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A. Böttcher, S. M. Grudsky1, and E. A. Maksimenko

The Szegö and Avram-Parter theorems give the limit of the arithmetic mean of the
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the singular values of arbitrary Toeplitz matrices, respectively, as the matrix dimension
goes to infinity. The question on whether these theorems are true whenever they
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1 Introduction

Let a be a complex-valued function in L1 := L1(0, 2π). We denote by an the nth
Fourier coefficient of a,

an =
1

2π

∫ 2π

0

a(θ)e−inθdθ (n ∈ Z),

and by Tn(a) the n×n Toeplitz matrix (aj−k)
n
j,k=1. The function a is usually referred

to as the symbol of the sequence T1(a), T2(a), . . .. All the matrices Tn(a) are Hermitian
if (and only if) a is real-valued. Theorems of the Szegö type say that, under certain
conditions on a and F , including that a be real-valued,

lim
n→∞

1

n

n∑
j=1

F (λj(Tn(a))) =
1

2π

∫ 2π

0

F (a(θ)) dθ, (1)

1This author acknowledges financial support by CONACYT grants 046936-F and 60160.
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where λ1(A) ≤ . . . ≤ λn(A) are the eigenvalues of a Hermitian n× n matrix A, while
theorems of the Avram-Parter type state that, again under appropriate assumptions
on a and F ,

lim
n→∞

1

n

n∑
j=1

F (sj(Tn(a))) =
1

2π

∫ 2π

0

F (|a(θ)|) dθ, (2)

where s1(A) ≤ . . . ≤ sn(A) are the singular values of an n×n matrix A. The function
F in (1) and (2) is called a test function. Throughout this paper we assume that F
is real-valued and that F is continuous on R, F ∈ C(R), when considering (1) and
continuous on [0,∞), F ∈ C[0,∞), when dealing with (2).

Formula (1) goes back to Szegö [13], who proved it for real-valued functions a in
L∞ := L∞(0, 2π) and compactly supported continuous functions F on R (see also
[6]). Formula (2) was first established by Parter [8] for all F ∈ C[0,∞) under the
assumptions that a is in L∞ and that a is locally selfadjoint, which means that a = bc
with a continuous 2π-periodic function c and a real-valued function b. Avram [1]
subsequently proved (2) for all F ∈ C[0,∞) and all a ∈ L∞. Then Tyrtyshnikov
[16], [17] showed that (1) and (2) hold for all continuous functions F with compact
support if a is merely required to be in L2 := L2(0, 2π) and to be real-valued when
dealing with (1). Zamarashkin and Tyrtyshnikov [18], [19] were finally able to prove
that (1) and (2) are true whenever F is continuous and compactly supported and a is
in L1, again requiring that a be real-valued when considering (1). A very simple proof
of the Zamarashkin-Tyrtyshnikov result was given by Tilli [15], who also extended
(1) and (2) to all uniformly continuous functions F and all a ∈ L1, assuming that a
is real-valued in the case of (1). Eventually Serra Capizzano [10] derived (2) under
the assumption that a ∈ Lp := Lp(0, 2π) (1 ≤ p < ∞) and F ∈ C[0,∞) satisfies
F (s) = O(sp) as s → ∞. Serra Capizzano’s result implies in particular that (2) is
valid for all a ∈ L1 under the sole assumption that F (s) = O(s), which includes all
the results concerning (2) listed before.

In [3], we raised the question whether (1) and (2) are true whenever they make
sense. To be more precise and to exclude “∞ −∞” cases, the question is whether
(1) and (2) hold for all symbols a ∈ L1 (being real-valued in (1)) and all nonnegative
and continuous test functions. Here we make the following convention: we denote the
functions under the integrals in (1) and (2), that is, the functions θ 7→ F (a(θ)) and
θ 7→ F (|a(θ)|), by F (a) and F (|a|), respectively, and if these functions are not in L1,
we define the right-hand sides of (1) and (2) to be ∞ and interpret (1) and (2) as the
statement that the limit on the left-hand side is ∞.

It turns out that the answer to the question cited in the preceding paragraph is
negative: in [3], we constructed a positive a ∈ L1 and a continuous F : R → [0,∞)
such that (1) and (2) are false. The test function F in that counterexample is not
monotonous. This leaves us with the question whether (1) is always true if a ∈ L1

is real-valued, F ∈ C(R), and F (λ) increases monotonously to infinity as λ → ∞
and as λ → −∞ and with the problem whether (2) is always valid if a ∈ L1 and
F : [0,∞) → [0,∞) increases monotonously to infinity. (We use “increasing” as a
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synonym for “nondecreasing”, that is, by a monotonously increasing function F we
understand a function satisfying F (x) ≤ F (y) for x ≤ y.) Our first main result shows
that the answer to this question is negative.

To state things in other terms, let ST denote the set of all continuous functions F :
R→ [0,∞) for which (1) is true for all real-valued a ∈ L1 and let APT be the set of all
continuous F : [0,∞)→ [0,∞) for which (2) is true for all a ∈ L1. We know that ST
and APT are proper subsets of the sets of nonnegative functions in C(R) and C[0,∞),
respectively, that ST contains all nonnegative uniformly continuous functions on R,
and that APT contains all nonnegative functions F ∈ C[0,∞) satisfying F (s) = O(s)
as s → ∞. The result mentioned at the end of the previous paragraph tells us that
APT does not contain all nonnegative monotonously increasing functions in C[0,∞).

In [3], we showed that if a ∈ L1 and F : [0,∞)→ [0,∞) is any continuous function,
then

lim inf
n→∞

1

n

n∑
j=1

F (sj(Tn(a))) ≥ 1

2π

∫ 2π

0

F (|a(θ)|) dθ. (3)

This implies in particular that (2) is always true if F (|a|) /∈ L1. Hence, in connection
with (2) it remains to consider only the case where F (|a|) ∈ L1.

We write F (s) ' G(s) as s → ∞ if there are positive constants C1 and C2 such
that C1G(s) ≤ F (s) ≤ C2G(s) for all sufficiently large s > 0. Combining (3) with
the result by Serra Capizzano [10], we arrive at the conclusion that if a is in L1 (but
not necessarily in Lp) and F : [0,∞) → [0,∞) satisfies F (s) ' sp (1 ≤ p < ∞),
then (2) holds. Thus, APT contains all nonnegative F ∈ C[0,∞) with F (s) ' sp

(1 ≤ p < ∞). Other classes of convex functions F in APT were introduced in [3].
For example, we there showed that F ∈ APT if

F (s) =
∞∑
p=0

Fps
p with Fp ≥ 0 for all p.

This includes such functions as F (s) = es, but the convex function F (s) = s log(s+1)
does not have such a representation. Another main result of the present paper is
that APT contains all convex functions F : [0,∞) → [0,∞). Moreover, we can even
weaken convexity to essential convexity, which means that F (s) ' Ψ(s) with some
convex function Ψ as s→∞.

