
Fredholmness and index of operators in the Wiener

algebra are independent of the underlying space.

Marko Lindner

February 7, 2008

Abstract. The purpose of this paper is to demonstrate the so-called Fredholm-inverse closedness of the
Wiener algebra W and to deduce independence of the Fredholm property and index of the underlying space.
More precisely, we look at operators A ∈ W as acting on a family of vector valued `p−spaces and show
that the Fredholm regularizer of A for one of these spaces can always be chosen in W as well and therefore
regularizes A (modulo compact operators) on all of the `p−spaces under consideration. We conclude that
both Fredholmness and the index of A do not depend on the `p−space that A is considered as acting on.
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1 Introduction and Preliminaries

We study bounded linear operators A on a family {Ep}p∈P of sequence spaces. Our operators can
be identified with infinite matrices which have an absolutely summable off-diagonal decay, and we are
interested in their Fredholm property and index if considered as acting on one of the spaces Ep. Our
main result is that neither Fredholmness nor the index of A depend on the parameter p of the underlying
space.

Let N ∈ N and let X be a complex Banach space. The spaces Ep that we have in mind are spaces of
functions u : ZN → X. In particular, for p ∈ [1,∞], we put Ep := `p(ZN , X), equipped with the usual
norm ‖u‖Ep := ‖ (‖u(k)‖X)k ‖`p . In addition, we let E0 := c0(ZN , X) refer to the closure in E∞ of the
space of all sequences with finite support. If we simply write of E then the corresponding statement is
meant to hold with any of the spaces Ep, p ∈ P := {0} ∪ [1,∞], in place of E.

Let L(X) denote the set of all bounded linear operators on X. Given a matrix M = [mij ]i,j∈ZN with
entries mij ∈ L(X), we say that M induces a bounded operator A on E if

(Au)(i) =
∑

j∈ZN

mij u(j), i ∈ ZN , (1)

the sum converges in X for every i ∈ ZN and every u ∈ E and if the resulting operator A is a bounded
mapping E → E. An operator A ∈ L(E) is called a band operator if it is induced by a banded matrix
M , that means mij = 0 if |i − j| > w for some w ≥ 0. Clearly, if A is bounded on one space Ep then
every diagonal dk of the inducing matrix M is a bounded sequence of elements in L(X) and therefore A
is bounded on all spaces Ep. We now put

‖A‖W :=
∑

k∈ZN

‖dk‖∞ =
∑

k∈ZN

sup
j∈ZN

‖mj+k,j‖L(X)

and denote by W the closure of the set of all band operators in the norm ‖.‖W . The set W, equipped
with addition, multiplication by scalars, operator composition and with the norm ‖.‖W , turns out to be a
Banach algebra (with unit I : u 7→ u) and is called the Wiener algebra. Note that this is a natural (non-
stationary) extension of the classical algebra of all operators with constant diagonals and ‖A‖W < ∞
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(which is isomorphic, via Fourier transform, to the algebra of all periodic functions with absolutely
summable sequence of Fourier coefficients). Like band operators, operators in the Wiener algebra act
boundedly on all spaces Ep. A deep and remarkable result about W is its inverse closedness; that is, if
A ∈ W is invertible on one of the spaces Ep, its inverse A−1 is automatically in W again [18, Theorem
2.5.2] (see [1] for the classic stationary case) and therefore acts as the inverse of A on all spaces Ep.

What’s new? One of the main aims of this paper is to show that a very similar result holds
for Fredholmness in place of invertibility. Recall that, by Calkin’s theorem, A ∈ L(E) is a Fredholm
operator iff there is a so-called regularizer B ∈ L(E) and two compact operators K and L on E such
that AB = I + K and BA = I + L hold. We will show that W is Fredholm-inverse closed, meaning that,
if A ∈ W is Fredholm on one of the spaces Ep in our family then its regularizer B ∈ L(Ep) can always
be chosen in the Wiener algebra W as well and the operators K and L are not only compact on this
particular space Ep but on all the spaces under consideration, which clearly shows that A is Fredholm
on all of them. We then carry on showing that also the index of A does not depend on the space that A
is considered as acting on.

