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Abstract. In this paper we give weak regularity conditions that ensure maximal mono-
tonicity of the operator S +A∗TA, where S : X ⇒ X∗ and T : Y ⇒ Y ∗ are two maximal
monotone operators, A : X → Y is a linear and continuous mapping and X,Y are separa-
ble Asplund spaces. In particular, it follows that Rockafellar’s conjecture is true in these
spaces.
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1 Introduction

Rockafellar proved in [21] that, whenever X is a reflexive Banach space and S, T : X ⇒ X∗

are two maximal monotone operators such that int(D(S)) ∩ D(T ) 6= ∅, then S + T is
maximal monotone and conjectured that this result holds also in general Banach spaces.
Since than, an intensive research was made in the theory of maximal monotone operators
aiming, among other things, to prove this conjecture. A comprehensive study on this topic
may be found in the monographs of Simons [22, 23] and in the lecture notes [19] due to
Phelps, which are important references for the theory of maximal monotone operators.

In the last decade the convex analysis played a determinant role in this field. The link
between the theory of maximal monotone operators and convex analysis is mainly made
via the Fitzpatrick function associated to a monotone operator. It was introduced in [11],
where it is also proved that every maximal monotone operator is representable by a proper,
convex and lower semicontinuous function. Rediscovered after some years in [7, 15], this
function proved to be crucial in the theory of maximal monotone operators. Motivated by
the properties of the Fitzpatrick function, the notion of representative function associated
to a monotone operator was also introduced in the literature.

Different regularity conditions, weaker than the one in [21], have been given in the
past for guaranteeing the maximality of S + T , but in reflexive Banach spaces (see, for
instance, [1, 2, 4–6, 9, 13, 16–18, 24, 29]). Let us consider X a reflexive Banach space and
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S, T : X ⇒ X∗ two maximal monotone operators with representative functions fS and
fT , respectively, such that prX(domhS) ∩ prX(domhT ) 6= ∅. Each of the conditions
below (starting with the so-called generalized interior point conditions and coming to the
closedness type conditions) guarantees the maximality of the monotone operator S + T :

(ir) (cf. [21]): int(D(S)) ∩D(T ) 6= ∅;

(iir) (cf. [2]): 0 ∈ core
[

co(D(S))− co(D(T ))
]
;

(iiir) (cf. [16]): 0 ∈ ri(D(S)−D(T ));

(ivr) (cf. [9]): 0 ∈ ri(co(D(S))− co(D(T )));

(vr) (cf. [24]): 0 ∈ ic(prX(domϕS)− prX(domϕT ));

(vir) (cf. [18]): 0 ∈ ic(D(S)−D(T ));

(viir) (cf. [18]): 0 ∈ ic(prX(domhS)− prX(domhT ));

(viiir) (cf. [13]): {(x∗ + y∗, x, y, r) : ϕ∗S(x∗, x) + ϕ∗T (y∗, y) ≤ r} is closed;

(ixr) (cf. [5, 6]): {(x∗ + y∗, x, y, r) : ϕ∗S(x∗, x) + ϕ∗T (y∗, y) ≤ r} is closed regarding the
subspace X∗ ×∆X × R, where ∆X = {(x, x) : x ∈ X};

(xr) (cf. [4]): {(x∗+y∗, x, y, r) : h∗S(x∗, x)+h∗T (y∗, y) ≤ r} is closed regarding the subspace
X∗ ×∆X × R.

On the other hand, in the last years, an increasing number of characterizations of
the maximality of monotone operators as well as different sufficient conditions for the
maximality of the sum of two maximal monotone operators in general Banach spaces have
been given (see, for instance, [3,14,23,26–28]). In case X is a Banach space, the following
conditions ensure the maximality of the operator S + T :

(i) (cf. [3]): int(D(S)) ∩ intD(T ) 6= ∅;

(ii) (cf. [3]): D(S) ∩D(T ) is closed and convex and int(D(S)) ∩D(T ) 6= ∅;

(iii) (cf. [3,27]): both D(S) and D(T ) are closed and convex and 0 ∈ core(D(S)−D(T ));

(iv) (cf. [28]): both D(S) and D(T ) are closed and convex and 0 ∈ ic(D(S)−D(T )).