The paper is organized as follows. In Section 2 we construct a nonnegative func-
tion a ∈ L1 and a nonnegative and monotonously increasing function F ∈ C[0,∞)
such that F (a) ∈ L1 but (2) fails. Clearly, for these a and F , formula (1) is false as
well. The remaining part of the paper is devoted to results in the positive direction.
In Section 3 we introduce our main technical tool, a variational characterization of the
sums

∑
Φ(sj(A)) which mimics the variational characterization of unitarily invariant

norms due to Serra Capizzano and Tilli. Section 4 contains a proof of the original
Avram-Parter theorem and in Section 5 we cite Tilli’s proof of the Zamarashkin-
Tyrtyshnikov version of the Avram-Parter theorem. We present these proofs for the
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reader’s convenience only. Those who are interested in the proofs of the main results
may entirely skip these two sections. In Section 6 we derive a key inequality (Propo-
sition 6.1) and show that the Avram-Parter theorem for monotonously increasing and
convex test functions is equivalent to that theorem for compactly supported test func-
tions. As the Avram-Parter theorem is available in the latter case, we therefore get
it for the former. In Section 7 we employ Proposition 6.1 to prove our second main
result (Corollary 7.3), which states that all nonnegative and essentially convex test
functions belong to APT . Section 8 contains our third main result (Corollary 8.4).
This result says that all nonnegative and essentially convex functions on R are in the
class ST .

2 The counterexample

We denote by ‖A‖ the spectral norm (= largest singular value) of a matrix A and use
the norms

‖f‖p =

(∫ 2π

0

|f(θ)|p dθ
2π

)1/p

, ‖f‖∞ = ess sup |f(θ)|

in Lp (1 ≤ p <∞) and L∞, respectively.

In this section we prove the following theorem.

Theorem 2.1 There exist nonnegative functions a ∈ L1 and nonnegative and mono-
tonously increasing functions F ∈ C[0,∞) such that F (a) ∈ L1 but

lim sup
n→∞

1

n

n∑
j=1

F (sj(Tn(a))) =∞. (4)

We explicitly construct such a and F . We put b0 = 0, define bk, βk, δk for k ≥ 1
by

bk = 22k2

, βk = 1/bk, δk = 2−k
2

,

and let

a(θ) =

{
bk for θ ∈ [(1− δk)βk, βk] =: Ik (k ≥ 1),
0 for θ ∈ [0, 2π) \ ∪∞k=1Ik,

F (s) =

{
bk for s ∈ [bk−1 + 1, bk] (k ≥ 1),
(s− bk)(bk+1 − bk) + bk for s ∈ [bk, bk + 1] (k ≥ 0).

It is obvious that F : [0,∞) → [0,∞) is continuous and monotonously increasing.
Clearly, F (bk) = bk and F (bk + 1) = bk+1. We have

‖a‖1 =
∞∑
k=1

bkδkβk =
∞∑
k=1

δk =
∞∑
k=1

2−k
2

<∞,
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and since F (a(θ)) = F (bk) = bk for θ ∈ Ik and F (a(θ)) = F (0) = 0 for θ /∈ ∪∞k=1Ik,
we get

‖F (a)‖1 =
∞∑
k=1

bkδkβk =
∞∑
k=1

δk =
∞∑
k=1

2−k
2

<∞.

We are therefore left with the verification of (4).

Let

Dn(θ) :=
∑
|j|≤n−1

eijθ =
sin
(
n− 1

2

)
θ

sin(θ/2)

be the Dirichlet kernel. Since D′n(θ) =
∑
|j|≤n−1 ije

ijθ, we see that

‖D′n‖∞ ≤
∑
|j|≤n−1

|j| = (n− 1)n < n2. (5)

Parseval’s equality gives

‖Dn‖2 =
( ∑
|j|≤n−1

12
)1/2

=
√

2n− 1. (6)

For c, d ∈ [0, 2π) and n ∈ N, put

E
(n)
c,d (θ) =

1

2π

∫ d

c

Dn(θ − ϕ)dϕ.

Without the concrete bound 3, the following result is Lemma 8.2 of Chapter II of [20].
We include a full proof for the reader’s convenience.

Lemma 2.2 We have ‖E(n)
c,d ‖∞ ≤ 3 for all c, d ∈ [0, 2π) and all n ∈ N.

Proof. Clearly, it suffices to show that

1

2π

∣∣∣∣∫ d

c

Dn(x)dx

∣∣∣∣ ≤ 3 (7)

for c, d ∈ [−π, π] and n ∈ N. Let f(y) = y − sin y − y sin y. We have f(0) = 0 and

f ′(y) = 1− cos y − sin y − y cos y = 1− (1 + 2 sin y cos y)1/2 − y cos y ≤ 0

for y ∈ [0, π/2], which implies that f(y) ≤ 0 for y ∈ [0, π/2]. It follows that 0 <
1/ sin y − 1/y ≤ 1 for y ∈ (0, π/2] or equivalently,∣∣∣∣ 1

sin(x/2)
− 1

x/2

∣∣∣∣ ≤ 1 for x ∈ [−π, π] \ {0}. (8)
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We write∫ d

c

Dn(x)dx =

∫ d

c

sin
(
n− 1

2

)
x

x/2
dx+

∫ d

c

sin

(
n− 1

2

)
x

[
1

sin(x/2)
− 1

x/2

]
dx.

By (8), the absolute value of the second integral on the right does not exceed∫ d

c

∣∣∣∣sin(n− 1

2

)∣∣∣∣ dx ≤ ∫ d

c

dx ≤ 2π. (9)

The change of variables (n− 1/2)x = t in the first integral on the right shows that its
absolute value is∣∣∣∣∣

∫ (n−1/2)d

(n−1/2)c

sin t

t/2
dt

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
∫ (n−1/2)|c|

0

sin t

t
dt

∣∣∣∣∣+ 2

∣∣∣∣∣
∫ (n−1/2)|d|

0

sin t

t
dt

∣∣∣∣∣ . (10)

The integral sine Si(v) :=
∫ v

0
sin t
t
dt is positive on (0,∞), attains its maximum at

v = π, and

Si(π) =

∫ π

0

sin t

t
dt <

∫ π

0

dt = π.

Consequently, (10) is at most 4π. This in conjunction with (9) yields (7). 2

We now consider the partial sum

(Pna)(θ) :=
∑
|j|≤n−1

aje
ijθ =

1

2π

∫ 2π

0

a(ϕ)Dn(θ − ϕ)dϕ.

For k ∈ N, put

nk :=
√
bk+1 = 22k2+2k

. (11)

Lemma 2.3 We have

‖Pnk
a‖2 ≥

1

5π
δk+1 n

1/2
k

for all sufficiently large k.