The general result about Fredholm-inverse closedness of W appears to be new. Results of the type

If A ∈ W is Fredholm on one space Ep with p ∈ P
then A is Fredholm on all spaces Eq with q ∈ Q. (2)

and
Moreover, the index of A on Eq is the same for all q ∈ Q. (3)

are known but in less general settings: In [10, 17], statement (2) was shown with P = Q = {0} ∪ [1,∞]
in the particular case when X = C. In [18], (2) with P = Q = {0} ∪ (1,∞) was extended to arbitrary
reflexive Banach spaces X. Later, in [19], statement (3) was shown for Q = (1,∞) and X = C. Note
that, by a general result [22] about Fredholm operators on interpolational families of Banach spaces,
statement (2) automatically implies that the index of A is the same on all spaces Eq with q ∈ Q′ for
every open interval Q′ ⊂ Q. Also note that, for particular operator classes, statements of the form (2)
and (3) are well-studied in the literature (e.g. [8, 20, 21] for Schrödinger operators and [2, 6] for Toeplitz
operators with continuous symbol).

In [15, 3] the step to an arbitrary Banach space X was done but for the price that A ∈ W has to
be of the form I + C with C being induced by a matrix with (collectively) compact entries. In this
setting, it was shown in [3] that (2) holds with P = {0} ∪ [1,∞), Q = {0} ∪ [1,∞] and, under the
additional assumption that X is the dual of another space, denoted by X/, and A, if considered as acting
on E∞ = `∞(ZN , X), is the adjoint of another operator, say A/ on `1(ZN , X/), (2) was also shown for
P = {∞} and Q = {0} ∪ [1,∞]. Moreover, in the same paper, statement (3) was shown for arbitrary
A ∈ W in the case of a finite-dimensional space X and Q = {0} ∪ [1,∞].

Now, in the current paper, we show that, for an arbitrary A ∈ W and a vast selection of Banach spaces
X (namely those of finite dimension plus those possessing a subspace of codimension 1 that is isomorphic
to X), statement (2) holds with P = {0} ∪ [1,∞), Q = {0} ∪ [1,∞] and, under the additional condition
that X/ and A/ exist, with P = {∞} and Q = {0} ∪ [1,∞]. We moreover show that both of these
statements are complemented by (3) with Q = {0} ∪ [1,∞]. These results follow almost immediately
from the observation that A ∈ W has a Fredholm regularizer in W if Fredholm on one of the spaces Ep.

Our proof takes the idea of that of [19, Lemma 2.1] a bit further and combines it with duality results
from [3, §6]. Note that, unlike in most of the papers cited above, our arguments are based on Fredholm
properties only and do not make a detour, via so-called invertibility at infinity (alias P-Fredholmness),
to the invertibility (and this is where the p-invariance usually comes in) of all so-called limit operators of
A. The benefit of not using this heavy machinery is that we can even extend our results to larger families
of spaces E, for which the limit operator approach has not been developed (yet). We will say a bit more
about these possibilities in §4 at the end of the paper. Concerning limit operators [18, 11], it should be
added that they have proven an effective tool to actually check Fredholmness [10, 17, 18, 11] and in some
cases even calculate the index [16, 19, 15] of A ∈ W. But this shall not be the subject of this paper.
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Contents of the paper. In §2 we make a short intermezzo on Stefan Banach’s famous hyperplane
problem and its connection with the existence of Fredholm operators of a certain index. In §3 we state
and prove the main theorem of this paper before we discuss some possible extensions in §4.

Acknowledgements. The author would like to thank his friend and colleague Leslie J Bunce
from Reading, UK, for the exciting conversations on the geometry of Banach spaces and the astonishing
surprises they are keeping for us. Moreover, I would like to acknowledge the financial support by the
European Union (Marie Curie Fellowship, MEIF-CT-2005-009758).

