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Abstract

This paper deals with two kinds of sequential tests for grouped observations based on
Weibull distributed random variables. Based on the Weibull distribution we construct
two sequential ratio test for testing the form parameter 5 and determine the appropriate
OC- and ASN-functions. The problem of discrimination between more than two hypothe-
ses is here solved by means of a Sobel-Wald test where we consider three hypotheses. The
computation of corresponding characteristics of this test is presented.
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1 Introduction

This Preprint deals with two kinds of sequential tests for grouped observations based on
Weibull distributed random variables. At first we introduce the sequential ratio test where
we are interested in the computation of the characteristics, namely the OC-function and
the average sample number. Calculations of these functions are difficult because we have
to solve Fredholm integral equations of type 2. Solutions of these equations are known so
for only for the exponential and the Erlang distribution (see [1] and [9]). On the other
hand, in practice we cannot observe continuous random variables exactly, so it is sensible
to transform this test into a test based on grouped observations. Due to applications
one has a fixed grouping, a so-called passive grouping scheme, or a classification where
the group bounds are freely chosen, so-called active, which we will consider here. In the
sequel corresponding sequential ratio tests are observed when Weibull distributed random
variables are given.

The Weibull distribution has its application in the analysis of fatigues of material or
failures of electronic components. Based on this distribution we construct two tests for
testing the form parameter 3, followed by robustness considerations. The test for early
failures discriminates between early failures, i.e. § < 1, and random failures whereas the
test for late failures decides between random failures and late failures, i.e. 8 > 1. Both
tests can be interpreted as tests of the form of the Weibull distribution or testing for
exponential distribution because we have an exponential distribution if 3 = 1 holds. As
mentioned above we will investigate how the characteristics of the tests considered above
vary if the parameter a changes to an unknown parameter.

It is often necessary to discriminate not only between two hypotheses. This problem is
here solved by means of a Sobel-Wald test where we consider three hypotheses. This test
consists of two sequential ratio tests which influences the OC-function and the average
sample number function of the Sobel-Wald test. Computation of these characteristics is
the main subject of the second part. The OC-functions often can easily calculated from
the OC-functions of the underlying sequential tests. The determination of the average
sample number is more difficult, so we present a special algorithm solving this problem.

2 Sequential test

In this section we introduce the WALD sequential ratio test for grouped observations and
calculate the characteristics, namely the OC-function and the average sample number
function. We give a general method for computing the characteristics. A discrete approach
is considered in [3]. Further on we are going to construct two tests based on the Weibull
distribution to test for early and late failures and present some numerical results.



2.1 General description

Let X7, Xs,... be a sequence of i.i.d. random variables with a given density function
fo(z),0 € O, with respect to a certain measure p. Our aim is to discriminate between the
hypotheses

Hoi 0:00 and H1 . 9:01 00, 91 6@, 907&91. (1)
For n = 1,2, ..., the likelihood ratio

Jo, (X
n 00,600 — H f9
o

is used as a test statistic and for given stopping bounds 0 < B < 1 < A < oo the sample
size N and the decision rule § are determined by

N =min{n >1: L,g,0 ¢ (B,A)} and § = 1Ly 00, <B}-

As long as the critical inequality B < L, 9,9, < A holds, we continue the observations
forn =1,2,... If on observation stage n = 1,2,... L, 9,9, < B or Ly g,9, > A holds for
the first time we will stop the test and accept the null hypothesis Hy or the alternative
hypothesis H;, respectively. This test, defined by (N,0), is called WALD sequential
probability ratio test (SPRT). We denote this test by S(B, A). For further investigations
it will be helpful to consider the logarithmic likelihood ratio as follows

Zongo0r =0 Ly go.9, = Zl ;"1 ZY
90

=1

with

f91 (XZ)
f90 (XZ)

In accordance to this, we get a modified sample size and a modified decision rule

= 1In

fori=1,2,...

N = mm{n Z 1: Zn’90,91 ¢ (b, CL)} and 5 = 1{ZN,00,91 Sb}7

respectively, with @ =In A and b = In B.
If Py(L1g,0, =1) <1 holds, the WALD SPRT has the following properties:

e The test S(B, A) is closed, that means Py(N < o0) = 1.
e Moments of the sample size are finite, that means EyN* < oo for k=1,2,...

e The theorem of WALD and WOLFOWITZ holds which ensures a pointwise opti-
mality of SPRT at the points 6y and 6.
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In general, the calculation of the characteristics of a WALD SPRT is difficult. In the case
of continuous random variables, Fredholm integral equations of type 2 has to be solved
to get the OC- and the ASN-function. Exact solutions are given for the exponential and
the Erlang distribution (see [1] and [9], respectively).

In this context so-called generalized SPRT’s are considered. A generalized WALD SPRT
is a SPRT which starts on stage 0 in point z,—0co0 < x < oo. Again we discriminate
between two simple hypotheses

H()Z 9:00 and Hll 0:01 Qo, 916@, 007&(91 (2)

and apply the logarithmic likelihood ratio Z,g,¢, for n = 1,2,... So we get a modified
sample size as well as a modified decision rule as follows

N(:L‘) = 1nf{n >1:z+ Zn,90,91 ¢ (b, Cl)} and 5(%) = 1{x+ZN’90791§b}-
We denote this general SPRT by (N(z),d(z)). If the test starts on stage 0 in point z = 0
we will get the previous test (IV(0),d(0)) = (N,0).

Theorem 2.1. Let (N(z),0(z)) , x € R, be a general WALD SPRT for the hypotheses (2)
with the operating characteristic function qo(x) and the average sample number function
eg(x). Under the boundary conditions

@(x) =1 for x <b and qo(z)=0 for x>a
as well as

eg(x) =0 for x ¢ (b,a),

the OC-function and the ASN-function can be determined by

a

4o(z) = Po(Yi <b— ) + / 4o(2)g0(z — 2)dz, 3)

a

eo(zr) =1+ /69(2)99(2’ —x)dz (4)
b

fo, (X1)
Joo (X1)”

forb <z <a. go(y) is the density function of the random variable Yy = In

Proof. see [3] O

As mentioned before we can solve these integral equations only for exponential and Erlang
distributed random variables. Approximate solutions can be obtained by two ways. On
the one hand we can get an approximately solution by discretization of the range of X. On
the other hand a solution can be found by dividing the range of Y into intervals of equal
length. Both methods transform continuous random variables into discrete variables. In
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the following we apply the first method.