Proof. Obviously,

(Pnk
a)(θ) =

∞∑
j=1

bj
2π

∫
Ij

Dnk
(θ − ϕ)dϕ =

∞∑
j=1

bjE
(nk)
(1−δj)βj ,βj

(θ). (12)

Our aim is to show that the L2 norm of the term with j = k + 1 is greater than a
constant times δk+1n

1/2
k while the sum of the L2 norms of the remaining terms is at

most o(1) times δk+1n
1/2
k as k →∞.
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From Lemma 2.2 we infer that

δ−1
k+1n

−1/2
k

k∑
j=1

‖bjE(nk)
(1−δj)βj ,βj

‖2 ≤ δ−1
k+1n

−1/2
k

k∑
j=1

3bj

= 2(k+1)2 2−2k2+2k−1

3
k∑
j=1

22j2 ≤ 2(k+1)2 2−2k2+2k−1

3 k 22k2

= 3k 2(k+1)2 22k2
(1−22k−1) = o(1) (13)

as k →∞. To tackle the terms with j ≥ k + 1 on the right of (12) we write

bjE
(nk)
(1−δj)βj ,βj

(θ) =
bj
2π
Dnk

(θ − βj)δjβj +Rj(θ) (14)

with

Rj(θ) :=
bj
2π

∫
Ij

[
Dnk

(θ − ϕ)−Dnk
(θ − βj)

]
dϕ.

The mean value theorem and (5) give∣∣∣Dnk
(θ − ϕ)−Dnk

(θ − βj)
∣∣∣ =

∣∣D′nk
(ξ)
∣∣(βj − ϕ) ≤ n2

k(βj − ϕ),

whence

|Rj(θ)| ≤
bjn

2
k

2π

∫ βj

(1−δj)βj

(βj − ϕ)dϕ =
bjn

2
k

2π

β2
j δ

2
j

2
=
n2
kβjδ

2
j

4π
. (15)

By virtue of (6), the L2 norm of the function Dnk
(θ − βj) is at most

√
2nk. Thus,

from (14) we obtain that

‖bjE(nk)
(1−δj)βj ,βj

‖2 ≤
δj
2π

√
2nk +

n2
kβjδ

2
j

4π
=

1

4π
δjn

1/2
k

[
2
√

2 + n
3/2
k βjδj

]
. (16)

If j = k +m with m ≥ 1, then

n
3/2
k βjδj = 23·2k2+2k−1

2−2(k+m)2

2−(k+m)2

= 2
2k2

“
3·22k−1−22mk+m2

”
2−(k+m)2 < 22k2

(3·22k−1−22k+1) = 2−2k2+2k−1

< 1. (17)

Consequently, (16) implies that

‖bjE(nk)
(1−δj)βj ,βj

‖2 <
1 + 2

√
2

4π
δjn

1/2
k < δjn

1/2
k (18)

for j ≥ k + 1. It follows that

δ−1
k+1 n

−1/2
k

∞∑
j=k+2

‖bjE(nk)
(1−δj)βj ,βj

‖2 ≤ δ−1
k+1 n

−1/2
k

∞∑
j=k+2

δjn
1/2
k = 2(k+1)2

∞∑
j=k+2

2−j
2

= 2(k+1)2
∞∑
`=1

2−(k+1+`)2 =
∞∑
`=1

2−2(k+1)`−`2 < 2−2(k+1)

∞∑
`=1

2−`
2

= o(1) (19)
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as k →∞. We finally consider the term with j = k+ 1, which may be written in the
form (14). Due to (6), the L2 norm of the function

bk+1

2π
Dnk

(θ − βk+1)δk+1βk+1 =
δk+1

2π
Dnk

(θ − βk+1)

is δk+1(2nk−1)1/2/(2π). From (15) we know that ‖Rk+1‖2 ≤ n2
kβk+1δ

2
k+1/(4π). Hence

(14) gives

‖bk+1E
(nk)
(1−δk+1)βk+1,βk+1

‖2 ≥
δk+1

2π
(2nk − 1)1/2 −

n2
kβk+1δ

2
k+1

4π

=
δk+1n

1/2
k

4π

[
2

(
2− 1

nk

)2

− n3/2
k βk+1δk+1

]
.

From (17) we see that n
3/2
k βk+1δk+1 < 1. Consequently,

δ−1
k+1 n

−1/2
k ‖bk+1E

(nk)
(1−δk+1)βk+1,βk+1

‖2 ≥
1

4π
[2− 1] =

1

4π
(20)

for all sufficiently large k. Inserting (13), (19), (20) in (12) we arrive at the estimate

δ−1
k+1 n

−1/2
k ‖Pnk

a‖2 ≥
1

4π
− o(1)− o(1) ≥ 1

5π

for all k large enough. 2

Proof of Theorem 2.1. As already said, it remains to prove (4). With nk given by
(11),

1

nk

nk∑
j=1

F (sj(Tnk
(a))) ≥ 1

nk
F (snk

(Tnk
(a))) =

1

nk
F (‖Tnk

(a)‖). (21)

For |j| ≤ nk − 1, the jth Fourier coefficients of a and Pnk
a coincide. Consequently,

Tnk
(a) = Tnk

(Pnk
a). As the norm of a matrix is at least the `2 norm of its first column,

we obtain that

‖Tnk
(a)‖2 = ‖Tnk

(Pnk
a)‖2 ≥

nk−1∑
j=0

|(Pnk
a)j|2 ≥

1

2

∑
|j|≤nk−1

|(Pnk
a)j|2

and hence, by Parseval’s equality, ‖Tnk
(a)‖ ≥ ‖Pnk

a‖2/
√

2. Lemma 2.3 therefore
implies that (21) is at least

1

nk
F

(
δk+1 n

1/2
k

5
√

2 π

)
. (22)

If k is large enough, then

22k2

+ 1 <
1

5
√

2 π
2−(k+1)2 22k2+2k−1

< 22(k+1)2

8



or equivalently,

bk + 1 <
δk+1 n

1/2
k

5
√

2 π
< bk+1.

Thus, if k is sufficiently large, then (22) equals bk+1/nk =
√
bk+1, and since bk+1 →∞

as k →∞, it follows that the left-hand side of (21) goes to infinity as k →∞. 2

Remark 2.4 If G ∈ C[0,∞) is any test function such that G(s) ≥ F (s) for all
s ∈ [0,∞), then, obviously, (4) holds with F replaced by G. By changing F only
slightly, we can clearly produce a G ≥ F such that G(a) ∈ L1 and such that G is C∞

and strictly monotonously increasing. 2

3 A modification of a result by Serra Capizzano and Tilli

We equip Cn with the inner product (z, w) =
∑n

j=1 zjwj, denote by Mn(C) the algebra
of all complex n× n matrices, and think of matrices in Mn(C) as linear operators on
Cn in the natural fashion. Given a function Φ : [0,∞)→ [0,∞), we put

SΦ(A) =
n∑
j=1

Φ(sj(A)).

