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Abstract

In an earlier paper we conjectured an inequality for the Frobenius norm of the
commutator of two matrices. This conjecture was recently proved by Seak-Weng
Vong and Xiao-Qing Jin. We here give a completely different proof of this inequality,
prove some related results, and embark on the corresponding question for unitarily
invariant norms.
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1 Introduction

In [4] we raised the conjecture that the Frobenius norm of the commutator of
two real matrices satisfies the inequality

‖XY − Y X‖F ≤
√

2 ‖X‖F‖Y ‖F. (1)

We there proved this for real 2×2 matrices and also showed that the inequality
is true with

√
2 replaced by

√
3. Subsequently László [5] was able to verify

(1) for real 3 × 3 matrices and recently Vong and Jin [6] found a proof of the
inequality for real n×n matrices. Vong and Jin’s proof is very clever but based
on extensive calculations. We here give a completely new proof of (1). We also
extend this inequality to complex matrices, which is not a mere triviality. In
Section 3 we provide improvements of (1) and restatements of this inequality,
Section 4 is about equality in (1), and Section 5 contains results and questions
pertaining to the extension of the inequality to unitarily invariant norms.
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2 Main result and its proof

We denote by Mn,m(C) the linear space of all complex n×m matrices with the
inner product (Z,W ) := tr(W ∗Z), where tr denotes the trace and W ∗ is the

Hermitian adjoint of W . The corresponding norm ‖Z‖F :=
√

(Z,Z) is known
under the names Frobenius norm, Hilbert-Schmidt norm, or Euclidean norm.
Clearly, if Z = (zjk) then ‖Z‖2

F
=
∑
j,k |zjk|2. We identify Cn with Mn,1(C),

which means that we think of vectors in Cn as columns. Moreover, vectors in
Cn will be denoted by lower-case letters and for z ∈ Cn, we denote ‖z‖F simply
by ‖z‖. We abbreviate Mn,n(C) to Mn(C). Finally, for Z = (zjk) ∈ Mn,m(C)
we define Z ∈Mn,m(C) by Z = (zjk). Throughout this paper, n ≥ 2.

Our main result, Theorem 2.2 below, states that (1) is true for all X, Y in
Mn(C). The proof is based on a lemma. For a, b, u, v ∈ Cn, Cauchy’s inequality
gives

|(x, a) + (z, b) + (x, u) + (z, v)|2
≤ (‖a‖2 + ‖b‖2 + ‖u‖2 + ‖v‖2)(‖x‖2 + ‖z‖2 + ‖x‖2 + ‖z‖2). (2)

Let Re z be the real part of a complex number z. Since always

2
Re [(x, u)(z, v)]

‖u‖ ‖v‖ ≤ ‖x‖2 + ‖y‖2,

the following lemma sharpens (2) at the price of a quite exotic hypothesis.

Lemma 2.1 If a, b ∈ Cn and u, v ∈ Cn \ {0} and

(
a,

u

‖u‖

)
+ ‖u‖ =

(
b,

v

‖v‖

)
+ ‖v‖, (3)

then

|(x, a) + (z, b) + (x, u) + (z, v)|2

≤ (‖a‖2 + ‖b‖2 + ‖u‖2 + ‖v‖2)

(
‖x‖2 + ‖z‖2 + 2

Re [(x, u)(z, v)]

‖u‖ ‖v‖

)
(4)

for every x, z ∈ Cn.

Proof. Let ‖u‖ = ̺, ‖v‖ = τ , u = ̺u0, v = τv0, put ξ =



x

z


, and think of ξ

as a column in C2n. We have
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|(x, a) + (z, b) + (x, u) + (z, v)|2

=






a+ u

b+ v






a+ u

b+ v




∗

x

z


 ,



x

z





 =: (M1ξ, ξ)

and

2 Re [(x, u0)(z, v0)] =







0 u0 ⊗ v∗0

v0 ⊗ u∗0 0






x

z


 ,



x

z





 =: (M2ξ, ξ).

We may assume that one of the vectors a+u and b+v is nonzero. The matrix
M1 is Hermitian and of rank 1. The nonzero eigenvalue is



a+ u

b+ v




∗

a+ u

b+ v




and a corresponding eigenvector is

w0 =



a+ u

b+ v


 =



a + ̺u0

b+ τv0


 .

It follows that M1ζ = 0 whenever ζ is orthogonal to w0. The Hermitian ma-
trix M2 has rank 2 and its two nonzero eigenvalues are 1 and −1 with the
eigenvectors

w+ =



u0

v0


 , w− =




u0

−v0


 .

Again we have M2ζ = 0 if ζ is orthogonal to both w+ and w−. Let W =
span {w0, w+, w−}. Every ξ ∈ C2n is of the form ξ = η + ζ with η ∈ W and
ζ ⊥W . We want to prove that

(M1ξ, ξ) ≤ c‖ξ‖2 + c(M2ξ, ξ) (5)

where c = ‖a‖2 +‖b‖2 +‖u‖2 +‖v‖2. Since M1ζ = M2ζ = 0, we get (M1ξ, ξ) =
(M1η, η) and (M2ξ, ξ) = (M2η, η). As ‖η‖2 ≤ ‖ξ‖2, inequality (5) will therefore
follow once we have shown that

(M1η, η) ≤ c‖η‖2 + c(M2η, η).

Thus, we are left to prove (4) for

ξ =



x

z


 ∈W = span {w0, w+, w−}.
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Put
w⊥ = w0 − (w0, w+)

w+

2
− (w0, w−)

w−

2
.

If w⊥ 6= 0, the vectors w+/
√

2, w−/
√

2, w⊥/‖w⊥‖ form an orthonormal basis
in W . Otherwise put γ = 0 in what follows. Take

ξ =



x

z


 = δ

w+√
2

+ ε
w−√

2
+ γ

w⊥

‖w⊥‖
.

A straightforward computation shows that

w⊥ =



a− (a, u0)u0

b− (b, v0)v0


 .

Hence


x

z


 =

δ√
2



u0

v0


+

ε√
2




u0

−v0


+

γ

‖w⊥‖



a− (a, u0)u0

b− (b, v0)v0




and consequently,

(x, a) =
δ√
2
(u0, a) +

ε√
2
(u0, a) +

γ

‖w⊥‖

(
‖a‖2 − |(a, u0)|2

)
,

(z, b) =
δ√
2
(v0, b) −

ε√
2
(v0, b) +

γ

‖w⊥‖

(
‖b‖2 − |(b, v0)|2

)
,

(x, u) =
δ√
2
̺+

ε√
2
̺, (z, v) =

δ√
2
τ − ε√

2
τ.

Adding these equalities, taking into account assumption (3), which is equiva-
lent to (u0, a) + ̺ = (v0, b) + τ , and using the obvious equality

‖w⊥‖2 = ‖a‖2 + ‖b‖2 − |(a, u0)|2 − |(b, v0)|2

we get

|(x, a) + (z, b) + (x, u) + (z, v)|2 =

∣∣∣∣∣δ
(u0, a) + ̺√

2
+ δ

(v0, b) + τ√
2

+ γ‖w⊥‖
∣∣∣∣∣

2

.

By Cauchy’s inequality, this is at most

(2|δ|2 + |γ|2)
(

1

2
|(u0, a) + ̺|2 +

1

2
|(v0, a) + τ |2 + ‖w⊥‖2

)

≤ (2|δ|2 + |γ|2)(|(u0, a)|2 + ̺2 + |(v0, b)|2 + τ 2 + ‖w⊥‖2)

= (2|δ|2 + |γ|2)(‖u‖2 + ‖v‖2 + ‖a‖2 + ‖b‖2).
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Finally, as

‖x‖2 + ‖z‖2 + 2 Re [(x, u0)(z, v0)]

= |δ|2 + |ε|2 + |γ|2 + 2 Re

[(
δ√
2

+
ε√
2

)(
δ√
2
− ε√

2

)]

= |δ|2 + |ε|2 + |γ|2 + |δ|2 − |ε|2 = 2|δ|2 + |γ|2,

we arrive at (4). �

Here is our main result.

