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A. Böttcher, S. M. Grudsky1, and E. A. Maksimenko

The Szegö and Avram-Parter theorems give the limit of the arithmetic mean of the
values of certain test functions at the eigenvalues of Hermitian Toeplitz matrices and
the singular values of arbitrary Toeplitz matrices, respectively, as the matrix dimension
goes to infinity. The question on whether these theorems are true whenever they
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1 Introduction

Let a be a complex-valued function in L1 := L1(0, 2π). We denote by an the nth
Fourier coefficient of a,

an =
1

2π

∫ 2π

0

a(θ)e−inθdθ (n ∈ Z),

and by Tn(a) the n×n Toeplitz matrix (aj−k)
n
j,k=1. The function a is usually referred

to as the symbol of the sequence T1(a), T2(a), . . .. All the matrices Tn(a) are Hermitian
if (and only if) a is real-valued. Theorems of the Szegö type say that, under certain
conditions on a and F , including that a be real-valued,

lim
n→∞

1

n

n∑
j=1

F (λj(Tn(a))) =
1

2π

∫ 2π

0

F (a(θ)) dθ, (1)

1This author acknowledges financial support by CONACYT grants 046936-F and 60160.
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where λ1(A) ≤ . . . ≤ λn(A) are the eigenvalues of a Hermitian n× n matrix A, while
theorems of the Avram-Parter type state that, again under appropriate assumptions
on a and F ,

lim
n→∞

1

n

n∑
j=1

F (sj(Tn(a))) =
1

2π

∫ 2π

0

F (|a(θ)|) dθ, (2)

where s1(A) ≤ . . . ≤ sn(A) are the singular values of an n×n matrix A. The function
F in (1) and (2) is called a test function. Throughout this paper we assume that F
is real-valued and that F is continuous on R, F ∈ C(R), when considering (1) and
continuous on [0,∞), F ∈ C[0,∞), when dealing with (2).

Formula (1) goes back to Szegö [13], who proved it for real-valued functions a in
L∞ := L∞(0, 2π) and compactly supported continuous functions F on R (see also
[6]). Formula (2) was first established by Parter [8] for all F ∈ C[0,∞) under the
assumptions that a is in L∞ and that a is locally selfadjoint, which means that a = bc
with a continuous 2π-periodic function c and a real-valued function b. Avram [1]
subsequently proved (2) for all F ∈ C[0,∞) and all a ∈ L∞. Then Tyrtyshnikov
[16], [17] showed that (1) and (2) hold for all continuous functions F with compact
support if a is merely required to be in L2 := L2(0, 2π) and to be real-valued when
dealing with (1). Zamarashkin and Tyrtyshnikov [18], [19] were finally able to prove
that (1) and (2) are true whenever F is continuous and compactly supported and a is
in L1, again requiring that a be real-valued when considering (1). A very simple proof
of the Zamarashkin-Tyrtyshnikov result was given by Tilli [15], who also extended
(1) and (2) to all uniformly continuous functions F and all a ∈ L1, assuming that a
is real-valued in the case of (1). Eventually Serra Capizzano [10] derived (2) under
the assumption that a ∈ Lp := Lp(0, 2π) (1 ≤ p < ∞) and F ∈ C[0,∞) satisfies
F (s) = O(sp) as s → ∞. Serra Capizzano’s result implies in particular that (2) is
valid for all a ∈ L1 under the sole assumption that F (s) = O(s), which includes all
the results concerning (2) listed before.

In [3], we raised the question whether (1) and (2) are true whenever they make
sense. To be more precise and to exclude “∞ −∞” cases, the question is whether
(1) and (2) hold for all symbols a ∈ L1 (being real-valued in (1)) and all nonnegative
and continuous test functions. Here we make the following convention: we denote the
functions under the integrals in (1) and (2), that is, the functions θ 7→ F (a(θ)) and
θ 7→ F (|a(θ)|), by F (a) and F (|a|), respectively, and if these functions are not in L1,
we define the right-hand sides of (1) and (2) to be ∞ and interpret (1) and (2) as the
statement that the limit on the left-hand side is ∞.

It turns out that the answer to the question cited in the preceding paragraph is
negative: in [3], we constructed a positive a ∈ L1 and a continuous F : R → [0,∞)
such that (1) and (2) are false. The test function F in that counterexample is not
monotonous. This leaves us with the question whether (1) is always true if a ∈ L1

is real-valued, F ∈ C(R), and F (λ) increases monotonously to infinity as λ → ∞
and as λ → −∞ and with the problem whether (2) is always valid if a ∈ L1 and
F : [0,∞) → [0,∞) increases monotonously to infinity. (We use “increasing” as a
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synonym for “nondecreasing”, that is, by a monotonously increasing function F we
understand a function satisfying F (x) ≤ F (y) for x ≤ y.) Our first main result shows
that the answer to this question is negative.

To state things in other terms, let ST denote the set of all continuous functions F :
R→ [0,∞) for which (1) is true for all real-valued a ∈ L1 and let APT be the set of all
continuous F : [0,∞)→ [0,∞) for which (2) is true for all a ∈ L1. We know that ST
and APT are proper subsets of the sets of nonnegative functions in C(R) and C[0,∞),
respectively, that ST contains all nonnegative uniformly continuous functions on R,
and that APT contains all nonnegative functions F ∈ C[0,∞) satisfying F (s) = O(s)
as s → ∞. The result mentioned at the end of the previous paragraph tells us that
APT does not contain all nonnegative monotonously increasing functions in C[0,∞).

In [3], we showed that if a ∈ L1 and F : [0,∞)→ [0,∞) is any continuous function,
then

lim inf
n→∞

1

n

n∑
j=1

F (sj(Tn(a))) ≥ 1

2π

∫ 2π

0

F (|a(θ)|) dθ. (3)

This implies in particular that (2) is always true if F (|a|) /∈ L1. Hence, in connection
with (2) it remains to consider only the case where F (|a|) ∈ L1.

We write F (s) ' G(s) as s → ∞ if there are positive constants C1 and C2 such
that C1G(s) ≤ F (s) ≤ C2G(s) for all sufficiently large s > 0. Combining (3) with
the result by Serra Capizzano [10], we arrive at the conclusion that if a is in L1 (but
not necessarily in Lp) and F : [0,∞) → [0,∞) satisfies F (s) ' sp (1 ≤ p < ∞),
then (2) holds. Thus, APT contains all nonnegative F ∈ C[0,∞) with F (s) ' sp

(1 ≤ p < ∞). Other classes of convex functions F in APT were introduced in [3].
For example, we there showed that F ∈ APT if

F (s) =
∞∑
p=0

Fps
p with Fp ≥ 0 for all p.

This includes such functions as F (s) = es, but the convex function F (s) = s log(s+1)
does not have such a representation. Another main result of the present paper is
that APT contains all convex functions F : [0,∞) → [0,∞). Moreover, we can even
weaken convexity to essential convexity, which means that F (s) ' Ψ(s) with some
convex function Ψ as s→∞.

