
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Theorem 19. Let A = {A,} € Fu, and W(A) be invertible. Then there is a number m
such that a(A™) = 2m. Moreover, there is a uniformly bounded sequence {Cy} of generalized
inverses Cy, for Ay', that is

CnAnan = Cy, AnanAnm - Anm and  sup HCnH < 00,

such that ||(CpLy— (W (A)) ™Y Ly || — 0 for every m. In case p # oo this is strong convergence.

Proof. The previous theorem provides the number m. For n > m let z € im L,,_,, with
|lz]] = 1 be arbitrarily chosen. Applying the Hahn-Banach Theorem, it is easy to prove that
there is always a projection P, onto span{z} of norm 1. Therefore there are positive numbers
d and N such that for alln > N

0 <d<samy1(AR) =inf{||A+ F|| : dimim FF <2n+1— (2m+ 1)}
<inf{||ASt + ATH (P, — I)Ly—p|| : 2 € im Ly, ||2]| = 1}
= inf{||Ay'P.Lp—m| : 2 €im Ly, ||2|| =1}
<inf{||A7tz]| : z € im Ly, ||2|| = 1}.
Thus AR" : im L,,_,, — im A3" is invertible and ||(A%") !, amll < 1 whenever n > N. Since

all these operators Aj" have the codimension of 2m, there are a constant C' and a sequence
of projections P, 4m, each onto the range of A', such that || P, 4m| < C for all n > N (see

1

[13], B.4.10). Now we put
C, = Ln_m(Anm)_lPim am ifn >N and C, := 0 otherwise.
Then {C,} is uniformly bounded (by %) and for n > N we obviously get
CnARCy = CpPyy qm = C, and  AZCR AT = AT(AR) TPy ym ATt = AT,
that is C,, is a generalized inverse for A%, Finally, with A := W(A), we have

”(CnLn - A_l)LmH = H(CnLnA - I)A_le”
< (CnLnA = L) A Loal| 4+ I1(Z = Loe) A7 Lo
< Cullll(A = AZ)A™ Ly || + (I = Ly—yn) A L |,

for each m, where the first term tends to 0, since (A7"Ly;,) tends P-strongly to A, and the
second one tends to 0 due to Theorem 13. O

Remark 7. In the case p = 2 we obtain the Moore-Penrose inverses (for a definition see [§],
for instance)

(AR = Cu = QR (AR) ' Py az

if we choose the orthogonal projections P, 4m.
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2.4.5 Toeplitz operators

Here is a nice application of the results of the preceding sections.

Let W := {a € L>®(T) : |lallw = > ,ezlan| < oo} (where (an)nez are the Fourier
coefficients of a) denote the Wiener algebra, and Wy n the set of N x N-matrices with
entries in W.

For a € Wyxn let L(a) := ), c7 a,V, be the Laurent operator and let T'(a) := PL(a)P
be the Toeplitz operator with the symbol a. In what follows, we will consider the compres-
sions of Toeplitz operators T(a) to I8, := IP(Z+,CN). Let P, denote the compression of
Ly = X[—nm! to lﬁ, and W,, be the operator on lﬁ’v which sends (zg, ..., Tn, Tnt1,...) to
(Tny Tn—1, .., 0, 0, ...). Obviously, P= (P,) is a uniform approximate identity on IX;.

Now we consider the finite section sequence

{An} := {P,T(a)P, + P,KP, + W, LW, + G,.},

where K, L € K(I%,P) and ||G,| — 0. This sequence can be embedded into F7, which was
introduced in the sections above, as follows:

{B,} :== {L.(P(T(a) + K)P + PE:(LLJPLPJL.)P + PG,P + JPJ)L,},

where J is the operator J : (x,,) — (z_p).

It is clear that the sequence {A,} is stable if and only if {B,} is stable, and that their
approximation numbers behave in the same vein. Obviously the preceding theory applies to
{By} and its limit operators are

W{B,} = P(T(a) + K)P+ JPJ, W™ '{B,} =P and
WYB,} = JPJ(L(a) + JLJ)JP.J.