We give in this paper weak sufficient generalized interior point conditions for the
maximal monotonicity of the operator S + A∗TA, where S : X ⇒ X∗ and T : Y ⇒ Y ∗

are two maximal monotone operators, A : X → Y is a linear and continuous mapping
and X,Y are separable Asplund spaces. The approach we use is based on two important
results recently given in the literature in [10,14] combined with some techniques of convex
analysis. Particularizing the main result of the paper to the case S+T , we prove that the
hypotheses both D(S) and D(T ) are closed and convex in conditions (iii) and (iv) above
are not necessary in the framework of separable Asplund spaces. Moreover, we obtain that
Rockafellar’s conjecture holds in these spaces.
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2 Preliminaries

In order to make the paper self-contained we introduce some preliminary notions and
results. Let X be a nonzero real Banach space, X∗ its topological dual space and X∗∗ its
bidual. By 〈·, ·〉 we denote the duality products in both X×X∗ and X∗×X∗∗, i.e. for x ∈
X,x∗ ∈ X∗ and x∗∗ ∈ X∗∗ we have 〈x, x∗〉 := x∗(x) and 〈x∗, x∗∗〉 := x∗∗(x∗), respectively.
The canonical embedding of X into X∗∗ is defined by ̂: X → X∗∗, 〈x∗, x̂〉 := 〈x, x∗〉 for
all x ∈ X and x∗ ∈ X∗.

For a subset C of X we denote by int(C), C, co(C), lin(C), core(C) and icC its interior,
closure, convex hull, linear hull, algebraic interior, and intrinsic relative algebraic interior,
respectively. Let us note that if C is a convex set, then (cf. [29]):

(i) x ∈ core(C) if and only if
⋃
λ>0 λ(C − x) = X;

(ii) x ∈ icC if and only if
⋃
λ>0 λ(C − x) is a closed linear subspace of X.

We also consider the indicator function of the set C, denoted by δC , which is zero for
x ∈ C and +∞ otherwise.

For a function f : X → R we denote by dom f = {x ∈ X : f(x) < +∞} its domain and
we call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X. The Fenchel-Moreau conjugate
of f is the function f∗ : X∗ → R defined by f∗(x∗) = supx∈X{〈x, x∗〉 − f(x)} for all x∗ ∈
X∗. Having a function h : X ×X∗ → R we denote by ĥ∗ : X∗ ×X∗∗ → R its conjugate
function and by h∗ : X∗ × X → R, h∗(x∗, x) = ĥ∗(x∗, x̂) its canonical embedding to
X∗ ×X.

Having f, g : X → R two proper functions we consider their infimal convolution,
namely the function denoted by f�g : X → R, f�g(x) = infu∈X{f(u) + g(x − u)} for
all x ∈ X. For a function f : A × B → R, where A and B are nonempty sets, we denote
by f> the transpose of f , namely the function f> : B × A → R, f>(b, a) = f(a, b) for all
(b, a) ∈ B × A. We consider also the projection operator prA : A× B → A, prA(a, b) = a
for all (a, b) ∈ A×B and the identity function on A, idA : A→ A, idA(a) = a for all a ∈ A.
When an infimum or a supremum is attained we write min, respectively max instead of
inf, respectively sup.

