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Fourier analysis on the rotation group SO(3) expands each function into
the orthogonal basis of Wigner-D functions. Recently, fast and reliable al-
gorithms for the evaluation of finite expansion of such type, referred to as
nonequispaced FFT on SO(3), have become available. Here, we consider the
minimal norm interpolation of given data by Wigner-D functions. We prove
bounds on the conditioning of this problem which rely solely on the number
of Fourier coefficients and the separation distance of the sampling nodes. The
reconstruction of N3 Fourier coefficients from M well separated samples is
shown to take only O(N3 log2 N + M) floating point operations.
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1 Introduction

Scattered data interpolation and approximation on various domains is a practical prob-
lem with many important applications in science and engineering. In our particular
setting, we are interested in functions defined on the rotation group SO(3), cf. [26, 24].
Recent applications include protein-protein docking problems [3] and texture analysis in
crystallography [25]. Given a set of measurements (Gj, yj) ∈ SO(3)×C, j = 0, . . . ,M−1,
discrete least squares approximation by Wigner-D functions (similar to the complex ex-
ponentials on the circle) relies on two ingredients: a fast Fourier transform on the ro-
tation group, see [9, 19] and estimates on the involved condition numbers by means of
Marcinkiewicz-Zygmund inequalities [13, 6, 8, 22].

On the other hand, interpolation by radial basis functions on R
d has become a mature

tool during the last decade, see e.g. [27] and references therein. Recent generalizations
to other domains include manifolds like the Euclidean spheres [17, 12, 10] or compact
groups like SO(3) [7, 5, 4]. Central themes in the study of such methods are their
convergence rates and the conditioning of proposed solution schemes, see [21, 23] for a
trade-off principle.
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We are interested in the condition numbers of interpolation matrices and follow the
seminal papers [18, 1] to prove explicit bounds for the extremal eigenvalues of the inter-
polation problem with respect to the separation distance of the sampling nodes. More
specific, the simple constraint that the polynomial degree is bounded from below by a
constant multiple of the inverse separation distance turns out to be a sharp condition that
allows for polynomial interpolation, cf. Theorem 3.5. Our result implies that N3 Fourier
coefficients can be computed from M well separated samples in O(N3 log2 N +M) float-
ing point operations, see Corollary 3.6. Moreover, Corollary 3.8 generalizes and improves
a recent result [17, Theorems 2.8, 3.6] on the deterioration of the smallest eigenvalue for
interpolation with minimal Sobolev norm. The proof of our main result relies on a pack-
ing argument [5, Lemma 5.1], the construction of strongly localized polynomials on the
rotation group by using a smoothness-decay principle in Fourier analysis [14, 16, 11],
and a simple eigenvalue estimate by the Gershgorin circle theorem.

2 Prerequisite

Let SO(3) := {G ∈ R
3 : GT G = I,det G = 1} denote the (compact semisimple Lie)

group of rotations in the Euclidean space R
3, cf. [26, 24]. The parameterization of

SO(3) in terms of Euler angles (φ1, θ, φ2) ∈ [0, 2π) × [0, π] × [0, 2π) allows the following
representation of rotations

G = G(φ1, θ, φ2) = Rz(φ1)Ry(θ)Rz(φ2)

where

Rz(t) =





cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1



 , Ry(t) =





cos(t) 0 − sin(t)
0 1 0

sin(t) 0 cos(t)



 .

Moreover, SO(3) can be identified with the three dimensional projective space such that
SO(3) ∋ G 7→ ωx with rotation axis x, i.e. Gx = x, ‖x‖ = 1, and rotation angle
ω ∈ [0, π]. In particular, this yields the translation invariant metric

d(G,H) := ω(H−1G).

Now, let a sampling set X := {Gj ∈ SO(3) : j = 0, . . . ,M − 1}, M ∈ N, be given and
measure its “nonuniformity” by the separation distance

qX := min
0≤j<l<M

d(Gj ,Gl).