In [11], Serra Capizzano and Tilli derived a beautiful variational characterization of
unitarily invariant norms on Mn(C). The following theorem is a modification of their
result; paper [11] contains the implication (i) ⇒ (ii) of the theorem for Φ(s) = sp

(1 ≤ p <∞).

Theorem 3.1 Let Φ : [0,∞)→ [0,∞) be a continuous function and let n ≥ 2. Then
the following are equivalent:
(i) Φ is monotonously increasing and convex;

(ii) for every A ∈Mn(C) we have

SΦ(A) = max
n∑
k=1

Φ(|(Auk, vk)|),

the maximum over all pairs {u1, . . . , un} and {v1, . . . , vn} of orthonormal bases of Cn.

Proof. (i) ⇒ (ii). Let {u1, . . . , un} and {v1, . . . , vn} be orthonormal bases of Cn and
let A = V ∗DU with D = diag (s1, . . . , sn) be the singular value decomposition of A.
We put u′k = Uuk and v′k = V vk. Clearly,

|(Auk, vk)| = |(Du′k, v′k)| =

∣∣∣∣∣
n∑
j=1

sj(u
′
k)j(v

′
k)j

∣∣∣∣∣ ≤
n∑
j=1

sj |(u′k)j| |(v′k)j|

≤ 1

2

n∑
j=1

sj|(u′k)j|2 +
1

2

n∑
j=1

sj|(v′k)j|2 =
1

2
(Du′k, u

′
k) +

1

2
(Dv′k, v

′
k).
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Since Φ is monotonously increasing and convex, we therefore obtain that

Φ(|(Auk, vk)|) ≤
1

2
Φ((Du′k, u

′
k)) +

1

2
Φ((Dv′k, v

′
k)). (23)

But
n∑
k=1

Φ((Du′k, u
′
k)) =

n∑
k=1

Φ

(
n∑
j=1

sj|(u′k)j|2
)
, (24)

and taking into account that Φ is convex and

n∑
j=1

|(u′k)j|2 =
n∑
k=1

|(u′k)j|2 = 1,

we see that (24) is at most

n∑
k=1

n∑
j=1

Φ(sj)|(u′k)j|2 =
n∑
j=1

Φ(sj)
n∑
k=1

|(u′k)j|2 =
n∑
j=1

Φ(sj) = SΦ(A).

Analogously we get that
n∑
k=1

Φ((Dv′k, v
′
k)) ≤ SΦ(A).

Thus, summing up (23) we arrive at the inequality

n∑
k=1

Φ(|(Auk, vk)|) ≤
1

2
SΦ(A) +

1

2
SΦ(A) = SΦ(A).

It remains to show that there exist orthonormal bases {ũ1, . . . ũn} and {ṽ1, . . . ṽn}
such that

∑
Φ(|(Aũk, ṽk)|) equals SΦ(A). Let ũk and ṽk be the kth column of U∗ and

V ∗, respectively. Since AU∗ = V ∗D, we get Aũk = skṽk and hence (Aũk, ṽk) = sk. It
follows that

n∑
k=1

Φ(|(Aũk, ṽk)|) =
n∑
k=1

Φ(sk) = SΦ(A),

as desired.

(ii) ⇒ (i). We denote by {e1, . . . , en} the standard basis of Cn. By assumption,

SΦ(A) ≥
n∑
k=1

Φ(|(Aek, ek)|) =
n∑
k=1

Φ(|Akk|) (25)

for every A ∈ Mn(C). Let 0 ≤ α ≤ β < ∞ and let A be the n × n matrix whose
upper-left 2× 2 block is

B =

(
sin γ cos γ

− cos γ sin γ

)(
α 0
0 β

)(
cos γ − sin γ
sin γ cos γ

)
10



and the remaining entries of which are zero. The singular values of B are α and β,
while the diagonal entries of B are

B11 = B22 =
α + β

2
sin 2γ.

Thus, (25) gives

Φ(α) + Φ(β) + (n− 2)Φ(0) ≥ 2 Φ

(
α + β

2
| sin 2γ|

)
+ (n− 2)Φ(0).

Taking γ so that sin 2γ = 2α/(α + β) we get Φ(α) + Φ(β) ≥ 2Φ(α), that is, Φ(α) ≤
Φ(β), and taking γ = π/4 we obtain that Φ(α) + Φ(β) ≥ 2 Φ((α+ β)/2). This proves
that Φ is monotonously increasing and convex. 2

We remark that inequality (25) for monotonously increasing and convex functions
Φ can already be found in [7] and [5, page 72] (see also [12] and [14]).

Given x = (x1, . . . , xn) ∈ Cn, we let x(θ) be the trigonometric polynomial

x(θ) = x1 + x2e
iθ + . . .+ xne

i(n−1)θ.

It is well known and easily seen that

(Tn(a)z, w) =
1

2π

∫ 2π

0

a(θ)z(θ)w(θ)dθ. (26)

In what follows we frequently use the abbreviation

1

2π

∫ 2π

0

f(eiθ)dθ =:

∫
f.

For Φ(s) = sp (1 ≤ p < ∞), the following corollary is already in the work of
Avram [1], Fasino and Tilli [4], and Serra Capizzano and Tilli [11].

Corollary 3.2 Let Φ : [0,∞) → [0,∞) be a monotonously increasing and convex
function. If a, b ∈ L1 and |a| ≤ b almost everywhere, then

SΦ(Tn(a)) ≤ SΦ(Tn(b))

for all n ≥ 1.

Proof. By Theorem 3.1, there are orthonormal bases {u1, . . . , un} and {v1, . . . , vn}
such that

SΦ(Tn(a)) =
n∑
k=1

Φ(|(Tn(a)uk, vk)|). (27)

11



From (26) we infer that

|(Tn(a)uk, vk)| =
∣∣∣∣∫ aukvk

∣∣∣∣ ≤ ∫ |a| |uk| |vk| ≤ ∫ b |uk| |vk|

≤ 1

2

∫
b |uk|2 +

1

2

∫
b |vk|2 =

1

2
(Tn(b)uk, uk) +

1

2
(Tn(b)vk, vk).

Thus, using that Φ is monotonously increasing and convex we obtain that (27) does
not exceed

1

2

n∑
k=1

Φ((Tn(b)uk, uk)) +
1

2

n∑
k=1

Φ((Tn(b)vk, vk)),

and again by Theorem 3.1, this is at most

1

2
SΦ(Tn(b)) +

1

2
SΦ(Tn(b)) = SΦ(Tn(b)). 2

4 Bounded symbols

In this section we prove the Avram-Parter theorem in the version of Avram [1], that
is, we show that

lim
n→∞

1

n
SF (Tn(a)) =

∫
F (|a|) (28)

for a ∈ L∞ and F ∈ C0[0,∞), where C0[0,∞) stands for functions in C[0,∞) which
are eventually identically zero.