The first one can be identified with the operator T'(a) + K € L(I%) and the last one with
T(a) + L € L(I%;) (where a(t) := a(})). Since the Toeplitz operator T'(a) is Fredholm if and
only if its symbol «a is invertible (see [14], 4.108), we arrive at

Theorem 20. Let p € {0} U[l,00], a € Wyxn, K,L € K(I%,P) and ||Gp| — 0 as n — oo.
Then we obtain for the sequence

{A,} :={P,T(a)P, + P,KP, + W, LW,, + G} :

o If the symbol function a is invertible, then the operators T'(a) + K and T(a) + L are
Fredholm on I5; and the approzimation numbers of A,, have the k-splitting property with
k = dimker(T'(a) + K) + dimker(T'(a) + L).

o [f the symbol function a is not invertible then s;(A,) — 0 for each | € N.
o {A,} is stable if and only if T'(a) + K and T'(a) + L are invertible.

o [f the symbol function a is invertible and the operator T(a) + K is invertible, then there
is a number m such that for the sequence { A, Wy, Py,W,} there is a bounded sequence of
generalized inverses Cy, with

1(CoPy — (T(a) + K)™Y)P|| = 0 forall 1€N.
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Applying the general theory of Section 1.2 directly to the case of Toeplitz operators on %,
one can actually prove this result for a larger class of symbol functions, namely (C'p+H7;;°) NxN;
which coincides with Wiy, v in the cases p € {0,1, 00} (see [5] and [23]).

The earliest results on the stability of finite section sequences {P,T(a)P,} were obtained
in [1] for p=1 and in [6] for 1 < p < co. The case p = oo already appeared in [22].

Appendix
Proof of Proposition 3:

Proof. Since rank P, is finite for every n, it is obvious that (X, P) C K(X) and hence every
P-compact projection is of finite rank. Therefore A € D(X,P) is either proper P-Fredholm
or proper deficient by the definition, that is the relation 1 < 4 is proved.

5 = 2 is obvious from the definition.

2 = 3: If A is a P-Fredholm operator, then there exists a B € L(X,P) C L(X), such that
I—-AB,I - BAe K(X,P) C K£(X) and hence A is Fredholm.

3 = 4 immediately follows from Theorem 3.

1 = 5 is the delicate part of the proof. For this let A be proper P-Fredholm and P, P’ €
K(X,P) be the appropriate projections from the definition. As a consequence of the Banach
inverse mapping theorem, Alye, p : ker P — ker P’ is invertible. Let A be its inverse and
B:= (I - P)A=Y(I — P'). Then B € £(X) and AB =1 — P as well as BA =1 — P. We
have to show that B € £L(X,P), but this can be done by a slight modification of the proof of
Theorem 1.1.9 in [17], which was taken from Kozak and Simonenko [11]:

Let (@) stand for the sequence (I — P,). Further, we will write m < n if PQ,, = Q,FP, =0
for all [ < m. By Theorem 4, what we have to show is that

| PBQn| — 0 and ||@Q,BPg| — 0 as n — oc.

Given € > 0 and k € N, we can choose a number N € N such that £ < N and the norms
I1PQi|l, 1QiP||, || P'Q:|l and ||Q;P’|| are less than ooy for alll = N (note that P, P’

are P-compact). We fix a positive number m with || B||?||A]|/m < €, and choose integers

0=rY <l < r:())l) <l < p@ o cp{mmh b)) ré ™ < plm)

suchthatN<k:—|—r(1) k:—l—rl)<<l<:()1 and k + r4(j )<<k‘(J+1) forall1 <1<3,1<i<m
and 1 < j <m — 1 and such that (by Theorem 4)

12, 0AQ,  wll < e/|BJ?,
Q0 AP, Lol < ¢/|BI1?,
1P, 0AQ ol < e/|BJ?,
Q4+ AP ol < e/|B|*.

That is, given rg) we choose ré) > rg) such that k + Té) > k+ 7"1 ) and that (21) holds, then

i) > Tg> such that k +r{) > k+r{"’ and that (22) is satisfied, then r{” > r{ which fulfills

k+ i > k4l and (23), and finally #{") > 7{) such that & + 7{”1) > k+ 7 and that

(24) is valid.
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Let n >k + rim). We set

U; .= (k+r§i),k+r§i)], Vi = (k:—i—?“g),k—i-rf)],
Uf = [0,k + ] V= [0,k + ).