We divide the range X into disjunct groups or classes A1, ..., &, with

X =[zis1,2), XiNAX;=0,1#7 and UX’L':X‘

=1

We denote this partition by G = (X3,...,X,,). A detailed description of such a classifi-
cation is given in [3]. Now we assume that instead of the random variable X a random
variable X¢ is observed where

XC=keXeXx, k=1,...,m
holds. The probability function of X is determined by
PSR =P(X=k)=P(XecXx) k=1,...,m

Now we consider a WALD SPRT for the hypotheses (2) based on classification G' which
starts on stage 0 in point x € R. Let
P§, (X7)

P (XE)’

()

Y¢S =1n

g 1=1,2,...
be on observation stage i the corresponding test statistic to X&. Then we obtain on stage
n a modified test statistic

n
G _ G
Zn790791 - 2 :Y; :
=1

With stopping bounds a and b, —oco < b < 0 < a < 0o, the sample size and the decision
rule for a discretized generalized SPRT is then given by

Ne(z)=inf{n>1:a+ 225, & (bya)} and &%(z) = Lot Zyyci ) 09,0, )
This test is denoted by (N%(x),0%(x)). Because of the random variables X;, Xs, ... are
assumed to be i.i.d. random variables we only have to consider X and Y,©, respectively.

G
Let be V¢ = (y&,...,y5) the range of Y% where y& defined by y& = In i?} E:i, k =
%

1,...,m. In order to transform the integral equations into a linear system of equations,
the range of the test statistic {z + Zﬁeoﬁl};’le has to be adapted to the discretization.
Let s > 0 be a discretization parameter and h an interval length according to

po b
S




Then the critical inequality b < Y. | Y.¢ < a of test (N%(x),5%(z)) can be written as

b Y¢ a—b
h

= s, n=12 ...

By rounding we get a whole-numbered random variable

Yfzround(yél) 1=1,2,...

and a whole-numbered starting point

b
¢ =round [ —— | .
C roun < h)

The probability function p§ (k) of the i.i.d. random variables ;% Y,¢, ... can be deter-
mined by

py (k) = ZP@ D) 1561 kel (5)

G
with §¢ = round(%-) for i = 1,...,m and p§(i) = B(Y® = y7) = P(X{ =) =
Py(X, € X;). For sufficiently large values of s the variables 4%, i = 1,...,m, are different
from each other and we obtain instead of (5)

oo P5G) itk e {gF, ... g5} and k = g€
(k) = :
0 otherwise.

The sample size and the decision rule of test (N, 0%) are now given by

NG:inf{n21:E+Z§~/iG (0,5)} and &% =1piy

=1

NG 6, 91}

NG
; - — G
Wlth ZNG,QO,Hl —_— z:l}/; .
1=

For the computation of the characteristics of test (N 5G) it is necessary again to consider
corresponding generalized SPRT’s (N k,G , (5G), which start on stage 0 in point k& € I'. The
sample size N & and the decision rule 5G for k=1,...,s — 1 are defined by

NE =inf{n >1: k—l—foiG (0,5)} and Y =1piz

i=1

NGG 9}

NG
Wlth ZNGG 9 —_— ZYG



Computation of the OC-function

Let G5 (k) = Fy6¢ be the OC-function of test (N&,0¢) for k € T and § € ©. Under
boundary conditions

@S(k)y=1 for k<0 and §5(k)=0 for k>s (6)

the integral equation (3) becomes a system of simultaneous linear equations

ch]qg _ak +ch]q€ k:1,...,s—1, (7)

j=—00
with unknowns gg'(1), ..., ¢§ (s — 1). The coefficients ¢; and aj, are determined by
ey = Polk + Y7 = j) = 1%%,—]-@=ﬁﬂj—@ (®)
@ =Pk +YF <0)= Z 1- ij— Zpe j—k)=Pp(Y¥ < k).

j—foo j—foo

We obtain the OC-function Q%(6) of test (N, d%) approximately from

Q%(0) = Eg0° ~ EydS = 5 (¢) (9)

with ¢ = round (—%)
Computation of the ASN-function

The ASN-function can be determined analogously to the OC-function. Let é§ (k) be the
average sample number of test (N, 6%), k € . With the boundary condition

5 (k) =0 for k¢ (0,s)

the integral equation (4) can be modified to a linear system of equations

—1"‘2%369 k=1,...,s—1, (10)

with unknowns €5 (1),...,é5(s— 1) The probabilities ¢ ; can be calculated in accordance
to (8). Finally, we get an approximation of the average sample number of test (N, §%)
through

EgN® ~ EgN¢ = &5 (&) (11)

with ¢ = round (—%)



2.2 Sequential test for Weibull distributed observations

In this section we consider the Weibull distribution itself and design two WALD SPRT's
for testing the parameter 3 of the Weibull distribution while the parameter a remains
constant 1.

2.2.1 Testing for early failure

The Weibull distribution, which is named after the Swedish engineer and mathematician
Waloddi Weibull, plays an important role in analyzing lifetime and reliability. Fatigue of
material, failure of electronic components or statistical determination of wind velocities
are typical applications of the Weibull distribution.

Definition 2.1. A random wvariable X will be called Weibull distributed with para-
meters a > 0 and § > 0, if it has the density function

ozﬁacﬁ_le_wﬂ x>0
(o) = {0 e (12)

The corresponding distribution function, expectation value and variance are

1—e o >0
F(J]): e A
0 x <0,

with @ > 0,6 > 0. Figure 1 shows the effects of parameter variation with respect to the
density function (12).