2 Fredholm operators and the hyperplane problem

Let X be an infinite-dimensional complex Banach space and A ∈ L(X). As usual, denote by

ker A := {x ∈ X : Ax = 0} and im A := {Ax : x ∈ X}

the kernel (or null-space) and image (or range) of A. If

α(A) := dimkerA < ∞ and β(A) := codimX im A < ∞

(in which case im A is automatically closed), then we say that A is a Fredholm operator on X. In this
case we refer to the integer

ind A := α(A) − β(A)

as its index and let coim A and coker A denote a complement space of ker A and im A, respectively, in X.
(Note that ker A and im A are complementable since α(A), β(A) < ∞.) Clearly, it holds that

coim A ∼= X / ker A ∼= im A.

Lemma 2.1 A ∈ L(X) is Fredholm of index zero iff there exist an invertible operator B ∈ L(X) and a
compact operator K ∈ L(X) such that A = B + K.

Proof. If A = B + K with B invertible (hence Fredholm of index 0) and K compact then A is Fredholm
and indA = ind(B + K) = ind B = 0.

Conversely, let A ∈ L(X) be Fredholm of index zero. Then ker A and coker A are isomorphic since they
have both dimension α(A) = β(A) < ∞. Let T : ker A → cokerA be an isomorphism (i.e. an invertible
linear operator) and put B := A+TPker A with Pker A(k + c) := k for all k ∈ ker A and c ∈ coim A. Then,
with x ∈ X decomposed as x = k + c, we get

Bx = (A + TPker A)(k + c) = Ak + Ac + TPker A(k + c) = Ac + Tk

for all k ∈ ker A and c ∈ coim A. Consequently, im B = im A + im T = im A + coker A = X and
ker B = {0} since 0 = Bx = Ac + Tk implies Ac = Tk = 0 and hence c = 0, k = 0 and x = 0. So we
have A = B + K with B ∈ L(X) invertible and K = −TPker A of finite rank and therefore compact.

Lemma 2.2 The following are equivalent for an infinite-dimensional complex Banach space X.

(i) X is isomorphic to a subspace Y ⊂ X of codimension 1.
(ii) X is isomorphic to X × C = {(x, λ) : x ∈ X, λ ∈ C}.
(iii) There exists a Fredholm operator A ∈ L(X) with ind A = 1.
(iv) There exists a Fredholm operator B ∈ L(X) with indB = −1.

Proof. (i) ⇒ (ii) Take Y ⊂ X with codimX Y = 1 and X ∼= Y . Pick z ∈ X \Y and let Z = {λz : λ ∈ C}.
Then X = {y + λz : y ∈ Y, λ ∈ C} ∼= Y × C ∼= X × C since Y ∼= X.

(ii) ⇒ (iii) Take A : X ∼= X × C → X with A : (x, λ) 7→ x for all x ∈ X, λ ∈ C.
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(iii) ⇒ (iv) Let A ∈ L(X) be Fredholm with index 1. Then there are B,K, L ∈ L(X) with AB = I+K,
BA = I + L and K, L compact. But this shows that B is Fredholm with index −1 since indA + indB =
indAB = ind (I + K) = 0.

(iv) ⇒ (i) Let B ∈ L(X) be Fredholm with index −1. Choose a subspace Z of cokerB with dim Z =
dim cokerB − 1 = β(B) − 1 = α(B) = dim kerB and let T : ker B → Z be an isomorphism. Then
A : X → Z + im B with A(k + c) := Tk +Bc for all k ∈ ker B and c ∈ coim B is an isomorphism between
X and its 1-codimensional subspace Z + im B.

Definition 2.3 An infinite-dimensional complex Banach space X is said to have the hyperplane property
if it is subject to property (i) (and therefore any of (i) − (iv)) of Lemma 2.2. We write H∞ for the set
of all infinite-dimensional complex Banach spaces with the hyperplane property, and we let H denote the
union of H∞ with the set of all finite-dimensional complex spaces.

