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Abstract

Studying first the Euclidean subcase, we show that the Minkowskian width function
of a convex body in an n-dimensional (normed linear or) Minkowski space satisfies a
specified Lipschitz condition.
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1 Introduction

The study of width functions of convex bodies was already stimulated in the classical mono-
graph [3] (see § 33 there). These functions play an important role in the fields of geometric
convexity, geometric tomography, geometric inequalities, and Minkowski geometry; cf. [12],
[6], [4], and [13], respectively. More precisely, width functions of convex bodies are basic for
the following topics and notions from these fields: support functions of convex bodies (see
[12], § 1.7), the difference body and the central symmetral of a convex body (and therefore
also the related mazimum chord-length function, cf. [6], § 3.2 and [1]), bodies of constant
width (see the surveys (5], [8], and [10]) and the related class of reduced bodies ([7], [9], and
[2]), diameter and thickness as extremal values of width functions (leading to famous topics
like the isodiametric problem, or the theorems of Jung and Steinhagen; cf. [3], § 44, [4], § 11,
and [11]), and problems involving the mean width of convex bodies (see again [4], § 11).

In what follows, let K denote a convex body in R™ for some n > 2, i.e., a compact, convex
set whose affine hull aff (K) equals R™. The n-dimensional Euclidean unit ball is denoted by
E = FE,. Hence, if (-,-) is the standard scalar product in R”, one has

E, = {v e R*(v,v) <1}.

Moreover, we put, as usual, S*~! := 0F,,.

Let B denote the unit ball of an arbitrary (normed linear or) Minkowski space on R, i.e.,
B is a convex body in R™ centered at the origin. Thus the induced Minkowskian norm ||-||s
satisfies

B={veR":|v||p <1}.
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For u € S™1, let H(K,u) denote the supporting hyperplane of K with outward normal
vector u in the Euclidean sense.

The Minkowskian width function wg(K,-): S"~1 — R* is defined by
wp(K,w) ;= min{||z —y||z : z € H(K,u),y € HK,—u)}. (1)

This means: wp(K,u) is the Minkowskian distance between H(K,u) and H(K, —u). To
prove that wg (K, -) satisfies a specified Lipschitz Condition, we study first the Euclidean
case B = E = E,,. The Euclidean norm is denoted by || - ||g. For brevity, we write

w(u) = we(K,u) for ue ™. (2)

Furthermore, the diameter diamK and the thickness A(K) in the Euclidean sense are
defined by

diamK := max |z —ylle= Jnax, w(w) and (3)
A(K) = min w(u), (4)
ucgn=t
respectively.

2 Results and proofs

As announced, we start with the Euclidean subcase.

Proposition. For all u,v € S™ !, the inequality
lw(v) — w(u)| < diamK - [[v — ulle ()

holds.

Proof: We may assume that u # v. In case § < J(u,v) < 7 one has ||[v —u||g > |[v+u||p.
Since w(u) = w(—u), we can therefore also suppose that o := < (u,v) < %, and hence
{(u,v) = cosa > 0.

Put




Moreover, let Py C R™ denote the — homogeneous — plane spanned by the unit vectors u
and v. Without loss of generality, we may suppose that

FZ:KHP()?&@.
Furthermore, put
Li::HiﬂPo,L;:———H;ﬁPO for OS'LSZ

Then all L;, L] are — affine — lines in Py, and F is contained in the 2-dimensional strips
conv(L; U L,) for 0 <14 < 2, where conv denotes convex hull.

Note that F' does not necessarily touch the lines L;, L;. We merely know that K touches
all 6 hyperplanes H;, H] for 0 < i < 2. Since (u,z) = 0, the following holds: The lines
Ly, Ly are parallel to the homogeneous line R - u, while the lines L;, L] are parallel to the
homogeneous line R - z. Hence, the four points a;, as, a3, as € Py given by

{a’l}:LE)mL/17 {0/2}:L60L1,
{a3}:LomL1» {CM}:LoﬂL/l

are the vertices of a rectangle. Without loss of generality, we may assume that
a1 =0,a=d u,a3=d-u+h-2, a,=h-2z,

where d := w(u) and h := w(z).