Theorem 2.2 If X, Y ∈ Mn(C), then

‖XY − Y X‖F ≤
√

2 ‖X‖F‖Y ‖F.

Proof. Let X = USV be the singular value decomposition with the diagonal
matrix S = diag (s1, . . . , sn). Put C = V Y V ∗ and D = U∗Y U . Then

‖XY − Y X‖2
F

= ‖USV Y − Y USV ‖2
F

= ‖SV Y V ∗ − U∗Y US‖2
F

= ‖SC −DS‖2
F

=
n∑

j,k=1

|sjcjk − skdjk|2

=
∑

j 6=k

(
s2
j |cjk|2 − 2 Re (sjcjkskdjk) + s2

k|djk|2
)

+
n∑

j=1

s2
j |cjj − djj|2

≤
∑

j 6=k

(
s2
j |cjk|2 + s2

k|cjk|2 + s2
j |djk|2 + s2

k|djk|2
)

+
n∑

j=1

s2
j |cjj − djj|2

=
n∑

j=1

s2
j∆j

with
∆j = |cjj − djj|2 +

∑

k 6=j

(|cjk|2 + |ckj|2 + |djk|2 + |dkj|2).

Thus, it remains to prove that ∆j ≤ 2‖Y ‖2
F

for all j. Obviously, we may restrict
ourselves to the case j = 1. Put A = U∗Y V ∗ and Q = V U . Then C = QA
and D = AQ and we are left with proving that ∆1 ≤ 2‖A‖2

F
. We write

A = eiϕ



σ y∗

x B


 , Q = eiψ




ω
√

1 − ω2 q∗

√
1 − ω2 p R


 (6)

with numbers ϕ, ψ ∈ [0, 2π), σ ∈ [0,∞), ω ∈ [0, 1], columns x, y, p, q ∈ Cn−1,
and matrices B,R ∈ Mn−1(C). Since Q is unitary, we have ‖p‖ = ‖q‖ = 1.
Clearly,
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∆1 = |(QA)11|2 − 2 Re [(QA)11(AQ)11] + |(AQ)11|2

+
n∑

k=2

(
|(QA)1k|2 + |(QA)k1|2 + |(AQ)1k|2 + |(AQ)k1|2

)
.

Let e1 = ( 1 0 . . . 0 )⊤. Taking into account that Q is unitary we get

n∑

k=1

|(QA)k1|2 = ‖QAe1‖2 = ‖Ae1‖2 = σ2 + ‖x‖2.

Furthermore,

n∑

k=2

|(QA)1k|2 = ‖ωy∗ +
√

1 − ω2 q∗B‖2

=ω2‖y‖2 + 2ω
√

1 − ω2 Re (y, B∗q) + (1 − ω2)‖B∗q‖2.

Analogously,

n∑

k=1

|(AQ)1k|2 = σ2 + ‖y‖2,

n∑

k=2

|(AQ)k1|2 = ω2‖x‖2 + 2ω
√

1 − ω2 Re (x,Bp) + (1 − ω2)‖Bp‖2.

Finally, using that Re y∗p = Re (y, p) we see that

−2 Re [(QA)11(AQ)11] = −2 Re [(ωσ +
√

1 − ω2 q∗x)(ωσ +
√

1 − ω2 y∗p)]

= −2ω2σ2 − 2ωσ
√

1 − ω2 Re [(x, q) + (y, p)] − 2(1 − ω2) Re [(x, q)(y, p)].

Summing up we obtain

∆1 = αω2 + βω
√

1 − ω2 + γ

with

α = ‖x‖2 + ‖y‖2 − ‖Bp‖2 − ‖B∗q‖2 − 2σ2 + 2 Re [(x, q)(y, p)],

β = 2 Re [(x,Bp) + (y, B∗q) − σ(x, q) − σ(y, p)],

γ = 2σ2 + ‖x‖2 + ‖y‖2 + ‖Bp‖2 + ‖B∗q‖2 − 2 Re [(x, q)(y, p)].

Writing ω = cos t
2

with t ∈ [0, π] we get

∆1 =α
(
cos

t

2

)2

+ β cos
t

2
sin

t

2
+ γ

=
α

2
+

1

2
(α cos t+ β sin t) + γ ≤ α

2
+

1

2

√
α2 + β2 + γ =: ∆̃.
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We prove that

∆̃ ≤ 2σ2 + 2‖x‖2 + 2‖y‖2 + ‖Bp‖2 + ‖B∗q‖2. (7)

This will imply the assertion, because (7) gives

∆1 ≤ ∆̃ ≤ 2σ2 + 2‖x‖2 + 2‖y‖2 + ‖B‖2
F

+ ‖B∗‖2
F

= 2‖A‖2
F
. (8)

Inequality (7) is equivalent to the inequality

√
α2 + β2 ≤ 2σ2 + ‖x‖2 + ‖y‖2 + ‖Bp‖2 + ‖B∗q‖2 + 2 Re [(x, q)(y, p)],

which with

d := ‖x‖2 + ‖y‖2 + 2 Re [(x, q)(y, p)], c := 2σ2 + ‖Bp‖2 + ‖B∗q‖2

is the inequality
√

(d− c)2 + β2 ≤ d+ c and hence the inequality (β/2)2 ≤ cd.
But the last inequality follows from the inequality

|(x,Bp) + (y, B∗q) − σ(x, q) − σ(y, p)|2
≤ (2σ2 + ‖Bp‖2 + ‖B∗q‖2)(‖x‖2 + ‖y‖2 + 2 Re [(x, q)(y, p)]),

which in turn is Lemma 2.1 with z = y, a = Bp, b = B∗q, u = −σq, v = −σp.
�

3 Equivalent statements and improvements

Clearly, Theorem 2.2 is equivalent to saying that

‖XY − Y X‖F ≤
√

2 for X, Y ∈Mn(C) with ‖X‖F = ‖Y ‖F = 1. (9)

The following theorem strengthens this inequality to a chain of inequalities.

Theorem 3.1 If X, Y ∈ Mn(C) and ‖X‖F = ‖Y ‖F = 1 then

‖XY − Y X‖F ≤‖X ⊗ Y − Y ⊗X‖F =
√

2 (1 − |tr(Y ∗X)|2)
≤
√
‖X + Y ‖F‖X − Y ‖F ≤

√
2.

Proof. First of all,
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‖X ⊗ Y − Y ⊗X‖2
F

= tr (X ⊗ Y − Y ⊗X)∗(X ⊗ Y − Y ⊗X)

= tr (X∗X ⊗ Y ∗Y −X∗Y ⊗ Y ∗X − Y ∗X ⊗X∗Y + Y ∗Y ⊗X∗X)

= ‖X‖2
F
‖Y ‖2

F
− (Y,X)(X, Y ) − (X, Y )(Y,X) + ‖X‖2

F
‖Y ‖2

F

= 2 − 2 |(X, Y )|2 = 2 − 2 |tr(Y ∗X)|2. (10)

Both sides of the inequality ‖XY −Y X‖F ≤ ‖X ⊗Y −Y ⊗X‖F are invariant
under the change of Y to

Y ′ := Y − (X, Y )

‖X‖2
F

X.