Then, since n > k + ™ > k + r{™ for all 4,

PyBQy = PPy BQ, = PiPy(I = P)BQy = PuPyi BQy — PPy PBQ,
= Pu(BA+ P)PyBQ, — P PBQy = P.BAPy BQ, — PLPQy:BQy
= P.BPy APy BQy + P BQui APy BQy — PuPQyrBQ,.

Obviously, the third item is smaller than € because of the choice of NV, and for the middle
term we get

| P BQu APy BQy| < Cp(Cp + 1) B|?||Qu: APy |
= Cp(Cp +1)|B|*IQ 0 AP o
< Cp(Cp +1)e

k+r§

due to (22). Further, since n > k + T;(:,i),

PyBPy APy BQn = PyBPy ABQy — PBPy AQy: BQy,
~ PyBPyQ, — PuBPy P'Q, — PBPyAQyiBQ,

where again ||P,BP;Q, — PyBPy/P'Qy,]| < € and

PBPy AQysBQn
= PuBPyAQ,, 0 BQu + PuBPy APy BQ,
= PiBPy;AQ, , ) BQu + PiBP, APy BQy + PiBPy APy, BQy.
For the first term we have by (23),
1P BPy;AQ, o B@n| < Cp(Cp + 1)HB||2HP,€+T§0AQ,€+T5> | < Cp(Cp+1)e
and, for the middle term, due to (21),
1P BP, &y APy, BQnl| < |PBP, | ) AQ, &Py oy BQul
< C3(Cp + 1)||BH2||Pk+r§i>AQk+rg> |
< C3(Cp + 1)e.

+r§i

Hence, we conclude that

PyBQ, = —PyBPy, APy, BQ, + D; (25)
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where D; is an operator with norm less than ce with ¢ being a constant independent of ¢ and
€. Summarizing the identities (25) we get

m m
mPBQ, = — Y  PyBPy,APy,BQy + Y D
=1 =1

m
= —P.BPy,u. 00, APV U0V BQu + Y D (26)
=1

+ > PeBPy, AP0 0v\v, BQn,
i=1
where we used that U; "U; = V; NV, = () for i # j. For the first item we find
|1 P BPu,0... o0 AP U.0v, BQu|l < CH(Cp + 1)||B||| Al

P, P

= i o as well as
-‘r?“é ) k-i-ré >Qk+r§ )

Since Py, = Qk+r§i)

Pyvio..ovi\vi) = Poviv.ovii) + Pvy + Py + Py ,ueov,)

= Pk_"_n(lifl) P(VlU...UVifz) + Pkf'f‘?”gil)Qk—‘rT‘gil)

+ Qk+r§i+1)Pk+rY+1) + Qk+r§i+l)P(Vi+2U---UVm)’
we can estimate every term in the last sum of (26) by
| P BPy, APy, u..uv,)\v;, BQull
< Cp(Cp + DIIBIP| Pu, APwiu..ovinwil
< Op(Cp + DIBIIIPAP, o [ Pwiss. v s) + @y
HIPGAQ, i I By v + Plvipu..uvin) ]

< Cp(Cp + 1)||BH2[CP|’Qk+rgi)APk+rii—1) 12Cp +1)

+(Cp + DI, 60 AQ, i+ [[2C]
< de

with a constant d independent of i and e due to (23) and (24). Inserting these estimates into
(26), and dividing by m, we arrive at

1PeBQul| < (CH(Cp + 1) + ¢ + d)e

for all n > k+rim). Therefore, | PyBQy|| — 0 as n — oo, and the dual assertion ||Q, BFPy| —
0 can be checked analogously. This completes the proof of 1 = 5.

Finally, let A be proper P-Fredholm and P, P’ € K(X, P) be the appropriate projections
from the definition. Since P’A = 0, we have A*(P')* = 0 and consequently im(P")* C ker A*.
On the other hand

dim ker A* = dim coker A = dimim P’ = dimker(I — P’)
= dim coker(I — (P")*) = dimim(P’)*,

hence im(P’)* = ker A*. In this vein we also show ker P* = im A*. Thus A* is proper P*-
Fredholm, since P*,(P’)* € K(X*,P*). If A is proper deficient, then it is obvious from the
definition that A* is proper deficient, too. O
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