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Abstract
This paper deals with two kinds of sequential tests for grouped observations based on
Weibull distributed random variables. Based on the Weibull distribution we construct
two sequential ratio test for testing the form parameter β and determine the appropriate
OC- and ASN-functions. The problem of discrimination between more than two hypothe-
ses is here solved by means of a Sobel-Wald test where we consider three hypotheses. The
computation of corresponding characteristics of this test is presented.
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1 Introduction

This Preprint deals with two kinds of sequential tests for grouped observations based on
Weibull distributed random variables. At first we introduce the sequential ratio test where
we are interested in the computation of the characteristics, namely the OC-function and
the average sample number. Calculations of these functions are difficult because we have
to solve Fredholm integral equations of type 2. Solutions of these equations are known so
for only for the exponential and the Erlang distribution (see [1] and [9]). On the other
hand, in practice we cannot observe continuous random variables exactly, so it is sensible
to transform this test into a test based on grouped observations. Due to applications
one has a fixed grouping, a so-called passive grouping scheme, or a classification where
the group bounds are freely chosen, so-called active, which we will consider here. In the
sequel corresponding sequential ratio tests are observed when Weibull distributed random
variables are given.
The Weibull distribution has its application in the analysis of fatigues of material or
failures of electronic components. Based on this distribution we construct two tests for
testing the form parameter β, followed by robustness considerations. The test for early
failures discriminates between early failures, i.e. β < 1, and random failures whereas the
test for late failures decides between random failures and late failures, i.e. β > 1. Both
tests can be interpreted as tests of the form of the Weibull distribution or testing for
exponential distribution because we have an exponential distribution if β = 1 holds. As
mentioned above we will investigate how the characteristics of the tests considered above
vary if the parameter α changes to an unknown parameter.
It is often necessary to discriminate not only between two hypotheses. This problem is
here solved by means of a Sobel-Wald test where we consider three hypotheses. This test
consists of two sequential ratio tests which influences the OC-function and the average
sample number function of the Sobel-Wald test. Computation of these characteristics is
the main subject of the second part. The OC-functions often can easily calculated from
the OC-functions of the underlying sequential tests. The determination of the average
sample number is more difficult, so we present a special algorithm solving this problem.

2 Sequential test

In this section we introduce the WALD sequential ratio test for grouped observations and
calculate the characteristics, namely the OC-function and the average sample number
function. We give a general method for computing the characteristics. A discrete approach
is considered in [3]. Further on we are going to construct two tests based on the Weibull
distribution to test for early and late failures and present some numerical results.
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2.1 General description

Let X1, X2, . . . be a sequence of i.i.d. random variables with a given density function
fθ(x), θ ∈ Θ, with respect to a certain measure µ. Our aim is to discriminate between the
hypotheses

H0 : θ = θ0 and H1 : θ = θ1 θ0, θ1 ∈ Θ, θ0 6= θ1. (1)

For n = 1, 2, . . ., the likelihood ratio

Ln,θ0,θ1 =
n∏
i=1

fθ1(Xi)

fθ0(Xi)

is used as a test statistic and for given stopping bounds 0 < B < 1 < A <∞ the sample
size N and the decision rule δ are determined by

N = min{n ≥ 1 : Ln,θ0,θ1 /∈ (B,A)} and δ = 1{LN,θ0,θ1≤B}.

As long as the critical inequality B < Ln,θ0,θ1 < A holds, we continue the observations
for n = 1, 2, . . . If on observation stage n = 1, 2, . . . Ln,θ0,θ1 ≤ B or Ln,θ0,θ1 ≥ A holds for
the first time we will stop the test and accept the null hypothesis H0 or the alternative
hypothesis H1, respectively. This test, defined by (N, δ), is called WALD sequential
probability ratio test (SPRT). We denote this test by S(B,A). For further investigations
it will be helpful to consider the logarithmic likelihood ratio as follows

Zn,θ0,θ1 = lnLn,θ0,θ1 =
n∑
i=1

ln
fθ1(Xi)

fθ0(Xi)
=

n∑
i=1

Yi

with

Yi = ln
fθ1(Xi)

fθ0(Xi)
for i = 1, 2, . . .

In accordance to this, we get a modified sample size and a modified decision rule

N = min{n ≥ 1 : Zn,θ0,θ1 /∈ (b, a)} and δ = 1{ZN,θ0,θ1≤b},

respectively, with a = lnA and b = lnB.
If Pθ(L1,θ0,θ1 = 1) < 1 holds, the WALD SPRT has the following properties:

• The test S(B,A) is closed, that means Pθ(N <∞) = 1.

• Moments of the sample size are finite, that means EθN
k <∞ for k = 1, 2, . . .

• The theorem of WALD and WOLFOWITZ holds which ensures a pointwise opti-
mality of SPRT at the points θ0 and θ1.
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In general, the calculation of the characteristics of a WALD SPRT is difficult. In the case
of continuous random variables, Fredholm integral equations of type 2 has to be solved
to get the OC- and the ASN-function. Exact solutions are given for the exponential and
the Erlang distribution (see [1] and [9], respectively).
In this context so-called generalized SPRT’s are considered. A generalized WALD SPRT
is a SPRT which starts on stage 0 in point x,−∞ < x < ∞. Again we discriminate
between two simple hypotheses

H0 : θ = θ0 and H1 : θ = θ1 θ0, θ1 ∈ Θ, θ0 6= θ1 (2)

and apply the logarithmic likelihood ratio Zn,θ0,θ1 for n = 1, 2, . . . So we get a modified
sample size as well as a modified decision rule as follows

N(x) = inf{n ≥ 1 : x+ Zn,θ0,θ1 /∈ (b, a)} and δ(x) = 1{x+ZN,θ0,θ1≤b}.

We denote this general SPRT by (N(x), δ(x)). If the test starts on stage 0 in point x = 0
we will get the previous test (N(0), δ(0)) = (N, δ).

Theorem 2.1. Let (N(x), δ(x)) , x ∈ R, be a general WALD SPRT for the hypotheses (2)
with the operating characteristic function qθ(x) and the average sample number function
eθ(x). Under the boundary conditions

qθ(x) = 1 for x ≤ b and qθ(x) = 0 for x ≥ a

as well as

eθ(x) = 0 for x /∈ (b, a),

the OC-function and the ASN-function can be determined by

qθ(x) = Pθ(Y1 ≤ b− x) +

a∫
b

qθ(z)gθ(z − x)dz, (3)

eθ(x) = 1 +

a∫
b

eθ(z)gθ(z − x)dz (4)

for b ≤ x ≤ a. gθ(y) is the density function of the random variable Y1 = ln
fθ1 (X1)

fθ0 (X1)
.

Proof. see [3]

As mentioned before we can solve these integral equations only for exponential and Erlang
distributed random variables. Approximate solutions can be obtained by two ways. On
the one hand we can get an approximately solution by discretization of the range of X. On
the other hand a solution can be found by dividing the range of Y into intervals of equal
length. Both methods transform continuous random variables into discrete variables. In
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the following we apply the first method.