Since (X, Y ′) = 0, it therefore suffices to prove this inequality for matrices
X, Y satisfying (X, Y ) = 0. But in that case we obtain from (9) and (10) that

‖XY − Y X‖2
F
≤ 2 = ‖X ⊗ Y − Y ⊗X‖2

F
.

Furthermore, for arbitrary X, Y of Frobenius norm 1 we have

(2 − 2 |(X, Y )|2)2 = 4 − 4 |(X, Y )|2 + r,

with r = 4 |(X, Y )|4 − 4 |(X, Y )|2 ≤ 0 by Cauchy’s inequality, which yields

(2 − 2 |(X, Y )|2)2 ≤ 4 − 4 |(X, Y )|2 ≤ 4 − 4 (Re (X, Y ))2

= (2 + 2 Re (X, Y ))(2 − 2 Re (X, Y )). (11)

Since

(2 + 2 Re (X, Y ))(2 − 2 Re (X, Y ))

= (X + Y,X + Y )(X − Y,X − Y ) = ‖X + Y ‖2
F
‖X − Y ‖2

F
, (12)

we see that ‖X + Y ‖2
F
‖X − Y ‖2

F
= 4− 4( Re (X, Y ))2 ≤ 4, while (11) and (12)

imply that 2 − 2 |(X, Y )|2 ≤ ‖X + Y ‖F‖X − Y ‖F. �

For a matrix A ∈Mn(C), the set OA := {gAg−1 : g ∈ GL(n,C)} is called the
similarity orbit of A. The vector product of two vectors x = (x1, x2, x3)

⊤ and
y = (y1, y2, y3)

⊤ in C3 is defined as the vector

x× y := (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)
⊤ ∈ C3.

Theorem 3.2 The following statements are equivalent:

(i) ‖XY − Y X‖F ≤
√

2 for all X, Y ∈Mn(C) with ‖X‖F = ‖Y ‖F = 1;

(ii) ‖I⊗X−X⊤⊗ I‖∞ ≤
√

2 ‖X‖F for all X ∈Mn(C), where ‖ · ‖∞ denotes

the spectral norm and X⊤ is the transpose of X;
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(iii) ‖XY − Y X‖F ≤ ‖X ⊗ Y − Y ⊗X‖F for all X, Y ∈ Mn(C);

(iv) ‖XY − Y X‖F ≤
√
‖X + Y ‖F‖X − Y ‖F for all X, Y ∈ Mn(C) with

‖X‖F = ‖Y ‖F = 1;

(v) if g : (−ε, ε) → GL(n,C) is any differentiable curve with g(0) = I, if A is

any matrix in Mn(C) with ‖A‖F = 1, and if the curve h : (−ε, ε) → OA

is defined by h(t) = g(t)Ag(t)−1, then ‖h′(0)‖F ≤
√

2 ‖g′(0)‖F;

(vi) if v(jk) ∈ C3 is any collection of n2 vectors, then their vector products

satisfy the inequality

n∑

i,j=1

∥∥∥∥∥

n∑

k=1

v(ik) × v(kj)

∥∥∥∥∥

2

≤
n∑

i,k,ℓ,j=1

∥∥∥v(ik) × v(ℓj)
∥∥∥
2
;

(vii) if f and g are arbitrary complex-valued functions in L2((−π, π)2) then

∫ π

−π

∫ π

−π

∣∣∣∣
∫ π

−π

(
f(x, t)g(−t, y) − g(x, t)f(−t, y)

)
dt
∣∣∣∣
2

dx dy

≤ 2
∫ π

−π

∫ π

−π
|f(x, y)|2dx dy

∫ π

−π

∫ π

−π
|g(x, y)|2dx dy.

Proof. (i) ⇒ (iii) and (i) ⇒ (iv). When proving Theorem 3.1 we showed how
(iii) and (iv) can be derived from (i).

(iii) ⇒ (i). From (10) we get ‖X ⊗ Y − Y ⊗X‖F ≤
√

2, which together with
(iii) implies (i).

(iv) ⇒ (i). Equality (12) shows that ‖X + Y ‖F‖X − Y ‖F ≤ 2, which in con-
junction with (iv) gives (i).

(i) ⇔ (ii). Stacking matrices in Mn(C) column by column, the linear map
Y 7→ XY − Y X of Mn(C) into itself becomes multiplication by the matrix
I ⊗X −X⊤ ⊗ I in Cn2

. Consequently, (i) is equivalent to the inequality

‖(I ⊗X −X⊤ ⊗ I)y‖ ≤
√

2 ‖X‖F‖y‖, y ∈ Cn2

,

which is just (ii).

(i) ⇔ (v). We may without loss of generality assume that g(t) = etX with some
X ∈Mn(C) (see [1, p. 189]). It follows that g′(0) = X and h′(0) = XA−AX.
The equivalence of (i) and (v) is therefore immediate.

(iii) ⇔ (vi). Let v(ik) = (xik, yik, zik)
⊤ ∈ C3 and consider the n × n matrices

X = (xjk), Y = (yjk), Z = (zjk). The definition of the vector product then
turns the left-hand side of the inequality in (vi) into

‖Y Z − ZY ‖2
F

+ ‖ZX −XZ‖2
F

+ ‖XY − Y X‖2
F
.
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In the same way the right-hand side becomes

‖Y ⊗ Z − Z ⊗ Y ‖2
F

+ ‖Z ⊗X −X ⊗ Z‖2
F

+ ‖X ⊗ Y − Y ⊗X‖2
F
.

Hence, we obtain (vi) by applying (iii) three times. Conversely, (vi) with Z = 0
is exactly (iii).

(i) ⇔ (vii). Let

f(x, y) =
∑

m,n∈Z

fmne
imxeiny, g(x, y) =

∑

m,n∈Z

gmne
imxeiny

be the Fourier series of f and g. By Parseval’s equality, the right-hand side of
the inequality in (vii) is (2π)4 times

2




∑

m,n∈Z

|fmn|2







∑

m,n∈Z

|gmn|2


 .

On the other hand,

∫ π

−π
f(x, t)g(−t, y) dt

2π
=

∑

m,n,j,k

fmngjke
imxeiky

∫ π

−π
ei(n−j)t

dt

2π

=
∑

m,k

(∑

j

fmjgjk

)
eimxeiky,

∫ π

−π
g(x, t)f(−t, y) dt

2π
=

∑

m,n,j,k

gmnfjke
imxeiky

∫ π

−π
ei(n−j)t

dt

2π

=
∑

m,k

(∑

j

gmjfjk

)
eimxeiky.

Thus, again by Parseval’s equality, the left-hand side of the inequality in (vii)
equals (2π)4 times

∑

m,k∈Z

∣∣∣∣∣∣

∑

j∈Z

(fmjgjk − gmjfjk)

∣∣∣∣∣∣

2

.

The inequality in (vii) is therefore just inequality (1) for the infinite matrices
X = (fjk)j,k∈Z and Y = (gjk)j,k∈Z. We have

∑
j,k |fjk|2 < ∞ and

∑
j,k |gjk|2 <

∞. Moreover, given any infinite matrices X = (fjk)j,k∈Z and Y = (gjk)j,k∈Z

such that
∑
j,k |fjk|2 < ∞ and

∑
j,k |gjk|2 < ∞, there are functions f and g in

L2((−π, π)2) such that {fjk} and {gjk} are the Fourier coefficients of f and
g. Thus, assertion (vii) is equivalent to (1) for infinite matrices. But if (1)
holds for all n× n matrices, passage to the limit n→ ∞ gives (1) for infinite
matrices. Conversely, if (1) is true for all infinite matrices, it is all the more
valid for arbitrary n× n matrices. �
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Remark 3.3 In connection with Theorem 3.2(iii) we first remark that the
inequality ‖XY + Y X‖F ≤ ‖X ⊗ Y + Y ⊗X‖F is in general not true. Indeed,

taking X =




1 1

0 0


 and Y =




1 0

1 0


 we get

‖XY + Y X‖F =
√

12 and ‖X ⊗ Y + Y ⊗X‖F =
√

10.