First of all we remark that in order to prove (28) for some a ∈ L1 and some test
function F , it suffices to prove (28) for the same a and some sequence F1, F2, . . . of
test functions which converge uniformly to F on [0,∞). This follows from an easy
ε/3-argument.

To start somewhere, we take the following observation for granted: if a1, . . . , am
are functions in L∞, then

Tn(a1) . . . Tn(am) = Tn(a1 . . . am) +Mn with
‖Mn‖1

n
→ 0 as n→∞.

Here ‖ · ‖1 is the trace norm. In particular, if a ∈ L∞ and p is a natural number, then

Tn(a)Tn(a) = Tn(|a|2) +Kn and T pn(|a|2) = Tn(|a|2p) + Ln (29)

where ‖Kn‖1/n → 0 and ‖Ln‖1/n → 0 as n → ∞. As to our knowledge, the first
to mention this result explicitly was SeLegue [9]. A simple proof can be found in [2,
Lemma 5.16], for example.

Take a ∈ L∞. We denote the eigenvalues of a positive semi-definite n× n matrix
A by λ1(A) ≤ . . . ≤ λn(A). Thus,

1

n

∑
s2p
j (Tn(a)) =

1

n

∑
λpj(Tn(a)Tn(a)),

12



and since 0 ≤ λj(Tn(a)Tn(a)) ≤ ‖a‖2
∞ and 0 ≤ λj(Tn(|a|2)) ≤ ‖a‖2

∞, we obtain from
(29) and the inequality

∑
|λj(A)− λj(B)| ≤ ‖A−B‖1 that∑∣∣λpj(Tn(a)Tn(a))− λpj(Tn(|a|2)

∣∣
≤ p‖a‖2(p−1)

∞

∑∣∣λj(Tn(a)Tn(a))− λj(Tn(|a|2))
∣∣

≤ p‖a‖2(p−1)
∞ ‖Tn(a)Tn(a)− Tn(|a|2)‖1 = p‖a‖2(p−1)

∞ ‖Kn‖1.

Consequently,
1

n

∑
s2p
j (Tn(a)) =

1

n

∑
λpj(Tn(|a|2)) + o(1). (30)

The matrix Tn(|a|2) is positive semi-definite. Hence, denoting by trA the trace of A,
we get from (29) that

1

n

∑
λpj(Tn(|a|2)) =

1

n
trT pn(|a|2)

=
1

n
tr (Tn(|a|2p) + Ln) =

1

n
trTn(|a|2p) + o(1) =

∫
|a|2p + o(1). (31)

Combining (30) and (31) we arrive at the conclusion that (28) is true for F (s) = s2p.
It follows that (28) is valid whenever F (s) = P (s2) with a polynomial P and thus
whenever F (s) = G(s2) with G ∈ C0[0,∞). As every F ∈ C0[0,∞) may be written
in the form F (s) = G(s2) with G ∈ C0[0,∞), we get (28) for all F ∈ C0[0,∞).

5 Uniformly continuous test functions

Zamarashkin and Tyrtyshnikov proved that

lim
n→∞

1

n
SF (Tn(a)) =

∫
F (|a|) (32)

if a ∈ L1 and F ∈ C0[0,∞). An extremely lucid and short proof was given by Tilli
[15]. This proof even yields (32) for all uniformly continuous (and not necessarily
bounded) test functions F . It is as follows. Let first F be Lipschitz continuous,
|F (s)− F (t)| ≤ K|s− t|. For M > 0, define aM ∈ L∞ by aM(θ) = a(θ) if |a(θ)| ≤M
and aM(θ) = 0 if |a(θ)| > M . Then

∫
|a − aM | → 0 as M → ∞. Fix ε > 0. Taking

into account the inequality
∑
|sj(A)− sj(B)| ≤ ‖A−B‖1 and using Corollary 3.2 for

Φ(s) = s we obtain that

1

n

∣∣∣∑F (sj(Tn(a)))−
∑

F (sj(Tn(aM)))
∣∣∣ ≤ K

n

∑
|sj(Tn(a))− sj(Tn(aM))|

≤ K

n
‖Tn(a− aM)‖1 =

K

n

∑
sj(Tn(a− aM)) ≤ K

n

∑
sj(Tn(|a− aM |))

=
K

n

∑
λj(Tn(|a− aM |)) =

K

n
trTn(|a− aM |) = K

∫
|a− aM | <

ε

3

13



for all n ≥ 1 if M ≥M0. We also have∫ ∣∣∣F (|a|)− F (|aM |)
∣∣∣ ≤ K

∫ ∣∣∣|a| − |aM |∣∣∣ ≤ K

∫
|a− aM | <

ε

3

for M ≥M0. For each M ≥M0, formula (28) gives∣∣∣∣ 1n∑F (sj(Tn(aM)))−
∫
F (|aM |)

∣∣∣∣ < ε

3

if n ≥ n0(M). Thus,∣∣∣∣ 1n∑F (sj(Tn(a)))−
∫
F (|a|)

∣∣∣∣ < ε

3
+
ε

3
+
ε

3
= ε

for all sufficiently large n, which completes the proof for Lipschitz continuous func-
tions. Every uniformly continuous function on [0,∞) is the uniform limit of Lipschitz
continuous functions. (Indeed, fix ε > 0. There is a δ > 0 such that |F (s)−F (t)| ≤ ε
whenever |s − t| < δ. Let Fε be the continuous and piecewise linear function that
satisfies Fε(kδ) = F (kδ) for k = 0, 1, 2, . . . and is linear on [kδ, (k + 1)δ] for all k. It
is easily seen that Fε is Lipschitz continuous, |Fε(s)− Fε(t)| ≤ (ε/δ)|s− t|, and that
‖F − Fε‖∞ ≤ 2ε on [0,∞).) We therefore arrive at the conclusion that (32) is true
for all uniformly continuous functions on [0,∞).

6 Convex test functions

For Φ(s) = sp (1 ≤ p <∞), the following Proposition 6.1 and Corollary 6.4 are again
already in [10] and [11].

Proposition 6.1 If a ∈ L1 and Φ : [0,∞)→ [0,∞) is monotonously increasing and
convex, then

1

n
SΦ(Tn(a)) ≤

∫
Φ(|a|)

for all n ≥ 1.

Proof. By Corollary 3.2, SΦ(Tn(a) ≤ SΦ(Tn(|a|). The matrix Tn(|a|) is positive semi-
definite. Let {w1, . . . , wn} be an orthonormal basis of eigenvectors and Tn(|a|)wk =
skwk. Then

Φ(sk) = Φ((Tn(|a|)wk, wk)) = Φ

(∫
|a| |wk|2

)
.

Taking into account that
∫
|wk|2 = 1 we can use Jensen’s inequality to get

Φ

(∫
|a| |wk|2

)
≤
∫

Φ(|a|)|wk|2 = (Tn(Φ(|a|))wk, wk).

