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1 Introduction and problem formulation

Before introducing the problem proposed by Stephen Simons, we recall some
preliminary notions and results. Throughout this note, E denotes a nontrivial
real Banach space, E∗ its topological dual space and E∗∗ its bidual space. The
canonical embedding of E into E∗∗ is defined by ̂ : E → E∗∗, 〈x∗, x̂〉 :=
〈x, x∗〉, for all x ∈ E and x∗ ∈ E∗, where 〈x, x∗〉 denotes the value of the linear
continuous functional x∗ at x. For D ⊆ E, we denote by D̂ the image of the
set D through the canonical embedding, that is D̂ = {x̂ : x ∈ D}.

The indicator function of D ⊆ E, denoted by δD, is defined as δD : E → R,

δD(x) =
{

0, if x ∈ D,
+∞, otherwise,

where R = R ∪ {±∞}. For a function f : E → R we denote by dom(f) =
{x ∈ E : f(x) < +∞} its domain and by epi(f) = {(x, r) ∈ E × R : f(x) ≤ r}
its epigraph. We call f proper if dom(f) 6= ∅ and f(x) > −∞ for all x ∈ E.
By cl(f) we denote the lower semicontinuous hull of f , namely the function of
which epigraph is the closure of epi(f) in E×R, that is epi(cl(f)) = cl(epi(f)).
The Fenchel-Moreau conjugate of f is the function f∗ : E∗ → R defined by
f∗(x∗) = supx∈E{〈x, x∗〉 − f(x)} for all x∗ ∈ E∗.

Consider f, g : E → R two arbitrary convex functions. We say that f and g
satisfy stable Fenchel duality if for all x∗ ∈ E∗, there exists z∗ ∈ E∗ such that

(f + g)∗(x∗) = f∗(x∗ − z∗) + g∗(z∗).
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If this property holds for x∗ = 0, then f and g satisfy the classical Fenchel
duality. The pair f, g is totally Fenchel unstable (see [14]) if f and g satisfy
Fenchel duality but

y∗, z∗ ∈ E∗ and (f + g)∗(y∗ + z∗) = f∗(y∗) + g∗(z∗) =⇒ y∗ + z∗ = 0.

A geometric characterization of these notions, in terms of the epigraphs of
the conjugates of the functions involved can be given, as we point out below.

It is known (see Proposition 2.2 in [1]) that if f and g are proper functions
such that dom(f) ∩ dom(g) 6= ∅, the stable Fenchel duality is equivalent to the
relation

epi(f + g)∗ = epi(f∗) + epi(g∗).

Moreover, if f and g are proper, convex and lower semicontinuous functions such
that dom(f) ∩ dom(g) 6= ∅, then f and g satisfy stable Fenchel duality if and
only if epi(f∗)+epi(g∗) is closed in the product topology of (E∗, ω(E∗, E))×R,
where ω(E∗, E) is the weak∗ topology on E∗ (see [3] for the Banach setting and
[1] for the more general case when E is a separated locally convex space).

In case f and g are proper functions such that dom(f) ∩ dom(g) 6= ∅, one
can prove that Fenchel duality is equivalent to the relation

epi(f + g)∗ ∩ ({0} × R) = (epi(f∗) + epi(g∗)) ∩ ({0} × R). (1)

Furthermore, various sufficient conditions were given in the literature in order
to guarantee Fenchel duality, starting with the so-called interior-point condi-
tions (see [8] for an overview on these conditions) and coming to the recently
introduced closedness-type conditions (see [1]).