Secondly, for arbitrary X, Y ∈Mn(C) we obviously have

‖XY ‖F ≤ ‖X‖F‖Y ‖F = ‖X ⊗ Y ‖F. (13)

This inequality expresses some kind of monotonicity between the usual matrix
product and the tensor product. The inequality in Theorem 3.2(iii) can be
interpreted in a similar fashion: with [X, Y ] := XY − Y X being the usual Lie
bracket and defining {X, Y } := X⊗Y −Y ⊗X as a tensor product based Lie
bracket analog, we have the monotonicity

‖[X, Y ]‖F ≤ ‖{X, Y }‖F

for Lie brackets. �

Remark 3.4 Suppose X and Y are real matrices and ‖X‖F = ‖Y ‖F = 1.
Then X+Y and X−Y are orthogonal and hence ‖X+Y ‖F‖X−Y ‖F is twice
the area of the rhomb spanned by X and Y . Thus,

‖XY − Y X‖2
F
≤ 2 area rhomb(X, Y ). (14)

From Theorem 3.1 and (14) we deduce that without any constraint on the
norms of X and Y we have

‖XY − Y X‖2
F
≤ 2 ‖X‖F‖Y ‖F(‖X‖F‖Y ‖F − | tr(Y ∗X)|2)
≤
∥∥∥∥ ‖Y ‖FX + ‖X‖FY

∥∥∥∥ ·
∥∥∥∥ ‖Y ‖FX − ‖X‖FY

∥∥∥∥

= 2 area rhomb(‖Y ‖FX, ‖X‖FY ),

the last equality for real matrices only. �

Given Z = A + iB with A,B ∈ Mn(R), the real and imaginary parts are
defined by ReZ = A and ImZ = B. From (13) we infer that

‖ZZ‖F ≤ ‖Z ⊗ Z‖F,

that is,

‖Re (ZZ)‖2
F

+ ‖ Im (ZZ)‖2
F
≤ ‖Re (Z ⊗ Z)‖2

F
+ ‖ Im (Z ⊗ Z)‖2

F
.

In connection with this inequality, the following is quite curious.
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Corollary 3.5 For all Z ∈Mn(C),

‖ Im (ZZ)‖F ≤ ‖ Im (Z ⊗ Z)‖F, (15)

but there are Z ∈ Mn(C) such that

‖Re (ZZ)‖F > ‖Re (Z ⊗ Z)‖F. (16)

Proof. Since ‖ Im (ZZ)‖F = ‖BA−AB‖F and ‖ Im (Z⊗Z)‖F = ‖B⊗A−A⊗
B‖F, inequality (15) is straightforward from Theorem 3.1 (or Theorem 2.2 in
conjunction with Theorem 3.2(iii)). Letting

Z =




1 1

1 1


+ i




1 0

0 0




we get ‖Re (ZZ)‖F =
√

21 and ‖Re (Z ⊗ Z)‖F =
√

19, which gives (16). �

Remark 3.6 Theorems 2.2, 3.1, the equivalence of the first four statements
in Theorem 3.2, and Corollary 3.5 remain true for Hilbert-Schmidt operators
on arbitrary infinite-dimensional separable Hilbert spaces, because in every
orthonormal basis every such operator is given by an infinite matrix Z = (zjk)
with

∑
j,k |zjk|2 < ∞ and the principal finite sections Zn := (zjk)|j|≤n,|k|≤n

converge to Z in the Hilbert-Schmidt norm. An observation of this kind was
already employed in the proof of the equivalence (i) ⇔ (vii) of Theorem 3.2.
�

4 Matrix pairs with maximal commutator

This section is devoted to the cases of equality in the inequality of Theorem 2.2.
We call a pair (X, Y ) of matrices in Mn(C) maximal if X 6= 0, Y 6= 0, and
‖XY −Y X‖F =

√
2 ‖X‖F‖Y ‖F. In [4] we observed that if X and Y are chosen

at random, then the ratio of ‖XY −Y X‖F and ‖X‖F‖Y ‖F concentrates tightly
around a number that goes to zero as n→ ∞. The following result may serve
as another explanation for the phenomenon that maximal pairs are very rare
and thus difficult to find on the off-chance.

Theorem 4.1 If (X, Y ) is a maximal pair of matrices in Mn(C), then

(a) rankX ≤ 2, rankY ≤ 2, (b) X ⊥ Com Y , Y ⊥ ComX,

where ComW , the commutant of W , is the algebra {Z ∈ Mn(C) : ZW =
WZ}.

12



Proof. We use the notation of the proofs of Lemma 2.1 and Theorem 2.2.
Suppose (X, Y ) is a maximal pair. Then equality must hold in (8), which
implies that ‖Bp‖ = ‖B‖F and ‖B∗q‖ = ‖B∗‖F. It follows that ‖B‖∞ = ‖B‖F

and hence that B has at most one nonzero singular value. Thus, B = 0
or rankB = 1. In the first case, the matrix A in (6) has rank at most 2,
yielding rankY ≤ 2, as desired. So assume rankB = 1. (This already gives
rankY = rankA ≤ 3.) Writing B = τrs∗ with ‖r‖ = ‖s‖ = 1, we get
‖Bp‖2 = |τ |2|s∗p|2‖r‖2 = ‖B‖2

∞. Consequently, |s∗p| = 1 and hence s = λp
with |λ| = 1. Analogously, r = µq with |µ| = 1. We therefore obtain that
B = τλµqp∗ =: κqp∗.

We must further have equality in Lemma 2.1 with z = y, a = Bp, b = B∗q,
u = −σq, v = −σp. For this it is necessary that (5) is an equality, which is
only possible if ξ = η ∈ W . In the case at hand,

a = κqp∗p = κq, b = κpq∗q = κp.

This shows that w⊥ = 0. Thus, ξ is a linear combination of w+ and w−,

ξ =



x

y


 = ε0



−q
−p


+ δ0



−q
p


 ,

which gives x = εq and y = δp with complex numbers ε and δ. The matrix A
in (6) therefore becomes

A = eiϕ



σ εp∗

δq κqp∗


 .

As this is a matrix of rank at most 2, we arrive at the conclusion that rankY ≤
2. Interchanging Y with X we obtain that rankX ≤ 2.

Now let Z ∈ ComY \{0}. Since
√

2 ‖X‖F‖Y ‖F = ‖XY −Y X‖F by assumption
and

‖XY − Y X‖F = ‖(X + λZ)Y − Y (X + λZ)‖F ≤
√

2 ‖X + λZ‖F‖Y ‖F

for every λ ∈ C by Theorem 2.2, we conclude that

‖X‖2
F
≤ ‖X + λZ‖2

F
= ‖X‖2

F
+ 2 Re [λ(X,Z)] + |λ|2‖Z‖2

F
.

For λ = −(X,Z)/‖Z‖2
F

the right-hand side becomes

‖X‖2
F
− 2

|(X,Z)|2
‖Z‖2

F

+
|(X,Z)|2
‖Z‖4

F

‖Z‖2
F

= ‖X‖2
F
− |(X,Z)|2

‖Z‖2
F

,

which implies that (X,Z) = 0. Thus, X ⊥ ComY . Analogously one gets that
Y ⊥ ComX. �.
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Corollary 4.2 If (X, Y ) is a maximal pair of matrices in Mn(C), then nec-

essarily

rankX ≤ 2, rankY ≤ 2, trX = trY = 0, (X, Y m) = (Xm, Y ) = 0

for all natural numbers m.