We divide the range X into disjunct groups or classes X1, . . . ,Xm with

Xi = [xi−1, xi), Xi ∩ Xj = ∅, i 6= j and
m⋃
i=1

Xi = X .

We denote this partition by G = (X1, . . . ,Xm). A detailed description of such a classifi-
cation is given in [3]. Now we assume that instead of the random variable X a random
variable XG is observed where

XG = k ⇔ X ∈ Xk k = 1, . . . ,m

holds. The probability function of XG is determined by

pGθ (k) = Pθ(X
G = k) = Pθ(X ∈ Xk) k = 1, . . . ,m.

Now we consider a WALD SPRT for the hypotheses (2) based on classification G which
starts on stage 0 in point x ∈ R. Let

Y G
i = ln

pGθ1(X
G
i )

pGθ0(X
G
i )
, i = 1, 2, . . .

be on observation stage i the corresponding test statistic to XG
i . Then we obtain on stage

n a modified test statistic

ZG
n,θ0,θ1

=
n∑
i=1

Y G
i .

With stopping bounds a and b, −∞ < b < 0 < a < ∞, the sample size and the decision
rule for a discretized generalized SPRT is then given by

NG(x) = inf{n ≥ 1 : x+ ZG
n,θ0,θ1

/∈ (b, a)} and δG(x) = 1{x+Z
NG(x),θ0,θ1

}.

This test is denoted by (NG(x), δG(x)). Because of the random variables X1, X2, . . . are
assumed to be i.i.d. random variables we only have to consider XG

1 and Y G
1 , respectively.

Let be YG = (yG1 , . . . , y
G
m) the range of Y G

1 where yGk defined by yGk = ln
pGθ1

(k)

pGθ0
(k)
, k =

1, . . . ,m. In order to transform the integral equations into a linear system of equations,
the range of the test statistic {x + ZG

n,θ0,θ1
}∞n=1 has to be adapted to the discretization.

Let s > 0 be a discretization parameter and h an interval length according to

h =
a− b
s

.
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Then the critical inequality b <
∑n

i=1 Y
G
i < a of test (NG(x), δG(x)) can be written as

0 < − b
h

+
n∑
i=1

Y G
i

h
<
a− b
h

= s, n = 1, 2, . . .

By rounding we get a whole-numbered random variable

Ỹ G
i = round

(
Y G
i

h

)
i = 1, 2, . . .

and a whole-numbered starting point

c̃ = round

(
− b
h

)
.

The probability function p̃Gθ (k) of the i.i.d. random variables Ỹ G
1 , Ỹ

G
2 , . . . can be deter-

mined by

p̃Gθ (k) = Pθ(Ỹ
G
1 = k) =

m∑
i=1

pGθ (i)1{ỹGi =k} k ∈ Γ (5)

with ỹGi = round(
yGi
h

) for i = 1, . . . ,m and pGθ (i) = Pθ(Y
G
1 = yGi ) = Pθ(X

G
1 = i) =

Pθ(X1 ∈ Xi). For sufficiently large values of s the variables ỹGi , i = 1, . . . ,m, are different
from each other and we obtain instead of (5)

p̃Gθ (k) =

{
pGθ (i) if k ∈ {ỹG1 , . . . , ỹGm} and k = ỹGi
0 otherwise.

The sample size and the decision rule of test (ÑG, δ̃G) are now given by

ÑG = inf{n ≥ 1 : c̃+
n∑
i=1

Ỹ G
i /∈ (0, s)} and δ̃G = 1{c̃+Z

ÑG,θ0,θ1
}

with ZÑG,θ0,θ1
=

ÑG∑
i=1

Ỹ G
i .

For the computation of the characteristics of test (ÑG, δ̃G) it is necessary again to consider
corresponding generalized SPRT’s (ÑG

k , δ̃
G
k ), which start on stage 0 in point k ∈ Γ. The

sample size ÑG
k and the decision rule δ̃Gk for k = 1, . . . , s− 1 are defined by

ÑG
k = inf{n ≥ 1 : k +

n∑
i=1

Ỹ G
i /∈ (0, s)} and δ̃Gk = 1{k+Z

ÑG
k
,θ0,θ1

}

with ZÑG
k ,θ0,θ1

=
ÑG
k∑

i=1

Ỹ G
i .
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Computation of the OC-function

Let q̃Gθ (k) = Eθδ̃
G
k be the OC-function of test (ÑG

k , δ̃
G
k ) for k ∈ Γ and θ ∈ Θ. Under

boundary conditions

q̃Gθ (k) = 1 for k ≤ 0 and q̃Gθ (k) = 0 for k ≥ s (6)

the integral equation (3) becomes a system of simultaneous linear equations

q̃Gθ (k) =
∞∑

j=−∞

c̃θkj q̃
G
θ (j) = ãGk +

s−1∑
j=1

c̃θkj q̃
G
θ (j), k = 1, . . . , s− 1, (7)

with unknowns q̃Gθ (1), . . . , q̃Gθ (s− 1). The coefficients c̃θkj and ãθk are determined by

c̃θkj = Pθ(k + Ỹ G
1 = j) = Pθ(Ỹ

G
1 = j − k) = p̃Gθ (j − k), (8)

ãθk = Pθ(k + Ỹ G
1 ≤ 0) =

0∑
j=−∞

1 · c̃θkj =
0∑

j=−∞

p̃Gθ (j − k) = Pθ(Ỹ
G
1 ≤ −k).

We obtain the OC-function QG(θ) of test (NG, δG) approximately from

QG(θ) = Eθδ
G ≈ Eθδ̃

G
c̃ = q̃Gθ (c̃) (9)

with c̃ = round
(
− b
h

)
.

Computation of the ASN-function

The ASN-function can be determined analogously to the OC-function. Let ẽGθ (k) be the
average sample number of test (ÑG

k , δ̃
G
k ), k ∈ Γ. With the boundary condition

ẽGθ (k) = 0 for k /∈ (0, s)

the integral equation (4) can be modified to a linear system of equations

ẽGθ (k) = 1 +
s−1∑
j=1

c̃θkj ẽ
G
θ (j), k = 1, . . . , s− 1, (10)

with unknowns ẽGθ (1), . . . , ẽGθ (s−1). The probabilities c̃θkj can be calculated in accordance
to (8). Finally, we get an approximation of the average sample number of test (NG, δG)
through

EθN
G ≈ EθÑ

G = ẽGθ (c̃) (11)

with c̃ = round
(
− b
h

)
.
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2.2 Sequential test for Weibull distributed observations

In this section we consider the Weibull distribution itself and design two WALD SPRTs
for testing the parameter β of the Weibull distribution while the parameter α remains
constant 1.

2.2.1 Testing for early failure

The Weibull distribution, which is named after the Swedish engineer and mathematician
Waloddi Weibull, plays an important role in analyzing lifetime and reliability. Fatigue of
material, failure of electronic components or statistical determination of wind velocities
are typical applications of the Weibull distribution.