Finally, it is not difficult to show that a pair f, g of proper functions such
that dom(f) ∩ dom(g) 6= ∅ is totally Fenchel unstable if and only if (1) holds
and if for x∗ ∈ E∗ we have

epi(f + g)∗ ∩ ({x∗} × R) = (epi(f∗) + epi(g∗)) ∩ ({x∗} × R),

then x∗ = 0.
Obviously, stable Fenchel duality implies Fenchel duality, but the converse

is not true (see the example in [1], pp. 2798-2799 and Example 11.1 in [14]).
Nevertheless, each of these examples (which are given in R2) fails when one
tries to verify total Fenchel unstability. Surprisingly, in the finite dimensional
case, it is still an open question if there exists a pair of functions which is totally
Fenchel unstable (see Problem 11.6 in [14]). In the infinite dimensional setting
this problem receives an answer, due to the existence of extreme points which
are not support points of certain convex sets. Recall that if C is a convex subset
of E, then x ∈ C is a support point of C if there exists x∗ ∈ E∗, x∗ 6= 0 such
that 〈x, x∗〉 = sup〈C, x∗〉. We give below an example, proposed in [14], of a
pair f , g which is totally Fenchel unstable.

Example 1. Let C be a nonempty, bounded, closed and convex subset of
E such that there exists an extreme point x0 of C which is not a support point
of C (an example of a set C and a point x0 with the above mentioned properties
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was given in the space l2, following an idea due to Jonathan Borwein, see [14]).
Take A := x0 − C, B := C − x0, f := δA and g := δB. One can prove that the
pair f, g is totally Fenchel unstable (see Example 11.3 in [14]).

Regarding the functions defined in the above example, Stephen Simons
asks whether, denoting E∗ \ {0} with {0}c, the following representation of the
Minkowski sum of the sets epi(f∗) and epi(g∗) is true:

epi(f∗) + epi(g∗) = ({0} × [0,∞)) ∪ ({0}c × (0,∞)). (2)

The justification of this question comes from a similar representation of the set
epi(f∗0 )+epi(g∗0), proved in [14] for a pair of functions f0, g0 defined on the space
R2 in a similar way as in Example 1 above (see Example 11.1 and Example 11.2
in [14]).

We give in the following a reformulation of this problem (as in [14]). The
conjugates of the functions f and g are

f∗(y∗) = 〈x0, y
∗〉 − inf〈C, y∗〉 ≥ 0 for all y∗ ∈ E∗ and

g∗(y∗) = sup〈C, y∗〉 − 〈x0, y
∗〉 ≥ 0 for all y∗ ∈ E∗.

One can use the boundedness of the set C to conclude that dom(f∗) = dom(g∗)
= E∗, thus f∗ and g∗ are continuous functions (see Theorem 2.2.9 in [15]). The
inclusion ” ⊆ ” in (2) holds and, since (0, 0) = (0, 0) +(0, 0) ∈ epi(f∗) +epi(g∗),
relation (2) is equivalent to

epi(f∗) + epi(g∗) ⊃ E∗ × (0,∞). (3)

Let us mention that for the implication (3)⇒(2) the assumption that x0 is not
a support point of C is decisive.

In case E is reflexive, this question gets a positive answer. Although the
proof is given in [14] (Example 11.3), we give the details for the reader’s con-
venience. Let y∗ ∈ E∗ be arbitrary. Consider the functions h : E∗ → R and
k : E∗ → R defined by h(z∗) := f∗(z∗) and k(z∗) := g∗(y∗− z∗) for all z∗ ∈ E∗.
Since h and k are continuous, it follows that h and k satisfy Fenchel duality
(see Theorem 2.8.7 in [15]). This and the reflexivity of the space E gives

− inf
E∗

[h+ k] = (h+ k)∗(0) = min
z∈E

[h∗(z) + k∗(−z)].

A simple computation shows that h∗(z) = f(z) and k∗(−z) = g(z)−〈z, y∗〉, for
all z ∈ E. Hence

− inf
E∗

[h+ k] = min
E

[f + g − y∗] = min
E

[δ{0} − y∗] = 0,

so, for all ε > 0, there exists z∗ ∈ E∗ such that h(z∗) + k(z∗) ≤ ε, that is
f∗(z∗) + g∗(y∗ − z∗) ≤ ε. This means exactly that (y∗, ε) ∈ epi(f∗) + epi(g∗),
hence the proof of (3) is complete.