The paper is organized as follows. In Section 2 we construct a nonnegative func-
tion a ∈ L1 and a nonnegative and monotonously increasing function F ∈ C[0,∞)
such that F (a) ∈ L1 but (2) fails. Clearly, for these a and F , formula (1) is false as
well. The remaining part of the paper is devoted to results in the positive direction.
In Section 3 we introduce our main technical tool, a variational characterization of the
sums

∑
Φ(sj(A)) which mimics the variational characterization of unitarily invariant

norms due to Serra Capizzano and Tilli. Section 4 contains a proof of the original
Avram-Parter theorem and in Section 5 we cite Tilli’s proof of the Zamarashkin-
Tyrtyshnikov version of the Avram-Parter theorem. We present these proofs for the
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reader’s convenience only. Those who are interested in the proofs of the main results
may entirely skip these two sections. In Section 6 we derive a key inequality (Propo-
sition 6.1) and show that the Avram-Parter theorem for monotonously increasing and
convex test functions is equivalent to that theorem for compactly supported test func-
tions. As the Avram-Parter theorem is available in the latter case, we therefore get
it for the former. In Section 7 we employ Proposition 6.1 to prove our second main
result (Corollary 7.3), which states that all nonnegative and essentially convex test
functions belong to APT . Section 8 contains our third main result (Corollary 8.4).
This result says that all nonnegative and essentially convex functions on R are in the
class ST .

2 The counterexample

We denote by ‖A‖ the spectral norm (= largest singular value) of a matrix A and use
the norms

‖f‖p =

(∫ 2π

0

|f(θ)|p dθ
2π

)1/p

, ‖f‖∞ = ess sup |f(θ)|

in Lp (1 ≤ p <∞) and L∞, respectively.

In this section we prove the following theorem.

Theorem 2.1 There exist nonnegative functions a ∈ L1 and nonnegative and mono-
tonously increasing functions F ∈ C[0,∞) such that F (a) ∈ L1 but

lim sup
n→∞

1

n

n∑
j=1

F (sj(Tn(a))) =∞. (4)

We explicitly construct such a and F . We put b0 = 0, define bk, βk, δk for k ≥ 1
by

bk = 22k2

, βk = 1/bk, δk = 2−k
2

,

and let

a(θ) =

{
bk for θ ∈ [(1− δk)βk, βk] =: Ik (k ≥ 1),
0 for θ ∈ [0, 2π) \ ∪∞k=1Ik,

F (s) =

{
bk for s ∈ [bk−1 + 1, bk] (k ≥ 1),
(s− bk)(bk+1 − bk) + bk for s ∈ [bk, bk + 1] (k ≥ 0).

It is obvious that F : [0,∞) → [0,∞) is continuous and monotonously increasing.
Clearly, F (bk) = bk and F (bk + 1) = bk+1. We have

‖a‖1 =
∞∑
k=1

bkδkβk =
∞∑
k=1

δk =
∞∑
k=1

2−k
2

<∞,
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and since F (a(θ)) = F (bk) = bk for θ ∈ Ik and F (a(θ)) = F (0) = 0 for θ /∈ ∪∞k=1Ik,
we get

‖F (a)‖1 =
∞∑
k=1

bkδkβk =
∞∑
k=1

δk =
∞∑
k=1

2−k
2

<∞.

We are therefore left with the verification of (4).

Let

Dn(θ) :=
∑
|j|≤n−1

eijθ =
sin
(
n− 1

2

)
θ

sin(θ/2)

be the Dirichlet kernel. Since D′n(θ) =
∑
|j|≤n−1 ije

ijθ, we see that

‖D′n‖∞ ≤
∑
|j|≤n−1

|j| = (n− 1)n < n2. (5)

Parseval’s equality gives

‖Dn‖2 =
( ∑
|j|≤n−1

12
)1/2

=
√

2n− 1. (6)

For c, d ∈ [0, 2π) and n ∈ N, put

E
(n)
c,d (θ) =

1

2π

∫ d

c

Dn(θ − ϕ)dϕ.

Without the concrete bound 3, the following result is Lemma 8.2 of Chapter II of [20].
We include a full proof for the reader’s convenience.

Lemma 2.2 We have ‖E(n)
c,d ‖∞ ≤ 3 for all c, d ∈ [0, 2π) and all n ∈ N.

Proof. Clearly, it suffices to show that

1

2π

∣∣∣∣∫ d

c

Dn(x)dx

∣∣∣∣ ≤ 3 (7)

for c, d ∈ [−π, π] and n ∈ N. Let f(y) = y − sin y − y sin y. We have f(0) = 0 and

f ′(y) = 1− cos y − sin y − y cos y = 1− (1 + 2 sin y cos y)1/2 − y cos y ≤ 0

for y ∈ [0, π/2], which implies that f(y) ≤ 0 for y ∈ [0, π/2]. It follows that 0 <
1/ sin y − 1/y ≤ 1 for y ∈ (0, π/2] or equivalently,∣∣∣∣ 1

sin(x/2)
− 1

x/2

∣∣∣∣ ≤ 1 for x ∈ [−π, π] \ {0}. (8)
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We write∫ d

c

Dn(x)dx =

∫ d

c

sin
(
n− 1

2

)
x

x/2
dx+

∫ d

c

sin

(
n− 1

2

)
x

[
1

sin(x/2)
− 1

x/2

]
dx.

By (8), the absolute value of the second integral on the right does not exceed∫ d

c

∣∣∣∣sin(n− 1

2

)∣∣∣∣ dx ≤ ∫ d

c

dx ≤ 2π. (9)

The change of variables (n− 1/2)x = t in the first integral on the right shows that its
absolute value is∣∣∣∣∣

∫ (n−1/2)d

(n−1/2)c

sin t

t/2
dt

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
∫ (n−1/2)|c|

0

sin t

t
dt

∣∣∣∣∣+ 2

∣∣∣∣∣
∫ (n−1/2)|d|

0

sin t

t
dt

∣∣∣∣∣ . (10)

The integral sine Si(v) :=
∫ v

0
sin t
t
dt is positive on (0,∞), attains its maximum at

v = π, and

Si(π) =

∫ π

0

sin t

t
dt <

∫ π

0

dt = π.

Consequently, (10) is at most 4π. This in conjunction with (9) yields (7). 2

We now consider the partial sum

(Pna)(θ) :=
∑
|j|≤n−1

aje
ijθ =

1

2π

∫ 2π

0

a(ϕ)Dn(θ − ϕ)dϕ.

For k ∈ N, put

nk :=
√
bk+1 = 22k2+2k

. (11)

Lemma 2.3 We have

‖Pnk
a‖2 ≥

1

5π
δk+1 n

1/2
k

for all sufficiently large k.