Definition 2.1. A random variable X will be called Weibull distributed with para-
meters α > 0 and β > 0, if it has the density function

f(x) =

{
αβxβ−1e−αx

β
x > 0

0 x ≤ 0.
(12)

The corresponding distribution function, expectation value and variance are

F (x) =

{
1− e−αxβ x > 0

0 x ≤ 0,

EX =

(
1

α

)( 1
β )

Γ

(
1

β
+ 1

)
,

D2X = (
1

α
)(

2
β )

[
Γ

(
2

β
+ 1

)
− Γ

(
1

β
+ 1

)2
]
.

with α > 0, β > 0. Figure 1 shows the effects of parameter variation with respect to the
density function (12).

In the following we assume α = 1 and denote the parameter β by θ. Under the assumption
of a Weibull distributed population X with density function

fθ(x) =

{
θxθ−1e−x

θ
x > 0

0 x ≤ 0
with θ > 0

and range X = [0,∞) we consider a sequence of i.i.d. random variables X1, X2, . . . for
discriminating between hypotheses
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Figure 1: Density function and distribution function

H
(1)
0 : θ = θ0 = 1− ε1 and H

(1)
1 : θ = θ1 = 1 0 < ε1 < 1.

Then we get for the likelihood ratio for n = 1, 2, . . .

L
(1)
n,θ0,θ1

=
n∏
i=1

fθ1(Xi)

fθ0(Xi)
=

n∏
i=1

e−Xi

(1− ε1) exp(−X1−ε1
i )X−ε1i

=
n∏
i=1

exp(−Xi +X1−ε1
i )Xε1

i

1− ε1

as well as for the logarithmic likelihood ratio

Z
(1)
n,θ0,θ1

= ln L
(1)
n,θ0,θ1

=
n∑
i=1

[
−Xi +X1−ε1

i + lnXε1
i − ln(1− ε1)

]
=

n∑
i=1

Y
(1)
i .

We continue our observations as long as

lnB1 < Z
(1)
n,θ0,θ1

< lnA1 (13)

holds. The sample size and the decision rule are then

N (1) = min{n ≥ 1 : Z
(1)
n,θ0,θ1

/∈ (b1, a1)} and δ(1) = 1{Z(1)
N,θ0,θ1

≤b1}

with b1 = lnB1 and a1 = lnA1 and denote this test by (N (1), δ(1)). Characteristics of this
test are considered in subsection 2.2.3.
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2.2.2 Testing for late failure

We consider again the Weibull distributed population as in the previous subsection. But
now we discriminate between the hypotheses

H
(2)
0 : θ = θ0 = 1 and H

(2)
1 : θ = θ1 = 1 + ε2 0 < ε2.

For n = 1, 2, . . . we obtain the likelihood ratios as follows:

L
(2)
n,θ0,θ1

=
n∏
i=1

fθ1(Xi)

fθ0(Xi)
=

n∏
i=1

(1 + ε2) exp(−X1+ε2
i )Xε2

i

e−Xi
=

n∏
i=1

(1 + ε2) exp(Xi −X1+ε2
i )Xε2

i ,

Z
(2)
n,θ0,θ1

= ln L
(2)
n,θ0,θ1

=
n∑
i=1

[
Xi −X1+ε2

i + lnXε2
i + ln(1 + ε2)

]
=

n∑
i=1

Y
(2)
i .

As long as
lnB2 < Z

(2)
n,θ0,θ1

< lnA2 (14)

holds and the decision rule is
δ(2) = 1{Z(2)

N,θ0,θ1
≤b2}

we continue our observations and get the sample size from

N (2) = min{n ≥ 1 : Z
(2)
n,θ0,θ1

/∈ (b2, a2)}

with b2 = lnB2 and a2 = lnA2. Then we obtain this test (N (2), δ(2)).

2.2.3 Determination of the characteristics

Analogous to section 2.1 we determine the characteristics of both tests by a discretization
scheme. Let the group bounds x(k), k = 0, . . . ,m, are chosen in accordance to

0 = x0 < x1 < . . . < xm−1 < xm =∞.

For k = 1, . . . ,m the probabilities pθ(k) = Pθ(X
G = k) are identical for both tests,

because of the same underlying population X. We get

pθ(k) = Pθ(X
G = k) = Pθ(X ∈ Xk) = Pθ(X ∈ [xk−1, xk))

= Fθ(xk)− Fθ(xk−1)

= e−x
θ
k−1 − e−xθk .

Due to this grouping we consider instead of random variables Y
(1)
1 and Y

(2)
1 the grouped

random variables Y G,1
1 and Y G,2

1 . The ranges of the random variables YG,i = {y(i)
1 , . . . , y

(i)
m },

where
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y
(1)
k = ln

[
e−xk−1 − e−xk

e−x
1−ε
k−1 − e−x1−ε

k

]
and y

(2)
k = ln

[
e−x

1+ε
k−1 − e−x1+ε

k

e−xk−1 − e−xk

]
,

k = 1, . . . ,m. Analogously to the previous section we have to adapt the ranges of {x +∑n
i=1 Y

G,j
i }∞n=1, j = 1, 2, to the discretization scheme. Let to a given integer s interval

lengths h1 and h2 be defined by hj =
aj−bj
s
, j = 1, 2. Then the critical inequalities (13)

and (14) transform into

0 < − bj
hj

+
n∑
i=1

Y G,j
i

hj
<
aj − bj
hj

=: sj j = 1, 2.

After rounding we obtain integer-valued random variables Ỹ G,1
i and Ỹ G,2

i and integer-
valued starting points c̃1 and c̃1 according to

Ỹ G,j
i = round

(
Y G,j
i

hj

)
j = 1, 2, i = 1, 2, . . . (15)

and c̃j = round

(
− bj
hj

)
j = 1, 2.

The corresponding group probabilities are then

p̃G,jθ (k) = Pθ(Ỹ
(j)
1 = k) =

m∑
r=1

pθ(r)1{ỹG,jr =k} k = 0,±1,±2, . . . , j = 1, 2

with ỹG,jk = round
(
yG,jk

hj

)
, j = 1, 2 and k = 1, . . . ,m. If s is large enough the values

ỹG,j1 , . . . , ỹG,jm will be different and can be calculated by

p̃
(j)
θ (k) =

{
pθ(r) for k ∈ {ỹG,j1 , . . . , ỹG,jm } and k = ỹG,jr ,

0 otherwise.

Using these corresponding group probabilities we can solve the linear systems of equations
(7) and (10) and obtain characteristics QG,j(θ) and EθN

G,j, j = 1, 2, for both tests.