14



Consequently,

SΦ(Tn(|a|)) ≤
n∑
k=1

((Tn(Φ(|a|))wk, wk)) = trTn(Φ(|a|)) = n

∫
Φ(|a|). 2

If a(θ) = eiθ, then s1(Tn(a)) = 0 and s2(Tn(a)) = . . . = sn(Tn(a)) = 1. The in-
equality of Proposition 6.1 so amounts to the inequality Φ(0) + (n− 1)Φ(1) ≤ nΦ(1),
that is, Φ(0) ≤ Φ(1). This reveals that the convex functions for which Proposition 6.1
is true must necessarily be monotonously increasing on [1,∞). The proof of Propo-
sition 6.1 also shows that if a ≥ 0 almost everywhere and Φ : [0,∞) → [0,∞) is a
concave function, then (1/n)SΦ(Tn(a)) ≥

∫
Φ(|a|) for all n ≥ 1.

The following proposition is just (3) and was established in [3].

Proposition 6.2 Let a ∈ L1 and let F : [0,∞) → [0,∞) be a continuous function.
If

C := lim inf
n→∞

1

n
SF (Tn(a)) <∞, (33)

then F (|a|) ∈ L1 and
∫
F (|a|) ≤ C.

Proof. Fix ε > 0 and choose n1 < n2 < . . . so that (1/nk)SF (Tnk
(a)) < C + ε. For

a natural number M , define FM : [0,∞) → [0,∞) by FM(s) = F (s) for s ∈ [0,M ],
FM(s) = (M + 1 − s)F (s) for s ∈ [M,M + 1], and FM(s) = 0 for s ∈ [M + 1,∞).
Since FM ∈ C0[0,∞), we deduce from (32) that∫

FM(|a|) = lim
k→∞

SFM
(Tnk

(a))

nk
≤ lim sup

k→∞

SF (Tnk
(a))

nk
≤ C + ε,

which implies that
∫
F (|a|) ≤ C + ε. 2

Proposition 6.3 Let a ∈ L1. Then the following are equivalent:
(i) (1/n)SF (Tn(a))→

∫
F (|a|) for every F ∈ C0[0,∞);

(ii) (1/n)SΦ(Tn(a))→
∫

Φ(|a|) for every monotonously increasing and convex function

Φ : [0,∞)→ [0,∞).

In other words, C0[0,∞) is a subset of APT if and only if all nonnegative, monoton-
ously increasing, and convex functions are in APT .

Proof. (i) ⇒ (ii). Assumption (i) was used in the proof of Proposition 6.2. But this
proposition and Proposition 6.1 imply (ii).

(ii) ⇒ (i). It is sufficient to prove that (1/n)SF (Tn(a))→
∫
F (|a|) for every twice

continuously differentiable F ∈ C0[0,∞). We then have F ′′(s) = φ(s) − ψ(s) with
nonnegative continuous functions φ, ψ which vanish identically for s > s0. Put

Φ(s) = F (0) + γs+

∫ s

0

∫ t

0

φ(σ) dσ dt, Ψ(s) = δs+

∫ s

0

∫ t

0

ψ(σ) dσ dt,

15



where γ = F ′(0), δ = 0 if F ′(0) ≥ 0 and γ = 0, δ = −F ′(0) if F ′(0) ≤ 0. Clearly,
F (s) = Φ(s)−Ψ(s). Considering the first and second derivatives, we see that Φ and
Ψ are monotonously increasing and convex. Since Φ′′(s) = Ψ′′(s) = 0 for s > s0, there
are constants α and β such that Φ(s) = Ψ(s) = α+ βs for s > s0, which implies that
Φ(|a|) and Ψ(|a|) are in L1 together with a. From (ii) we therefore deduce that

SF (Tn(a))

n
=
SΦ(Tn(a))− SΨ(Tn(a))

n
→
∫

Φ(|a|)−
∫

Ψ(|a|) =

∫
F (|a|). 2

Corollary 6.4 If a ∈ L1 and Φ : [0,∞) → [0,∞) is monotonously increasing and
convex, then

lim
n→∞

1

n
SΦ(Tn(a)) =

∫
Φ(|a|).

Thus, all monotonously increasing and convex functions F : [0,∞) → [0,∞) are in
APT .

Proof. As (i) of Proposition 6.3 is guaranteed by (32), the assertion follows from the
implication (i) ⇒ (ii) of Proposition 6.3. 2

7 Essentially convex test functions

Here are our main results concerning the Avram-Parter theorem. For Φ(s) = sp and
Ψ(s) = sp, these results were previously established by Serra Capizzano [10]. The
proof of the following lemma makes also use of ideas of [10].

Lemma 7.1 Let a ∈ L1, let Φ : [0,∞) → [0,∞) be a monotonously increasing
and convex function, and suppose Φ(|a|) ∈ L1. Then for every ε > 0 there exist
M ∈ (0,∞) and n0 ∈ N such that

1

n

∑
{j : sj(Tn(a))>M}

Φ(sj(Tn(a))) < ε (34)

for all n ≥ n0.

Proof. Since Φ(|a|) ∈ L1 and Φ is monotonously increasing, there is an M such that

1

2π

∫
{θ : |a(θ)|>M/2}

Φ(|a(θ)|)dθ < ε

2
. (35)

We define a continuous function H : [0,∞) → [0,∞) by H(s) = Φ(s) for 0 ≤ s ≤
M/2, 0 ≤ H(s) ≤ Φ(s) for M/2 ≤ s ≤ M , and H(s) = 0 for s ≥ M . Then∫

Φ(|a|)−
∫
H(|a|) does not exceed (35) and hence∫

H(|a|) >
∫

Φ(|a|)− ε

2
. (36)
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Since H has finite support, (32) yields an n0 ∈ N such that

−ε
2
<

1

n
SH(Tn(a))−

∫
H(|a|) < ε

2

for all n ≥ n0. Thus, for n ≥ n0 we have

1

n

∑
{j : sj(Tn(a))≤M}

Φ(sj(Tn(a))) ≥ 1

n
SH(Tn(a)) >

∫
H(|a|)− ε

2
>

∫
Φ(|a|)− ε. (37)

On the other hand, Proposition 6.1 tells us that

1

n

n∑
j=1

Φ(sj(Tn(a))) ≤
∫

Φ(|a|) (38)

for all n ≥ 1. Clearly, (37) and (38) imply (34). 2

Theorem 7.2 Let a ∈ L1, let Φ : [0,∞)→ [0,∞) be a monotonously increasing and
convex function, and suppose Φ(|a|) ∈ L1. Let F : [0,∞) → [0,∞) be a continuous
function such that F (s) ≤ Φ(s) for all s > s0. Then

lim
n→∞

1

n
SF (Tn(a)) =

∫
F (|a|).