Proof. Obviously,

(Pnk
a)(θ) =

∞∑
j=1

bj
2π

∫
Ij

Dnk
(θ − ϕ)dϕ =

∞∑
j=1

bjE
(nk)
(1−δj)βj ,βj

(θ). (12)

Our aim is to show that the L2 norm of the term with j = k + 1 is greater than a
constant times δk+1n

1/2
k while the sum of the L2 norms of the remaining terms is at

most o(1) times δk+1n
1/2
k as k →∞.
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From Lemma 2.2 we infer that

δ−1
k+1n

−1/2
k

k∑
j=1

‖bjE(nk)
(1−δj)βj ,βj

‖2 ≤ δ−1
k+1n

−1/2
k

k∑
j=1

3bj

= 2(k+1)2 2−2k2+2k−1

3
k∑
j=1

22j2 ≤ 2(k+1)2 2−2k2+2k−1

3 k 22k2

= 3k 2(k+1)2 22k2
(1−22k−1) = o(1) (13)

as k →∞. To tackle the terms with j ≥ k + 1 on the right of (12) we write

bjE
(nk)
(1−δj)βj ,βj

(θ) =
bj
2π
Dnk

(θ − βj)δjβj +Rj(θ) (14)

with

Rj(θ) :=
bj
2π

∫
Ij

[
Dnk

(θ − ϕ)−Dnk
(θ − βj)

]
dϕ.

The mean value theorem and (5) give∣∣∣Dnk
(θ − ϕ)−Dnk

(θ − βj)
∣∣∣ =

∣∣D′nk
(ξ)
∣∣(βj − ϕ) ≤ n2

k(βj − ϕ),

whence

|Rj(θ)| ≤
bjn

2
k

2π

∫ βj

(1−δj)βj

(βj − ϕ)dϕ =
bjn

2
k

2π

β2
j δ

2
j

2
=
n2
kβjδ

2
j

4π
. (15)

By virtue of (6), the L2 norm of the function Dnk
(θ − βj) is at most

√
2nk. Thus,

from (14) we obtain that

‖bjE(nk)
(1−δj)βj ,βj

‖2 ≤
δj
2π

√
2nk +

n2
kβjδ

2
j

4π
=

1

4π
δjn

1/2
k

[
2
√

2 + n
3/2
k βjδj

]
. (16)

If j = k +m with m ≥ 1, then

n
3/2
k βjδj = 23·2k2+2k−1

2−2(k+m)2

2−(k+m)2

= 2
2k2

“
3·22k−1−22mk+m2

”
2−(k+m)2 < 22k2

(3·22k−1−22k+1) = 2−2k2+2k−1

< 1. (17)

Consequently, (16) implies that

‖bjE(nk)
(1−δj)βj ,βj

‖2 <
1 + 2

√
2

4π
δjn

1/2
k < δjn

1/2
k (18)

for j ≥ k + 1. It follows that

δ−1
k+1 n

−1/2
k

∞∑
j=k+2

‖bjE(nk)
(1−δj)βj ,βj

‖2 ≤ δ−1
k+1 n

−1/2
k

∞∑
j=k+2

δjn
1/2
k = 2(k+1)2

∞∑
j=k+2

2−j
2

= 2(k+1)2
∞∑
`=1

2−(k+1+`)2 =
∞∑
`=1

2−2(k+1)`−`2 < 2−2(k+1)

∞∑
`=1

2−`
2

= o(1) (19)
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as k →∞. We finally consider the term with j = k+ 1, which may be written in the
form (14). Due to (6), the L2 norm of the function

bk+1

2π
Dnk

(θ − βk+1)δk+1βk+1 =
δk+1

2π
Dnk

(θ − βk+1)

is δk+1(2nk−1)1/2/(2π). From (15) we know that ‖Rk+1‖2 ≤ n2
kβk+1δ

2
k+1/(4π). Hence

(14) gives

‖bk+1E
(nk)
(1−δk+1)βk+1,βk+1

‖2 ≥
δk+1

2π
(2nk − 1)1/2 −

n2
kβk+1δ

2
k+1

4π

=
δk+1n

1/2
k

4π

[
2

(
2− 1

nk

)2

− n3/2
k βk+1δk+1

]
.

From (17) we see that n
3/2
k βk+1δk+1 < 1. Consequently,

δ−1
k+1 n

−1/2
k ‖bk+1E

(nk)
(1−δk+1)βk+1,βk+1

‖2 ≥
1

4π
[2− 1] =

1

4π
(20)

for all sufficiently large k. Inserting (13), (19), (20) in (12) we arrive at the estimate

δ−1
k+1 n

−1/2
k ‖Pnk

a‖2 ≥
1

4π
− o(1)− o(1) ≥ 1

5π

for all k large enough. 2

Proof of Theorem 2.1. As already said, it remains to prove (4). With nk given by
(11),

1

nk

nk∑
j=1

F (sj(Tnk
(a))) ≥ 1

nk
F (snk

(Tnk
(a))) =

1

nk
F (‖Tnk

(a)‖). (21)

For |j| ≤ nk − 1, the jth Fourier coefficients of a and Pnk
a coincide. Consequently,

Tnk
(a) = Tnk

(Pnk
a). As the norm of a matrix is at least the `2 norm of its first column,

we obtain that

‖Tnk
(a)‖2 = ‖Tnk

(Pnk
a)‖2 ≥

nk−1∑
j=0

|(Pnk
a)j|2 ≥

1

2

∑
|j|≤nk−1

|(Pnk
a)j|2

and hence, by Parseval’s equality, ‖Tnk
(a)‖ ≥ ‖Pnk

a‖2/
√

2. Lemma 2.3 therefore
implies that (21) is at least

1

nk
F

(
δk+1 n

1/2
k

5
√

2 π

)
. (22)

If k is large enough, then

22k2

+ 1 <
1

5
√

2 π
2−(k+1)2 22k2+2k−1

< 22(k+1)2

8



or equivalently,

bk + 1 <
δk+1 n

1/2
k

5
√

2 π
< bk+1.

Thus, if k is sufficiently large, then (22) equals bk+1/nk =
√
bk+1, and since bk+1 →∞

as k →∞, it follows that the left-hand side of (21) goes to infinity as k →∞. 2

Remark 2.4 If G ∈ C[0,∞) is any test function such that G(s) ≥ F (s) for all
s ∈ [0,∞), then, obviously, (4) holds with F replaced by G. By changing F only
slightly, we can clearly produce a G ≥ F such that G(a) ∈ L1 and such that G is C∞

and strictly monotonously increasing. 2

3 A modification of a result by Serra Capizzano and Tilli

We equip Cn with the inner product (z, w) =
∑n

j=1 zjwj, denote by Mn(C) the algebra
of all complex n× n matrices, and think of matrices in Mn(C) as linear operators on
Cn in the natural fashion. Given a function Φ : [0,∞)→ [0,∞), we put

SΦ(A) =
n∑
j=1

Φ(sj(A)).