The sampling set X is called q-separated for some 0 < q ≤ π if qX ≥ q. Moreover, we
decompose the sampling set X ⊂ SO(3) into shells

RX ,q,m := {G ∈ X : mq ≤ d(G, I) < (m + 1)q} , m ∈ N. (2.1)

For measurable functions f : SO(3) → C, the normalized Haar integral is given by
∫

SO(3)
f(G)dµ(G) =

1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(φ1, θ, φ2) sin(θ)dφ2dθdφ1.
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A function only depending on the rotation angle ω = ω(G) is called conjugate invariant
(or central) and the above integral simplifies to

∫

SO(3)
f(G)dµ(G) =

2

π

∫ π

0
f (ω) sin2

(ω

2

)

dω.

In analogy to the complex exponentials eikx on the circle, the Wigner-D functions Dk,k′

l
of degree l ∈ N0 and orders k, k′ = −l, . . . , l are the key to Fourier analysis on the
rotation group. First, let the space of square integrable functions on the unit sphere
f : S

2 → C be decomposed into the mutual orthogonal spaces of spherical harmonics of
degree l ∈ N0 and let {Y k

l : S
2 → C : k = −l, . . . , l} denote an orthonormal basis for

each of them, see [15] for details. Then, the Wigner-D functions are defined pointwise
by

Dk,k′

l (G) :=

∫

S2

Y k′

l

(

G−1ξ
)

Y k
l (ξ)dµS2 (ξ) and

∫

S2

dµS2 (ξ) = 4π.

They form an orthogonal basis of L2(SO(3)), are normalized by ‖Dk,k′

l ‖2
L2 = 1/(2l + 1),

and every f ∈ L2(SO(3)) obeys the series expansion f =
∑

l∈N0

∑l
k,k′=−l f̂

k,k′

l Dk,k′

l with
Fourier-Wigner coefficients

f̂k,k′

l = (2l + 1)

∫

SO(3)
f (G)Dk,k′

l (G)dµ(G).

For later reference we define a family of Sobolev spaces H2
s ⊂ L2(SO(3)), s > 2, with

inner product and norm

〈f, g〉H2
s

:=
∑

l∈N0

l
∑

k,k′=−l

(1 + l)s f̂k,k′

l ĝk,k′

l , ‖f‖H2
s

=
√

〈f, f〉H2
s
.

One of the more remarkable properties of the Wigner-D functions is the addition
theorem

l
∑

k,k′=−l

Dk,k′

l (G) Dk,k′

l (H) = U2l

(

cos
d (G,H)

2

)

, (2.2)

where Ul(cos ω) = sin((l+1)ω)/ sin(ω) denotes the l-th Chebyshev polynomial of second
kind. For a sampling set X = {Gj ∈ SO(3) : j = 0, . . . ,M − 1}, we call

D =
(

Dk,k′

l (Gj)
)

j,(l,k,k′)
∈ C

M×dN

the nonequispaced Fourier matrix on the rotation group. Given a vector of Fourier
coefficients f̂ ∈ C

dN , dN = 1
6(2N + 1)(2N + 2)(2N + 3), we call

f(G) =

N
∑

l=0

l
∑

k,k′=−l

f̂k,k′

l Dk,k′

l (G)
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the corresponding polynomial on the rotation group. Its evaluation at the sampling nodes
X ⊂ SO(3) can be written in matrix vector from by f = (f(Gj))j=0,...,M−1 = Df̂ .

In what follows, we study the underdetermined interpolation of scattered data on
SO(3) by polynomials. Let M < dN , a sampling set X = {Gj ∈ SO(3) : j = 0, . . . ,M −
1}, values yj ∈ C for j = 0, . . . ,M − 1, and weights ŵl > 0 for l = 0, . . . N , be given.
Then, the minimal norm interpolation problem is given by

min
f̂

N
∑

l=0

l
∑

k,k′=−l

∣

∣

∣f̂
k,k′

l

∣

∣

∣

2

ŵl
s.t. f (Gj) = yj for j = 0 . . . M − 1. (2.3)

3 Results

Lemma 3.1. Every q-separated sampling set X ⊂ SO(3) has cardinality

M ≤
109π

2q3
.

Moreover, there exists a q-separated sampling set of cardinality

M ≥
6π

q3
.