Note that, for 0 <7 <2, L; and L; have the same Euclidean distance as H, and H, because
{u,v, 2} C P.

a, L, a;
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Figure 1

Let Hy or Hj denote the hyperplanes in R™ that are parallel to H, = H(K,v) and pass
through a; or as, respectively. Then one has

K C conv(Hy U Hg) Nconv(H; U Hy) C conv(Hs U Hy)
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and, hence,
w(v) < (as,v) .
Since 0 < a < 7, we have
v zcosa-u+sina-é.

Therefore we get

V(1 = cosa)? +sina=+2—2-cosa ,

lv = ulle

w(v) —w(u) < cosa-d+sina-h—d=sina-h—(1—-cosa)-d.

This implies

w(v) — w(u) < i sin «
lv—ulle V2—=2-cosa

_ 1 — cos? a
B 2-(1—cosa)

= h-4/3-(1+cosa)

< h <diamK .
By exchanging the roles of u and v, (5) follows. O
Remarks.

i) As pointed out to us by Rolf Schneider, Lemma 1.8.10 in [12] implies the following,
slightly weaker Lipschitz Condition:

lw(v) —w(w)| <2-R-|lv-ule. | (6)

Here R denotes the circumradius of K; that is the radius of the uniquely determined
smallest Euclidean ball containing K.

ii) The estimate (5) is sharp in the following sense: For every n > 0, there exist a compact
and convex body K as well as u,v € S*! satisfying

lw(v) —w(u)| > (1-n) - diamK - |jv — ul|z. (7)
Namely, let K C R? denote the rectangle with vertices

(0,0), (4, 0), (d, h), (0,h),




where 0 < d < h.

If u = (1,0), then we get, similarly as in the above proof:
lw(v) —w(u)] . |sina-h —(1—cosa)-d|

lim —_— im
voupeSt-N\{u}  |[v—ulg a—0,a>0 V2 =2 cosa

i 1
By P o ¥ s T 2l
a—0,a>0 V2 -2 cosa a—0\ 2

Hence, if % is so large that

h>(1-n)-vVh?+d*>=(1-n)- diamK,

(14 cosa)=h.

then (7) holds for u = (1,0) and v = (cos @, sin @), if o € R* is small enough. O
Now we return to arbitrary Minkowskian norms || - ||g. Recall that all u € S*~! satisfy
wg(K,u)
Kou)=2 ——=.

See, for instance, [1] and [2]. Based on our Proposition and (8), we can now also prove the
following

Theorem. For every conver body K in R™, n > 2, and every Minkowskian norm || - || on
R™ one has

lwg(K,v) —wp(K,u)] < 2-A(B)™?-diamK - (A(B) + diamB) - [|[v — ul|g

1A

4-N(B)™?.diamB - diamK - ||v — u||g

for all u,v € S™ L.

Proof: The second estimate in (9) is trivial, because A(B) < diamB. Now assume that
u,v € S* ! are fixed. Our Proposition, applied to the convex bodies K and B, yields:

lwe(K,v) — wg(K,u)| < diamK - v —u||z,
|lwg(B,v) — wg(B,u)| < diamB - ||v — ul|g .
Together with (8), (3), and (4) we obtain:

we(K,v) B we(K,u)

lwe(K,v) — wp(K,u)|=2- we(B,0) _ ws(B,u)

we(K,v) — we(K,u)
wg(B,v)

. le(K,v)—wE(K,u)‘
2 ( wg(B,v)

wg(B,u) — wg(B,v)
wg(B,v) - wg(B, u)

|lwg(B,u) —wE(B,v)l>
wg(B,v) - wg(B,u)

— 9.

+ ’U)E(K, U) :

IN

IN

2-(A(B)™! - diamK + A(B)™? - diamK - diamB) - ||[v — ul|g
= 2.A(B)?.diamK - (A(B) +diamB) - ||v — u||g . O
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