In [11], Serra Capizzano and Tilli derived a beautiful variational characterization of
unitarily invariant norms on Mn(C). The following theorem is a modification of their
result; paper [11] contains the implication (i) ⇒ (ii) of the theorem for Φ(s) = sp

(1 ≤ p <∞).

Theorem 3.1 Let Φ : [0,∞)→ [0,∞) be a continuous function and let n ≥ 2. Then
the following are equivalent:
(i) Φ is monotonously increasing and convex;

(ii) for every A ∈Mn(C) we have

SΦ(A) = max
n∑
k=1

Φ(|(Auk, vk)|),

the maximum over all pairs {u1, . . . , un} and {v1, . . . , vn} of orthonormal bases of Cn.

Proof. (i) ⇒ (ii). Let {u1, . . . , un} and {v1, . . . , vn} be orthonormal bases of Cn and
let A = V ∗DU with D = diag (s1, . . . , sn) be the singular value decomposition of A.
We put u′k = Uuk and v′k = V vk. Clearly,

|(Auk, vk)| = |(Du′k, v′k)| =

∣∣∣∣∣
n∑
j=1

sj(u
′
k)j(v

′
k)j

∣∣∣∣∣ ≤
n∑
j=1

sj |(u′k)j| |(v′k)j|

≤ 1

2

n∑
j=1

sj|(u′k)j|2 +
1

2

n∑
j=1

sj|(v′k)j|2 =
1

2
(Du′k, u

′
k) +

1

2
(Dv′k, v

′
k).
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Since Φ is monotonously increasing and convex, we therefore obtain that

Φ(|(Auk, vk)|) ≤
1

2
Φ((Du′k, u

′
k)) +

1

2
Φ((Dv′k, v

′
k)). (23)

But
n∑
k=1

Φ((Du′k, u
′
k)) =

n∑
k=1

Φ

(
n∑
j=1

sj|(u′k)j|2
)
, (24)

and taking into account that Φ is convex and

n∑
j=1

|(u′k)j|2 =
n∑
k=1

|(u′k)j|2 = 1,

we see that (24) is at most

n∑
k=1

n∑
j=1

Φ(sj)|(u′k)j|2 =
n∑
j=1

Φ(sj)
n∑
k=1

|(u′k)j|2 =
n∑
j=1

Φ(sj) = SΦ(A).

Analogously we get that
n∑
k=1

Φ((Dv′k, v
′
k)) ≤ SΦ(A).

Thus, summing up (23) we arrive at the inequality

n∑
k=1

Φ(|(Auk, vk)|) ≤
1

2
SΦ(A) +

1

2
SΦ(A) = SΦ(A).

It remains to show that there exist orthonormal bases {ũ1, . . . ũn} and {ṽ1, . . . ṽn}
such that

∑
Φ(|(Aũk, ṽk)|) equals SΦ(A). Let ũk and ṽk be the kth column of U∗ and

V ∗, respectively. Since AU∗ = V ∗D, we get Aũk = skṽk and hence (Aũk, ṽk) = sk. It
follows that

n∑
k=1

Φ(|(Aũk, ṽk)|) =
n∑
k=1

Φ(sk) = SΦ(A),

as desired.

(ii) ⇒ (i). We denote by {e1, . . . , en} the standard basis of Cn. By assumption,

SΦ(A) ≥
n∑
k=1

Φ(|(Aek, ek)|) =
n∑
k=1

Φ(|Akk|) (25)

for every A ∈ Mn(C). Let 0 ≤ α ≤ β < ∞ and let A be the n × n matrix whose
upper-left 2× 2 block is

B =

(
sin γ cos γ

− cos γ sin γ

)(
α 0
0 β

)(
cos γ − sin γ
sin γ cos γ

)
10



and the remaining entries of which are zero. The singular values of B are α and β,
while the diagonal entries of B are

B11 = B22 =
α + β

2
sin 2γ.

Thus, (25) gives

Φ(α) + Φ(β) + (n− 2)Φ(0) ≥ 2 Φ

(
α + β

2
| sin 2γ|

)
+ (n− 2)Φ(0).

Taking γ so that sin 2γ = 2α/(α + β) we get Φ(α) + Φ(β) ≥ 2Φ(α), that is, Φ(α) ≤
Φ(β), and taking γ = π/4 we obtain that Φ(α) + Φ(β) ≥ 2 Φ((α+ β)/2). This proves
that Φ is monotonously increasing and convex. 2

We remark that inequality (25) for monotonously increasing and convex functions
Φ can already be found in [7] and [5, page 72] (see also [12] and [14]).

Given x = (x1, . . . , xn) ∈ Cn, we let x(θ) be the trigonometric polynomial

x(θ) = x1 + x2e
iθ + . . .+ xne

i(n−1)θ.

It is well known and easily seen that

(Tn(a)z, w) =
1

2π

∫ 2π

0

a(θ)z(θ)w(θ)dθ. (26)

In what follows we frequently use the abbreviation

1

2π

∫ 2π

0

f(eiθ)dθ =:

∫
f.

For Φ(s) = sp (1 ≤ p < ∞), the following corollary is already in the work of
Avram [1], Fasino and Tilli [4], and Serra Capizzano and Tilli [11].

Corollary 3.2 Let Φ : [0,∞) → [0,∞) be a monotonously increasing and convex
function. If a, b ∈ L1 and |a| ≤ b almost everywhere, then

SΦ(Tn(a)) ≤ SΦ(Tn(b))

for all n ≥ 1.

Proof. By Theorem 3.1, there are orthonormal bases {u1, . . . , un} and {v1, . . . , vn}
such that

SΦ(Tn(a)) =
n∑
k=1

Φ(|(Tn(a)uk, vk)|). (27)

11



From (26) we infer that

|(Tn(a)uk, vk)| =
∣∣∣∣∫ aukvk

∣∣∣∣ ≤ ∫ |a| |uk| |vk| ≤ ∫ b |uk| |vk|

≤ 1

2

∫
b |uk|2 +

1

2

∫
b |vk|2 =

1

2
(Tn(b)uk, uk) +

1

2
(Tn(b)vk, vk).

Thus, using that Φ is monotonously increasing and convex we obtain that (27) does
not exceed

1

2

n∑
k=1

Φ((Tn(b)uk, uk)) +
1

2

n∑
k=1

Φ((Tn(b)vk, vk)),

and again by Theorem 3.1, this is at most

1

2
SΦ(Tn(b)) +

1

2
SΦ(Tn(b)) = SΦ(Tn(b)). 2

4 Bounded symbols

In this section we prove the Avram-Parter theorem in the version of Avram [1], that
is, we show that

lim
n→∞

1

n
SF (Tn(a)) =

∫
F (|a|) (28)

for a ∈ L∞ and F ∈ C0[0,∞), where C0[0,∞) stands for functions in C[0,∞) which
are eventually identically zero.