2.2.4 Example and robustness analysis

In this section we will illustrate the tests for early and for late failures considered above.
With respect to a test for random failures which is described in section 3.3 we use F-
optimal group bounds according to [4]. Table 1 shows these bounds for m = 2, . . . , 10.
In the following we denote by α and β the error probabilities of the corresponding tests
and use the approximations of WALD as stopping bounds in accordance to [2], i.e.
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m 2 3 4 5 6 7 8 9 10

x0 0 0 0 0 0 0 0 0 0

x1 1.5936 1.0176 0.7540 0.6004 0.4993 0.4276 0.3739 0.3323 0.2991

x2 2.6112 1.7716 1.3545 1.0997 0.9269 0.8015 0.7062 0.6314

x3 3.3652 2.3720 1.8538 1.5273 1.3008 1.1338 1.0053

x4 3.9657 2.8714 2.2813 1.9012 1.6331 1.4329

x5 4.4650 3.2989 2.6553 2.2336 1.9322

x6 4.8925 3.6729 2.9876 2.5326

x7 5.2665 4.0052 3.2867

x8 5.5988 4.3042

x9 5.8979

Table 1: F-optimal group bounds for θ = 1

B =
β

1− α
= B∗ and A =

1− β
α

= A∗. (16)

With these stopping bounds

Q(θ0) ≈ 1− α Q(θ1) ≈ β,

holds for a WALD SPRT.

Example 1:

We choose the error probabilities α = β = 0.05 and the discretization parameter s = 500.
The parameter α of the Weibull distribution is chosen 1.

Test for early failures

For testing for early failures let be ε1 = 0.2. Then we obtain

H
(1)
0 : θ = θ0 = 0.8 and H

(1)
1 : θ = θ1 = 1.

By relation (16) we get stopping bounds a1 = lnA∗1 = 2.94444 and b1 = lnB∗1 = −2.94444
and according to (15) a starting point c̃1 = 250 with h1 = a1−b1

s
.

We only consider partitions with 3 till 10 groups because dividing the range X of random
variable X into two groups do not give us enough information about the hypotheses. The
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reason is that the group bound lies between two intersections of the density function of
the Weibull distribution for β = 0.8 and β = 1 and β = 1 and β = 1.24, respectively.
This is shown in figure 2.

Figure 2: Comparison of the density function for both tests

The computed OC-function for groups 3, . . . , 10 and corresponding the ASN-function is
shown in figure 3.

Figure 3: Characteristics for groups 3, . . . , 10 and ε1 = 0.2

The OC-functions of different groupings are quite similar. Differences between the OC-
functions of different groups can be explained by the ”small” discretization parameter.
We can see, the average sample number decreases when the number of groups increases.
Thus, we can choose a higher number of groups and get a smaller sample number whereas
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the selectivity remains approximately unaltered.

Robustness considerations for testing for early failures

In practice the parameter value α may change to a new parameter value α̃ 6= α. To
determine the influence of the true value of α on the characteristics, it is necessary to
include this parameter in our calculations. Random variable Ỹ G,1

1 remains unchanged,
whereas the group probabilities alter to

p̃Gθ,α̃(k) =

{
pGθ,α̃(i) if k ∈ {ỹG1 , . . . , ỹGm} and k = ỹGi
0 otherwise.

where pGθ,α̃(i) = Pθ,α̃(XG = k) = Pθ,α̃(X = Xk).
By solving the linear systems of equations (7) and (10) we obtain a generalized OC-
function QG,1(θ, α̃) and a generalized ASN-function Eθ,α̃N

G,1. Figure 4 presents the in-
fluence of parameter value α for m = 10 groups on the OC-function.

Figure 4: Two-dimensional OC-function and contour lines for m = 10 and ε1 = 0.2

These considerations show that for α ≤ 0.3 the test opts for H0 without reference to pa-
rameter θ ∈ [0.5, 1.4]. Consequently the test accepts early failures permanently. If α > 0.3
holds, the OC-function will have its typical shape but with different probabilities for ac-
cepting the null or the alternative hypothesis depending on α. Analogously, figure 5 shows
the ASN-function. The test needs a small average sample number for small values of α to
decide between the hypotheses. Some values of the characteristics are displayed in table 2.
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Figure 5: Two-dimensional ASN-function and contour lines for m = 10 and ε1 = 0.2

α̃ 0.25 0.5 0.75 1 1.25 1.5 1.75 2

QG,1(θ0, α̃) 1 1 0.996 0.9464 0.8528 0.8967 0.977 0.9973

QG,1(θ1, α̃) 1 0.9952 0.5019 0.0328 0.0069 0.0111 0.0716 0.4526

Eθ0,α̃N
G,1 5.174 12.8659 32.9387 80.5858 142.4465 162.2592 125.4194 86.6043

Eθ1,α̃N
G,1 7.3245 29.0338 112.9595 88.6749 84.597 108.3077 173.4256 260.8086

Table 2: Probabilities for accepting hypotheses H
(1)
0 and H

(1)
1 for different values of α̃

Testing for late failures

Let be ε2 = 0.24. Then we get

H
(2)
0 : θ = θ0 = 1 and H

(2)
1 : θ = θ1 = 1.24.

By relation (16) the stopping bounds are a2 = lnA∗2 = 2.94444 and b2 = lnB∗2 = −2.94444.
According to (15) the test starts in c̃2 = 250. The characteristics are shown in figure 6
and we get a similar result as in the previous test. But the characteristics are shifted to
the right because of different hypotheses.
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Figure 6: Characteristics for groups 3, . . . , 10 and ε2 = 0.24

Robustness consideration for testing for late failures

Again we consider the influences of parameter α if α changes to a new parameter α̃ 6= α.
The procedure to compute the characteristics is the same like in the test for early failures.
Hence we only present the corresponding results in figure 7 and 8.

Figure 7: Two-dimensional OC-function and contour linesfor m = 10 and ε2 = 0.24

The pictures of the OC-function correspond to the pictures of the previous test, but one
can see the differences between both tests because of different hypotheses. Especially
the projection of the OC-function in the (αθ)− level shows these differences. The ASN-
function reveals the same effect. Some values of the characteristics are presented in table
3.
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Figure 8: Two-dimensional ASN-function and contour linesfor m = 10 and ε2 = 0.24

α̃ 0.25 0.5 0.75 1 1.25 1.5 1.75 2

QG,2(θ0, α̃) 1 1 0.9970 0.9636 0.9201 0.9581 0.9919 0.9990

QG,2(θ1, α̃) 1 0.9965 0.5551 0.0458 0.0146 0.0342 0.1957 0.6920

Eθ0,α̃N
G,2 3.8712 11.4525 31.1848 74.6657 121.612 122.5196 91.8208 66.3865

Eθ1,α̃N
G,2 76.2761 28.1285 117.6429 99.6438 97.4744 129.6633 203.9023 225.1246

Table 3: Probabilities for accepting hypotheses H
(2)
0 and H

(2)
1 for different values of α̃

3 Sobel-Wald test

In practice there are many situations where we have to decide between more than two
hypotheses. That is why this chapter deals with the Sobel-Wald test for discriminating
between three hypotheses based on grouped observations. Again our aim is to calculate
the OC- and the ASN-function. This can be done for the OC-function, easily by means
of the OC-functions of the SPRTs of the previous section, see [6]. Unfortunately for the
average sample number function such formulas do not exist. In the sequel we introduce a
special algorithm to calculate these characteristics.