Proof. This is immediate from Theorem 4.1 along with the observations that
polynomials of Z are in ComZ and that trZ = (Z, I). �

Remark 4.3 The matrices of a maximal pair need not to have the same rank:
the pair

X =




0 0

1 0


 , Y =




1 0

0 −1




is maximal, but rankX = 1 and rankY = 2. Furthermore, conditions (a) and
(b) of Theorem 4.1 are not sufficient for (X, Y ) to be a maximal pair. Indeed,
let

X =




0 1 1

0 0 0

0 0 0



, Y =




0 0 0

1 0 0

−1 0 0



.

If Z = (zjk)
3
j,k=1 ∈ ComX then z21 = z31 = 0, and if Z = (zjk)

3
j,k=1 ∈ ComY

then z12 = z13 = 0. Thus, X ⊥ ComY and Y ⊥ ComX. It follows that
conditions (a) and (b) of Theorem 4.1 are satisfied. However, ‖XY −Y X‖2

F
= 4

and 2 ‖X‖2
F
‖Y ‖2

F
= 8, that is, (X, Y ) is not a maximal pair. �

The following results characterize maximal pairs subject to additional con-
straints.

Proposition 4.4 Let X and Y be nonzero matrices in M2(C). Then (X, Y )
is a maximal pair if and only if trX = trY = 0 and (X, Y ) = 0.

Proof. Corollary 4.2 gives the “only if” part. To prove the reverse, take

X =



c a

b −c


 , Y =



z x

y −z


 .

Since both sides of the equality ‖XY − Y X‖2
F

= 2 ‖X‖2
F
‖Y ‖2

F
depend contin-

uously on c and z, we may assume that c 6= 0 and z 6= 0 and hence that even
c = z = 1. Under this assumption,

‖XY − Y X‖2
F

= 2 |bx− ay|2 + 4 |a− x|2 + 4 |b− y|2, (17)

2 ‖X‖2
F
‖Y ‖2

F
= 2 (2 + |a|2 + |b|2)(2 + |x|2 + |y|2). (18)

14



The difference of (18) and (17) is |2 + ax + by|2 = |(X, Y )|2 = 0, which
completes the proof. �

Proposition 4.5 Let X, Y ∈ Mn(C) and suppose ‖X‖F = ‖Y ‖F = 1 and

rankX = rankY = 1. Then (X, Y ) is a maximal pair if and only if trX = 0
and Y = κX∗ with some complex number of modulus 1.

Proof. We have X = ab∗ and Y = xy∗ with ‖a‖ = ‖b‖ = ‖x‖ = ‖y‖ = 1.
Hence

‖XY − Y X‖2
F
= ‖(x, b)ay∗ − (a, y)xb∗‖2

F

=tr [((b, x)ya∗ − (y, a)bx∗)((x, b)ay∗ − (a, y)xb∗)]

= |(b, x)|2 + |(a, y)|2 − 2 Re [(b, x)(a, y)(x, a)(y, b)] (19)

and 2 ‖X‖2
F
‖Y ‖2

F
= 2. Suppose first that (X, Y ) is a maximal pair. By Corol-

lary 4.2, trX = 0 and 0 = (X, Y ) = (y, b)(a, x). Thus, the real part in (19)
vanishes and we get |(b, x)|2 + |(a, y)|2 = 2, which in turn implies that x = λb
and y = µa with |λ| = |µ| = 1. It follows that Y = λµba∗ = λµX∗, as desired.
Conversely, let trX = 0 and Y = κX∗ with |κ| = 1. Then Y = (κb)a∗, and
inserting x = κb, y = a in (19) we obtain that

‖XY − Y X‖2
F

= 2 − 2 Re [(b, a)(a, b)].

As 0 = trX = (a, b), we see that ‖XY − Y X‖2
F

= 2. �

Proposition 4.6 Suppose X ∈ Mn(C) is normal. Then (X, Y ) is a maxi-

mal pair if any only if there exist a unitary matrix U ∈ Mn(C) and complex

numbers λ, a, b such that λ 6= 0, |a|2 + |b|2 > 0, and

X = U



X0 0

0 0


U∗ with X0 =



λ 0

0 −λ


 , (20)

Y = U



Y0 0

0 0


U∗ with Y0 =




0 a

b 0


 . (21)

Proof. Suppose (X, Y ) is a maximal pair. Since X is normal, we have X =
UΛU∗ with Λ = diag (λ1, . . . , λn). By Corollary 4.2, at most two of the λj are
nonzero and the sum of these two is zero. Thus, we may a priori assume X
is of the form (20). The case λ = 0 gives the zero matrix. Hence λ 6= 0. Put
Z = U∗Y U . Then
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‖XY − Y X‖2
F

= ‖ΛZ − ZΛ‖2
F

=
∑

j 6=k

|λj − λk|2|zjk|2

= 4 |λ|2|z12|2 + 4 |λ|2|z21|2 +
∑

k≥2

|λ|2|z1k|2 +
∑

j≥2

|λ|2|zj1|2 (22)

and

2 ‖X‖2
F
‖Y ‖2

F
= 4 |λ|2

n∑

j,k=1

|zjk|2. (23)

But if (22) and (23) are equal, then zjk = 0 for (j, k) 6= (1, 2) and (j, k) 6= (2, 1).
This implies that Y is of the form (21). As Y 6= 0, one of the numbers a and
b is nonzero.

Conversely, let X and Y be as in (20) and (21). From (22) and (23) we infer
that

‖XY − Y X‖2
F

= 4 |λ|2(|a|2 + |b|2) = 2 ‖X‖2
F
‖Y ‖2

F
,

which shows that (X, Y ) is a maximal pair. �

Remark 4.7 From Proposition 4.6 we immediately obtain that a pair (X, Y )
of normal (resp. Hermitian) matrices in Mn(C) is maximal if and only if there
exist a unitary matrix U and complex numbers λ, a, b such that (20) and (21)
hold with λ 6= 0, |a| = |b| 6= 0 (resp. λ = λ 6= 0, a = b 6= 0). Theorem 4.1
implies that for n ≥ 3 there are no maximal pairs in which at least one matrix
is invertible. In particular, there are no maximal pairs with at least one unitary
matrix. By Proposition 4.6, two matrices X, Y ∈ U(2) form a maximal pair if
and only if there is a U ∈ U(2) such that

X = U



λ 0

0 −λ


U∗, Y = U




0 a

b 0


U∗ (24)

with |λ| = |a| = |b| = 1. These two matrices are in SU(2) if and only if
λ ∈ {i,−i}, |a| = 1, b = −1/a. It is easy to show by direct inspection that
two matrices X, Y ∈ O(2) are a maximal pair if and only if they are of the
form (24) with U ∈ O(2), λ ∈ {1,−1}, a ∈ {1,−1}, b ∈ {1,−1}. There do
not exist maximal pairs in SO(2). There are also no maximal pairs containing
at least one positive semi-definite matrix. This follows from inequality (2) of
paper [2] by Bhatia and Kittaneh, which implies that if X ∈Mn(C) is positive
semi-definite, X ≥ 0, then

‖XY − Y X‖F ≤ ‖X‖∞‖Y ‖F ≤ ‖X‖F‖Y ‖F

for every Y ∈ Mn(C) (see also Remark 5.1 of [4]). Moreover inequality (3) of
[2] implies that if X ≥ 0 and Y ≥ 0, then

‖XY − Y X‖F ≤ 1

2
‖X‖∞ ‖Y ⊕ Y ‖F =

1√
2
‖X‖∞ ‖Y ‖F ≤ 1√

2
‖X‖F ‖Y ‖F.
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Taking

X =



X0 0

0 0


 , X0 =




1 0

0 0


 , Y =



Y0 0

0 0


 , Y0 =




1 1

1 1




we get ‖XY − Y X‖F = (1/
√

2) ‖X‖F‖Y ‖F. Thus,

sup

{
‖XY − Y X‖F

‖X‖F ‖Y ‖F

: X, Y ∈Mn(C) \ {0}, X ≥ 0, Y ≥ 0

}
=

1√
2
.