In the following we assume o = 1 and denote the parameter 3 by . Under the assumption
of a Weibull distributed population X with density function

0z le ™" >0
fo(z) {0 v <0
and range X = [0,00) we consider a sequence of i.i.d. random variables X, Xy, ... for

discriminating between hypotheses



Dichtefunktion der Weibullverteilung Verteilungsfunktion der Weibullverteilung

i
25
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Figure 1: Density function and distribution function

1):9:90:1—51 and H 0=0,=1 0<e <1

Then we get for the likelihood ratio for n = 1,2, ...

= 52 -1

=1

e i N ﬁ exp(=X; + X; ) X}
Xl E1)X &1

—51 exp 1—¢

as well as for the logarithmic likelihood ratio

n n

27(59)0791 = In LT%M = Z [—Xi + X7+ In X —1In(1 — 81)} = ZY,-(”.

i=1 i=1

We continue our observations as long as

By < 25 4 <InA, (13)

holds. The sample size and the decision rule are then

. 1
N =min{n >1:20) , ¢ (bi.a)} and &V = Lz, o<

with b, = In B; and a; = In A; and denote this test by (N1, §1). Characteristics of this
test are considered in subsection 2.2.3.
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2.2.2 Testing for late failure

We consider again the Weibull distributed population as in the previous subsection. But
now we discriminate between the hypotheses

H?:0=06,=1 and H?:0=06=1+e 0<es.

For n =1,2,... we obtain the likelihood ratios as follows:

) n n 1 +€2 eXp Xl-i—az)XaQ n . .
L7(1,)90,91 = H fgo H o X; H 1 + 82 eXp(X Xll+ 2) XiQ,

i=1 i=1
e = WL = Z X2 X +In(1+e)] =Y v
i=1 i=1
As long as
InBy < Z) 5 <InAy (14)

holds and the decision rule is
6 =1

{ZN 60,61 <ba}

we continue our observations and get the sample size from

N® =min{n>1:2%) , ¢ (b, a2)}
with by = In By and a; = In Ay. Then we obtain this test (N, §3),

2.2.3 Determination of the characteristics

Analogous to section 2.1 we determine the characteristics of both tests by a discretization
scheme. Let the group bounds z), k = 0,...,m, are chosen in accordance to

O=x0< 21 < ... <ZTp_1 < Ty, = OO.

For k = 1,...,m the probabilities pg(k) = Py(X% = k) are identical for both tests,
because of the same underlying population X. We get

po(k) = Po(X%=k)=Py(X € &) = Py(X € [xp_1,21))
= Fy(zg) — Fp(xp—1)

7(139 719
e Th-1 — e Tk,
Due to this grouping we consider instead of random variables Yl(l) and Yl(z) the grouped
random variables Y1G’1 and Y1G’2. The ranges of the random variables Y& = {ygl), cee yﬁ,?},

where

11



1) e~Th1 T 2) e
Yy =1In — — and y,” =In ,
e -1 —

e Tk-1 — g~ Tk

k =1,...,m. Analogously to the previous section we have to adapt the ranges of {z +
Yo Y;G’j 1> ., 7 = 1,2, to the discretization scheme. Let to a given integer s interval
lengths hy and hy be defined by h; = % ;bj, j = 1,2. Then the critical inequalities (13)
and (14) transform into

by =Y a—b
0<—-2 L g i =1.2.
h; h; h; A

i=1

After rounding we obtain integer-valued random variables }ZG’l and 17;-6"2 and integer-
valued starting points ¢; and ¢; according to

. y &
Y% = round - j=1,2i=12,... (15)
J
- b\ .
and ¢;=round | —— | j=1,2.
hj
The corresponding group probabilities are then
~G" (7 .
PRy =PV = k) = " po(n)l ey k=0,%1,£2,..., j =12
r=1
. G.j
with g,fﬂ = round (y;j—]> ,jg=12and k =1,...,m. If sis large enough the values
g g% will be different and can be calculated by

) po(r) for ke {g77, ..., 457} and k= v,
Py (k) = .
0 otherwise.

Using these corresponding group probabilities we can solve the linear systems of equations
(7) and (10) and obtain characteristics Q%7 () and EgN®J  j = 1,2, for both tests.

2.2.4 Example and robustness analysis

In this section we will illustrate the tests for early and for late failures considered above.
With respect to a test for random failures which is described in section 3.3 we use F-
optimal group bounds according to [4]. Table 1 shows these bounds for m = 2, ..., 10.
In the following we denote by « and (3 the error probabilities of the corresponding tests
and use the approximations of WALD as stopping bounds in accordance to [2], i.e.

12



m 2 3 4 ) 6 7 8 9 10

To 0 0 0 0 0 0 0 0 0

x1 | 1.5936 | 1.0176 | 0.7540 | 0.6004 | 0.4993 | 0.4276 | 0.3739 | 0.3323 | 0.2991
T 2.6112 | 1.7716 | 1.3545 | 1.0997 | 0.9269 | 0.8015 | 0.7062 | 0.6314
T3 3.3652 | 2.3720 | 1.8538 | 1.5273 | 1.3008 | 1.1338 | 1.0053
T4 3.9657 | 2.8714 | 2.2813 | 1.9012 | 1.6331 | 1.4329
T5 4.4650 | 3.2989 | 2.6553 | 2.2336 | 1.9322
T 4.8925 | 3.6729 | 2.9876 | 2.5326
7 5.2665 | 4.0052 | 3.2867
T 5.5988 | 4.3042
Ty 5.8979

Table 1: F-optimal group bounds for 6 = 1

1 —
B = b =B" and A= b = A" (16)
11—« «
With these stopping bounds
Qb)) ~1—a Q(01) = f,

holds for a WALD SPRT.

Example 1:

We choose the error probabilities & = 3 = 0.05 and the discretization parameter s = 500.
The parameter « of the Weibull distribution is chosen 1.

Test for early failures
For testing for early failures let be €, = 0.2. Then we obtain
HY: 0=0,=08 and HV:0=06,=1.