3.1 General description

Let X1, X2, . . . be a sequence of i.i.d. random variables with a given density function
fθ(x), θ ∈ Θ, with respect to a measure µ and range X . Our aim is to discriminate
between the three simple hypotheses

H0 : θ = θ0, H1 : θ = θ1 and H2 : θ = θ2 (17)
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with θ0, θ1, θ2 ∈ Θ, θ0 < θ1 < θ2,. According to the Sobel-Wald test two WALD SPRTs
S(bi, ai), i = 1, 2, according to section 2.1 are considered for discriminating between the
hypotheses

Hi−1 : θ = θi−1 and Hi : θ = θi θi−1, θi,∈ Θ, θi−1 < θi i = 1, 2

with bi < ai, i = 1, 2. The appropriate likelihood ratios for test S(bi, ai), i = 1, 2, are
given by

Ln,θi−1,θi =
n∏
j=1

fθi(Xj)

fθi−1
(Xj)

, i = 1, 2,

or

Zn,θi−1,θi = lnLn,θi−1,θi =
n∑
j=1

ln
fθi(Xj)

fθi−1
(Xj)

=
n∑
j=1

Y
(i)
j ,

respectively, with the critical inequalities

Bi < Ln,θi−1,θi < Ai ⇔ bi < Zn,θi−1,θi < ai, i = 1, 2,

where ai = lnAi and bi = lnBi for i = 1, 2,. The sample sizes of these tests S(bi, ai), i =
1, 2, as well as the decision rules are given by

Ni = inf{n ≥ 1 : Zn,θi−1,θi /∈ (bi, ai)} and δi = 1{ZN,θi−1,θi
≤bi} for i = 1, 2.

Now we define the Sobel-Wald test as follows.

Definition 3.1. (Sobel-Wald test)
Tests S(b1, a1) and S(b2, a2) are performed simultaneously by observing X1, X2, . . . On
each observation stage n = 1, 2, . . . we decide between the following options:

(i) Acceptance of hypothesis H0 if and only if S(b1, a1) accepts H0.

(ii) The test will accept hypothesis H1 if and only if test S(b1, a1) accepts hypothesis H1

after acceptance of this hypothesis by test S(b2, a2) or if test S(b2, a2) accepts H1

after acceptance of H1 by test S(b1, a1).

(iii) Acceptance of hypothesis H2 if and only if S(b2, a2) accepts H2.

(iv) Continue testing by observing Xn+1 if none of (i)-(iii) is true.

This test is called a Sobel-Wald test S(b1, b2, a1, a2).
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Test S(b1, b2, a1, a2) for instance may accept hypothesis H1 if the test statistic exceeds the
boundary b2 and later our test statistic exceeds the boundary a1, see figure 9. Once the test
statistic drops below b2 test S(b2, a2) is finished and only test S(b1, a1) has to discriminate
between hypotheses H0 and H1. In this case hypothesis H2 cannot be accepted by the
Sobel-Wald test S(b1, b2, a1, a2) anymore. If the test statistic exceeds a1, hypothesis H1

will be accepted. This holds also vice versa.
Figure 9 shows the regions of acceptance of test S(b1, b2, a1, a2) for the standard situation
where we can transform the likelihood ratios into a sum of random variables Xi. If we
apply the Weibull distribution to the Sobel-Wald test, then we cannot transform the
likelihood ratios in this manner. So we do not have a standard situation here.

Figure 9: Regions of acceptance of a Sobel-Wald test in the standard situation

Let N denote the sample size of Sobel-Wald tests S(b1, b2, a1, a2) and N1 and N2 the
sample sizes of test S(b1, a1) and S(b2, a2), respectively. Then

N = max{N1, N2}

is valid. From this equation it follows for every observation stage n ≥ 1 and θ0 < θ1 < θ2

that

Pθ(N > n) = Pθ(N1 > n) + Pθ(N2 > n)− Pθ({N1 > n} ∩ {N2 > n})

holds. If both SPRTs S(b1, a1) and S(b2, a2) are closed, test S(b1, b2, a1, a2) will be closed
as well and all moments of the sample size N will be finite (see [5], p.259).

Theorem 3.1. We assume, that the tests S(b1, a1) and S(b2, a2) are closed and some
compatibility conditions are fulfilled, so that we have our standard situation. Then the
OC-functions of the Sobel-Wald test S(b1, b2, a1, a2) satisfy for θ0 < θ1 < θ2 the relations
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Q0(θ) = Q(1)(θ),

Q1(θ) = Q(2)(θ)−Q(1)(θ),

Q2(θ) = 1−Q(2)(θ),

and

Q0(θ0) +Q1(θ1) +Q2(θ2) = 1,

where Q(i)(θ) denotes the OC-function of test S(bi, ai), i = 1, 2.

Proof. See [5] on p. 259f.

Hence, the calculation of the OC-functions of the Sobel-Wald test S(b1, b2, a1, a2) accord-
ing to (18) is quite simple, if one knows the OC-functions of the SPRTs S(b1, a1) and
S(b2, a2) and if some compatibility conditions are fulfilled. For the ASN-function such
identities do not exist. So we present now a special algorithm for computing the ASN-
function.

3.2 Determination of the characteristics by discretization

As mentioned above we will now present an algorithm to compute the average sample
number. This algorithm can also compute the OC-function of the Sobel-Wald test. An-
other method is mentioned in [7] for Erlang distributed random variables.
The algorithm in this section is based on the random variables Y G,i

1 , i = 1, 2, which
are transformed according to the discretization method shown in section 2 in integer-
valued random variables Ỹ G,i

1 , i = 1, 2. The interval (0, si) corresponds to interval
(bi, ai), i = 1, 2. By composing these two tests, one gets a grid, which is shown in figure
10.
Denote by

G = {(i, j) ∈ Γ2 : 0 ≤ i ≤ s1, 0 ≤ j ≤ s2}.

the set of the corresponding grid points. Because both random variables Ỹ G,1
1 and Ỹ G,2

1

depend on the same population X, we can determine the group probabilities pθ(k) by

pθ(k) := p̃
(1)
θ (k) = p̃

(2)
θ (k) k = 0,±1,±2, . . .

and the random variables Ỹ G,1
1 and Ỹ G,2

1 have the form

Ỹ G,1
1 =


ỹG,11 with p̃θ(1)

ỹG,12 with p̃θ(2)

. . .

ỹG,1m with p̃θ(m)

Ỹ G,2
1 =


ỹG,21 with p̃θ(1)

ỹG,22 with p̃θ(2)

. . .

ỹG,2m with p̃θ(m).
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Figure 10: Discretization

We assume

ỹG,1i ≥ ỹG,2i for i = 1, . . . ,m. (19)

If ỹG,1i = ỹG,2i holds we suppose

ỹG, oi < 0 for i = 1, . . . ,m and o = 1, 2.