Remark 1. Regarding the proof given above, one can easily notice that
relation (2) is fulfilled if and only if for all y∗ ∈ E∗ and for all ε > 0 there exists
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z∗ ∈ E∗ such that f∗(z∗) + g∗(y∗− z∗) ≤ ε. This is equivalent to the statement
that there exists z∗ ∈ E∗ such that for all x, y ∈ E, f(x) + g(y)− 〈x− y, z∗〉 ≥
〈y, y∗〉 − ε. Using the Hahn-Banach-Lagrange theorem (see Theorem 1.11 in
[14]), this is equivalent to the following: there exists M ≥ 0 such that for all
x, y ∈ E, f(x)+g(y)+M‖x−y‖ ≥ 〈y, y∗〉−ε, that is to say there exists M ≥ 0
such that for all u, v ∈ C, M‖u+ v − 2x0‖ ≥ 〈v − x0, y

∗〉 − ε.

Following this observation, Stephen Simons proposed the following problem
(Problem 11.5 in [14]):

Problem 1. Let C be a nonempty, bounded, closed and convex subset of
a nonreflexive Banach space E, x0 be an extreme point of C, y∗ ∈ E∗ and
ε > 0. Then does there always exist M ≥ 0 such that, for all u, v ∈ C,
M‖u + v − 2x0‖ ≥ 〈v − x0, y

∗〉 − ε? If the answer to this question is positive,
then epi(f∗) + epi(g∗) ⊃ E∗ × (0,∞).

2 The solution to Problem 1

We give in this section an answer to the problem raised by Stephen Simons.
We show that in the nonreflexive case the answer depends on whether x0 is a
weak∗-extreme point of C or not. We recall that x0 is a weak∗-extreme point of
the nonempty, bounded, closed and convex set C ⊆ E if x̂0 is an extreme point
of cl Ĉ, where the closure is taken with respect to the weak∗ topology ω(E∗∗, E∗)
(see [10]). One can show that if x0 is a weak∗-extreme point of C, then x0 is
an extreme point of C. The history of this notion goes back to the paper of
Phelps (see [12]), where the author asked the following: must the image x̂ of an
extreme point of x ∈ BE (the unit ball of E) be an extreme point of BE∗∗ (the
unit ball of the bidual)? We recall that by the Goldstine theorem, the closure
of B̂E in the weak∗ topology ω(E∗∗, E∗) is BE∗∗ (hence the generalization to
a nonempty, bounded, closed and convex set is natural). Several papers from
the literature deal with this notion, see [2], [5], [7], [10], [11], [12]. In the spaces
C(X) and Lp(1 ≤ p ≤ ∞) all the extreme points of the corresponding unit
balls are weak∗-extreme points (see [11]). The first example of a Banach space
of which unit ball contains elements which are not weak∗-extreme was suggested
by K. de Leeuw and proved by Y. Katznelson (see the note added at the end
of [12]). If E is a separable Banach space containing an isomorphic copy of
c0, then E is isomorphic to a strictly convex space F such that BF has no
weak∗-extreme points (see [11]). For the general case when C is a bounded,
closed and convex set, we refer to [2] and [10] for more on this subject. We
recall from [2] the following result: a Banach space E has the Radon-Nikodým
property if and only if every bounded, closed and convex subset C of E has
a weak∗-extreme point. Of course, in a Radon-Nikodým space it is possible
that some of the extreme points are not weak∗-extreme points (see [9] for other
equivalent formulations of the Radon-Nikodým property).
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2.1 First solution

Before we give the solution to Problem 1, we prove in this subsection some
results regarding functions with certain properties and then we particularize
these results to the functions considered in Problem 1.