By relation (16) we get stopping bounds a; = In A} = 2.94444 and b; = In Bf = —2.94444
and according to (15) a starting point ¢ = 250 with hy = C“—;bl
We only consider partitions with 3 till 10 groups because dividing the range X of random

variable X into two groups do not give us enough information about the hypotheses. The

13



reason is that the group bound lies between two intersections of the density function of

the Weibull distribution for § = 0.8 and § =1 and § = 1 and f3

This is shown in figure 2.

0.9F\}
0.8F

0.7 3

Zosp *
04t .

0.3 N

01 o=

= 1.24, respectively.

09
0.8}
07k
0.6

Zosp
04}

0.3

01+

Figure 2: Comparison of the density function for both tests

The computed OC-function for groups 3,...,10 and corresponding the ASN-function is

shown in figure 3.

=
09 ——m=3 |
——m=4
0.8 —m=5 .|
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U
8 0.4 4
03
0.2 o
0.1
0 i i i
05 0.6 0.7 0.8 0.9 1 1.1 1.2 13

ASN-Funktionen

400

350

300

— m=3

/R

——m=4

\ ——m=7
m=8
—m=9

***** m=10

06

07

Figure 3: Characteristics for groups 3,...,10 and ¢ = 0.2

The OC-functions of different groupings are quite similar. Differences between the OC-
functions of different groups can be explained by the "small” discretization parameter.
We can see, the average sample number decreases when the number of groups increases.
Thus, we can choose a higher number of groups and get a smaller sample number whereas
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the selectivity remains approximately unaltered.
Robustness considerations for testing for early failures

In practice the parameter value @ may change to a new parameter value & # «. To
determine the influence of the true value of a on the characteristics, it is necessary to
include this parameter in our calculations. Random variable }716"1 remains unchanged,
whereas the group probabilities alter to

o a0 i ke (i 35 and k=

pe,a( ) = .
0 otherwise.

where pg&(i) = ngd(XG =k)=DPa(X = A).

By solving the linear systems of equations (7) and (10) we obtain a generalized OC-

function Q%1(0, @) and a generalized ASN-function EyzN!. Figure 4 presents the in-
fluence of parameter value o for m = 10 groups on the OC-function.

e

0.9

0.8

0.7

0.6
0.6

0.51

14 2 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

Figure 4: Two-dimensional OC-function and contour lines for m = 10 and £; = 0.2

These considerations show that for a < 0.3 the test opts for Hy without reference to pa-
rameter 6 € [0.5, 1.4]. Consequently the test accepts early failures permanently. If & > 0.3
holds, the OC-function will have its typical shape but with different probabilities for ac-
cepting the null or the alternative hypothesis depending on «. Analogously, figure 5 shows
the ASN-function. The test needs a small average sample number for small values of « to
decide between the hypotheses. Some values of the characteristics are displayed in table 2.

15




Figure 5: Two-dimensional ASN-function and contour lines for m = 10 and ¢, = 0.2

250

200

150

100

a 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Q%1(6y, @) 1 1 0.996 0.9464 0.8528 0.8967 0.977 0.9973
Q%1 (6,,a) 1 0.9952 | 0.5019 0.0328 0.0069 0.0111 0.0716 0.4526
Ego aNG | 5174 | 12.8659 | 32.9387 | 80.5858 | 142.4465 | 162.2592 | 125.4194 | 86.6043
Eg, s N1 | 7.3245 | 29.0338 | 112.9595 | 88.6749 | 84.597 | 108.3077 | 173.4256 | 260.8086

Table 2: Probabilities for accepting hypotheses Hél) and H 1(1) for different values of &

Testing for late failures

Let be ¢ = 0.24. Then we get

HY: 0=06,=1 and H?: =0, =124,

By relation (16) the stopping bounds are as = In A5 = 2.94444 and by = In By = —2.94444.
According to (15) the test starts in é; = 250. The characteristics are shown in figure 6
and we get a similar result as in the previous test. But the characteristics are shifted to
the right because of different hypotheses.

16




1 350
09 —m=3 b
 m=a 300
0.8 ——m=5 -
m=6
—m=7
0.7 m=8 o 250
———m=9
—m=3
] | i M m=10}... 1 8 ool ™4
5 §*—m=s
< 05f i § m=6
S T —m=7
w T =8
S Z 150 m=
[9] — m=
O 04 2 || m=9
03 A 100
b
0.2
!
\
0.1 :
0 i i i 0 i i i i
0.5 0.6 0.7 0.8 0.9 1 1.1 12 13 1.4 05 0.6 0.7 0.8 0.9 1 1.1 12 13 1.4
[¢] [¢]

Figure 6: Characteristics for groups 3,...,10 and €5 = 0.24

Robustness consideration for testing for late failures
Again we consider the influences of parameter « if o changes to a new parameter & # a.

The procedure to compute the characteristics is the same like in the test for early failures.
Hence we only present the corresponding results in figure 7 and 8.

o _ - .

~10.9

0.8

10.7

0.6

0.5

0.4

0.8

03

0.7

06 “os

0.2

0.6

0.5 ¢

0.1

14 2 02 0.4 0.6 0.8 1 1.2 1.4 16 1.8

Figure 7: Two-dimensional OC-function and contour linesfor m = 10 and g5 = 0.24

The pictures of the OC-function correspond to the pictures of the previous test, but one
can see the differences between both tests because of different hypotheses. Especially
the projection of the OC-function in the (a#)— level shows these differences. The ASN-
function reveals the same effect. Some values of the characteristics are presented in table
3.
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200

Figure 8: Two-dimensional ASN-function and contour linesfor m = 10 and g5 = 0.24

Q 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Q%2(6y, @) 1 1 0.9970 | 0.9636 | 0.9201 | 0.9581 0.9919 0.9990
Q%2(6,,a) 1 0.9965 | 0.5551 0.0458 | 0.0146 | 0.0342 0.1957 0.6920

EgoaN®? | 3.8712 | 11.4525 | 31.1848 | 74.6657 | 121.612 | 122.5196 | 91.8208 | 66.3865

Eg sNE? | 76.2761 | 28.1285 | 117.6429 | 99.6438 | 97.4744 | 129.6633 | 203.9023 | 225.1246

Table 3: Probabilities for accepting hypotheses HSQ) and H f2) for different values of &

3 Sobel-Wald test

In practice there are many situations where we have to decide between more than two
hypotheses. That is why this chapter deals with the Sobel-Wald test for discriminating
between three hypotheses based on grouped observations. Again our aim is to calculate
the OC- and the ASN-function. This can be done for the OC-function, easily by means
of the OC-functions of the SPRTs of the previous section, see [6]. Unfortunately for the
average sample number function such formulas do not exist. In the sequel we introduce a
special algorithm to calculate these characteristics.