Given a q-separated sampling set, its decomposition into shells RX ,q,m, cf. (2.1), allows
for the cardinality estimate

|RX ,q,m| ≤ 141m2.

Proof. Let Br = {G ∈ SO(3) : d(G, I) ≤ r} denote the cap of rotation angle r ∈ (0, π]
around the identity with measure

µ (Br) =

∫

Br

dµ (G) =
2

π

∫ r

0
sin2

(

t

2

)

dt (3.1)

be given. From [5, Lemma 5.1], we know that µ
(

Bq/2

)

≥ 2
π

q3

109 for 0 < q ≤ π. Now lets
assume, we decompose the whole SO(3) into such caps, where each cap has a sampling
node Gj as center. Since the sampling set is q separated, the number of nodes is bounded
by

M ≤
µ (SO(3))

µ
(

Bq/2

) ≤
109π

2q3
.

Regarding the second claim, we presume the contrary, i.e., let a q-separated sampling
set X with M < 6π

q3 nodes be given. Around each node, we place a cap of latitude q and
obtain

µ



SO(3)\

M−1
⋃

j=0

Bq(Gj)



 ≥ µ (SO(3)) −

M−1
∑

j=0

µ (Bq(Gj)) ≥ 1 − M
q3

6π
> 0,
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where we estimated µ(Bq(Gj)) ≤ q3

6π which is due to sin(t/2) ≤ t/2 in (3.1). Hence,
there exists a point G ∈ SO(3) such that X ∪ {G} remains q-separated.

We refer to [5, Lemma 5.1] for the last assertion.

Lemma 3.2. The optimal interpolation problem (2.3) is equivalent to the normal equa-
tions of second kind

DŴD⊢⊣f̃ = y, f̂ = ŴD⊢⊣f̃ , (3.2)

where the weighting matrix is given by Ŵ := diag(w̃) ∈ R
dN×dN for the vector w̃ =

(w̃k,k′

l )l=0,...,N,|k|,|k′|≤l with w̃k,k′

l = ŵl, l = 0, . . . , N, |k|, |k′| ≤ l.
Moreover, let the trigonometric polynomial KN : [−π, π] → R and its corresponding

interpolation matrix K = (ki,j)i,j=0,...,M−1 be given by

KN (t) :=

N
∑

l=0

ŵlU2l(cos(t/2)), ki,j := KN (d(Gi,Gj)). (3.3)

Then, we have the identity
K = DŴD⊢⊣ (3.4)

Proof. The first assertion is due to [2, Thm. 1.1.2] for the matrix DŴ
1/2

. The second
assertion follows from the addition theorem (2.2), i.e.,

(DŴD⊢⊣)i,j =

N
∑

l=0

ŵl

l
∑

k,k′=−l

Dk,k′

l (Gi) Dk,k′

l (Gj) =

N
∑

l=0

ŵlU2l

(

cos
d (Gi,Gj)

2

)

.

Definition 3.3. Let the normalized B-spline of order β ∈ N be defined by gβ : [−1
2 , 1

2 ] →

R, gβ(z) := βNβ(βz + β
2 ), with the cardinal B-spline given by

Nβ+1 (z) =

∫ z

z−1
Nβ (τ) dτ, β ∈ N, N1 (z) =

{

1 0 < z < 1,

0 otherwise.

Moreover, for N ∈ N let ‖gβ‖1,N :=
∑N

l=−N gβ( l
2(N+1) ) denote a discrete norm of g.

Lemma 3.4. Let N,β ∈ N, N ≥ β − 1 ≥ 1, and Bβ,N(t) =
∑N

l=0 ŵlU2l(cos(t/2)) with

0 < ŵl :=
1

‖gβ‖1,N







gβ

(

N
2(N+1)

)

l = N,

gβ

(

l
2(N+1)

)

− gβ

(

l+1
2(N+1)

)

0 ≤ l < N
(3.5)

be given. The following localization property holds true for t ∈ (0, π]:

|Bβ,N (t)| ≤ cβ |(N + 1)t|−β , cβ :=

(

2β − 1
)

ζ (β) ββ

2β−1 − ζ (β)π−β
, (3.6)

with the normalization Bβ,N (0) = 1.
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Proof. We first note that the Chebyshev polynomials of first kind Tl(cos(x)) = cos(lx),
l ∈ N0, are related to the Chebyshev polynomials of second kind by

Tl =
1

2
(Ul − Ul−2), U2l =

l
∑

k=0

(2 − δ0,k)T2k.