First of all we remark that in order to prove (28) for some a ∈ L1 and some test
function F , it suffices to prove (28) for the same a and some sequence F1, F2, . . . of
test functions which converge uniformly to F on [0,∞). This follows from an easy
ε/3-argument.

To start somewhere, we take the following observation for granted: if a1, . . . , am
are functions in L∞, then

Tn(a1) . . . Tn(am) = Tn(a1 . . . am) +Mn with
‖Mn‖1

n
→ 0 as n→∞.

Here ‖ · ‖1 is the trace norm. In particular, if a ∈ L∞ and p is a natural number, then

Tn(a)Tn(a) = Tn(|a|2) +Kn and T pn(|a|2) = Tn(|a|2p) + Ln (29)

where ‖Kn‖1/n → 0 and ‖Ln‖1/n → 0 as n → ∞. As to our knowledge, the first
to mention this result explicitly was SeLegue [9]. A simple proof can be found in [2,
Lemma 5.16], for example.

Take a ∈ L∞. We denote the eigenvalues of a positive semi-definite n× n matrix
A by λ1(A) ≤ . . . ≤ λn(A). Thus,

1

n

∑
s2p
j (Tn(a)) =

1

n

∑
λpj(Tn(a)Tn(a)),

12



and since 0 ≤ λj(Tn(a)Tn(a)) ≤ ‖a‖2
∞ and 0 ≤ λj(Tn(|a|2)) ≤ ‖a‖2

∞, we obtain from
(29) and the inequality

∑
|λj(A)− λj(B)| ≤ ‖A−B‖1 that∑∣∣λpj(Tn(a)Tn(a))− λpj(Tn(|a|2)

∣∣
≤ p‖a‖2(p−1)

∞

∑∣∣λj(Tn(a)Tn(a))− λj(Tn(|a|2))
∣∣

≤ p‖a‖2(p−1)
∞ ‖Tn(a)Tn(a)− Tn(|a|2)‖1 = p‖a‖2(p−1)

∞ ‖Kn‖1.

Consequently,
1

n

∑
s2p
j (Tn(a)) =

1

n

∑
λpj(Tn(|a|2)) + o(1). (30)

The matrix Tn(|a|2) is positive semi-definite. Hence, denoting by trA the trace of A,
we get from (29) that

1

n

∑
λpj(Tn(|a|2)) =

1

n
trT pn(|a|2)

=
1

n
tr (Tn(|a|2p) + Ln) =

1

n
trTn(|a|2p) + o(1) =

∫
|a|2p + o(1). (31)

Combining (30) and (31) we arrive at the conclusion that (28) is true for F (s) = s2p.
It follows that (28) is valid whenever F (s) = P (s2) with a polynomial P and thus
whenever F (s) = G(s2) with G ∈ C0[0,∞). As every F ∈ C0[0,∞) may be written
in the form F (s) = G(s2) with G ∈ C0[0,∞), we get (28) for all F ∈ C0[0,∞).

5 Uniformly continuous test functions

Zamarashkin and Tyrtyshnikov proved that

lim
n→∞

1

n
SF (Tn(a)) =

∫
F (|a|) (32)

if a ∈ L1 and F ∈ C0[0,∞). An extremely lucid and short proof was given by Tilli
[15]. This proof even yields (32) for all uniformly continuous (and not necessarily
bounded) test functions F . It is as follows. Let first F be Lipschitz continuous,
|F (s)− F (t)| ≤ K|s− t|. For M > 0, define aM ∈ L∞ by aM(θ) = a(θ) if |a(θ)| ≤M
and aM(θ) = 0 if |a(θ)| > M . Then

∫
|a − aM | → 0 as M → ∞. Fix ε > 0. Taking

into account the inequality
∑
|sj(A)− sj(B)| ≤ ‖A−B‖1 and using Corollary 3.2 for

Φ(s) = s we obtain that

1

n

∣∣∣∑F (sj(Tn(a)))−
∑

F (sj(Tn(aM)))
∣∣∣ ≤ K

n

∑
|sj(Tn(a))− sj(Tn(aM))|

≤ K

n
‖Tn(a− aM)‖1 =

K

n

∑
sj(Tn(a− aM)) ≤ K

n

∑
sj(Tn(|a− aM |))

=
K

n

∑
λj(Tn(|a− aM |)) =

K

n
trTn(|a− aM |) = K

∫
|a− aM | <

ε

3

13



for all n ≥ 1 if M ≥M0. We also have∫ ∣∣∣F (|a|)− F (|aM |)
∣∣∣ ≤ K

∫ ∣∣∣|a| − |aM |∣∣∣ ≤ K

∫
|a− aM | <

ε

3

for M ≥M0. For each M ≥M0, formula (28) gives∣∣∣∣ 1n∑F (sj(Tn(aM)))−
∫
F (|aM |)

∣∣∣∣ < ε

3

if n ≥ n0(M). Thus,∣∣∣∣ 1n∑F (sj(Tn(a)))−
∫
F (|a|)

∣∣∣∣ < ε

3
+
ε

3
+
ε

3
= ε

for all sufficiently large n, which completes the proof for Lipschitz continuous func-
tions. Every uniformly continuous function on [0,∞) is the uniform limit of Lipschitz
continuous functions. (Indeed, fix ε > 0. There is a δ > 0 such that |F (s)−F (t)| ≤ ε
whenever |s − t| < δ. Let Fε be the continuous and piecewise linear function that
satisfies Fε(kδ) = F (kδ) for k = 0, 1, 2, . . . and is linear on [kδ, (k + 1)δ] for all k. It
is easily seen that Fε is Lipschitz continuous, |Fε(s)− Fε(t)| ≤ (ε/δ)|s− t|, and that
‖F − Fε‖∞ ≤ 2ε on [0,∞).) We therefore arrive at the conclusion that (32) is true
for all uniformly continuous functions on [0,∞).

6 Convex test functions

For Φ(s) = sp (1 ≤ p <∞), the following Proposition 6.1 and Corollary 6.4 are again
already in [10] and [11].

Proposition 6.1 If a ∈ L1 and Φ : [0,∞)→ [0,∞) is monotonously increasing and
convex, then

1

n
SΦ(Tn(a)) ≤

∫
Φ(|a|)

for all n ≥ 1.

Proof. By Corollary 3.2, SΦ(Tn(a) ≤ SΦ(Tn(|a|). The matrix Tn(|a|) is positive semi-
definite. Let {w1, . . . , wn} be an orthonormal basis of eigenvectors and Tn(|a|)wk =
skwk. Then

Φ(sk) = Φ((Tn(|a|)wk, wk)) = Φ

(∫
|a| |wk|2

)
.

Taking into account that
∫
|wk|2 = 1 we can use Jensen’s inequality to get

Φ

(∫
|a| |wk|2

)
≤
∫

Φ(|a|)|wk|2 = (Tn(Φ(|a|))wk, wk).