Remark 2.4 It has been an open problem, the so-called hyperplane problem, posed by Stefan Banach in
his famous “Scottish Book”, whether or not there are any complex Banach spaces outside of H. In 1993,
more than 50 years later, it was William Timothy Gowers who solved this and two more of Banach’s
classical problems by constructing a Banach space that is not in H [7]. Gowers was subsequently awarded
the Fields Medal in 1998 for his important contributions to functional analysis by combining it with
combinatorial ideas. Note that Gowers constructed a Banach space X which is not isomorphic to any of
its finite-codimensional subspaces. As a consequence, in L(X) there are no Fredholm operators with a
non-zero index!

In the current paper we will prove a theorem about Fredholm operators on spaces of functions ZN → X
with X ∈ H. Judging by the fact that the discovery of Banach spaces X 6∈ H took a long time (and
was worth a Fields Medal) it seems pretty safe to assume that your given Banach space X at hand is
contained in H and is therefore covered by the main result of this paper. We will however give some
sufficient criteria here for membership in H. The following lemma is the result of personal communication
with Les Bunce from Reading, UK.

Lemma 2.5 Let X be an infinite-dimensional complex Banach space. Then the following hold.

(i) X ∈ H∞ implies that X∗ ∈ H∞. The converse is in general not true.

(ii) The direct sum X = Y u Z is in H∞ if one of Y and Z is in H∞.

(iii) The spaces c0 := c0(N, C) and `p := `p(N, C) with 1 ≤ p ≤ ∞ are in H∞. Consequently, all
spaces c0(Ω, Y ) and `p(Ω, Y ) with Ω at most countable, Y a finite-dimensional complex space, and
1 ≤ p ≤ ∞ are in H.

(iv) If c0 ∼⊂X (meaning that X contains an isomorphic copy of c0) and X is separable, then X ∈ H∞.

(v) If c0 ∼⊂X∗, then X ∈ H∞.

(vi) If `∞ ∼⊂X, then X ∈ H∞.

(vii) If µ is a σ-finite nonatomic measure over an infinite set Ω and 1 ≤ p ≤ ∞, then Lp(Ω, µ) ∈ H∞.

(viii) If K is an infinite compact metric space, then C(K) ∈ H∞.

(ix) If X is a separable C∗-algebra, then X ∈ H∞. There are (non-separable) C∗-algebras X 6∈ H.

(x) If X is a C∗-algebra then X∗ ∈ H∞.

(xi) If X is a von Neumann algebra, then both X and its (unique) predual X/ are in H∞.

Remark 2.6 In connection with (viii), we would like to remark that already an infinite compact (not
necessarily metrisable) space K is enough if it has a nontrivial convergent sequence as this sequence can
be used to construct a complementable copy of c0 in C(K) (see e.g. [14]).

We would also like to mention that there exist (non-separable) examples of C(K) 6∈ H. For an example
of a non-metrisable compact Hausdorff space K with this property see [9, 14].
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Proof.

(i) Recall Lemma 2.2 and that if A ∈ L(X) is Fredholm of index 1, then B = A∗ ∈ L(X∗) is Fredholm
of index −1 on X∗. For an example of X 6∈ H∞ and X∗ ∈ H∞ see (ix) and (x).

(ii) Suppose Y ∈ H∞ and A ∈ L(Y ) is Fredholm of index 1. Then A′ ∈ L(X) with A′(y + z) = Ay + z
for all y ∈ Y and z ∈ Z is Fredholm of index 1 on X.

(iii) The backward shift (Au)(k) = u(k + 1), k ∈ N, on c0 and `p, 1 ≤ p ≤ ∞, is Fredholm of index
1. Now let Ω be at most countable and Y be a finite-dimensional complex space. If Ω is finite,
then c0(Ω, Y ) and all `p(Ω, Y ) are finite-dimensional and therefore in H. If Ω is countable, then
c0(Ω, Y ) ∼= c0 ∈ H∞ and `p(Ω, Y ) ∼= `p ∈ H∞ for all p ∈ [1,∞].