Given a linear and continuous mapping A : X → Y , where Y is another nonzero real
Banach space, we denote by ImA its image-set, ImA = {Ax : x ∈ X}, by A∗ its adjoint
operator, A∗ : Y ∗ → X∗ given by 〈x,A∗y∗〉 = 〈Ax, y∗〉 for all (y∗, x) ∈ Y ∗ × X and by
A∗∗ its bi-adjoint operator, A∗∗ : X∗∗ → Y ∗∗ given by 〈y∗, A∗∗x∗∗〉 = 〈A∗y∗, x∗∗〉 for all
(x∗∗, y∗) ∈ X∗∗ × Y ∗. For F a subspace of X, we consider the annihilator of F , defined
by F⊥ =

{
x∗ ∈ X∗ : 〈F, x∗〉 = {0}

}
.

We introduce now further notions and results concerning monotone operators. A set-
valued operator S : X ⇒ X∗ is said to be monotone if 〈y−x, y∗−x∗〉 ≥ 0, whenever x∗ ∈
S(x) and y∗ ∈ S(y). We denote by G(S) = {(x, x∗) : x∗ ∈ S(x)} ⊆ X ×X∗ the graph and
by D(S) = {x ∈ X : S(x) 6= ∅} the domain of S, respectively.

The monotone operator S is called maximal monotone if G(S) is not properly con-
tained in the graph of any other monotone operator S′ : X ⇒ X∗. The classical example
of a maximal monotone operator is the subdifferential of a proper, convex and lower semi-
continuous function defined on a Banach space (see [20]). However, in case the dimension
of X is strictly greater than 1, there exist maximal monotone operators which are not
subdifferentials (see [22,23]).
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Having a monotone operator S : X ⇒ X∗ one can associate to it the so-called Fitz-
patrick function ϕS : X ×X∗ → R, defined by

ϕS(x, x∗) = sup{〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉 : y∗ ∈ S(y)},

which is obviously convex and norm-weak∗ lower semicontinuous. Introduced by Fitz-
patrick (see [11]), it proved to be very important in the theory of maximal monotone
operators, revealing some connections between convex analysis and monotone opera-
tors (see [2, 4–7, 17, 18, 23, 24, 28] and the references therein). Considering the function
c : X ×X∗ → R, c(x, x∗) = 〈x, x∗〉 for all (x, x∗) ∈ X ×X∗, we have ϕS = (c+ δG(S))∗>.

If S is a maximal monotone operator, then (cf. [11]) ϕS(x, x∗) ≥ 〈x, x∗〉 for all
(x, x∗) ∈ X × X∗ and G(S) = {(x, x∗) ∈ X × X∗ : ϕS(x, x∗) = 〈x, x∗〉}. Motivated
by these properties of the Fitzpatrick function, the notion of representative function of
a monotone operator was introduced and studied in the literature. For S : X ⇒ X∗ a
monotone operator, we call representative function of S a convex and norms-weak∗ lower
semicontinuous function hS : X ×X∗ → R fulfilling

hS ≥ c and G(S) ⊆ {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x, x∗〉}.

Remark 1 The above definition is in the sense considered by J.M. Borwein in [3]. In the
case of maximal monotone operators it coincides with the usual definition for representative
functions considered, for instance, in [4, 18] (see Proposition 1 below).

We observe that if G(S) 6= ∅ (in particular if S is maximal monotone), then every
representative function of S is proper. It follows immediately that the Fitzpatrick function
associated to a maximal monotone operator is a representative function of the operator.
The next result is a direct consequence of [3, Proposition 2 and Corollary 4].

Proposition 1 Let S : X ⇒ X∗ be a maximal monotone operator and hS be a represen-
tative function of S. Then:

(i) ϕS ≤ hS ≤ ϕ∗>S ;

(ii) h∗>S is also a representative function of S;

(iii) {(x, x∗) ∈ X × X∗ : hS(x, x∗) = 〈x, x∗〉} = {(x, x∗) ∈ X × X∗ : h∗>S (x, x∗) =
〈x, x∗〉} = G(S).

Remark 2 These properties of representative functions are well-known in the framework
of reflexive Banach spaces (see [18]). It is shown in [3] that these characterizations hold
also in a general Banach space. For more on the properties of representative functions we
refer to [2–4, 18] and the references therein.