Let be S(b1, a1) and S(b2, a2) two generalized SPRTs, introduced in section 2, which
starts on stage 0 in point x ∈ (−∞,∞) and y ∈ (−∞,∞), respectively. Analogous to the
theory of SPRTs we define a generalized Sobel-Wald test that starts in point (x, y). After
discretization both SPRTs, they start on stage 0 in point c̃1 ∈ (0, s1) and c̃2 ∈ (0, s2),
respectively. Then the generalized Sobel-Wald test is transformed into a discretized and
generalized Sobel-Wald test with the integer-valued starting point (c̃1, c̃2). We assume
that this point lies on or below the diagonal, respectively, in our grid (see figure 10).
Analog to section 2.1 we consider a discretized and generalized Sobel-Wald test which
starts on stage 0 in point (i, j) with i ∈ (0, s1) and j ∈ (0, s2).

Definition 3.2. The Sobel-Wald test S(b1, b2, a1, a2) for discriminating between the hy-
potheses (17) which starts on observation stage 0 in point (x, y), x, y ∈ (−∞,∞), is called
generalized Sobel-Wald test

Sxy(b1,b2, a1, a2).
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Let denote q
(l)
θ,xy, l = 0, 1, 2, the probabilities of accepting hypothesis Hl by Sobel-Wald test

Sxy(b1, b2, a1, a2) and eθ,xy = EθNxy the average sample number with the sample size Nxy

of the Sobel-Wald test Sxy(b1, b2, a1, a2). Because of discretization, shown in section 2.1,
we get a discretized and generalized Sobel-Wald test Sij(b1,b2, a1, a2) which starts
on stage 0 in point (i, j), i ∈ (0, s1), j ∈ (0, s2).
The decision rules for accepting hypothesis Hl, l = 0, 1, 2, by Sobel-Wald test Sij(b1, b2, a1, a2)

is denoted by δ
(l)
ij and the corresponding OC-functions by q

(l)
θ,ij = Eθδ

(l)
ij . Additionally let Nij

be the sample size and eθ,ij = EθNij the average sample number of test Sij(b1, b2, a1, a2).

The Sobel-Wald test S(b1, b2, a1, a2), which we are interested in, is a specialized, gener-
alized Sobel-Wald test and corresponds to test S00(b1, b2, a1, a2). Hence we only consider
discretized and generalized Sobel-Wald tests and donate them with Sij. This test can
be interpreted as a two-dimensional random walk in the grid, shown in figure 10, which
starts in point (c̃1, c̃2) and is dependent on the values ỹG,ir , i = 1, 2, r = 1, . . . ,m. The
test accepts the hypotheses (17) depending on where the random walk leaves the region

G. Further we refer to the values ỹG,ir as ỹ
(i)
r for i = 1, 2. We will see that we can start

a corresponding algorithm in point (s1 − 1, 1) and that we can calculate then the charac-
teristics stepwise till we reach our starting point (c̃1, c̃2).

Computation of the OC-functions

For computing the OC-functions q
(o)
θ,ij, o = 0, 1, 2, we need the values on the x- and the y-

axis and suitable boundary conditions for both underlying SPRTs (6). The values on the
x-axis and the y-axis are solutions of the linear systems of equations (7) of test S(b1, a1)
and S(b2, a2), respectively. We denote them by the vectors

q̃
(1)
θ =

 q̃
(1)
θ (1)

. . .

q̃
(1)
θ (s1 − 1)

 and q̃
(2)
θ =

 q̃
(2)
θ (1)

. . .

q̃
(2)
θ (s2 − 1)

 .
Now we can formulate a theorem for computing the OC-functions.

Theorem 3.2. Let be Sij a discretized and generalized Sobel-Wald test with starting point

(i, j) according to definition 3.2. Then we can compute the OC-functions q
(l)
θ,ij, l = 0, 1, 2

under the constraints

q
(0)
θ,ij = q̃

(1)
θ (i) for 0 < i < s1, j ≤ 0,

q
(0)
θ,ij = 0 for i ≥ s1, −∞ < j <∞,
q
(0)
θ,ij = 1 for i ≤ 0, −∞ < j <∞,
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q
(1)
θ,ij = q̃

(2)
θ (j) for i ≥ s1, 0 < j < s2,

q
(1)
θ,ij = 1− q̃(1)

θ (i) for 0 < i < s1, j ≤ 0,

q
(1)
θ,ij = 0 for i ≤ 0, −∞ < j <∞

or −∞ < i <∞, j ≥ s2,

q
(1)
θ,ij = 1 for i ≥ s1, j ≤ 0

and q
(2)
θ,ij = 1− q̃(2)

θ (j) for i ≥ s1, 0 < j < s2,

q
(2)
θ,ij = 0 for −∞ < i <∞, j ≤ 0,

q
(2)
θ,ij = 1 for −∞ < i <∞, j ≥ s2

by

q
(0)
θ,ij =

m∑
r=1

q
(0)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r
, (20)

q
(1)
θ,ij =

m∑
r=1

q
(1)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r
, (21)

q
(2)
θ,ij =

m∑
r=1

q
(2)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r
. (22)

Here c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

denotes the “transition probability” from point (i, j) to point (i+ỹ
(1)
r , j+

ỹ
(2)
r ). With group probabilities pθ(r) it holds

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

= pθ(r).

Proof. First we show equation (20). This proof is analogue to the proof of theorem 2.1
which one can see in [3]. Let δlij, l = 0, 1, 2 be the decision rules. The recursion equation
for determining the OC-function can be shown by means of the law of total probability

q
(0)
θ,ij = Eθδ

(0)
ij = Eθ

[
Eθ

(
δ
(0)
ij |XG

1

)]
=

m∑
r=1

Eθ

(
δ
(0)
ij |XG

1 = r
)
Pθ(X

G
1 = r)

=
m∑
r=1

q
θ,i+ỹ

(1)
r ,j+ỹ

(2)
r
Pθ(X

G
1 = r).

A transition from point (i, j) to point (i+ ỹ
(1)
r , j + ỹ

(2)
r ) follows from condition {XG

1 = r}
and the probability for accepting hypothesis H0 in point (i+ ỹ

(1)
r , j + ỹ

(2)
r ) is

q
(0)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

= Eθδ
(0)

i+ỹ
(1)
r ,j+ỹ

(2)
r

.
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The transition probabilities are c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

= Pθ(X
G
1 = r) = pθ(r).

Equations (21) and (22) can be shown in an analogous way.

Now we consider condition (19) again. If for one uin{1, . . . ,m} equation ỹ
(1)
u = ỹ

(2)
u = 0

holds, we have to compute the OC-functions as follows

q
(0)
θ,ij =

1

1− c̃θ
ii+ỹ

(1)
u ,jj+ỹ

(2)
u

[
u−1∑
r=1

q
(0)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

+
m∑

r=u+1

q
(0)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

]

q
(1)
θ,ij =

1

1− c̃θ
ii+ỹ

(1)
u ,jj+ỹ

(2)
u

[
u−1∑
r=1

q
(1)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

+
m∑

r=u+1

q
(1)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

]

q
(2)
θ,ij =

1

1− c̃θ
ii+ỹ

(1)
u ,jj+ỹ

(2)
u

[
u−1∑
r=1

q
(2)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

+
m∑

r=u+1

q
(2)

θ,i+ỹ
(1)
r ,j+ỹ

(2)
r

c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

]
.