14



Consequently,

SΦ(Tn(|a|)) ≤
n∑
k=1

((Tn(Φ(|a|))wk, wk)) = trTn(Φ(|a|)) = n

∫
Φ(|a|). 2

If a(θ) = eiθ, then s1(Tn(a)) = 0 and s2(Tn(a)) = . . . = sn(Tn(a)) = 1. The in-
equality of Proposition 6.1 so amounts to the inequality Φ(0) + (n− 1)Φ(1) ≤ nΦ(1),
that is, Φ(0) ≤ Φ(1). This reveals that the convex functions for which Proposition 6.1
is true must necessarily be monotonously increasing on [1,∞). The proof of Propo-
sition 6.1 also shows that if a ≥ 0 almost everywhere and Φ : [0,∞) → [0,∞) is a
concave function, then (1/n)SΦ(Tn(a)) ≥

∫
Φ(|a|) for all n ≥ 1.

The following proposition is just (3) and was established in [3].

Proposition 6.2 Let a ∈ L1 and let F : [0,∞) → [0,∞) be a continuous function.
If

C := lim inf
n→∞

1

n
SF (Tn(a)) <∞, (33)

then F (|a|) ∈ L1 and
∫
F (|a|) ≤ C.

Proof. Fix ε > 0 and choose n1 < n2 < . . . so that (1/nk)SF (Tnk
(a)) < C + ε. For

a natural number M , define FM : [0,∞) → [0,∞) by FM(s) = F (s) for s ∈ [0,M ],
FM(s) = (M + 1 − s)F (s) for s ∈ [M,M + 1], and FM(s) = 0 for s ∈ [M + 1,∞).
Since FM ∈ C0[0,∞), we deduce from (32) that∫

FM(|a|) = lim
k→∞

SFM
(Tnk

(a))

nk
≤ lim sup

k→∞

SF (Tnk
(a))

nk
≤ C + ε,

which implies that
∫
F (|a|) ≤ C + ε. 2

Proposition 6.3 Let a ∈ L1. Then the following are equivalent:
(i) (1/n)SF (Tn(a))→

∫
F (|a|) for every F ∈ C0[0,∞);

(ii) (1/n)SΦ(Tn(a))→
∫

Φ(|a|) for every monotonously increasing and convex function

Φ : [0,∞)→ [0,∞).

In other words, C0[0,∞) is a subset of APT if and only if all nonnegative, monoton-
ously increasing, and convex functions are in APT .

Proof. (i) ⇒ (ii). Assumption (i) was used in the proof of Proposition 6.2. But this
proposition and Proposition 6.1 imply (ii).

(ii) ⇒ (i). It is sufficient to prove that (1/n)SF (Tn(a))→
∫
F (|a|) for every twice

continuously differentiable F ∈ C0[0,∞). We then have F ′′(s) = φ(s) − ψ(s) with
nonnegative continuous functions φ, ψ which vanish identically for s > s0. Put

Φ(s) = F (0) + γs+

∫ s

0

∫ t

0

φ(σ) dσ dt, Ψ(s) = δs+

∫ s

0

∫ t

0

ψ(σ) dσ dt,

15



where γ = F ′(0), δ = 0 if F ′(0) ≥ 0 and γ = 0, δ = −F ′(0) if F ′(0) ≤ 0. Clearly,
F (s) = Φ(s)−Ψ(s). Considering the first and second derivatives, we see that Φ and
Ψ are monotonously increasing and convex. Since Φ′′(s) = Ψ′′(s) = 0 for s > s0, there
are constants α and β such that Φ(s) = Ψ(s) = α+ βs for s > s0, which implies that
Φ(|a|) and Ψ(|a|) are in L1 together with a. From (ii) we therefore deduce that

SF (Tn(a))

n
=
SΦ(Tn(a))− SΨ(Tn(a))

n
→
∫

Φ(|a|)−
∫

Ψ(|a|) =

∫
F (|a|). 2

Corollary 6.4 If a ∈ L1 and Φ : [0,∞) → [0,∞) is monotonously increasing and
convex, then

lim
n→∞

1

n
SΦ(Tn(a)) =

∫
Φ(|a|).

Thus, all monotonously increasing and convex functions F : [0,∞) → [0,∞) are in
APT .

Proof. As (i) of Proposition 6.3 is guaranteed by (32), the assertion follows from the
implication (i) ⇒ (ii) of Proposition 6.3. 2

7 Essentially convex test functions

Here are our main results concerning the Avram-Parter theorem. For Φ(s) = sp and
Ψ(s) = sp, these results were previously established by Serra Capizzano [10]. The
proof of the following lemma makes also use of ideas of [10].

Lemma 7.1 Let a ∈ L1, let Φ : [0,∞) → [0,∞) be a monotonously increasing
and convex function, and suppose Φ(|a|) ∈ L1. Then for every ε > 0 there exist
M ∈ (0,∞) and n0 ∈ N such that

1

n

∑
{j : sj(Tn(a))>M}

Φ(sj(Tn(a))) < ε (34)

for all n ≥ n0.

Proof. Since Φ(|a|) ∈ L1 and Φ is monotonously increasing, there is an M such that

1

2π

∫
{θ : |a(θ)|>M/2}

Φ(|a(θ)|)dθ < ε

2
. (35)

We define a continuous function H : [0,∞) → [0,∞) by H(s) = Φ(s) for 0 ≤ s ≤
M/2, 0 ≤ H(s) ≤ Φ(s) for M/2 ≤ s ≤ M , and H(s) = 0 for s ≥ M . Then∫

Φ(|a|)−
∫
H(|a|) does not exceed (35) and hence∫

H(|a|) >
∫

Φ(|a|)− ε

2
. (36)
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Since H has finite support, (32) yields an n0 ∈ N such that

−ε
2
<

1

n
SH(Tn(a))−

∫
H(|a|) < ε

2

for all n ≥ n0. Thus, for n ≥ n0 we have

1

n

∑
{j : sj(Tn(a))≤M}

Φ(sj(Tn(a))) ≥ 1

n
SH(Tn(a)) >

∫
H(|a|)− ε

2
>

∫
Φ(|a|)− ε. (37)

On the other hand, Proposition 6.1 tells us that

1

n

n∑
j=1

Φ(sj(Tn(a))) ≤
∫

Φ(|a|) (38)

for all n ≥ 1. Clearly, (37) and (38) imply (34). 2

Theorem 7.2 Let a ∈ L1, let Φ : [0,∞)→ [0,∞) be a monotonously increasing and
convex function, and suppose Φ(|a|) ∈ L1. Let F : [0,∞) → [0,∞) be a continuous
function such that F (s) ≤ Φ(s) for all s > s0. Then

lim
n→∞

1

n
SF (Tn(a)) =

∫
F (|a|).