The main theorem of the paper is based on two important results recently introduced
in the literature. The next theorem is a part of a result given by M. Marques Alves
and B.F. Svaiter in [14], which generalizes to general Banach spaces some results given
in [8, 18].
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Theorem 2 (cf. [14, Theorem 4.2]) Suppose that h : X×X∗ → R is a proper, convex and
norm-norm lower semicontinuous function such that h(x, x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈
X × X∗ and ĥ∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉 for all (x∗, x∗∗) ∈ X∗ × X∗∗. Define S : X ⇒ X∗

by G(S) = {(x, x∗) ∈ X × X∗ : h(x, x∗) = 〈x, x∗〉}. Then G(S) = {(x, x∗) ∈ X × X∗ :
h∗>(x, x∗) = 〈x, x∗〉} and S is maximal monotone.

The following result is proved by A.C. Eberhard and J.M. Borwein in [10].

Theorem 3 (cf. [10, Theorem 15]) Let S : X ⇒ X∗ be a maximal monotone operator
defined on a Banach space X such that X∗ is separable and hS be a representative function
of S. Then it holds ĥ∗S(x∗, x∗∗) ≥ 〈x∗, x∗∗〉 for all (x∗, x∗∗) ∈ X∗ ×X∗∗.

3 Regularity conditions for maximal monotonicity

We start with the following lemma, the proof of which uses techniques taken from [22, p.
57–62 and p. 87–88]. A similar result is given in [24, Lemma 5.3] in case of reflexive
Banach spaces. As it can be seen, this holds also in general Banach spaces.

Lemma 4 Let S : X ⇒ X∗ and T : Y ⇒ Y ∗ be two maximal monotone operators with
representative functions hS and hT , respectively, and A : X → Y a linear and continuous
mapping. The following statements are true:

(a) If F is a closed subspace of Y , w ∈ Y and A
(
D(S)

)
⊆ F+w then A

(
prX(domhS)

)
⊆

F + w;

(b) If F is a closed subspace of X, w ∈ X and D(S) ⊆ F+w then prX(domhS) ⊆ F+w;

(c)
⋃
λ>0 λ

[
A
(

prX(domhS)
)
− prY (domhT )

]
⊆ lin

(
A(D(S))−D(T )

)
.

Proof. In order to prove (a), let us take an arbitrary x ∈ prX(domhS) and u ∈ D(S)
(the existence of u is guaranteed by the maximality of the monotone operator S). Then
there exist u∗ ∈ Su and x∗ ∈ X∗ such that hS(x, x∗) < +∞. Take an arbitrary y∗ ∈ F⊥.
We claim that

u∗ +A∗y∗ ∈ Su. (1)

Let (s, s∗) be an arbitrary element of G(S). Then, since A(u−s) = Au−As ∈ A(D(S))−
A(D(S)) ⊆ (F +w)− (F +w) = F , we have 〈A(u− s), y∗〉 = 0. Combining this with the
monotonicity of S we get

〈u− s, (u∗ +A∗y∗)− s∗〉 = 〈u− s, u∗ − s∗〉 ≥ 0.

The maximality of S ensures (1). From Proposition 1 and the definition of ϕS we obtain

+∞ > hS(x, x∗) ≥ ϕS(x, x∗) ≥ 〈u, x∗〉+ 〈x, u∗ +A∗y∗〉 − 〈u, u∗ +A∗y∗〉

from which

+∞ > hS(x, x∗)− 〈u, x∗〉 − 〈x, u∗〉+ 〈u, u∗〉 ≥ 〈Ax−Au, y∗〉.
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As F⊥ is a subspace of Y ∗ we get 〈Ax − Au, F⊥〉 = {0}, which implies, in view of the
bipolar theorem, that Ax − Au ∈ F . Hence Ax = (Ax − Au) + Au ∈ F + A(D(S)) ⊆
F + F + w = F + w and the proof of (a) is complete.