If ỹ
(1)
u = ỹ

(2)
u = 0, u ∈ {1, . . . ,m} holds for more than one u, we must modify the equations

for computing the OC-function again.
According to equation (9) we can determine the OC-functions of the Sobel-Wald test
S(b1, b2, a1, a2) for the hypotheses H0, H1 and H2 by

Q0(θ) ≈ q
(0)
θ,c̃1,c̃2

, Q1(θ) ≈ q
(1)
θ,c̃1,c̃2

and Q2(θ) ≈ q
(2)
θ,c̃1,c̃2

with c̃i =
(
− bi
hi

)
, i = 1, 2.

Computation of the ASN-function

For computing the average sample number function of our Sobel-Wald test, we have to
know the ASN-functions of tests S(b1, a1) and S(b2, a2) on the x- and y-axis, respectively.
Let the solutions of the linear system of equations (10) be

ẽ
(1)
θ =

 ẽ
(1)
θ (1)

. . .

ẽ
(1)
θ (s1 − 1)

 and ẽ
(2)
θ =

 ẽ
(2)
θ (1)

. . .

ẽ
(2)
θ (s2 − 1)

 .
Then we can establish a corresponding theorem for the average sample number function.

Theorem 3.3. Let Sij be a discretized and generalized Sobel-Wald test with starting point
(i, j) and sample number Nij according to definition 3.2. Then we obtain the ASN-function
under the boundary conditions
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eθ,ij = 0 for i ≤ 0, −∞ < j <∞,
or −∞ < i <∞, j ≥ s2,

or i ≥ s1, j ≤ 0,

eθ,ij = ẽ
(1)
θ (i) for 0 < i < s1, j ≤ 0,

eθ,ij = ẽ
(2)
θ (j) for i ≥ s2, 0 < j < s2,

by

eθ,ij = 1 +
m∑
r=1

e
θ,i+ỹ

(1)
r j+ỹ

(2)
r
c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

with transition probabilities c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

= pθ(r) from point (i, j) to point (i+ỹ
(1)
r , j+ỹ

(2)
r ).

Proof. Because of the law of total probability we can compute the average sample number
as follows:

eθ,ij = EθNij = Eθ
[
Eθ
(
Nij|XG

1

)]
=

m∑
r=1

Eθ
(
Nij|XG

1 = r
)
Pθ(X

G
1 = r)

=
m∑
r=1

Eθ

(
1 +N

i+ỹ
(1)
r ,j+ỹ

(2)
r

)
Pθ(X

G
1 = r) = 1 +

m∑
r=1

Eθ

(
N
i+ỹ

(1)
r ,j+ỹ

(2)
r

)
Pθ(X

G
1 = r)

= 1 +
m∑
r=1

e
θ,i+ỹ

(1)
r ,j+ỹ

(2)
r
Pθ(X

G
1 = r).

By condition {XG
1 = r} we have a transition from point (i, j) to point (i + ỹ

(1)
r , j + ỹ

(2)
r )

and the average sample number in point (i+ ỹ
(1)
r , j + ỹ

(2)
r ) is

e
θ,i+ỹ

(1)
r ,j+ỹ

(2)
r

= EθNi+ỹ
(1)
r ,j+ỹ

(2)
r
.

The transition probabilities are again c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

= Pθ(X
G
1 = r) = pθ(r).

If equation ỹ
(1)
u = ỹ

(2)
u = 0, u ∈ {1, . . . ,m} holds for one u, we have to modify our formulas

and get

eθ,ij =
1

1− c̃θ
ii+ỹ

(1)
u ,jj+ỹ

(2)
u

[
1 +

u−1∑
r=1

e
θ,i+ỹ

(1)
r ,j+ỹ

(2)
r
c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

+
m∑

r=u+1

e
θ,i+ỹ

(1)
r ,j+ỹ

(2)
r
c̃θ
ii+ỹ

(1)
r ,jj+ỹ

(2)
r

]
.

The average sample number can be determined in line with (11) by
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EθN = eθ,c̃1,c̃2 .

Algorithm for computing the OC-functions and the ASN-function

Under the conditions for the random variables and for the point (c̃1, c̃2), as mentioned

above, we start the algorithm in point (s1−1, 1) and calculate the OC-functions q
(l)
θ,s1−1,1, l =

0, 1, 2, as well as the average sample number eθ,s1−1,1 in this point. After that we compute
the characteristics in point (s1 − 2, 1) and so on. The order of computation is shown in
figure 10. Because of equation (9) holds for both SPRTs, we have to finish our algorithm

in point (c̃1, c̃2). For each point (i + ỹ
(1)
r , j + ỹ

(2)
r ) we have to distinguish between the

following cases.

(1) s1 − k + ỹ
(1)
r < s1 and l + ỹ

(2)
r > 0

Because (19) holds, only points below the diagonal (see figure 10) the test of 0 <

s1 − k + ỹ
(1)
r and l + ỹ

(2)
r > s2 can be neglected. If above condition holds, the

random walk will reach an inner point of the grid and the values of the unknowns
q
(o)

i+ỹ
(1)
r ,j+ỹ

(2)
r

, o = 0, 1, 2 and e
θ,i+ỹ

(1)
r j+ỹ

(2)
r

are

q
(0)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= q
(0)

θ,s1−(l+ỹ
(2)
r ),k−ỹ(1)r

,

q
(1)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= q
(1)

θ,s1−(l+ỹ
(2)
r ),k−ỹ(1)r

,

q
(2)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= q
(2)

θ,s1−(l+ỹ
(2)
r ),k−ỹ(1)r

,

e
θ,i+ỹ

(1)
r j+ỹ

(2)
r

= e
θ,s1−(l+ỹ

(2)
r ),k−ỹ(1)r

.

(2) s1 − k + ỹ
(1)
r ≥ s1

The random walk crosses the y-axis which terminates test S(b1, a1) and hypothesis

H0 cannot be accepted anymore. That means q
(0)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 0. For the other OC-

functions only test S(b2, a2) is decisive where three cases has are possible:

(a) l + ỹ
(2)
r ≥ s2:

q
(1)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 0, q
(2)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 1, e
θ,i+ỹ

(1)
r j+ỹ

(2)
r

= 0,

(b) l + ỹ
(2)
r ≤ 0:

q
(1)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 1, q
(2)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 0, e
θ,i+ỹ

(1)
r j+ỹ

(2)
r

= 0,

(c) 0 < l + ỹ
(2)
r < s2:

q
(1)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= q̃
(2)
θ (l + ỹ(2)

r ), q
(2)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 1− q̃(2)
θ (l + ỹ(2)

r ),

e
θ,i+ỹ

(1)
r j+ỹ

(2)
r

= ẽ
(2)
θ (l + ỹr).
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(3) l + ỹ
(2)
r ≤ 0

In this case test S(b2, a2) is stopped because the random walk crosses the x-axis.