For f : E → R we define f̂ : E∗∗ → R by f̂(x∗∗) = f(x), if x∗∗ = x̂ ∈ X̂ and
f̂(x∗∗) = +∞, otherwise. Let us start with the following result.

Lemma 1. We assume that f is convex with dom(f) 6= ∅ and that cl(f̂)
is proper, where the lower semicontinuous hull is considered with respect to the
topology ω(E∗∗, E∗). Then f∗∗ = cl(f̂).

Proof. Let x∗∗ ∈ E∗∗ be fixed. We have:

f∗∗(x∗∗) = sup
x∗∈E∗

{〈x∗, x∗∗〉 − f∗(x∗)} = sup
x∗∈E∗,r∈R

{〈x∗, x∗∗〉 − r : r ≥ f∗(x∗)}

= sup
x∗∈E∗,r∈R

{〈x∗, x∗∗〉 − r : f(y) ≥ 〈y, x∗〉 − r ∀y ∈ E}

= sup
x∗∈E∗,r∈R

{〈x∗, x∗∗〉 − r : f̂(y∗∗) ≥ 〈x∗, y∗∗〉 − r ∀y∗∗ ∈ E∗∗}

= sup
x∗∈E∗,r∈R

{〈x∗, x∗∗〉 − r : cl(f̂)(y∗∗) ≥ 〈x∗, y∗∗〉 − r ∀y∗∗ ∈ E∗∗}.

Since cl(f̂) is proper, convex and ω(E∗∗, E∗)-lower semicontinuous, it is equal
to the pointwise supremum of the set of its affine minorants (see [6]) and so the
conclusion follows. �

Let us consider in the following the proper convex functions f, g : E → R
with the properties: dom(f)∩ dom(g) 6= ∅, cl(f̂) and cl(ĝ) are proper, f∗∗(0) +
g∗∗(0) ≥ 0 and dom(f∗) + dom(g∗) = E∗. Define the function P : E∗ → R,
P (z∗) = (f∗∗ + g∗∗)∗(z∗), for all z∗ ∈ E∗.

Let y∗ ∈ E∗ be fixed. Consider also the functions h : E∗ → R and
k : E∗ → R defined by h(z∗) := f∗(z∗) and k(z∗) := g∗(y∗− z∗) for all z∗ ∈ E∗.

Lemma 2. We have:

(a) infE∗ [h+ k] = P (y∗);

(b) If λ ∈ R then

(y∗, λ) ∈ epi(f∗)+epi(g∗)⇔ there exists z∗ ∈ E∗ such that (h+k)(z∗) ≤ λ.

Proof. Since dom(h) = dom(f∗) and dom(k) = y∗ − dom(g∗) we get
dom(h) − dom(k) = −y∗ + dom(f∗) + dom(g∗) = E∗. It follows that h and k
satisfy Fenchel duality (see Theorem 2.8.7 in [15]). We obtain

inf
E∗

[h+ k] = sup
z∗∗∈E∗∗

[−h∗(z∗∗)− k∗(−z∗∗)].
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As h∗(z∗∗) = f∗∗(z∗∗) and k∗(−z∗∗) = g∗∗(z∗∗) − 〈y∗, z∗∗〉, for all z∗∗ ∈ E∗∗,
the conclusion follows easily.

(b) This is immediate from the definitions of the functions h and k. �

Lemma 3. Let (y∗, λ) ∈ E∗ × R. Then:

λ > P (y∗)⇒ (y∗, λ) ∈ epi(f∗) + epi(g∗)⇒ λ ≥ P (y∗).

Proof. If λ > P (y∗), then Lemma 2(a) gives z∗ ∈ E∗ such that (h+k)(z∗) <
λ and so Lemma 2(b) implies that (y∗, λ) ∈ epi(f∗) + epi(g∗).