The assertion in (b) follows by taking Y := X and A := idX .
For (c) we make the notation F := lin

(
A(D(S))−D(T )

)
. Let x be an arbitrary

element of prX(domhS) and y an arbitrary element of prY (domhT ). Let t be an arbitrary
element of D(T ). Then A(D(S))− t ⊆ A(D(S))−D(T ) ⊆ F , thus A(D(S)) ⊆ F + t. Part
(a) guarantees that Ax ∈ F + t, that is t ∈ F + Ax. Since t is arbitrary in D(T ), we get
D(T ) ⊆ F +Ax. By using now part (b), applied for the operator T , we obtain y ∈ F +Ax,
hence Ax− y ∈ F . This holds for all x ∈ prX(domhS) and all y ∈ prY (domhT ), implying
A
(

prX(domhS)
)
− prY (domhT ) ⊆ lin

(
A(D(S))−D(T )

)
.

Remark 3 It follows easily from Proposition 1 and Lemma 4 that for S : X ⇒ X∗,
T : Y ⇒ Y ∗ maximal monotone operators and A : X → Y a linear and continuous
mapping the following inclusions hold⋃

λ>0

λ
(
A(D(S))−D(T )

)
⊆
⋃
λ>0

λ
(

coA(D(S))− coD(T )
)

⊆
⋃
λ>0

λ
[
A
(

prX(domϕ∗S)
)
− prY (domϕ∗T )

]
⊆
⋃
λ>0

λ
[
A
(

prX(domϕS)
)
− prY (domϕT )

]
⊆ lin

(
A(D(S))−D(T )

)
⊆ lin

(
A
(

prX(domϕ∗S)
)
− prY (domϕ∗T )

)
⊆ lin

(
A
(

prX(domϕS)
)
− prY (domϕT )

)
⊆ lin

(
A(D(S))−D(T )

)
,

thus
lin
(
A(D(S))−D(T )

)
= lin

(
A
(

prX(domϕ∗S)
)
− prY (domϕ∗T )

)
= lin

(
A
(

prX(domϕS)
)
− prY (domϕT )

)
.

The next result will be important in deriving the main result of the paper.

Theorem 5 Suppose that S : X ⇒ X∗, T : Y ⇒ Y ∗ are two maximal monotone operators
with representative functions hS and hT , respectively, and A : X → Y is a linear and
continuous mapping fulfilling

0 ∈ ic
(
A(prX(domh∗S))− prY (domh∗T )

)
.

Then the function h : X×X∗ → R defined by h(x, x∗) := inf{hS(x, u∗)+hT (Ax, v∗) : u∗ ∈
X∗, v∗ ∈ Y ∗, u∗ + A∗v∗ = x∗} is convex and norm-weak∗ lower semicontinuous. Further,
for all (x, x∗) ∈ X ×X∗ we have h(x, x∗) ≥ 〈x, x∗〉 and the infimum in the definition of h
is attained. The function h is proper if and only if A(prX(domhS)) ∩ prY (domhT ) 6= ∅.
Moreover, G(S +A∗TA) = {(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x, x∗〉}.

Proof. The convexity of h follows immediately.
In order to show that h is norm-weak∗ lower semicontinuous we define the functions

fS : X × X∗ → R, fS := h∗>S and fT : Y × Y ∗ → R, fT := h∗>T . Further, consider the
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functions FS : X ×X∗ × Y ∗ → R, defined by FS(x, x∗, y∗) = fS(x, x∗) for all (x, x∗, y∗) ∈
X × X∗ × Y ∗ and FT : Y × X∗ × Y ∗ → R, defined by FT (y, x∗, y∗) = fT (y, y∗) for
all (y, x∗, y∗) ∈ Y ×X∗ × Y ∗. Let us define also the linear and continuous mapping B :
X×X∗×Y ∗ → Y ×X∗×Y ∗ by B(x, x∗, y∗) = (Ax, x∗, y∗) for all (x, x∗, y∗) ∈ X×X∗×Y ∗.
One can easily deduce that

B(domFS)− domFT =
[
A(prX(domh∗S))− prY (domh∗T )

]
×X∗ × Y ∗.