In conjunction with (3.5), we obtain

N
∑

l=0

ŵlU2l =
N

∑

l=0

l
∑

k=0

ŵl(2 − δ0,k)T2k

=

N
∑

k=0

N
∑

l=k

ŵl(2 − δ0,k)T2k

=

N
∑

k=0

(2 − δ0,k)T2k

N
∑

l=k

ŵl

=

N
∑

k=0

(2 − δ0,k)
1

‖gβ‖1,N

gβ

(

k

2(N + 1)

)

T2k.

Applying the simple equality T2l(cos(t/2)) = cos(2lt/2) = Tl(cos(t)), we arrive at

Bβ,N (t) =
N

∑

l=0

(2 − δ0,l)
1

‖gβ‖1,N

gβ

(

l

2(N + 1)

)

Tl(cos(t))

from which the assertion follows by [8, Lemma 4.6].

We finally obtain the following result on the condition number of the interpolation
problem (2.3).

Theorem 3.5. Let q > 0 and X ⊂ SO(3) be a q-separated sampling set of cardinality
M ∈ N. Moreover, let N,β ∈ N, N ≥ β − 1 ≥ 3 be given and define the weights ŵk by
(3.5) and the kernel matrix K ∈ R

M×M by (3.3). Then, the eigenvalues λ1 ≤ . . . ≤ λM

of K satisfy λ1 ≤ 1 ≤ λM and

|λj − 1| ≤ 141ζ(β − 2)cβ ((N + 1)q)−β , j = 1, . . . ,M, (3.7)

where cβ is given in (3.6). In particular, the matrix D ∈ C
M×dN has full rank M

whenever
N + 1 > 19/q

and this condition is optimal in the sense that there is another q-separated sampling set
X ′ ⊂ SO(3) of cardinality M and a constant C1 > 0 such that for N + 1 ≤ C1/q the
matrix D′ has rank less than M .
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Proof. The first assertion follows from
∑M

j=1 λj = MBβ,N (0) = M . Moreover, the
Gershgorin circle theorem yields for every 1 ≤ r ≤ M and some 1 ≤ l ≤ M that

|λr − kl,l| ≤

M
∑

j=1,j 6=l

|Bβ,N(d(Gj, Gl))| .

Using the last assertion of Lemma 3.1 and the localization property as shown in Lemma
3.4, we further estimate

|λr − 1| ≤

⌊πq−1⌋
∑

m=1

|RX ,q,m| max
G∈RX ,q,m

|Bβ,N(d(I, G))|

≤

∞
∑

m=1

141m2cβ ((N + 1)mq)−β

≤ 141ζ(β − 2)cβ ((N + 1)q)−β .

The last claim is due to c4 = 3840π4/719, i.e., we set β = 4. The optimality of this
condition can be seen as follows: We apply Lemma 3.1 and use the fact that the number
of Fourier coefficients is bounded by dN ≤ C2N

3. Hence, there is a constant C1 > 0
such that N + 1 ≤ C1/q implies also dN < M and thus rank(D′) < M .

Corollary 3.6. Under the conditions of Theorem 3.5 with β = 4, the conjugate gradient
method applied to (3.2) converges linearly, i.e.,

‖êl‖Ŵ
−1 ≤ 2

(

19

(N + 1)q

)4l

‖ê0‖Ŵ
−1

with the initial error ê0 := ŴD⊢⊣K−1y and the error êl := f̂ l −ŴD⊢⊣K−1y of the l-th
iterate f̂ l.

Proof. Applying the standard estimate for the convergence of the conjugate gradient
method, see e.g. [2, p. 289], yields the assertion.