Then hypothesis H2 cannot be accepted anymore. So we obtain q
(2)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 0.

Again we have to distinguish between three cases where only test S(b1, a1) is decisive.

(a) s1 − k + ỹ
(1)
r ≥ s1:

q
(0)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 0, q
(1)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 1, e
θ,i+ỹ

(1)
r j+ỹ

(2)
r

= 0,

(b) s1 − k + ỹ
(1)
r ≤ 0:

q
(0)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 1, q
(1)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 0, e
θ,i+ỹ

(1)
r j+ỹ

(2)
r

= 0,

(c) 0 < s1 − k + ỹ
(1)
r < s1:

q
(0)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= q̃
(2)
θ (l + ỹ(1)

r ), q
(1)

i+ỹ
(1)
r ,j+ỹ

(2)
r

= 1− q̃(2)
θ (l + ỹ(1)

r ),

e
θ,i+ỹ

(1)
r j+ỹ

(2)
r

= ẽ
(1)
θ (l + ỹr).

3.3 Testing for random failures for Weibull distributed obser-
vations

LetX1, X2, . . . be a sequence of Weibull distributed random variables with density function
according to definition 2.1. For parameter α of the Weibull distribution we suppose α = 1.
We denote the parameter β of the Weibull distribution as θ. We consider a sequence of
i.i.d. random variables X1, X2, . . . for discriminating between the hypotheses

H0 : θ = θ0 = 1− ε1, H1 : θ = θ1 = 1 and H2 : θ = θ2 = 1 + ε2

with 0 < θ0 < θ1 < θ2 and 0 < ε1 < 1, ε2 > 0. This test can be interpreted in two ways.
On the one hand this test proves the parameter θ and decides between early failures, H0,
random failures, H1, and late failures, H2, and on the other hand we will be able to decide
if an exponential distributed population is present, i.e. θ = 1. Let S(b1, a1) and S(b2, a2)
be tests according to section 2.2.1 and 2.2.2, respectively, with likelihood ratios Zn,θ0,θ1
and Zn,θ1,θ2 as follows
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S(b1, a1) : H0 : θ = θ0 = 1− ε1, H1 : θ = θ1 = 1 0 < ε1 < 1

Zn,θ0,θ1 =
n∑
i=1

Y
(1)
i =

n∑
i=1

−Xi +X1−ε1
i + ε1 lnXi − ln(1− ε1),

S(b2, a2) : H1 : θ = θ1 = 1, H2 : θ = θ2 = 1− ε2 0 < ε2

Zn,θ1,θ2 =
n∑
i=1

Y
(2)
i =

n∑
i=1

Xi −X1+ε2
i + ε2 lnXi + ln(1 + ε1).

Both tests are based on the same sequence of random variables X. Both tests are executed
as seen in section 2 so that all conditions for the algorithm are fulfilled. Then we can
determine the OC-functions Q0(θ), Q1(θ), Q2(θ) and the ASN-function EθN of the Sobel-
Wald test as described in section 3.2.

3.4 Example and robustness analysis

We want to illustrate the test for random failures on the basis of one example. Again
we do not consider the case m = 2, because we cannot compute the OC-functions of the
single SPRTs due to multiple intersections of the density function (see figure 2).

Example 2 (Continuation of example 1):

As mentioned before the Sobel-Wald test consists of two SPRTs. For this example we com-
pose the test for early failures and the test for late failures (see example 1), i.e. ε1 = 0.2
and ε2 = 0.24. So the Sobel-Wald test based on the Weibull distribution discriminates
between the hypotheses

H0 : θ = θ0 = 0.8, H1 : θ = θ1 = 1 and H1 : θ = θ2 = 1.24.

With the error probabilities α = β = 0.05 we construct an admissible test and choose
the stopping bounds according to the WALDs approximations by a1 = a2 = 2.94444, and
b1 = b2 = −2.94444. The discretization parameters are s1 = 500 and s2 = 500 and group
bounds from table 1 are used. The condition (19) is fulfilled for the random variables
Ỹ G,1

1 and Ỹ G,2
1 . The Sobel-Wald test starts in point (c̃1, c̃2) = (250, 250) because both

single tests are starting in point c̃1 = 250 and c̃2 = 250, respectively. Table 4 shows some
values of the OC-functions on points θ0 = 0.8, θ1 = 1 and θ2 = 1.24 as well as the average
sample number on these points for 3 − 10 groups. The characteristics are illustrated in
picture 11.
The OC-functions for hypothesis H2 are close together as we could see in figure 11 as
well as in table 4 whereas the OC-functions for the hypotheses H0 and H1 show clear
differences depending on the grouping. In contrast to this the average sample number is
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m 3 4 5 6 7 8 9 10

Q0(θ0) 0.9714 0.9240 0.9428 0.9624 0.9446 0.9307 0.9442 0.9464

Q1(θ1) 0.8889 0.9302 0.9290 0.9024 0.9229 0.9297 0.9221 0.9308

Q2(θ2) 0.9612 0.9594 0.9552 0.9670 0.9636 0.9618 0.9647 0.9542

Eθ0N 195.0462 151.0912 117.8287 96.3040 94.9525 92.6933 85.2092 81.1812

Eθ1N 334.1613 192.8083 164.6219 161.5785 139.7476 127.0308 127.2405 120.7312

Eθ2N 215.7308 155.9937 133.3472 110.4768 106.9654 102.0171 97.0260 100.4760

Table 4: Characteristics for 3, . . . , 10 groups on the points θ0 = 0.8, θ1 = 1 and θ2 = 1.24.

Figure 11: Characteristics for groups 3, . . . , 10 and ε1 = 0.2 as well as ε2 = 0.24

showing great differences between. If the number of groups increases, the average sample
number will decrease drastically. This difference will be extremely large if one choose 4
classes instead of 3 groups whereas the differences will be not so large anymore for 8− 10
classes.

Robustness consideration for testing for random failures

Again we want to consider the robustness of the Sobel-Wald test against the impact of
changes of the parameter value α to an unknown parameter value α̃ 6= α as in example
1. The group probabilities depending on α̃ 6= α are given from example 1. The random
variables Ỹ G,1

1 and Ỹ G,2
1 remain unchanged. We execute the algorithm above for α̃ =

0.025(0.025)2 in order to compute the two-dimensional OC-functions Ql(θ, α̃), l = 0, 1, 2
and the two-dimensional ASN-function Eθ,α̃N . The results are shown in figure 12-15 for
ten classes.
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Figure 12: Two-dimensional OC-function for hypothesis H0 and corresponding contour
lines for m = 10

Figure 13: Two-dimensional OC-function for hypothesis H1 and corresponding contour
lines for m = 10
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Figure 14: Two-dimensional OC-function for hypothesis H2 and corresponding contour
lines for m = 10

Figure 15: Two-dimensional ASN-function for the Sobel-Wald test and corresponding
contour lines for m = 10
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