Proof. Fix ε > 0. We have to show that∣∣∣∣ 1nSF (Tn(a))−
∫
F (|a|)

∣∣∣∣ < ε (39)

for all sufficiently large n. Taking into account that Φ(|a|) ∈ L1 and using Lemma 7.1
we get M ∈ (0,∞) and n1 ∈ N such that

1

2π

∫
{θ : Φ(|a(θ)|)>M}

Φ(|a(θ)|)dθ < ε

3
(40)

and
1

n

∑
{j : sj(Tn(a))>M}

Φ(sj(Tn(a))) <
ε

3
(41)

for n ≥ n1. Let G : [0,∞)→ [0,∞) be a continuous function satisfying G(s) = F (s)
for 0 ≤ s ≤ M , 0 ≤ G(s) ≤ F (s) for m ≤ s ≤ 2M , and G(s) = 0 for s ≥ 2M . By
(40), ∣∣∣∣∫ F (|a|)−

∫
G(|a|)

∣∣∣∣ ≤ 1

2π

∫
{θ : Φ(|a(θ)|)>M}

Φ(|a(θ)|)dθ < ε

3
,

from (32) we infer that ∣∣∣∣ 1nSG(Tn(a))−
∫
G(|a|)

∣∣∣∣ < ε

3
,
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for all n ≥ n2, and due to (41),∣∣∣∣ 1nSF (Tn(a))− 1

n
SG(Tn(a))

∣∣∣∣ ≤ 1

n

∑
{j : sj(Tn(a))>M}

Φ(sj(Tn(a))) <
ε

3

for all n ≥ n1. Adding the last three inequalities we obtain inequality (39) for n ≥
max(n1, n2). 2

Recall that we write F (s) ' Φ(s) as s → ∞ if there exist positive constants C1

and C2 such that C1Φ(s) ≤ F (s) ≤ C2Φ(s) for all sufficiently large s.

Corollary 7.3 Let a ∈ L1, let Ψ : [0,∞) → [0,∞) be a convex function, and let
F : [0,∞)→ [0,∞) be a continuous function such that F (s) ' Ψ(s) as s→∞. Then

lim
n→∞

1

n
SF (Tn(a)) =

∫
F (|a|). (42)

In other terms, APT contains all nonnegative and essentially convex functions.

Proof. From Proposition 6.2 it follows that both sides of (42) are infinite if F (|a|) /∈ L1.
So suppose F (|a|) ∈ L1. We have C1Ψ(s) ≤ F (s) ≤ C2Ψ(s) for all s > s0. Let first
Ψ be a bounded function, Ψ(s) ≤ M for all s ∈ [0,∞). The constant function Φ
given by Φ(s) = C2M is monotonously increasing and convex, we have F (s) ≤ Φ(s)
for s > s0, and Φ(|a|) ∈ L1. Theorem 7.2 therefore implies (42). Now suppose Ψ
is unbounded. Then Ψ is monotonously increasing on some half-line [s0,∞). The
function Φ(s) := C2Ψ(s) is monotonously increasing and convex on [s0,∞) together
with Ψ(s), the inequality F (s) ≤ Φ(s) is satisfied for all s > s0, and since C1Ψ(s) ≤
F (s), we conclude that Φ(|a|) ∈ L1. Thus, Theorem 7.2 yields (42). 2.

8 The Szegö theorem

We finally turn to Szegö’s theorem. Using the abbreviation

ΛF (Tn(a)) =
n∑
j=1

F (λj(Tn(a))),

we can write this theorem as

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a). (43)

For real-valued a ∈ L∞ and compactly supported F in C(R), (43) can be easily
derived from (28). Indeed, we can write a = m + b with m ∈ R and an L∞ function
b ≥ 0, we then have

λj(Tn(a)) = m+ λj(Tn(b)) = m+ sj(Tn(b)),
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and (28) with F (s) replaced by G(s) = F (m+ s) therefore yields

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
G(|b|) =

∫
F (m+ |b|) =

∫
F (m+ b) =

∫
F (a).

Tilli [15] gave a very simple proof of (43) for real-valued a ∈ L1 and uniformly con-
tinuous F ∈ C(R). This proof is nearly identical with the proof given in Section 5,
the only difference being that now the inequality

∑
|λj(A)− λj(B)| ≤ ‖A−B‖1 has

to be used, which holds for Hermitian matrices A and B. The purpose of this section
is to establish the Szegö type versions of the results of Section 7.

For a real-valued function a ∈ L1, we define a+ = max(a, 0) and a− = max(−a, 0).
Then a± ∈ L1, a± ≥ 0, and a = a+ − a−. It is well known that λj(Tn(b)) ≤ λj(Tn(c))
whenever b, c ∈ L1 are real-valued and b ≤ c. In particular, λj(Tn(a±)) ≥ 0 for all j.

Lemma 8.1 Let a ∈ L1 be real-valued, let Φ : [0,∞) → [0,∞) be a monotonously
increasing and convex function, and suppose Φ(a+) ∈ L1. Then for every ε > 0 there
exist M ∈ (0,∞) and n0 ∈ N such that

1

n

∑
{j : λj(Tn(a))>M}

Φ(λj(Tn(a))) < ε (44)

for all n ≥ n0.

Proof. There is an M such that

1

2π

∫
{θ : a+(θ)>M/2}

Φ(a+(θ))dθ <
ε

2
.

Continue Φ to a function Φ : R → [0,∞) by putting Φ(λ) = Φ(0) for λ ≤ 0 and let
H : R → [0,∞) be any continuous function such that H(λ) = Φ(λ) for λ ≤ M/2,
0 ≤ H(λ) ≤ Φ(λ) for M/2 ≤ λ ≤M , and H(λ) = 0 for λ ≥M . Then∫

H(a) =

∫
H(a+) >

∫
Φ(a+)− ε

2
. (45)

The function H is uniformly continuous and hence we can use (43) with F replaced
by H to see that ∣∣∣∣ 1nΛH(Tn(a))−

∫
H(a)

∣∣∣∣ < ε

2
(46)

for n ≥ n0. Thus,

1

n

∑
{j : λj(Tn(a))≤M}

Φ(λj(Tn(a))) ≥ 1

n

n∑
j=1

H(λj(Tn(a)))

=
1

n
ΛH(Tn(a)) >

∫
H(a)− ε

2
>

∫
Φ(a+)− ε. (47)
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for n ≥ n0. Since λj(Tn(a)) ≤ λj(Tn(a+)) for all j and Φ is monotonously increasing,
we deduce from Proposition 6.1 that

1

n

n∑
j=1

Φ(λj(Tn(a))) ≤ 1

n

n∑
j=1

Φ(λj(Tn(a+)))

=
1

n

n∑
j=1

Φ(sj(Tn(a+))) =
1

n
SΦ(Tn(a+)) ≤

∫
Φ(a+) (48)

for all n ≥ 1. Combining (47) and (48) we arrive at (44). 2

Theorem 8.2 Let a ∈ L1 be real-valued, let Φ± : [0,∞) → [0,∞) be monotonously
increasing and convex functions such that Φ−(0) = Φ+(0), and suppose Φ+(a+) and
Φ−(a−) are in L1. Let F : R → [0,∞) be a continuous function such that F (λ) ≤
Φ+(λ) and F (−λ) ≤ Φ−(λ) whenever λ > λ0. Then