Bloch and Iserles [3] studied the problem of determining

sup

{
‖XY − Y X‖F

‖X‖F‖Y ‖F

: X, Y ∈ g \ {0}
}

(25)

where g is a Lie algebra and proved that if g is the Lie algebra so(n) of skew-
symmetric matrices in Mn(R), then (25) is 0 for n = 2, 1/

√
2 for n = 3, and

1 for n ≥ 4. �

Remark 4.8 Abbreviate XY − Y X to [X, Y ]. Repeated application of The-
orem 2.2 gives

‖ [Z1, [Z2, . . . [Zm−1, Zm]]] ‖F ≤ 2(m−1)/2‖Z1‖F‖Z2‖F . . . ‖Zm‖F (26)

for arbitrary Zj inMn(C). From Remark 4.7 we see that if (X, Y ) is a maximal
pair consisting of two normal matrices, then (X, [X, Y ]) is also a maximal pair
of two normal matrices. This implies that the constant 2(m−1)/2 in (26) is best
possible. �

5 Unitarily invariant norms

Let ‖ · ‖ be a unitarily invariant norm on Mn(C) and put

Φ(x1, . . . , xn) = ‖ diag(x1, . . . , xn) ‖

if x1, . . . , xn are real numbers. Throughout what follows we assume without
loss of generality that Φ(1, 0, . . . , 0) = 1. The function Φ is a norm on Rn

and it is invariant under the transformations (x1, . . . , xn) 7→ (±x1, . . . ,±xn)
and under permutations of (x1, . . . , xn). Conversely, given any function Φ with
these properties, we obtain a unitarily invariant norm on Mn(C) by defining
‖X‖ = ‖USV ‖ := Φ(s1, . . . , sn), where X = USV with S = diag(s1, . . . , sn)
is the singular value decomposition. We refer to [1] for more on unitarily
invariant norms. In what follows we order the singular values of a matrix X
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in decreasing order, s1 ≥ . . . ≥ sn, and we denote the vector (s1, . . . , sn) by
Σ(X).

Proposition 5.1 Let ‖ · ‖ be a unitarily invariant norm on Mn(C), and set

µ = Φ(1, 1, 0, . . . , 0). Then

sup

{
‖XY − Y X‖
‖X‖ ‖Y ‖ : X, Y ∈Mn(C) \ {0}

}
≥ max

(
µ,

2

µ

)
≥

√
2.

Proof. It suffices to consider the case n = 2. For

X =




1 0

0 −1


 , Y =




0 1

−1 0


 , XY − Y X =




0 2

2 0




we have Σ(X) = Σ(Y ) = (1, 1) and Σ(XY − Y X) = (2, 2), which gives

‖XY − Y X‖
‖X‖ ‖Y ‖ =

Φ(2, 2)

Φ(1, 1)2
=

2 Φ(1, 1)

Φ(1, 1)2
=

2

Φ(1, 1)
=

2

µ
,

while the singular values of

X =



−1 −1

1 1


 , Y =




1 −1

1 −1


 , XY − Y X =




0 4

4 0




are Σ(X) = Σ(Y ) = (2, 0) and Σ(XY − Y X) = (4, 4), from which we obtain
that

‖XY − Y X‖
‖X‖ ‖Y ‖ =

Φ(4, 4)

Φ(2, 0)2
=

4 Φ(1, 1)

22 Φ(1, 0)2
= Φ(1, 1) = µ.

Obviously, both µ and 2/µ cannot be strictly less than
√

2. �

Theorem 2.2 and Proposition 5.1 imply that

min
Φ

sup

{
‖XY − Y X‖
‖X‖ ‖Y ‖ : X, Y ∈Mn(C) \ {0}

}
=

√
2,

the minimum over all unitarily invariant norms on Mn(C), and that the min-
imum is attained for the Frobenius norm. In Example 5.7 we will show that
the supremum in Proposition 5.1 may be strictly larger than max(µ, 2/µ).

Example 5.2 (Schatten norms) The pth Schatten norm ‖·‖p (1 ≤ p ≤ ∞)
is given by

Φp(x1, . . . , xn) := (|x1|p + . . .+ |xn|p)1/p.

Thus, ‖·‖2 = ‖·‖F and ‖·‖∞ is the spectral norm. Since Φp(1, 1, 0, . . . , 0) = 21/p,
we deduce from Proposition 5.1 that
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sup

{
‖XY − Y X‖p
‖X‖p ‖Y ‖p

: X, Y ∈Mn(C) \ {0}
}

≥ max(21/p, 21/q) = 21/min(p,q), (27)

where 1/p+ 1/q = 1. We conjecture that in (27) actually equality holds:

‖XY − Y X‖p ≤ 21/min(p,q) ‖X‖p ‖Y ‖p (28)

for all X, Y ∈ Mn(C). This is true for p = 2 by Theorem 2.2 and trivial for
p = 1 and p = ∞. It is easy to prove (28) for n = 2 and 1 ≤ p < 2. Indeed,
letting Σ(XY − Y X) =: (s1, s2) we have

‖XY − Y X‖p = (sp1 + sp2)
1/p ≤ 21/p−1/2(s2

1 + s2
2)

1/2

= 21/p−1/2‖XY − Y X‖2 ≤ 21/p−1/221/2 ‖X‖2‖Y ‖2

= 21/p ‖X‖2‖Y ‖2 ≤ 21/p ‖X‖p‖Y ‖p;

here we made use of Theorem 2.2 for n = 2. We remark that the inequality
‖XY − Y X‖2 ≤

√
2 ‖X‖p‖Y ‖q is in general not true: taking

X =




0 1

1 0


 , Y =




1 1

−1 −1


 , XY − Y X =



−2 −2

2 2




we get
√

2 ‖X‖p‖Y ‖q = 23/2+1/p < 4 = ‖XY − Y X‖2 for p > 2. �

Example 5.3 (Ky Fan norms) The kth Ky Fan norm ‖ · ‖(k) (k = 1, . . . , n)
is defined by

Φ(k)(x1, . . . , xn) = |x1| + . . .+ |xk| (|x1| ≥ . . . ≥ |xn|).

Clearly, ‖ · ‖(1) = ‖ · ‖∞ and ‖ · ‖(n) = ‖ · ‖1. Proposition 5.1 and the trivial
estimate ‖XY − Y X‖(k) ≤ 2 ‖X‖(k)‖Y ‖(k) give

sup

{
‖XY − Y X‖(k)

‖X‖(k) ‖Y ‖(k)

: X, Y ∈Mn(C) \ {0}
}

= 2. �

We don’t know whether the Frobenius norm is the only unitarily invariant
norm for which

sup

{
‖XY − Y X‖
‖X‖ ‖Y ‖ : X, Y ∈Mn(C) \ {0}

}
=

√
2. (29)

The rest of the paper is devoted to this question.