3.1 General description

Let X, Xs,... be a sequence of i.i.d. random variables with a given density function
fo(z),0 € O, with respect to a measure p and range X. Our aim is to discriminate
between the three simple hypotheses

H0:9:00, H1:6’:91 and HQ:HZQQ (17)
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with 0y, 0, 0 € ©, 0y < 01 < 0s,. According to the Sobel-Wald test two WALD SPRT's
S(b;,a;), i = 1,2, according to section 2.1 are considered for discriminating between the
hypotheses

1:0=06,_4 and H,;: 0=0, Qi_l, 92', € @, 0,1 <0; 1=1,2

with b; < a;, ¢ = 1,2. The appropriate likelihood ratios for test S(b;,a;), i = 1,2, are
given by

- fo.(X)) :
Ln,9¢, 0, — 91—7 1= 17 27
' ]];[1 fei—l(Xj)

or
n .
Znﬁz’flﬂi =In Lﬂ,9i71,9 Zl = Z Y;‘(Z)?
f‘gz 1 ,7:1
respectively, with the critical inequalities
B; < Ln»ei—lﬁi < flZ S b < Znﬂi—h‘% < aj, 1=1,2,

where a; = In A; and b; = In B; for i = 1,2,. The sample sizes of these tests S(b;, a;), i =
1,2, as well as the decision rules are given by

Ni=inf{n >1:Z,4 0, ¢ (biya;)} and 0; = LiZno, o<t} fori=1,2.
Now we define the Sobel-Wald test as follows.

Definition 3.1. (Sobel-Wald test)
Tests S(by,a1) and S(by,as) are performed simultaneously by observing X1, Xs,... On
each observation stage n = 1,2,... we decide between the following options:

(i) Acceptance of hypothesis Hy if and only if S(by,a1) accepts Hy.

(i) The test will accept hypothesis Hy if and only if test S(by,a1) accepts hypothesis Hy
after acceptance of this hypothesis by test S(ba, as) or if test S(be,as) accepts Hy
after acceptance of Hy by test S(by,aq).

(7ii) Acceptance of hypothesis Hy if and only if S(be, as) accepts Ho.
(iv) Continue testing by observing X, 1 if none of (i)-(iii) is true.

This test is called a Sobel-Wald test S(by, by, a1, az).
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Test S(by, by, a1, az) for instance may accept hypothesis H; if the test statistic exceeds the
boundary b, and later our test statistic exceeds the boundary ay, see figure 9. Once the test
statistic drops below by test S(bs, as) is finished and only test S(b1, a1) has to discriminate
between hypotheses Hy and H;. In this case hypothesis Hy cannot be accepted by the
Sobel-Wald test S(by,bs, a1, a2) anymore. If the test statistic exceeds a;, hypothesis H;
will be accepted. This holds also vice versa.

Figure 9 shows the regions of acceptance of test S(by, by, a1, as) for the standard situation
where we can transform the likelihood ratios into a sum of random variables X;. If we
apply the Weibull distribution to the Sobel-Wald test, then we cannot transform the
likelihood ratios in this manner. So we do not have a standard situation here.

ix,

Figure 9: Regions of acceptance of a Sobel-Wald test in the standard situation

Let N denote the sample size of Sobel-Wald tests S(by, ba,a1,a2) and Ny and N the
sample sizes of test S(b1,a1) and S(bs, as), respectively. Then
N = maX{Nl, Ng}
is valid. From this equation it follows for every observation stage n > 1 and 0y < 6; < 0,
that
P@(N>H)ZP9<N1 >n)+P9(N2>n)—Pg({N1 >n}ﬂ{N2 >7L})

holds. If both SPRTs S(b1,a1) and S(bs, as) are closed, test S(by, by, ai, az) will be closed
as well and all moments of the sample size N will be finite (see [5], p.259).

Theorem 3.1. We assume, that the tests S(by,a1) and S(bs,as) are closed and some
compatibility conditions are fulfilled, so that we have our standard situation. Then the
OC-functions of the Sobel-Wald test S(by, be, a1, as) satisfy for Oy < 0 < Oy the relations
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Qo(0) = QW(9),
Qi(0) = Q(0) - QW(H),
@:0) = 1-Q9(0),

and

Qo(0o) + Q1(01) + Q2(02) = 1,
where QW (0) denotes the OC-function of test S(b;, a;), i = 1,2.
Proof. See [5] on p. 259f. O

Hence, the calculation of the OC-functions of the Sobel-Wald test S(by, bs, ay, as) accord-
ing to (18) is quite simple, if one knows the OC-functions of the SPRTs S(by,a;) and
S(bs, as) and if some compatibility conditions are fulfilled. For the ASN-function such
identities do not exist. So we present now a special algorithm for computing the ASN-
function.

3.2 Determination of the characteristics by discretization

As mentioned above we will now present an algorithm to compute the average sample
number. This algorithm can also compute the OC-function of the Sobel-Wald test. An-
other method is mentioned in [7] for Erlang distributed random variables.

The algorithm in this section is based on the random variables YIG’i, 1 = 1,2, which
are transformed according to the discretization method shown in section 2 in integer-
valued random variables Y, i = 1,2. The interval (0,s;) corresponds to interval
(bi,a;), 1 = 1,2. By composing these two tests, one gets a grid, which is shown in figure
10.