The hypotheses imply 0 ∈ ic
(
B(domFS)− domFT

)
. By using [29, Theorem 2.8.3] we ob-

tain ̂(FS + FT ◦B)∗(x∗, x∗∗, y∗∗) = min{F̂ ∗S(z∗, a∗∗, b∗∗) + F̂ ∗T (y∗, α∗∗, β∗∗) : (z∗, a∗∗, b∗∗) +
B∗(y∗, α∗∗, β∗∗) = (x∗, x∗∗, y∗∗)} for all (x∗, x∗∗, y∗∗) ∈ X∗ × X∗∗ × Y ∗∗. One can show
that for all (z∗, a∗∗, b∗∗) and (y∗, α∗∗, β∗∗) we have

F̂ ∗S(z∗, a∗∗, b∗∗) =
{
f̂∗S(z∗, a∗∗), if b∗∗ = 0,
+∞, otherwise

and

F̂ ∗T (y∗, α∗∗, β∗∗) =
{
f̂∗T (y∗, β∗∗), if α∗∗ = 0,
+∞, otherwise,

respectively. The adjoint operator B∗ : Y ∗ × X∗∗ × Y ∗∗ → X∗ × X∗∗ × Y ∗∗ has the
form B∗(y∗, x∗∗, y∗∗) = (A∗y∗, x∗∗, y∗∗) for all (y∗, x∗∗, y∗∗) ∈ Y ∗ × X∗∗ × Y ∗∗. After
some calculations we get ̂(FS + FT ◦B)∗(x∗, x∗∗, y∗∗) = min{f̂∗S(z∗, x∗∗) + f̂∗T (y∗, y∗∗) :
z∗ + A∗y∗ = x∗} for all (x∗, x∗∗, y∗∗) ∈ X∗ ×X∗∗ × Y ∗∗. Restricting the last equality to
(x∗, x, Ax) we obtain (FS +FT ◦B)∗(x∗, x, Ax) = min{f∗S(z∗, x)+f∗T (y∗, Ax) : z∗+A∗y∗ =
x∗} for all (x∗, x, Ax) ∈ X∗ × X × Y . The functions hS and hT being proper, convex
and norm-weak∗ lower semicontinuous we have f∗S(z∗, x) = hS(x, z∗) and f∗T (y∗, Ax) =
hT (Ax, y∗), which implies (FS + FT ◦ B)∗(x∗, x, Ax) = min{hS(x, z∗) + hT (Ax, y∗) : z∗ +
A∗y∗ = x∗} for all (x∗, x, Ax) ∈ X∗ ×X × Y . The last relation shows that the function h
is norm-weak∗ lower semicontinuous and the infimum in the definition of h is attained.

The inequality h(x, x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ X×X∗ follows from the definition of
the function h and thus the statement regarding the properness of this function is obvious.

Finally, employing the properties of the functions h, hS and hT we get

{(x, x∗) : h(x, x∗) = 〈x, x∗〉}

= {(x, x∗) : ∃v∗ ∈ Y ∗ such that hS(x, x∗ −A∗v∗) + hT (Ax, v∗) = 〈x, x∗〉}

= {(x, x∗) : ∃v∗ ∈ Y ∗ such that hS(x, x∗−A∗v∗)−〈x, x∗−A∗v∗〉+hT (Ax, v∗)−〈Ax, v∗〉 = 0}
= {(x, x∗) : ∃v∗ ∈ Y ∗ such that hS(x, x∗ −A∗v∗) = 〈x, x∗ −A∗v∗〉

and hT (Ax, v∗) = 〈Ax, v∗〉}
= {(x, x∗) : ∃v∗ ∈ Y ∗ such that x∗ −A∗v∗ ∈ S(x) and v∗ ∈ T (Ax)}

= {(x, x∗) : x∗ ∈ (S +A∗TA)(x)} = G(S +A∗TA),

hence the desired conclusion follows.