On the other hand, if (y∗, λ) ∈ epi(f∗) + epi(g∗), from Lemma 2(b), there
exists z∗ ∈ E∗ such that (h+k)∗(z∗) ≤ λ. Hence, infE∗ [h+k] ≤ λ and so, from
Lemma 2(a), we obtain λ ≥ P (y∗). �

Corollary 1. We have E∗ × (0,∞) ⊂ epi(f∗) + epi(g∗) if and only if
dom(cl(f̂)) ∩ dom(cl(ĝ)) = {0}.

Proof. Applying Lemma 1 we have that for all y∗ ∈ E∗:

P (y∗) = sup
z∗∗∈dom(cl( bf))∩dom(cl(bg))

{〈y∗, z∗∗〉 − cl(f̂)(z∗∗)− cl(ĝ)(z∗∗)}.

Let us suppose first that E∗ × (0,∞) ⊂ epi(f∗) + epi(g∗). For all y∗ ∈ E∗

and for all λ > 0, (y∗, λ) ∈ epi(f∗) + epi(g∗) and so, from Lemma 3, we get
P (y∗) ≤ λ, for all y∗ ∈ E∗ and for all λ > 0. We obtain P (y∗) ≤ 0, for all
y∗ ∈ E∗, that is 〈y∗, z∗∗〉 − cl(f̂)(z∗∗) − cl(ĝ)(z∗∗) ≤ 0, for all y∗ ∈ E∗ and
for all z∗∗ ∈ dom(cl(f̂)) ∩ dom(cl(ĝ)), from which it follows that dom(cl(f̂)) ∩
dom(cl(ĝ)) = {0}.

On the other hand, when dom(cl(f̂)) ∩ dom(cl(ĝ)) = {0}, then P (y∗) =
− cl(f̂)(0) − cl(ĝ)(0) = −f∗∗(0) − g∗∗(0) ≤ 0, for all y∗ ∈ E∗. From Lemma
3, for all y∗ ∈ E∗ and for all λ > 0, (y∗, λ) ∈ epi(f∗) + epi(g∗), hence
E∗ × (0,∞) ⊂ epi(f∗) + epi(g∗). �

Let us consider now the following particular functions: f := δA, g := δB,
where A := x0 − C, B := C − x0, x0 ∈ C and C is a nonempty, bounded and
convex subset of the Banach space E. In this case we have f∗ = sup〈A, ·〉,
g∗ = sup〈B, ·〉, dom(f∗) = dom(g∗) = E∗, f̂ = δ bA, cl(f̂) = δ

cl( bA)
, thus, in

view of Lemma 1, f∗∗ = δ
cl( bA)

, where the closure is considered in the topology
ω(E∗∗, E∗). We mention that the formula δ∗∗A = δ

cl( bA)
was obtained also in

section 4 of [4] and thus Lemma 1 is a generalization of this result. Further,
g∗∗ = δ

cl( bB)
and P (y∗) = sup〈y∗, D〉, for all y∗ ∈ E∗, where D = cl(Â) ∩ cl(B̂).

Applying Corollary 1 to this particular case (the hypotheses regarding the func-
tions f and g are obviously fulfilled) we obtain the following result.

Corollary 2. We have E∗ × (0,∞) ⊂ epi(f∗) + epi(g∗) if and only if x0 is
a weak∗-extreme point of C.
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Remark 2. The above result gives the solution to Problem 1 (see Remark
1), namely the answer is positive if and only if x0 is a weak∗-extreme point of
C. Let us mention that the closedness of the set C, requested in [14], is not
needed anymore for this result.

2.2 An alternative solution

By means of a minimax theorem we give in this subsection an alternative proof
of Corollary 2, hence an alternative solution to Problem 1 (see Remark 2).