Proof. Fix ε > 0. We have to show that∣∣∣∣ 1nSF (Tn(a))−
∫
F (|a|)

∣∣∣∣ < ε (39)

for all sufficiently large n. Taking into account that Φ(|a|) ∈ L1 and using Lemma 7.1
we get M ∈ (0,∞) and n1 ∈ N such that

1

2π

∫
{θ : Φ(|a(θ)|)>M}

Φ(|a(θ)|)dθ < ε

3
(40)

and
1

n

∑
{j : sj(Tn(a))>M}

Φ(sj(Tn(a))) <
ε

3
(41)

for n ≥ n1. Let G : [0,∞)→ [0,∞) be a continuous function satisfying G(s) = F (s)
for 0 ≤ s ≤ M , 0 ≤ G(s) ≤ F (s) for m ≤ s ≤ 2M , and G(s) = 0 for s ≥ 2M . By
(40), ∣∣∣∣∫ F (|a|)−

∫
G(|a|)

∣∣∣∣ ≤ 1

2π

∫
{θ : Φ(|a(θ)|)>M}

Φ(|a(θ)|)dθ < ε

3
,

from (32) we infer that ∣∣∣∣ 1nSG(Tn(a))−
∫
G(|a|)

∣∣∣∣ < ε

3
,
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for all n ≥ n2, and due to (41),∣∣∣∣ 1nSF (Tn(a))− 1

n
SG(Tn(a))

∣∣∣∣ ≤ 1

n

∑
{j : sj(Tn(a))>M}

Φ(sj(Tn(a))) <
ε

3

for all n ≥ n1. Adding the last three inequalities we obtain inequality (39) for n ≥
max(n1, n2). 2

Recall that we write F (s) ' Φ(s) as s → ∞ if there exist positive constants C1

and C2 such that C1Φ(s) ≤ F (s) ≤ C2Φ(s) for all sufficiently large s.

Corollary 7.3 Let a ∈ L1, let Ψ : [0,∞) → [0,∞) be a convex function, and let
F : [0,∞)→ [0,∞) be a continuous function such that F (s) ' Ψ(s) as s→∞. Then

lim
n→∞

1

n
SF (Tn(a)) =

∫
F (|a|). (42)

In other terms, APT contains all nonnegative and essentially convex functions.

Proof. From Proposition 6.2 it follows that both sides of (42) are infinite if F (|a|) /∈ L1.
So suppose F (|a|) ∈ L1. We have C1Ψ(s) ≤ F (s) ≤ C2Ψ(s) for all s > s0. Let first
Ψ be a bounded function, Ψ(s) ≤ M for all s ∈ [0,∞). The constant function Φ
given by Φ(s) = C2M is monotonously increasing and convex, we have F (s) ≤ Φ(s)
for s > s0, and Φ(|a|) ∈ L1. Theorem 7.2 therefore implies (42). Now suppose Ψ
is unbounded. Then Ψ is monotonously increasing on some half-line [s0,∞). The
function Φ(s) := C2Ψ(s) is monotonously increasing and convex on [s0,∞) together
with Ψ(s), the inequality F (s) ≤ Φ(s) is satisfied for all s > s0, and since C1Ψ(s) ≤
F (s), we conclude that Φ(|a|) ∈ L1. Thus, Theorem 7.2 yields (42). 2.

8 The Szegö theorem

We finally turn to Szegö’s theorem. Using the abbreviation

ΛF (Tn(a)) =
n∑
j=1

F (λj(Tn(a))),

we can write this theorem as

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a). (43)

For real-valued a ∈ L∞ and compactly supported F in C(R), (43) can be easily
derived from (28). Indeed, we can write a = m + b with m ∈ R and an L∞ function
b ≥ 0, we then have

λj(Tn(a)) = m+ λj(Tn(b)) = m+ sj(Tn(b)),
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and (28) with F (s) replaced by G(s) = F (m+ s) therefore yields

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
G(|b|) =

∫
F (m+ |b|) =

∫
F (m+ b) =

∫
F (a).

Tilli [15] gave a very simple proof of (43) for real-valued a ∈ L1 and uniformly con-
tinuous F ∈ C(R). This proof is nearly identical with the proof given in Section 5,
the only difference being that now the inequality

∑
|λj(A)− λj(B)| ≤ ‖A−B‖1 has

to be used, which holds for Hermitian matrices A and B. The purpose of this section
is to establish the Szegö type versions of the results of Section 7.

For a real-valued function a ∈ L1, we define a+ = max(a, 0) and a− = max(−a, 0).
Then a± ∈ L1, a± ≥ 0, and a = a+ − a−. It is well known that λj(Tn(b)) ≤ λj(Tn(c))
whenever b, c ∈ L1 are real-valued and b ≤ c. In particular, λj(Tn(a±)) ≥ 0 for all j.

Lemma 8.1 Let a ∈ L1 be real-valued, let Φ : [0,∞) → [0,∞) be a monotonously
increasing and convex function, and suppose Φ(a+) ∈ L1. Then for every ε > 0 there
exist M ∈ (0,∞) and n0 ∈ N such that

1

n

∑
{j : λj(Tn(a))>M}

Φ(λj(Tn(a))) < ε (44)

for all n ≥ n0.

Proof. There is an M such that

1

2π

∫
{θ : a+(θ)>M/2}

Φ(a+(θ))dθ <
ε

2
.

Continue Φ to a function Φ : R → [0,∞) by putting Φ(λ) = Φ(0) for λ ≤ 0 and let
H : R → [0,∞) be any continuous function such that H(λ) = Φ(λ) for λ ≤ M/2,
0 ≤ H(λ) ≤ Φ(λ) for M/2 ≤ λ ≤M , and H(λ) = 0 for λ ≥M . Then∫

H(a) =

∫
H(a+) >

∫
Φ(a+)− ε

2
. (45)

The function H is uniformly continuous and hence we can use (43) with F replaced
by H to see that ∣∣∣∣ 1nΛH(Tn(a))−

∫
H(a)

∣∣∣∣ < ε

2
(46)

for n ≥ n0. Thus,

1

n

∑
{j : λj(Tn(a))≤M}

Φ(λj(Tn(a))) ≥ 1

n

n∑
j=1

H(λj(Tn(a)))

=
1

n
ΛH(Tn(a)) >

∫
H(a)− ε

2
>

∫
Φ(a+)− ε. (47)
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for n ≥ n0. Since λj(Tn(a)) ≤ λj(Tn(a+)) for all j and Φ is monotonously increasing,
we deduce from Proposition 6.1 that

1

n

n∑
j=1

Φ(λj(Tn(a))) ≤ 1

n

n∑
j=1

Φ(λj(Tn(a+)))

=
1

n

n∑
j=1

Φ(sj(Tn(a+))) =
1

n
SΦ(Tn(a+)) ≤

∫
Φ(a+) (48)

for all n ≥ 1. Combining (47) and (48) we arrive at (44). 2

Theorem 8.2 Let a ∈ L1 be real-valued, let Φ± : [0,∞) → [0,∞) be monotonously
increasing and convex functions such that Φ−(0) = Φ+(0), and suppose Φ+(a+) and
Φ−(a−) are in L1. Let F : R → [0,∞) be a continuous function such that F (λ) ≤
Φ+(λ) and F (−λ) ≤ Φ−(λ) whenever λ > λ0. Then