We give in the following the main result of the paper, which provides a weak sufficient
condition for the maximal monotonicity of the operator S + A∗TA in case of separable
Asplund spaces. A similar result was proved in [18] in the framework of reflexive Banach
spaces.
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Theorem 6 Let S : X ⇒ X∗, T : Y ⇒ Y ∗ be two maximal monotone operators defined
on separable Asplund spaces, A : X → Y a linear and continuous mapping fulfilling

0 ∈ ic
(
A(prX(domϕ∗S))− prY (domϕ∗T )

)
.

Then S +A∗TA is a maximal monotone operator.

Proof. From Proposition 1, we have A(prX(domϕ∗S))∩prY (domϕ∗T ) ⊆ A(prX(domϕS))∩
prY (domϕT ). Applying now Theorem 5 we obtain that the function h : X × X∗ → R
defined by h(x, x∗) := inf{ϕS(x, u∗) + ϕT (Ax, v∗) : u∗ ∈ X∗, v∗ ∈ Y ∗, u∗ + A∗v∗ = x∗} is
proper, convex and norm-weak∗ lower semicontinuous, h(x, x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈
X ×X∗ and

G(S +A∗TA) = {(x, x∗) : h(x, x∗) = 〈x, x∗〉}.

In view of Theorem 2, it remains to prove that ĥ∗(x∗, x∗∗) ≥ 〈x∗, x∗∗〉 for all (x∗, x∗∗) ∈
X∗ ×X∗∗.

Take an arbitrary (x∗, x∗∗) ∈ X∗ ×X∗∗. It follows by the definition of the function h
that

ĥ∗(x∗, x∗∗) = sup
z∈X,u∗∈X∗,v∗∈Y ∗

{〈z, x∗〉+ 〈u∗, x∗∗〉+ 〈v∗, A∗∗x∗∗〉 − ϕS(z, u∗)− ϕT (Az, v∗)}.

Let us define the functions HS : X ×X∗ × Y ∗ → R, by HS(z, u∗, v∗) = ϕS(z, u∗) for all
(z, u∗, v∗) ∈ X ×X∗ × Y ∗ and HT : Y ×X∗ × Y ∗ → R, by HT (y, u∗, v∗) = ϕT (y, v∗) for
all (y, u∗, v∗) ∈ Y × X∗ × Y ∗. Let us consider again the linear and continuous mapping
B : X ×X∗ × Y ∗ → Y ×X∗ × Y ∗ defined as in the proof of Theorem 5. Then

ĥ∗(x∗, x∗∗) = ̂(HS +HT ◦B)∗(x∗, x∗∗, A∗∗x∗∗).

One can deduce that B(domHS)−domHT =
[
A(prX(domϕS))−prY (domϕT )

]
×X∗×Y ∗.

Combining the condition from the hypotheses with the sequence of inclusions in Re-
mark 3 it follows 0 ∈ ic

(
B(domHS)− domHT

)
. By using [29, Theorem 2.8.3] we obtain

̂(HS +HT ◦B)∗(x∗, x∗∗, A∗∗x∗∗) = min{Ĥ∗S(z∗, a∗∗, b∗∗)+Ĥ∗T (y∗, α∗∗, β∗∗) : (z∗, a∗∗, b∗∗)+
B∗(y∗, α∗∗, β∗∗) = (x∗, x∗∗, A∗∗x∗∗)}. After some calculations we obtain that for all
(z∗, a∗∗, b∗∗) and (y∗, α∗∗, β∗∗) we have

Ĥ∗S(z∗, a∗∗, b∗∗) =
{
ϕ̂∗S(z∗, a∗∗), if b∗∗ = 0,
+∞, otherwise

and

Ĥ∗T (y∗, α∗∗, β∗∗) =
{
ϕ̂∗T (y∗, β∗∗), if α∗∗ = 0,
+∞, otherwise,

respectively. Further we get

̂(HS +HT ◦B)∗(x∗, x∗∗, A∗∗x∗∗) = min{ϕ̂∗S(z∗, x∗∗) + ϕ̂∗T (y∗, A∗∗x∗∗) : z∗ +A∗y∗ = x∗}.