First of all, from Examples 5.2 and 5.3 we know that the Schatten norms ‖ ·‖p
(p 6= 2) and the Ky Fan norms ‖ · ‖(k) do not satisfy (29).
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Let ‖ · ‖ be a unitarily invariant norm on Mn(C). The set

BΦ := {x ∈ Rn : Φ(x) ≤ 1} (30)

is closed and convex and invariant under the transformations (x1, . . . , xn) 7→
(±x1, . . . ,±xn) and under permutations of (x1, . . . , xn). This set is the usual
Euclidean unit ball of Rn if and only if ‖ · ‖ is the Frobenius norm. Here is
the ultimate result for n = 2.

Theorem 5.4 A unitarily invariant norm ‖·‖ on M2(C) satisfies the inequal-

ity ‖XY − Y X‖ ≤
√

2 ‖X‖ ‖Y ‖ for all X, Y ∈ M2(C) if and only if it is the

Frobenius norm.

Proof. By virtue of Theorem 2.2, we are left with the “only if” part. Thus, we
have to show that BΦ is the closed unit disk, which is equivalent to proving
that Φ(x, y) = 1 for all (x, y) on the eighth of the unit circle between the
points (1, 0) and (1/

√
2, 1/

√
2).

Let 0 ≤ y ≤ x ≤ 1, x2 + y2 = 1, and put

X =




0 x

y 0


 , Y =




0 −y
x 0


 , XY − Y X =




1 0

0 −1


 .

The singular values of X and Y are x, y, while those of XY − Y X are 1, 1.
By assumption

√
2 ≥ ‖XY − Y X‖

‖X‖ ‖Y ‖ =
Φ(1, 1)

Φ(x, y)2
. (31)

Taking x = 1, y = 0 we get Φ(1, 1) ≤
√

2, and the choice x = y = 1/
√

2 yields
Φ(1, 1) ≥

√
2. Thus, Φ(1, 1) =

√
2 and (31) implies that Φ(x, y) ≥ 1, which

means that BΦ is a subset of the closed unit disk.

To get the other half of the theorem, suppose 0 < s < c < 1, c2 + s2 = 1, and
let

X =



s −c
c s







1 0

0 0






c −s
s c


 =



cs −s2

c2 −cs


 ,

Y =



c −s
s c







1 0

0 0






c −s
c s


 =



cs −s2

s2 −cs


 .
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Since X and Y are unitarily equivalent to diag(1, 0), we have ‖X‖ = ‖Y ‖ =
Φ(1, 0) = 1. Because

XY − Y X =



u −v
v −u


 , u = c4 − s4, v = 2cs(c2 − s2),

the singular values of Z are

|u+ v| = (c2 − s2)(c+ s)2, |u− v| = (c2 − s2)(c− s)2.

The inequality ‖XY − Y X‖ ≤
√

2 ‖X‖ ‖Y ‖ therefore implies that

Φ

(
|u+ v|√

2
,
|u− v|√

2

)
=

1√
2

‖XY − Y X‖
‖X‖ ‖Y ‖ ≤ 1. (32)

Now let 0 ≤ y ≤ x ≤ 1 and x2 + y2 = 1 and put

c =
1 +

√
y/x

√
2(1 + y/x)

, s =
1 −

√
y/x

√
2(1 + y/x)

.

Then 0 < s < c < 1, c2 + s2 = 1, and

(
|u+ v|√

2
,
|u− v|√

2

)
=

( √
8xy

(x+ y)2
x,

√
8xy

(x+ y)2
y

)
.

Thus, (32) gives

Φ(x, y) ≤ (x+ y)2

√
8xy

=
1 + 2xy√

8xy
. (33)

For the next step, let a, b, c, s be any real numbers such that

1√
2
< c < 1, 0 < s <

1√
2
, c2 + s2 = 1, 0 < b < a < 1, a2 + b2 = 1.

Consider

X =



a b

b −a






c 0

0 s






b −a
a b


 , Y =



b a

a −b






c 0

0 s






a −b
b a


 .

A straightforward computation delivers

XY − Y X = (a2 − b2)(c+ s)



−u v
−v u


 , u = c− s, v = 2ab(c+ s).
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We have Σ(X) = Σ(Y ) = (c, s) and the singular values of XY − Y X are

(a2 − b2)(c+ s)|u+ v|, (a2 − b2)(c+ s)|u− v|. (34)

Choosing a and b so that

a2 =
c+ s + 1

2(c+ s)
, b2 =

c+ s− 1

2(c+ s)

we achieve that the numbers (34) become
√

2cs+ c− s and |
√

2cs− (c− s)|.
The inequality ‖XY − Y X‖ ≤

√
2 ‖X‖ ‖Y ‖ therefore yields

Φ

(√
cs+

c− s√
2
,

∣∣∣∣∣
√
cs− c− s√

2

∣∣∣∣∣

)
≤ Φ(c, s)2. (35)

We remark that
√
cs ≥ (c−s)/

√
2 if and only if c ≤ cos(π/12) and, accordingly,

s ≥ sin(π/12).

The function f(α) =
√

cosα sinα+(cosα− sinα)/
√

2 maps the line segment
[π/12, π/4] bijectively onto the line segment [1/

√
2, 1]. It follows that if β is

arbitrarily given between 0 and π/4, then there is a unique α between π/12
and π/4 such that

√
cosα sinα +

cosα− sinα√
2

= cosβ,

which automatically implies that also

√
cosα sinα− cosα− sinα√

2
= sin β.

Consequently, given any point (ξ, η) such that 0 < η < ξ < 1 and ξ2 + η2 = 1,
there is a unique point (c, s) such that

1√
2
< c < cos

π

12
, sin

π

12
< s <

1√
2
,

√
cs+

c− s√
2

= ξ,
√
cs− c− s√

2
= η. (36)

Equalities (36) show that 2
√
cs = ξ+η, whence 4cs = 1+2ξη or equivalently,

cs =
1

4
+

1

2
ξη. (37)

From (35) we infer that Φ(ξ, |η|) ≤ Φ(c, s)2.
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Finally, let 0 < y < x < 1 and x2 + y2 = 1 and put (x0, y0) := (x, y). Having
(xk, yk), we define (xk+1, yk+1) as in the preceding paragraph by

√
xk+1yk+1 +

xk+1 − yk+1√
2

= xk,
√
xk+1yk+1 −

xk+1 − yk+1√
2

= yk.

Note that
1√
2
< xk < cos

π

12
, sin

π

12
< yk <

1√
2

for all k ≥ 1 (though not necessarily for k = 0), which implies that |yk| = yk
for k ≥ 1. The equality |y0| = y0 is satisfied by assumption. Thus, by virtue
of (35),

Φ(x, y) ≤ Φ(x1, y1)
2 ≤ Φ(x2, y2)

4 ≤ . . . ≤ Φ(xk, yk)
2k

.

Taking into account (33) we get

Φ(x, y) ≤
(

1 + 2xkyk√
8xkyk

)2k

, (38)

and from (37) we obtain that

xkyk =
1

4
+

1

2
xk−1yk−1 =

1

4
+

1

2
· 1

4
+

1

22
xk−2yk−2 = . . .

=
1

4
+

1

2
· 1

4
+ . . .+

1

2k
· 1

4
+

1

2k
xy =

1

2
+

1

2k

(
xy − 1

2

)
.