(iv) By Theorem 5 of [23] (or see [4, 24]) we have that the isomorphic copy of c0 is complementable in
X, i.e. X ∼= c0 u Z for some space Z. From (iii) and (ii) we get that X ∈ H∞.

(v) By c0 ∼⊂X∗ we know that a copy of `1 is complementable in X (see e.g. [4, 24]). By (iii) and (ii)
we get X ∈ H∞.

(vi) By [12] (or see [4, 24]) we know that the copy of `∞ is automatically complementable in X, and
hence X ∈ H∞ by (iii) and (ii).

(vii) Let µ be a σ-finite nonatomic measure on Ω. For every p ∈ [1,∞], there is a complementable
copy of `p in Lp(Ω, µ). To see this, let Ω1,Ω2, ... be disjoint subsets of Ω each having positive
measure and take S : Lp(Ω, µ) → `p with (Sf)(k) = 1/µ(Ωk)

∫
Ωk

f dµ and R : `p → Lp(Ω, µ)
with (Ru)(x) = u(k) / µ(Ωk)1/p (putting 1/∞ = 0) for x ∈ Ωk and 0 otherwise. Then S is bounded
(Hölder inequality), R is an isometry, SR = I and `p can be identified with the image of the projector
RS in Lp(Ω, µ); so it has a complement (e.g. kerRS). Hence, by (iii) and (ii), Lp(Ω, µ) ∈ H∞.

(viii) If K is an infinite compact metric space, then C(K) is separable and c0 ∼⊂ C(K) (take an infinite
sequence K1,K2, ... of pairwise disjoint open subsets of K and look at functions f ∈ C(K) which
are constant on each Kn to see the latter). Together with (iv) we get C(K) ∈ H∞.

(ix) Let X be a separable C∗-algebra. We may assume that X has a unit e and that there exists an
a ∈ X with a = a∗ and an infinite spectrum σ(a). Let A denote the C∗-subalgebra of X that is
generated by e and a. Then A ∼= C(σ(a)) contains an isomorphic copy of c0 (as seen in the proof
of (viii)) so that c0 ∼⊂A ⊂ X and hence X ∈ H∞ by (iv).

(x) If X is a C∗-algebra, then (as seen before) c0 ∼⊂X ∼⊂X∗∗ = (X∗)∗. Hence, by (v), X∗ ∈ H∞.

(xi) If X is a von Neumann algebra, then `∞ ∼⊂X so that X ∈ H∞ by (vi). But also X/ ∈ H∞ by
c0 ⊂ `∞ ∼⊂X = (X/)∗ and (v).

3 Main result

Theorem 3.1 Let X ∈ H and A ∈ W. Then the following hold.

a) If A is Fredholm on one of the spaces Ep with p ∈ {0} ∪ [1,∞) then A is Fredholm on all the
spaces Eq with q ∈ {0} ∪ [1,∞].

b) If X has a predual X/ and A, considered as acting on E∞ = `∞(ZN , X), has a preadjoint A/ on
`1(ZN , X/) and if A is Fredholm on E∞ then A is Fredholm on all the spaces Eq with q ∈ {0} ∪ [1,∞].

In both cases, the index of A is the same on all these spaces Eq with q ∈ {0} ∪ [1,∞].
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Remark 3.2 a) We conjecture that the condition X ∈ H is not necessary in this statement (see §4).

b) In the particularly simple case of a finite-dimensional space X we know that X ∈ H, the predual
of X exists (it can be identified with X∗ and therefore with X itself) and the preadjoint operator of
A ∈ L(E∞) always exists and is induced by [m∗

ji] on `1(ZN , X∗). So in this case we can drop these two
conditions from statement b) of Theorem 3.1 and merge a) and b) into one statement with p ∈ {0}∪[1,∞].

c) Note that, for A ∈ L(Y ) with a Banach space Y that is the dual of another space Z, the statements

(i) A is the adjoint of an operator B ∈ L(Z).
(ii) The adjoint A∗ maps Z, understood as a subspace of its second dual Z∗∗ = Y ∗, into itself.
(iii) A is continuous in the weak-∗ topology on Y .

are equivalent.