Remark 3.7. We solve problem (3.2) by a factorized variant of conjugated gradients
(CGNE, N for ”Normal equation” and E for ”Error minimization”) [2, p. 269], where we
use the nonequispaced fast Fourier transform on the rotation group [19] for fast matrix
vector multiplications with D and its adjoint D⊢⊣. Note that for (N + 1)q > 19 a
constant number of iterations suffices to decrease the error to a certain fraction, i.e., the
total number of floating point operations is bounded by the complexity O(N3 log2 N +M)
of the fast Fourier transform on SO(3).

We finally give an estimate on the smallest eigenvalue for an interpolation problem with
minimal Sobolev norm. Our result generalizes [17, Theorems 2.8, 3.6] to the rotation
group and improves the involved constant which artificially depended on the Sobolev
order. Similar techniques have been used in [4, Theorem 5.1].
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Corollary 3.8. Let q > 0 and X ⊂ SO(3) be a q-separated sampling set of cardinality
M ∈ N. Moreover, let s > 2 be given and consider the interpolation problem

min
f∈H2

s

‖f‖H2
s

s.t. f (Gj) = yj for j = 0 . . . M − 1. (3.8)

This problem is (only) mildly ill-posed in the sense that the smallest eigenvalue λ1(M)
of the corresponding interpolation matrix

M = (mi,j)i,j=0,...,M−1, mi,j =
∞

∑

l=0

(1 + l)−sU2l

(

cos
d (Gi,Gj)

2

)

(3.9)

satisfies
λ1(M) ≥ (C3q)

s (3.10)

with some fixed constant C3 ≥ 1/35.

Proof. We start with the polynomial interpolation matrix K from Theorem 3.5 with
N = ⌊30/q⌋− 1 and β = 4. Due to q ≤ π, the estimate (3.7) yields a smallest eigenvalue
λ1(K) ≥ 3/4 > (3/4)s/2. Moreover note that the corresponding weights ŵl, l = 0, . . . , N ,
cf. (3.5), satisfy ŵl ≤ 1.

Now let c ∈ C
M be given, the assertion follows from the addition theorem (2.2) by

M−1
∑

i,j=0

cicjmi,j =

M−1
∑

i,j=0

cicj

∞
∑

l=0

(1 + l)−sU2l

(

cos
d (Gi,Gj)

2

)

(3.11)

=
∞
∑

l=0

(1 + l)−s
l

∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

.

We decrease the right hand side by truncating to only N terms and insert our “nice”
weights ŵl:

. . . ≥

N
∑

l=0

(1 + l)−sŵ−1
l ŵl

l
∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

≥ min
r=0,...,N

(1 + r)−sŵ−1
r

N
∑

l=0

ŵl

l
∑

k,k′=−l

∣

∣

∣

∣

∣

M−1
∑

i=0

ciD
k,k′

l (Gi)

∣

∣

∣

∣

∣

2

≥ (1 + N)−s
M−1
∑

i,j=0

cicjki,j. (3.12)

Finally, we use that the minimal value in (3.11) is λ1(M)‖c‖2
2 and the last expression

(3.12) can be bounded from below by (q/30)s · λ1(K)‖c‖2
2.
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Remark 3.9. For the actual solution of the interpolation problem (3.8), we use a so-
called fast summation scheme [20] for multiplication with M ∈ C

M×M . Given ε > 0,
we approximate M ≈ M̃ by truncating the series in (3.9) to a polynomial degree N ∈ N

such that the remainder fulfills

|mi,j − m̃i,j| =

∞
∑

l=N+1

(1 + l)−sU2l

(

cos
d (Gi,Gj)

2

)

≤ 2

∫ ∞

N
(1 + l)1−sdl ≤ ε.

Due to the addition theorem (2.2) and the nonequispaced FFT on the rotation group
[19], this yields the factorization M̃ = DŴD⊢⊣ which can be applied to a vector in
O(N3 log2 N + M) floating point operations. Since we ask at least for mildly ill-posed
matrices M ,M̃ , we moreover force N ≥ ⌊30/q⌋−1. Thus, for q-separated sampling sets
with M ≥ C4/q

3 nodes, the multiplication with M̃ takes O(M log2 M) flops.
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