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a). (49)

Proof. Assume first that F (0) = 0. Fix ε > 0. Since Φ+(a+) ∈ L1, Lemma 8.1
delivers M > λ0 and n1 ∈ N such that

1

2π

∫
{θ : a+(θ)>M}

Φ+(a+(θ))dθ <
ε

3

and
1

n

∑
{j : λj(Tn(a))>M}

Φ+(λj(Tn(a))) <
ε

3

for n ≥ n1. Put F (λ) = 0 for λ ≤ 0 and let G : R → [0,∞) be any continuous
function satisfying G(λ) = F (λ) for λ ≤M , 0 ≤ G(λ) ≤ F (λ) for M ≤ λ ≤ 2M , and
G(λ) = 0 for λ ≥ 2M . We have∣∣∣∣∫ F (a+)−

∫
G(a)

∣∣∣∣ =

∣∣∣∣∫ F (a+)−
∫
G(a+)

∣∣∣∣ ≤ 1

2π

∫
{θ : a+(θ)>M}

Φ+(a+(θ))dθ <
ε

3

and

1

n

∣∣∣∣∣∣
∑

{j : λj(Tn(a))≥0}

F (λj(Tn(a)))−
∑

{j : λj(Tn(a))≥0}

G(λj(Tn(a)))

∣∣∣∣∣∣
≤ 1

n

∑
{j : λj(Tn(a))>M}

Φ+(λj(Tn(a))) <
ε

3
.

Using (43) with the compactly supported and continuous function G, we get∣∣∣∣∣∣ 1n
∑

{j : λj(Tn(a))≥0}

G(λj(Tn(a)))−
∫
G(a)

∣∣∣∣∣∣ < ε

3
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for n ≥ n2. The last three inequalities give∣∣∣∣∣∣ 1n
∑

{j : λj(Tn(a))≥0}

F (λj(Tn(a)))−
∫
F (a+)

∣∣∣∣∣∣ < ε

for n ≥ max(n1, n2). Analogously one can show that∣∣∣∣∣∣ 1n
∑

{j : λj(Tn(a))<0}

F (λj(Tn(a)))−
∫
F (−a−)

∣∣∣∣∣∣ < ε

3

for all sufficiently large n. (Notice that F (0) = 0, so that it does not matter whether
we take λj(Tn(a))) < 0 or λj(Tn(a)) ≤ 0.) Thus,

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a+) +

∫
F (−a−) =

∫
F (a).

If F (0) > 0, we choose a compactly supported and continuous function ϕ : R→ R
such that ϕ(0) = −F (0), ϕ(λ) ≥ −F (λ) for |λ| ≤ λ0, and ϕ(λ) = 0 for |λ| ≥ λ0.
From what was already proved we know that

1

n
ΛF (Tn(a)) +

1

n
Λϕ(Tn(a)) =

1

n
ΛF+ϕ(Tn(a))→

∫
F (a) +

∫
ϕ(a),

and since (1/n)Λϕ(Tn(a))→
∫
ϕ(a) by (43), it follows that (1/n)ΛF (Tn(a))→

∫
F (a).

2

Proposition 8.3 Let a ∈ L1 be real-valued and let F : R → [0,∞) be a continuous
function. If

C := lim inf
n→∞

1

n
ΛF (Tn(a)) <∞,

then F (a) ∈ L1 and
∫
F (a) ≤ C.

Proof. We proceed as in the proof of Proposition 6.2. Fix ε > 0 and choose n1 < n2 <
. . . so that (1/nk)λF (Tnk

(a)) < C + ε. Define FM : R → [0,∞) by FM(λ) = F (λ)
for |λ| ≤ M , FM(λ) = (M + 1 − |λ|)F (λ) for M ≤ |λ| ≤ M + 1, and FM(λ) = 0 for
|λ| ≥M + 1. Since FM has compact support, formula (43) implies that∫

FM(a) = lim
k→∞

ΛFM
(Tnk

(a))

nk
≤ lim sup

k→∞

ΛF (Tnk
(a))

nk
≤ C + ε.

Letting M →∞ we see that F (a) ∈ L1 and
∫
F (a) ≤ C + ε. 2
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Corollary 8.4 Let Ψ± : [0,∞)→ [0,∞) be convex functions and let F : R→ [0,∞)
be a continuous function such that F (λ) ' Ψ+(λ) as λ→∞ and F (λ) ' Ψ−(−λ) as
λ→ −∞. Then F ∈ ST , that is,

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a) (50)

for every real-valued function a ∈ L1.

Proof. If F (a) /∈ L1, then both sides of (50) are infinite by Proposition 8.3. Thus,
let F (a) ∈ L1. Then F (a+) ∈ L1 and F (−a−) ∈ L1. There are finite and positive
constants C1 and C2 such that

C1Ψ+(λ) ≤ F (λ) ≤ C2Ψ+(λ), C1Ψ−(λ) ≤ F (−λ) ≤ C2Ψ−(λ)

for all λ > ν. It follows that Ψ+(a+) ∈ L1 and Ψ−(a−) ∈ L1. If both Ψ+ and
Ψ− are bounded, we define Φ+ and Φ− as the functions on [0,∞) that take the
constant value C2 max(Ψ−(0),Ψ+(0)). If Ψ− is bounded and Ψ+ is unbounded, there
is a µ ∈ (0,∞) such that Ψ+ is monotonously increasing on (µ,∞) and Ψ+(µ) ≥
Ψ−(0). In that case we put Φ−(λ) = C2Ψ−(µ) for all λ ≥ 0, Φ+(λ) = C2Ψ+(µ) for
0 ≤ λ ≤ µ, and Φ+(λ) = C2Ψ+(λ) for λ ≥ µ. A similar construction is made if
Ψ+ is bounded and Ψ− is unbounded. Finally, if Ψ+ and Ψ− are both unbounded,
there exist µ± ∈ (0,∞) such that Ψ± is monotonously increasing on (µ±,∞) and
Ψ−(µ−) = Ψ+(µ+) ≥ max(Ψ−(0),Ψ+(0)). We then put Φ±(λ) = C2Ψ±(µ±) for
0 ≤ λ ≤ µ± and Φ±(λ) = C2Ψ±(λ) for λ ≥ µ±. The functions Φ± obtained in this
way satisfy all hypotheses of Theorem 8.2, and (50) therefore results from (49). 2

Corollary 8.5 The set ST contains all nonnegative and convex functions, that is, if
a ∈ L1 is real-valued and F : R→ [0,∞) is convex, then

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a).

Proof. Use Corollary 8.4 with Ψ±(λ) = F (±λ) for λ ≥ 0. 2.
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