Hence, letting m = 2k and z = xy − 1/2 we arrive at the estimate

Φ(x, y) ≤




1 + 2
(

1
2

+ z
m

)

√
8
(

1
2

+ z
m

)




m

=


 1 + z/m
√

1 + 2z/m



m

. (39)

The right-hand side of (39) goes to 1 asm→ ∞, which proves that Φ(x, y) ≤ 1
and thus that BΦ contains the entire closed unit disk. �

Remark 5.5 The idea of the previous proof may be interpreted geometrically.
Inequality (33) says that the curve

{ √
8 cosϕ sinϕ

1 + 2 cosϕ sinϕ
(cosϕ, sinϕ) : ϕ ∈ [0, π/4]

}
(40)

is contained in BΦ. This curve is the inner curve in Figure 1. Estimate (35)
tells us that if a curve {̺(ϕ)(cosϕ, sinϕ) : ϕ ∈ [0, π/4] } is a subset of BΦ,
then so also is the new curve
{
̺(ϕ)2

(√
cosϕ sinϕ+

cosϕ− sinϕ√
2

,
√

cosϕ sinϕ− cosϕ− sinϕ√
2

)}
, (41)
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where ϕ ranges over [0, π/4] and where it would even be sufficient to take ϕ
from the segment [π/12, π/4] only. Finally, starting with the curve (40) and
iteratively constructing new curves via (41) we arrive at the inequalities (38).
The first few of these new curves are seen in Figure 1. The figure convincingly
reveals that the iteratively obtained curves approximate the unit circle. That
this is really the case was shown in the last step of the proof. �

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Fig. 1. A sequence of curves approximating an eighth of the unit circle.

Remark 5.6 In the proof of Theorem 5.4 we worked with real matrices only.
This shows that if ‖ · ‖ is a unitarily invariant norm on M2(R) such that
‖XY − Y X‖ ≤

√
2 ‖X‖ ‖Y ‖ for all X, Y ∈ M2(R), then ‖ · ‖ is necessarily

the Fobenius norm. �

Example 5.7 (Polyhedral norms) A unitarily invariant norm ‖ · ‖ on
Mn(C) is called a polyhedral norm if the set BΦ defined by (30) is a (convex)
polyhedron in Rn. Suppose ‖·‖ to be a unitarily invariant polyhedral norm on
Mn(C) satisfying (29). From Theorem 5.4 we deduce that the intersection of
the polyhedron BΦ with the plane {(x1, x2, 0, . . . , 0) : x1, x2 ∈ R} is the closed
unit disk, which is impossible. Consequently, there are no unitarily invariant
polyhedral norms on Mn(C) for which (29) is true.
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Let ‖ · ‖pm
be the polygonal norm on M2(C) for which the set (30) is the

regular m-gon inscribed in the unit circle. Since (± 1, 0) and (0,± 1) must be
vertices of this m-gon, the number m is necessarily divisible by 4. Put

Cm := sup

{
‖XY − Y X‖pm

‖X‖pm
‖Y ‖pm

: X, Y ∈M2(C) \ {0}
}
.

It is easily seen that cos(π/m)‖Z‖pm
≤ ‖Z‖F ≤ ‖Z‖pm

for all Z ∈ M2(C).
From Theorem 2.2 (for n = 2) we therefore get

cos
π

m
‖XY − Y X‖pm

≤ ‖XY − Y X‖F ≤
√

2 ‖X‖F‖Y ‖F ≤
√

2 ‖X‖pm
‖Y ‖pm

.

Thus, Cm ≤
√

2/ cos(π/m) for all m. If m = 8k + 4 (k = 0, 1, 2, . . .), then
Φ(1, 1) =

√
2/ cos(π/m) and hence Proposition 5.1 implies that

Cm =
√

2/ cos(π/m)

in this case. The case where m = 8k (k = 1, 2, 3, . . .) is more complicated.
From the proof of Theorem 5.4 we see that

Φ

( √
8xy

1 + 2xy
x,

√
8xy

1 + 2xy
y

)
≤ Cm√

2
(42)

whenever 0 ≤ y ≤ x ≤ 1 and x2 + y2 = 1. If ϕ = π/4 − π/m, x = cosϕ,
y = sinϕ, then the left-hand side of (42) is 1/ cos(π/m) times

√
8 cosϕ sinϕ

1 + 2 cosϕ sinϕ
=

2
√

sin 2ϕ

1 + sin 2ϕ
=

2
√

cos 2π
m

1 + cos 2π
m

= 1 −O
(

1

m4

)
.

Consequently, if m is divisible by 8 we have

√
2

cos π
m

(
1 − O

(
1

m4

))
≤ Cm ≤

√
2

cos π
m

. (43)

We conjecture that in fact Cm =
√

2/ cos(π/m). Note that the lower bound in
(43) is strictly larger than max(µ, 2/µ) = Φ(1, 1) =

√
2 if m is large enough

(actually even for all m = 8k ≥ 8), which reveals that the bound provided by
Proposition 5.1 is not sharp. �

Remark 5.8 Let ‖ · ‖ again be a unitarily invariant norm on Mn(C) subject
to (29). By embedding M2(C) appropriately into Mn(C), we obtain from
Theorem 5.4 that the intersection of BΦ with each of the n(n − 1)/2 planes
spanned by two of the coordinate axes is the closed unit disk. In particular,
BΦ is necessarily contained in the intersection of the n(n − 1)/2 cylinders
x2
j + x2

k ≤ 1.
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0

1

−1

0

1

−1

0

1

x

y

z

Fig. 2. The intersection of the cylinders x
2 + y

2 ≤ 1, x
2 + z

2 ≤ 1, y
2 + z

2 ≤ 1.

Now let n = 3 and denote by B the intersection of the three cylinders given
by x2 + y2 ≤ 1, x2 + z2 ≤ 1, y2 + z2 ≤ 1; see Figure 2. Defining

Φ(x, y, z) = min{t > 0 : (x, y, z)/t ∈ B}
= min{t > 0 : (x2 + y2)/t2 ≤ 1, (x2 + z2)/t2 ≤ 1, (y2 + z2)/t2 ≤ 1}
= max

(√
x2 + y2,

√
x2 + z2,

√
y2 + z2

)

we have B = BΦ. The unitarily invariant norm associated with Φ is given

by ‖X‖ =
√
s2
1 + s2

2 where s1 ≥ s2 ≥ s3 are the singular values of X. In the

notation of [1, p. 95], this is the ‖ ·‖(2)
(2) norm, a mixture of the 2nd Ky Fan and

the 2nd Schatten (= Frobenius) norms. Clearly, ‖ · ‖(2)
(2) is a good candidate

for a norm satisfying (29). If we put Σ(X) = (s1, s2, s3), Σ(Y ) = (t1, t2, t3),
Σ(XY − Y X) = (z1, z2, z3), the singular values always in decreasing order,
then Theorem 2.2 is equivalent to the inequality

z2
1 + z2

2 + z2
3 ≤ 2(s2

1 + s2
2 + s2

3)(t
2
1 + t22 + t23),
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while the question whether ‖ · ‖(2)
(2) satisfies (29) amounts to the inequality

z2
1 + z2

2 ≤ 2(s2
1 + s2

2)(t
2
1 + t22).

We don’t know whether the last inequality is true or not. Notice that the
inequality z2

1 ≤ 2 s2
1t

2
1 is not true, because it is equivalent to saying that

‖XY − Y X‖∞ ≤
√

2 ‖X‖∞‖Y ‖∞ which, by Example 5.2, is only valid with√
2 replaced by 2.

For n ≥ 4 the number of candidates for unitarily invariant norms satisfying
(29) increases. The candidates include the norms

‖X‖(2)
(k) =

√
s2
1 + . . .+ s2

k (s1 ≥ . . . ≥ sn)

with 2 ≤ k ≤ n. We remark that for all these norms the intersection of BΦ

with an arbitrary plane spanned by two of the coordinate axes is the unit disk.
�
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