The rest of this section is devoted to the proof of Theorem 3.1. We start with two lemmas. But first
we define the truncation operator Pm : E → E by

(Pmu)(k) :=
{

u(k), k ∈ {−m, ...,m}N ,
0, otherwise

for every u ∈ E, m ∈ N and k ∈ ZN , and we put Qm := I − Pm.

Lemma 3.3 If p ∈ {0} ∪ (1,∞) and K is compact on Ep then ‖K − PmKPm‖ → 0 as m →∞.

Proof. The claim follows from the bound

‖K − PmKPm‖ = ‖PmKQm + QmK‖ ≤ ‖(PmKQm)∗‖+ ‖QmK‖
≤ ‖Q∗

mK∗‖ · ‖P ∗
m‖+ ‖QmK‖ → 0

as m →∞ since

‖Pm‖ remains bounded, Qm → 0 and Q∗
m → 0 pointwise as m →∞ (4)

on Ep and (Ep)∗, respectively, and since K and K∗ are compact on Ep and (Ep)∗, respectively.

Lemma 3.4 Let m ∈ N and p ∈ {0} ∪ [1,∞]. If PmKPm is compact on Ep then it is compact on all
spaces Eq with q ∈ {0} ∪ [1,∞].

Proof. Let PmKPm be compact on Ep. Now let q ∈ {0}∪ [1,∞] and take an arbitrary bounded sequence
(uk) ⊂ Eq. We have to show that (PmKPmuk)k has an Eq-convergent subsequence. W.l.o.g. we can
restrict ourselves to elements uk ∈ im Pm. Now note that on im Pm all the Eq-norms are equivalent. So
(uk) is also bounded in Ep and, by our assumption, (PmKPmuk)k has an Ep-convergent subsequence.
But since PmKPmuk ∈ im Pm for every k and again since the norms are equivalent on im Pm, the same
subsequence also converges in the norm of Eq.

Remark 3.5 From the proof of Lemma 3.4 we see that this statement generalizes to any family of spaces
E of functions u : ZN → X the different norms of which are equivalent on im Pm. This is, for example,
the case when ‖u‖E is defined in terms of the scalar sequence (‖u(k)‖X)k∈ZN for every E.

In the following, we will write indp A for the index of A ∈ W on Ep. An essential ingredient to the
proof of Theorem 3.1 is a family {Sκ}κ∈Z of operators in W with indp Sκ = κ for all p ∈ {0} ∪ [1,∞] and
all κ ∈ Z. Here is one way to choose this family.

If n := dim X < ∞, let e1, ..., en be a basis in X, write u ∈ E as

u(k1, k2, ..., kN ) =
n∑

i=1

ui(k1, k2, ..., kN ) ei
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with ui(k1, k2, ..., kN ) ∈ C for all k1, ..., kN ∈ Z and i = 1, ..., n, and put

(S−1u)(k1, k2, ..., kN )

:=

 0e1 +
∑n

i=2 ui−1(k1, k2, ..., kN )ei, k1 = ... = kN = 0,
un(k1 − 1, k2, ..., kN )e1 +

∑n
i=2 ui−1(k1, k2, ..., kN )ei, k1 > 0, k2 = ... = kN = 0,

u(k1, k2, ..., kN ), otherwise

and

(S1u)(k1, k2, ..., kN )

:=
{ ∑n−1

i=1 ui+1(k1, k2, ..., kN )ei + u1(k1 + 1, k2, ..., kN )en, k1 ≥ 0, k2 = ... = kN = 0,
u(k1, k2, ..., kN ), otherwise.