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a). (49)

Proof. Assume first that F (0) = 0. Fix ε > 0. Since Φ+(a+) ∈ L1, Lemma 8.1
delivers M > λ0 and n1 ∈ N such that

1

2π

∫
{θ : a+(θ)>M}

Φ+(a+(θ))dθ <
ε

3

and
1

n

∑
{j : λj(Tn(a))>M}

Φ+(λj(Tn(a))) <
ε

3

for n ≥ n1. Put F (λ) = 0 for λ ≤ 0 and let G : R → [0,∞) be any continuous
function satisfying G(λ) = F (λ) for λ ≤M , 0 ≤ G(λ) ≤ F (λ) for M ≤ λ ≤ 2M , and
G(λ) = 0 for λ ≥ 2M . We have∣∣∣∣∫ F (a+)−

∫
G(a)

∣∣∣∣ =

∣∣∣∣∫ F (a+)−
∫
G(a+)

∣∣∣∣ ≤ 1

2π

∫
{θ : a+(θ)>M}

Φ+(a+(θ))dθ <
ε

3

and

1

n

∣∣∣∣∣∣
∑

{j : λj(Tn(a))≥0}

F (λj(Tn(a)))−
∑

{j : λj(Tn(a))≥0}

G(λj(Tn(a)))

∣∣∣∣∣∣
≤ 1

n

∑
{j : λj(Tn(a))>M}

Φ+(λj(Tn(a))) <
ε

3
.

Using (43) with the compactly supported and continuous function G, we get∣∣∣∣∣∣ 1n
∑

{j : λj(Tn(a))≥0}

G(λj(Tn(a)))−
∫
G(a)

∣∣∣∣∣∣ < ε

3
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for n ≥ n2. The last three inequalities give∣∣∣∣∣∣ 1n
∑

{j : λj(Tn(a))≥0}

F (λj(Tn(a)))−
∫
F (a+)

∣∣∣∣∣∣ < ε

for n ≥ max(n1, n2). Analogously one can show that∣∣∣∣∣∣ 1n
∑

{j : λj(Tn(a))<0}

F (λj(Tn(a)))−
∫
F (−a−)

∣∣∣∣∣∣ < ε

3

for all sufficiently large n. (Notice that F (0) = 0, so that it does not matter whether
we take λj(Tn(a))) < 0 or λj(Tn(a)) ≤ 0.) Thus,

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a+) +

∫
F (−a−) =

∫
F (a).

If F (0) > 0, we choose a compactly supported and continuous function ϕ : R→ R
such that ϕ(0) = −F (0), ϕ(λ) ≥ −F (λ) for |λ| ≤ λ0, and ϕ(λ) = 0 for |λ| ≥ λ0.
From what was already proved we know that

1

n
ΛF (Tn(a)) +

1

n
Λϕ(Tn(a)) =

1

n
ΛF+ϕ(Tn(a))→

∫
F (a) +

∫
ϕ(a),

and since (1/n)Λϕ(Tn(a))→
∫
ϕ(a) by (43), it follows that (1/n)ΛF (Tn(a))→

∫
F (a).

2

Proposition 8.3 Let a ∈ L1 be real-valued and let F : R → [0,∞) be a continuous
function. If

C := lim inf
n→∞

1

n
ΛF (Tn(a)) <∞,

then F (a) ∈ L1 and
∫
F (a) ≤ C.

Proof. We proceed as in the proof of Proposition 6.2. Fix ε > 0 and choose n1 < n2 <
. . . so that (1/nk)λF (Tnk

(a)) < C + ε. Define FM : R → [0,∞) by FM(λ) = F (λ)
for |λ| ≤ M , FM(λ) = (M + 1 − |λ|)F (λ) for M ≤ |λ| ≤ M + 1, and FM(λ) = 0 for
|λ| ≥M + 1. Since FM has compact support, formula (43) implies that∫

FM(a) = lim
k→∞

ΛFM
(Tnk

(a))

nk
≤ lim sup

k→∞

ΛF (Tnk
(a))

nk
≤ C + ε.

Letting M →∞ we see that F (a) ∈ L1 and
∫
F (a) ≤ C + ε. 2
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Corollary 8.4 Let Ψ± : [0,∞)→ [0,∞) be convex functions and let F : R→ [0,∞)
be a continuous function such that F (λ) ' Ψ+(λ) as λ→∞ and F (λ) ' Ψ−(−λ) as
λ→ −∞. Then F ∈ ST , that is,

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a) (50)

for every real-valued function a ∈ L1.

Proof. If F (a) /∈ L1, then both sides of (50) are infinite by Proposition 8.3. Thus,
let F (a) ∈ L1. Then F (a+) ∈ L1 and F (−a−) ∈ L1. There are finite and positive
constants C1 and C2 such that

C1Ψ+(λ) ≤ F (λ) ≤ C2Ψ+(λ), C1Ψ−(λ) ≤ F (−λ) ≤ C2Ψ−(λ)

for all λ > ν. It follows that Ψ+(a+) ∈ L1 and Ψ−(a−) ∈ L1. If both Ψ+ and
Ψ− are bounded, we define Φ+ and Φ− as the functions on [0,∞) that take the
constant value C2 max(Ψ−(0),Ψ+(0)). If Ψ− is bounded and Ψ+ is unbounded, there
is a µ ∈ (0,∞) such that Ψ+ is monotonously increasing on (µ,∞) and Ψ+(µ) ≥
Ψ−(0). In that case we put Φ−(λ) = C2Ψ−(µ) for all λ ≥ 0, Φ+(λ) = C2Ψ+(µ) for
0 ≤ λ ≤ µ, and Φ+(λ) = C2Ψ+(λ) for λ ≥ µ. A similar construction is made if
Ψ+ is bounded and Ψ− is unbounded. Finally, if Ψ+ and Ψ− are both unbounded,
there exist µ± ∈ (0,∞) such that Ψ± is monotonously increasing on (µ±,∞) and
Ψ−(µ−) = Ψ+(µ+) ≥ max(Ψ−(0),Ψ+(0)). We then put Φ±(λ) = C2Ψ±(µ±) for
0 ≤ λ ≤ µ± and Φ±(λ) = C2Ψ±(λ) for λ ≥ µ±. The functions Φ± obtained in this
way satisfy all hypotheses of Theorem 8.2, and (50) therefore results from (49). 2

Corollary 8.5 The set ST contains all nonnegative and convex functions, that is, if
a ∈ L1 is real-valued and F : R→ [0,∞) is convex, then

lim
n→∞

1

n
ΛF (Tn(a)) =

∫
F (a).

Proof. Use Corollary 8.4 with Ψ±(λ) = F (±λ) for λ ≥ 0. 2.
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