Denote by

G={(,j) €T?:0<i<s,0<j<s)

the set of the corresponding grid points. Because both random variables Y, and v,%
depend on the same population X, we can determine the group probabilities py(k) by

po(k) =Py (k) = py (k) &k =0,+1,42,...

and the random variables 171(;’1 and )71G’2 have the form

7" with pg(1) 7% with pg(1)
~G . ~ ~G . ~
el _ )Y * with fe(2) G2 _ )Y ? with pe(2)
1 - 1 =
Gyt with pg(m) g5y with pg(m).
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H
5 s -1 1 0

Figure 10: Discretization

We assume
gt > g9t fori=1,...,m. (19)
If §<' = 42 holds we suppose

giG"’<0 fori=1,...,m and o=1,2.

Let be S(b1,a1) and S(by,as) two generalized SPRTS, introduced in section 2, which
starts on stage 0 in point x € (—o0, 00) and y € (—o0, 00), respectively. Analogous to the
theory of SPRTs we define a generalized Sobel-Wald test that starts in point (x,y). After
discretization both SPRTSs, they start on stage 0 in point ¢; € (0,s1) and & € (0, s9),
respectively. Then the generalized Sobel-Wald test is transformed into a discretized and
generalized Sobel-Wald test with the integer-valued starting point (¢1,¢). We assume
that this point lies on or below the diagonal, respectively, in our grid (see figure 10).
Analog to section 2.1 we consider a discretized and generalized Sobel-Wald test which
starts on stage 0 in point (7, 7) with ¢ € (0,s1) and j € (0, s2).

Definition 3.2. The Sobel-Wald test S(by,bs, a1, as) for discriminating between the hy-

potheses (17) which starts on observation stage 0 in point (x,y), z,y € (—00,00), is called
generalized Sobel-Wald test

Sxy(b1> by, ay, az)-
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Let denote qé{ly, Il =0,1,2, the probabilities of accepting hypothesis H; by Sobel-Wald test
Sey(b1,ba, a1, a2) and e oy = EgNyy, the average sample number with the sample size N,
of the Sobel-Wald test Sy, (b1, ba, a1, a2). Because of discretization, shown in section 2.1,
we get a discretized and generalized Sobel-Wald test S;;(by, b2, ay, az) which starts
on stage 0 in point (i,7), i € (0,s1), j € (0, s2).

The decision rules for accepting hypothesis H;, | = 0,1, 2, by Sobel- Wald test S;j(b1, bz, a1, as)
1s denoted by 5,5;-) and the corresponding OC-functions by qélgj = Egég»). Additionally let Nyj
be the sample size and eg;; = EgN;; the average sample number of test S;;(b1, ba, ar, asz).

The Sobel-Wald test S(by,bs, ay,asz), which we are interested in, is a specialized, gener-
alized Sobel-Wald test and corresponds to test Soo(b1, ba, a1, as2). Hence we only consider
discretized and generalized Sobel-Wald tests and donate them with S;;. This test can
be interpreted as a two-dimensional random walk in the grid, shown in figure 10, which
starts in point (i, ;) and is dependent on the values ¢+, i = 1,2, r = 1,...,m. The
test accepts the hypotheses (17) depending on where the random walk leaves the region
G. Further we refer to the values & as g}(«i) for » = 1,2. We will see that we can start
a corresponding algorithm in point (s; — 1, 1) and that we can calculate then the charac-

teristics stepwise till we reach our starting point (&, és).

Computation of the OC-functions

For computing the OC-functions qé?i)j, 0o =0,1,2, we need the values on the x- and the y-

axis and suitable boundary conditions for both underlying SPRTs (6). The values on the
x-axis and the y-axis are solutions of the linear systems of equations (7) of test S(by,ay)
and S(by, ay), respectively. We denote them by the vectors

~(1 ~(2
g5 (1) a2 (1)
G =1 ... and Gy~ =

(1 (2
G5 (s1 - 1) Gy (52— 1)
Now we can formulate a theorem for computing the OC-functions.

Theorem 3.2. Let be S;; a discretized and generalized Sobel-Wald test with starting point

1, 7) according to definition 3.2. Then we can compute the OC-functions Oy g 0,12
( aj) g p q971]7 9 -9
under the constraints

= @@ for 0<i<s, j<O,

Q(g,i)j q
qg,)i)j =0 for 1> sy, —00 < j < 00,
qé?i)j =1 for 1 <0, —00 < j < 00,
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Q(gi)‘ —fj(gm(J) Jor 1> sy, 0<j < so,

Gy =1-G @) for 0<i<s, j <o,
qglz)J = for 1 <0, —00 < j < 00
or —oo0<1<00, J2> S,
(J(glz)j =1 for i > sy, i<0
and qéi)J _1—q6 ( ) for i > sy, 0<j<so,
Uiy = for —oco<i<oo, j<O0,
q(gi)j = for —oo<i<oo, j> s

20 2 2 2 20
26 2 ~ ~(2 ~(2 21
7“] Z 0 1+ (1),] y( ) 17 y( ) ]J y( )9 ( )
Z] Z 0 l+y(1)7] y( ) 7’7’+y( ) ]J y( ) ( )

Here & e denotes the “transition probability” from point (i, j) to point (i+§£l),j+
1i+Yp

g )). With gmup probabilities pe(r) it holds

~0

Ciitit ) = Po(r)-

o JJ+ur

Proof. First we show equation (20). This proof is analogue to the proof of theorem 2.1
which one can see in [3]. Let &%, [ = 0, 1,2 be the decision rules. The recursion equation

l]’
for determining the OC-function can be shown by means of the law of total probability

a = Enl = Eo | B (891XC)] = 3 B (01XE = r) B(XE =7)

= 3 g KT =),

A transition from point (7, j) to point (i + g g+ g ) follows from condition { X = r}

and the probability for accepting hypothesis Hy in point (i + yﬁ ), j+ yﬁ ))

© _ 7,50
Vg™ jag® = 0% jag®
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The transition probabilities are ce o) g = = Py(XE =1r) = pg(r).