If dim X = ∞ choose T−1, T1 ∈ L(X) with ind T±1 = ±1, respectively, which is possible by X ∈ H∞
and Lemma 2.2. Now, for every u ∈ E, put

(S±1u)(k) =
{

T±1(u(0)), k = 0,
u(k), k 6= 0,

respectively, for all k ∈ ZN , i.e. S±1 = diag(..., IX , IX , T±1, IX , IX , ...) with T±1 at position zero.

In either case, dim X finite or infinite, now put

Sκ :=


Sκ

1 , κ > 0,
I, κ = 0,

S−κ
−1 , κ < 0

for all κ ∈ Z, and it follows from indp S±1 = ±1 for all p ∈ {0} ∪ [1,∞] that indp Sκ = κ for all κ ∈ Z
and all p. Also note that, by our construction, Sκ ∈ W for all κ ∈ Z.

We are now ready for the proof of Theorem 3.1.

Proof. Suppose X ∈ H, A ∈ W, p ∈ {0} ∪ [1,∞], and A is Fredholm on Ep with index κ := indp A.

Case 1. p ∈ {0} ∪ (1,∞).
Since AS−κ is Fredholm of index zero on Ep, we know from Lemma 2.1 that there exists a compact
operator K on Ep such that AS−κ + K is invertible on Ep. By Lemma 3.3 and a simple perturbation
argument, we know that, for a sufficiently large m ∈ N, also A′ := AS−κ + PmKPm is invertible on Ep.
Moreover, A′ ∈ W since A,S−κ, PmKPm ∈ W. From the inverse closedness of W [18, Theorem 2.5.2] we
know that B′ := (A′)−1 ∈ W. Summarizing,

I = A′B′ = AS−κB′ + PmKPmB′, (5)

i.e. AB = I −K ′ with B = S−κB′ ∈ W and K ′ = PmKPmB′ ∈ W being compact on all spaces Eq with
q ∈ {0} ∪ [1,∞] by Lemma 3.4. By a completely symmetric argument for A′′ := S−κA + PmLPm with
L and m accordingly chosen, one gets that CA = I − L′ for some C ∈ W and L′ ∈ W compact on all
Eq with q ∈ {0} ∪ [1,∞]. Looking at C − CK ′ = C(AB) = (CA)B = B − L′B, we see that the left and
right regularizers B and C only differ by an operator L′B − CK ′ ∈ W that is compact on all spaces Eq

so that we can use one of them as regularizer for both sides. This shows that A is Fredholm on all spaces
Eq. The q-independence of the index now follows by looking at (5) as an equality on Eq and taking the
index on both sides, i.e.

0 = indq I = indq A + indq S−κ + indq B′ = indq A + (−κ) + 0,

showing that indq A = κ = indp A for all q ∈ {0} ∪ [1,∞].

Case 2. p = ∞ with existence of X/ and A/.
We get from Proposition 6.18 in [3](which is applicable since A ∈ W and since X/ and A/ exist) that A
is also Fredholm, with the same index κ, if restricted to E0 ⊂ E∞. Now the claim follows from Case 1
with p = 0.
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Case 3. p = 1.
If A is Fredholm with index κ on E1 = `1(ZN , X) then A∗ is Fredholm of index −κ on `∞(ZN , X∗).
By Case 2 (note that X∗ and A∗ clearly have a predual and preadjoint) we get that A∗ is Fredholm on
`2(ZN , X∗) with the same index −κ. But consequently, A is Fredholm on E2 = `2(ZN , X) with index κ,
so that the claim follows from Case 1 with p = 2.

Note that, as an important interim result of this proof, we get the following so-called Fredholm-inverse
closedness of W.

Proposition 3.6 If X ∈ H and A ∈ W is Fredholm on one of the spaces Ep (existence of X/ and
A/ assumed if p = ∞) then its Fredholm regularizer B ∈ L(Ep) can be chosen in W as well, and the
remainders AB − I and BA− I are compact on all spaces of the {Ep} family.