Proof. Let y∗ ∈ E∗ and ε > 0 be arbitrary. In view of Remark 1, the
condition (y∗, ε) ∈ epi(f∗) + epi(g∗) is equivalent to the statement that there
exists z∗ ∈ E∗ such that for all x, y ∈ E, f(x) + g(y)− 〈x− y, z∗〉 ≥ 〈y, y∗〉 − ε,
which is nothing else than there exists z∗ ∈ E∗ such that for all u, v ∈ C,
〈u + v − 2x0, z

∗〉 + 〈x0 − v, y∗〉 ≥ −ε. Hence the inclusion E∗ × (0,∞) ⊂
epi(f∗) + epi(g∗) is fulfilled if and only if:

sup
z∗∈E∗

inf
(u,v)∈C×C

[〈u+ v − 2x0, z
∗〉+ 〈x0 − v, y∗〉] ≥ 0 for all y∗ ∈ E∗. (4)

Let us suppose first that x0 is a weak∗-extreme point of C. Take y∗ ∈ E∗.
For z∗ ∈ E∗, we have

inf
(u,v)∈C×C

[〈u+v−2x0, z
∗〉+〈x0−v, y∗〉] = inf

(u,v)∈ bC× bC[〈z∗, u+v−2x̂0〉+〈y∗, x̂0−v〉]

= inf
(u,v)∈cl bC×cl bC[〈z∗, u+ v − 2x̂0〉+ 〈y∗, x̂0 − v〉],

where the first equality follows by the definition of the canonical embedding
and the second one is a consequence of the continuity (in the weak∗ topology
ω(E∗∗, E∗)) of the functions 〈x∗, ·〉 : E∗∗ → R, for all x∗ ∈ E∗. The set C being
bounded, we use the celebrated Banach-Alaoglu theorem to conclude that the
set cl Ĉ is weak∗-compact. We apply a minimax theorem (see for example
Theorem 3.1 in [13]) and obtain that

sup
z∗∈E∗

inf
(u,v)∈C×C

[〈u+ v − 2x0, z
∗〉+ 〈x0 − v, y∗〉] =

sup
z∗∈E∗

inf
(u,v)∈cl bC×cl bC[〈z∗, u+ v − 2x̂0〉+ 〈y∗, x̂0 − v〉] =

inf
(u,v)∈cl bC×cl bC sup

z∗∈E∗
[〈z∗, u+ v − 2x̂0〉+ 〈y∗, x̂0 − v〉] = inf

(u,v)∈cl bC×cl bC
u+v=2cx0

〈y∗, x̂0 − v〉.

Since x0 is a weak∗-extreme point of C we get that {(u, v) ∈ cl Ĉ × cl Ĉ :
u + v = 2x̂0} = {(x̂0, x̂0)}, hence inf

(u,v)∈cl bC×cl bC
u+v=2cx0

〈y∗, x̂0 − v〉 = 0. Thus relation

(4) is fulfilled, implying E∗ × (0,∞) ⊂ epi(f∗) + epi(g∗).
On the other hand, consider the case E∗ × (0,∞) ⊂ epi(f∗) + epi(g∗) and

suppose that x0 is not a weak∗-extreme point of C. Then there exist u0, v0 ∈
cl Ĉ × cl Ĉ, u0 + v0 = 2x̂0 such that u0 6= x̂0 and v0 6= x̂0. We can choose
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y∗0 ∈ E∗ such that 〈y∗0, x̂0 − v0〉 < 0. Thus there exists ε0 > 0 such that
〈y∗0, x̂0 − v0〉 < −ε0, hence inf

(u,v)∈cl bC×cl bC
u+v=2cx0

〈y∗0, x̂0 − v〉 < −ε0. As above, we get

sup
z∗∈E∗

inf
(u,v)∈C×C

[〈u+ v − 2x0, z
∗〉+ 〈x0 − v, y∗0〉] < −ε0 < 0,

which contradicts (4), hence the proof is complete. �

Acknowledgements. The authors would like to express their gratitude to
Stephen Simons for carefully reading a preliminary version of the paper and
for providing some ideas in a personal communication which are generalized in
subsection 2.1.

References
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