.7.7+y
Equations (21) and (22) can be shown in an analogous way. O
Now we consider condition (19) again. If for one win{l,...,m} equation g&l) = gSE) =0

holds, we have to compute the OC-functions as follows

q( ) = ! E q(o) 9 1 2 E q 9 2
M-8 o 0450 45 Ciig® gig® T 9z+~‘1 G+ it g™ g +5?
zz+yu 33+ r=u+l J
q(l.). = 1 E q(l) 9 1 2 § C] 9 1 2
0,ij 1—¢b o @ 0,i+9." i+ m+y7(~ ) g+ o+ 0 z—i—y(1 5 ll+y7(~ Vgt
’L’L+yu »]J+y r= u+ -
¢ = ! qu & S Y & 2
R N i+ 5 g+ Ciit gD 4 T+ 0,450 g5 i gD 45
U+Yy I+ G0 r=u-+l i
-1 (2 . .
If 5 ) = 18 ) — 0, ue {1,....m} holds for more than one u, we must modify the equations
y y ) b ) ) y q

for computing the OC-function again.
According to equation (9) we can determine the OC-functions of the Sobel-Wald test
S(b1, by, a1, ay) for the hypotheses Hy, H; and Hy by

Q) ~dpd ey QO m R,  and  QuO) mqp)
with & — (—%) =12
Computation of the ASN-function
For computing the average sample number function of our Sobel-Wald test, we have to

know the ASN-functions of tests S(b, a1) and S(bg, az) on the x- and y-axis, respectively.
Let the solutions of the linear system of equations (10) be

~(1 ~(2
e’ (1) e (1)

el =1 and &P =1 ..
(s~ 1) e (s2— 1)

Then we can establish a corresponding theorem for the average sample number function.
Theorem 3.3. Let S;; be a discretized and generalized Sobel-Wald test with starting point

(i,7) and sample number N;; according to definition 3.2. Then we obtain the ASN-function
under the boundary conditions
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epij = 0 for i <0, —00 < J < 00,

or _OO<Z.<OO,jZSQ7
or i 2>51,) <0,
eoj = 8y(i) for 0<i<s, j<O,
€0,ij = é§2)(1) for 1> sy, 0<j< so,
by
€6 Aj 1 + Z 9 Z+~(1)j+yr Zl+g(l> ]J+g<2)
with transition probabilities ¢ g g = po(r) from point (i, 7) to point (H—y( ) j+g]7(«2))-
JJ+ir

Proof. Because of the law of total probability we can compute the average sample number
as follows:

eo;; = EgNij = Ep|Ey (NylX{)] = Z o (Nij| X7 =7) Py(X{ =)
r=1

= Ee _(1) V) Py(XE =7r) =1+ E@ e ) Pa(XT =)
+yr ,]'H/T H—yr J+yr

= 1+ Z €o,it+5" ]+§(2)P9(X1 =7).

By condition { X = r} we have a transition from point (i, j) to point (i + g+ gﬁ”)
and the average sample number in point (i + y,(, )i+ y(2)) i

Coirg® jg® = EgN, NOFINOR

o . “yeg . 9 _
The transition probabilities are again Cortg® g = = Pp(XE =1) = pp(r). ]
If equation gj& ) = yq(f) =0, u € {1,...,m} holds for one u, we have to modify our formulas
and get
€p.ii — ! 1+ Z (& 1 + Z e 1
T it g+t nﬂ/ﬁl) G+ 0,49+ u+y$1),yy+y(2)
ti+gu T r=u+1

The average sample number can be determined in line with (11) by
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E@N = €0,¢1,89-
Algorithm for computing the OC-functions and the ASN-function

Under the conditions for the random variables and for the point (&, ¢), as mentioned
above, we start the algorithm in point (s;—1, 1) and calculate the OC-functions qé{)sl_u, l=
0,1,2, as well as the average sample number ey 5,1 ; in this point. After that we compute
the characteristics in point (s; — 2,1) and so on. The order of computation is shown in
figure 10. Because of equation (9) holds for both SPRT's, we have to finish our algorithm

~(1)

in point (¢, ¢é). For each point (i + gr ', 5 + y( )) we have to distinguish between the

following cases.

(1) ‘51 —k+ g <spand L+ 5P >0
Because (19) holds, only points below the diagonal (see figure 10) the test of 0 <
—k+ y(l) and [ + ﬂy(«Q) > S5 can be neglected. If above condition holds, the
random walk will reach an inner point of the grid and the values of the unknowns

(o) =0,1,2
and €, _(2) are
qz+y£1> J+~(2)7 PP C)

q(0> = ¢©

i e s =) kg
(1) (1)
Girg® g5~ Jo,51- (+52) o=
p (2)

%5 5452 = 99.61—(145@) h-g

(1)

€0,i+51 j+52 = €o,51—(145P) kgD

(2) |51 — k+?]1(~1) > 81
The random walk crosses the y-axis which terminates test S(b1,a;) and hypothesis

g = = (. For the other OC-
5]

functions only test S(by, as) is decisive where three cases has are possible:

Hy cannot be accepted anymore. That means q( )~(1)

(a) 1+ 7P > sy

(1) 0, 2) -1 0,
qz+g$1),g+g$2) qz+g$1),]+~$2> y €y PO O

(b) 1+35% <o

1
q( ) .

(2) _0
i+ ’

=L @ a0 o=

)., -2 =0,
2J i+ J+Yr

€0,i+51 j+
(c) 0< l—i-@(«z) < $9:
() A2 (1 4 52 (2 i
G am g = o 1+ 352, 5w e =1~ I+ 32,

( ~
69,z+g(1)]+y(2) = €y (l + yr).

27



3) [1+ 5 <0

In this case test S(by, az) is stopped because the random walk crosses the x-axis.