Hence, employing Theorem 3 we obtain ĥ∗(x∗, x∗∗) = min{ϕ̂∗S(z∗, x∗∗) + ϕ̂∗T (y∗, A∗∗x∗∗) :
z∗+A∗y∗ = x∗} ≥ min{〈z∗, x∗∗〉+ 〈y∗, A∗∗x∗∗〉 : z∗+A∗y∗ = x∗} = 〈x∗, x∗∗〉, so the proof
is complete.

Theorem 6 and Remark 3 imply the following result.
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Corollary 7 Let S : X ⇒ X∗, T : Y ⇒ Y ∗ be two maximal monotone operators defined
on separable Asplund spaces and A : X → Y a linear and continuous mapping fulfilling

0 ∈ ic
(

coA(D(S))− coD(T )
)
.

Then S +A∗TA is a maximal monotone operator.

In case S : X ⇒ X∗, Sx = 0 for all x ∈ X, we have S + A∗TA = A∗TA and
ϕS = δX×{0} = ϕ∗>S . From Theorem 6 and Corollary 7 we obtain the following conditions
for the maximality of the operator A∗TA.

Corollary 8 Let T : Y ⇒ Y ∗ be a maximal monotone operator defined on a separable
Asplund space and A : X → Y a linear and continuous mapping fulfilling

0 ∈ ic
(

ImA− prY (domϕ∗T )
)
.

Then A∗TA is a maximal monotone operator.

Corollary 9 Let T : Y ⇒ Y ∗ be a maximal monotone operator defined on a separable
Asplund space and A : X → Y a linear and continuous mapping fulfilling

0 ∈ ic
(

ImA− coD(T )
)
.

Then A∗TA is a maximal monotone operator.

Finally, the following corollaries are easy consequences of Theorem 6 and Corollary 7
by taking X = Y and A = idX .

Corollary 10 Let S, T : X ⇒ X∗ be two maximal monotone operators defined on sepa-
rable Asplund spaces such that

0 ∈ ic
(

prX(domϕ∗S)− prX(domϕ∗T )
)
.

Then S + T is a maximal monotone operator.

Corollary 11 Let S, T : X ⇒ X∗ be two maximal monotone operators defined on sepa-
rable Asplund spaces fulfilling

0 ∈ ic
(

coD(S)− coD(T )
)
.

Then S + T is a maximal monotone operator.

Remark 4 (a) Voisei obtained in [28] a similar result for the maximality of the operator
S+T in case of general Banach spaces. It follows that the conditions D(S) and D(T ) are
convex and closed are not needed anymore in the framework of separable Asplund spaces.

(b) Let us notice that Corollary 10 and Corollary 11 can be derived also from Corollary
8 and Corollary 9, respectively. Indeed, take Y = X ×X, A : X → X ×X, Ax = (x, x)
and (S, T ) : X × X ⇒ X∗ × X∗, (S, T )(x, y) = (S(x), T (y)). In case S and T are
maximal monotone operators, (S, T ) is also a maximal monotone operator and it holds
A∗(S, T )A(x) = S(x) + T (x) for all x ∈ X. The details are left for the reader.

(c) As the condition int(D(S))∩D(T ) 6= ∅ implies
⋃
λ>0 λ

(
coD(S)−coD(T )

)
= X, we

obtain that Rockafellar’s conjecture concerning the maximal monotonicity of the operator
S + T under the condition int(D(S)) ∩D(T ) 6= ∅ holds in separable Asplund spaces.
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