4 Outlook: Generalizations and Improvements?

We end this paper with an outlook to some possible future work on this subject. There are two or three
things about Theorem 3.1 that look like they could possibly be extended or improved.

Firstly, it would be rather surprising if the condition X ∈ H really turned out to be necessary. The
reason why we need this condition here is to be able to define a family {Sκ}κ∈Z of Fredholm operators
in W containing an operator with Fredholm index κ on E for each integer κ. If X 6∈ H then there exist
no Fredholm operators of index 1 or −1 on X. Instead there is either a smallest positive integer ϕ(X)
for which a Fredholm operator T ∈ L(X) of that index (or equivalently: an isomorphic subspace of X of
that codimension) exists or there is no Fredholm operator on X with a nonzero index (i.e. no isomorphic
subspace of X with a finite codimension, see Remark 2.4 or the spaces constructed in [9, 14]) in which
case we put ϕ(X) := 0. It is clear that all Fredholm operators on X then have an index that is an integer
multiple of ϕ(X). We conjecture that, for every space E under consideration here (maybe even for every
Banach space E of functions ZN → X), it is also true that all Fredholm operators on E have an index
that is a multiple of ϕ(X); in other words, it holds that ϕ(E) = ϕ(X). If that conjecture was true then
it would be sufficient (and of course possible) to define the family {Sκ} only for all κ ∈ ϕ(X)Z. The
condition X ∈ H could then be erased from Theorem 3.1 without any changes to the proof since every
Fredholm operator A on E would also have an index in ϕ(X)Z.

Secondly, is the existence of the preadjoint A/ really necessary?

Finally, the proof of Theorem 3.1 suggests that we can extend/exchange our family of spaces Ep to/by
other families of Banach spaces E of functions ZN → X for which the following holds:

• The Wiener algebra W is contained and inverse closed in every L(E);

• Property (4) in the proof of Lemma 3.3 holds for all E;

• The statement of Lemma 3.4 generalizes to the new family of spaces E, i.e. if m ∈ N and PmKPm

is compact on one space E then it is compact on all spaces E.

As likely candidates for such extensions, we suggest looking at the following spaces.

Example 4.1 One generalization of our family of X-valued `p spaces is the family of so-called weak `p

spaces [5] with values in X; that is the set of all functions u : ZN → X with

‖u‖ := sup
f∈X∗,‖f‖=1

∥∥∥∥(
f
(
x(k)

))
k∈ZN

∥∥∥∥
`p

< ∞,

usually denoted by `p
weak(ZN , X).
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Example 4.2 Another direction of generalization – in particular a generalization of `1(ZN , X) – is the
so-called Rademacher sequence space [5, 13], denoted by Rad(ZN , X). This is the set of all functions
u : ZN → X with

‖u‖ := sup
n∈N

1
|Sn|

∑
σ∈Sn

∥∥∥∥∥∥
∑

k∈{−n,...,n}N

σ(k) u(k)

∥∥∥∥∥∥
X

< ∞,

where Sn denotes the set of all functions σ : {−n, ..., n}N → {−1, 1}.
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Birkhäuser 1992.

[7] W. T. Gowers: A Solution to Banach’s Hyperplane Problem, Bulletin of the LMS 26 (1994), no.
6, 523–530.

[8] R. Hempel and J. Voigt: The spectrum of a Schrödinger operator in Lp is p-independent, Com-
mun. Math. Phys. 104 (1986), 243–250.

[9] P. Koszmider: A Banach space of continuous functions with few operators, Math. Ann. 330 (2004),
151–183.

[10] B. V. Lange and V. S. Rabinovich: On the Noether property of multidimensional discrete
convolutions, Mat. Zametki 37 (1985), no. 3, 407–421 (Russian).

[11] M. Lindner: Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator
Method, Frontiers in Mathematics, Birkhäuser 2006.
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