Then hypothesis Hy cannot be accepted anymore. So we obtain q@

Again we have to distinguish between three cases where only test S(by, a;) is decisive.

(a) s1—k + ) > s

(0) _ (1) _ _
Gy g = O G0 e = b Cugmige =0,
~(1
(b) s1—k+ 4" <0
(0) _ (1) _ _
Gy g = b G0 g =% Cougmige =0

(c) 0<s1—k+3" < s

(0) _ (2 ~(1 1) _ ~(2) ~(1
qi—i-gﬁl),j—s-g?) = (y (l + y7(» ))a qi+g$1)’j+g§2) =1—-¢ (l + y£ ))7

_ (D ~
Co,i+50j+52 = o (L +r)-

3.3 Testing for random failures for Weibull distributed obser-
vations

Let X1, X5, ... be asequence of Weibull distributed random variables with density function
according to definition 2.1. For parameter o of the Weibull distribution we suppose oo = 1.
We denote the parameter § of the Weibull distribution as #. We consider a sequence of
i.i.d. random variables X7, X5, ... for discriminating between the hypotheses

H0:9:60:1—51, H1:0:91:1 and H2:9:92:1+82

with 0 < 6y < 0; < 6y and 0 < g7 < 1, g9 > 0. This test can be interpreted in two ways.
On the one hand this test proves the parameter 6 and decides between early failures, Hy,
random failures, H;, and late failures, H,, and on the other hand we will be able to decide
if an exponential distributed population is present, i.e. # = 1. Let S(by,a;) and S(by, as)
be tests according to section 2.2.1 and 2.2.2, respectively, with likelihood ratios Z, g, g,
and Z, 9, o, as follows
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S(bl,al):ngﬁzﬁozl—sl, H :0=60,=1 O<er <1

00,01 = Z Y;(l) = Z -X; + Xil_61 +eInX; —In(1 —&y),
i—1

=1
S(bQ,ag):H1:9:91:1, H236‘:92:1—€2 0< ey
Zooo, =3 Y7 =3 X~ X" 4oyl X+ In(1 + 1),
i=1

i=1

Both tests are based on the same sequence of random variables X. Both tests are executed
as seen in section 2 so that all conditions for the algorithm are fulfilled. Then we can
determine the OC-functions Qo (), Q1(0), Q2(0) and the ASN-function EyN of the Sobel-
Wald test as described in section 3.2.

3.4 Example and robustness analysis

We want to illustrate the test for random failures on the basis of one example. Again
we do not consider the case m = 2, because we cannot compute the OC-functions of the
single SPRTs due to multiple intersections of the density function (see figure 2).

Example 2 (Continuation of example 1):

As mentioned before the Sobel-Wald test consists of two SPRTs. For this example we com-
pose the test for early failures and the test for late failures (see example 1), i.e. &1 = 0.2
and €5 = 0.24. So the Sobel-Wald test based on the Weibull distribution discriminates
between the hypotheses

HQZHZQOZO.S, H110:91:1 and H10:02:124

With the error probabilities a = § = 0.05 we construct an admissible test and choose
the stopping bounds according to the WALDs approximations by a; = as = 2.94444, and
by = by = —2.94444. The discretization parameters are s; = 500 and sy = 500 and group
bounds from table 1 are used. The condition (19) is fulfilled for the random variables
V& and V7%, The Sobel-Wald test starts in point (&1, &) = (250, 250) because both
single tests are starting in point ¢; = 250 and ¢, = 250, respectively. Table 4 shows some
values of the OC-functions on points 6y = 0.8, #; = 1 and 6, = 1.24 as well as the average
sample number on these points for 3 — 10 groups. The characteristics are illustrated in
picture 11.

The OC-functions for hypothesis Hy are close together as we could see in figure 11 as
well as in table 4 whereas the OC-functions for the hypotheses Hy and H; show clear
differences depending on the grouping. In contrast to this the average sample number is
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m 3 4 bt 6 7 8 9 10
Qo(6o) 0.9714 0.9240 0.9428 0.9624 0.9446 0.9307 0.9442 0.9464
Q1(61) 0.8889 0.9302 0.9290 0.9024 0.9229 0.9297 0.9221 0.9308
Q2(02) 0.9612 0.9594 0.9552 0.9670 0.9636 0.9618 0.9647 0.9542

Ep, N | 195.0462 151.0912 117.8287  96.3040  94.9525  92.6933  85.2092  81.1812
Ep N | 334.1613 192.8083 164.6219 161.5785 139.7476 127.0308 127.2405 120.7312
Ep, N | 215.7308 155.9937 133.3472 110.4768 106.9654 102.0171  97.0260 100.4760

Table 4: Characteristics for 3, ..., 10 groups on the points 8y = 0.8, #; = 1 and 6, = 1.24.
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Figure 11: Characteristics for groups 3,...,10 and ¢; = 0.2 as well as ¢5 = 0.24

showing great differences between. If the number of groups increases, the average sample
number will decrease drastically. This difference will be extremely large if one choose 4
classes instead of 3 groups whereas the differences will be not so large anymore for 8 — 10
classes.

Robustness consideration for testing for random failures

Again we want to consider the robustness of the Sobel-Wald test against the impact of
changes of the parameter value o to an unknown parameter value & # « as in example
1. The group probabilities depending on & # « are given from example 1. The random
variables Y/IG’I and Y/IG’Q remain unchanged. We execute the algorithm above for & =
0.025(0.025)2 in order to compute the two-dimensional OC-functions @;(0, &), = 0,1,2
and the two-dimensional ASN-function Ey s N. The results are shown in figure 12-15 for
ten classes.
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Figure 12: Two-dimensional OC-function for hypothesis Hy and corresponding contour
lines for m = 10
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Figure 13: Two-dimensional OC-function for hypothesis H; and corresponding contour
lines for m = 10
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Figure 14: Two-dimensional OC-function for hypothesis Hy and corresponding contour

lines for m = 10

Figure 15: Two-dimensional ASN-function for the Sobel-Wald test and corresponding

contour lines for m = 10
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