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Abstract

This paper deals with a method for the numerical solution of parabolic initial-
boundary value problems in two-dimensional polygonal domains Ω which are allowed
to be non-convex. The Nitsche finite element method (as a mortar method) is applied
for the discretization in space, i.e. non-matching meshes are used. For the discretiza-
tion in time, the backward Euler method is employed. The rate of convergence in
some H1-like norm and in the L2-norm is proved for the semi-discrete as well as for
the fully discrete problem. In order to improve the accuracy of the method in presence
of singularities arising in case of non-convex domains, meshes with local grading near
the reentrant corner are employed for the Nitsche finite element method. Numerical
results illustrate the approach and confirm the theoretically expected convergence
rates.

1 Introduction

The mathematical modeling of many problems in science and engineering leads to time-
dependent differential equations. Therefore, methods for the approximate solution of
initial-boundary value problems for parabolic or hyperbolic equations are of special in-
terest. For solving parabolic problems numerically, the finite difference method (see [28]
for an overview) as well as combinations of spatial discretization by finite elements with
some finite difference time stepping method (see e.g. [23, 29]) or discontinuous Galerkin
method (see e.g. [15, 22, 29]) are applied.
In this paper, a combination of the Nitsche finite element method (as a mortar method)
with the backward Euler method for solving initial-boundary value problems for the heat
equation in 2D-domains is defined and analyzed. The finite element method with Nitsche
mortaring has been investigated for several classes of elliptic problems in 2D, see e.g. [4,
12, 16, 17, 18, 19, 25, 27]. For solving elliptic problems in axisymmetric domains in 3D,
a combination of Nitsche mortaring with the approximating Fourier method is presented
in [20, 21]. The finite element method with Nitsche mortaring provides several advantages.
Since this method is based on a decomposition of the original domain into subdomains with
non-matching triangulations, the mesh generation in these subdomains can be carried out
independently from each other. Moreover, it allows different discretization techniques in
the subdomains. Further, in comparison with the Lagrange multiplier mortar technique
(see e.g. [5, 8, 11, 32]), the saddle point problem, the inf–sup condition and the calculation
of additional variables (Lagrange multipliers) are circumvented. Concerning the imple-
mentation of the Nitsche finite element method, existing software tools for the standard
finite element method can be slightly modified since the bilinear forms in the variational
equation differ only by interface terms, see Section 2 for more details.
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The aim of this paper is to derive convergence results for the presented approach which
is applied to solve initial-boundary value problems for the heat equation in polygonally
bounded domains. Thereby, convex domains as well as domains with reentrant corners are
taken into account. As it is known from [14, chapter 5], reentrant corners of the domain
cause singularities of the solution which can be represented by means of the singularities of
the corresponding elliptic problem. The approximation errors of the investigated approach
are estimated in the L2- and {1, h}-norms. The latter is an H1-like, mesh-dependent
norm which is introduced because of the discontinuity of the approximate solution along
the interface of the subdomains provided with non-matching meshes. In order to obtain
the error estimates, the Ritz projection (cf. [1, 29, 31]) is now adapted to the bilinear
form occurring in the Nitsche finite element discretization. Moreover, the knowledge on
singularities of the solutions of elliptic problems in non-convex polygonal domains ([13, 14])
and their approximation by finite elements is used. Some a-priori estimates for the norms
of the exact solution of the parabolic problem and its derivatives in time, given in [9, 29],
allow to state the error estimates in such way that only norms of the given data are
involved. It can be shown that the presented method yields the same convergence order as
the combination of the standard finite element method with the backward Euler method,
cf. [29, chapter 19]. In case of a solution with singularities, an appropriate grading of
the mesh around the reentrant corner leads to the same convergence order of the semi-
discretization (in space) and of the fully discrete method as in case of a regular solution.
Moreover, the convergence order of discretization in time is not affected by singularities.
In [6], using some results of [1], the Nitsche mortaring for parabolic problems with regular
solutions and under more restrictive assumptions than in our paper is considered.
The paper is organized as follows. In Section 2, the model problem is given and its semi-
discretization (in space) by finite elements with Nitsche mortaring is described. The next
section deals with approximation properties of the Ritz projection and error estimates for
the semi-discretization in case of regular solutions (i.e. convex domains). Section 4 contains
respective estimates for solutions with singularities arising in case of non-convex domains,
where meshes with local grading are employed. In Section 5, the fully discrete method is
defined and its convergence is investigated. Finally, in Section 6 two numerical examples
illustrating the approach and the convergence rates are presented.

2 The model problem and its semi-discretization

We consider the following initial-boundary value problem for the heat equation,

ut − ∆u = f in Ω, for 0 < t ≤ T

u = 0 on ∂Ω, for 0 < t ≤ T (1)

u(·, t = 0) = u0 in Ω,

with u = u(x, t), as a model problem, where Ω ⊂ R
2 is supposed to be a polygonally

bounded domain. In the following we assume that the compatibility condition u0 = 0 on
∂Ω is satisfied.
Subsequently, for functions defined on X, let Hs(X) (s ≥ 0, s real, H0 = L2) denote
the usual Sobolev-Slobodetskĭı space. The usual scalar product in L2(X) will be denoted
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by (·, ·). Further, let v ∈ H−1(Ω) be the dual space of H1
0 (Ω), with duality pairing 〈· , ·〉

over the space L2(Ω). Moreover, we shall need the spaces Ḣs(Ω) (see [9, 29]). For s ≥ −1,
Ḣs(Ω) denotes the space of functions defined by

‖v‖Ḣs(Ω) =
( ∞
∑

j=1

λs
j〈v, ϕj〉

2
)1/2

< ∞, v ∈ H−1(Ω), (2)

where λj (j = 1, 2, . . .) are the eigenvalues and ϕj (j = 1, 2, . . .) the corresponding or-
thonormal eigenfunctions of the operator −∆.
For an arbitrary Banach space B, let L2(0, T ; B) be the space of functions u : (0, T ) → B
satisfying

‖u‖L2(0,T ;B) :=
(

T
∫

0

‖u(t)‖2
B dt

)1/2

< ∞. (3)

For some given f ∈ L2(0, T ; L2(Ω)), a function u = u(x, t) is called a weak solution of the
problem (1) if the relation

(ut, v) + (∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω) (4)

holds with u ∈ L2(0, T ; H1
0(Ω)) and ut ∈ L2(0, T ; H−1(Ω)) and if u(·, t = 0) = u0 ∈ L2(Ω)

(see e.g. [15, 23, 29]).
In order to define an approximate solution to the problem (1) (resp. (4)), we first define a
semi-discretization in space, i.e., we approximate the solution u(x, t) of (1) by means of a
function uh(x, t) which, for each fixed t, belongs to a finite element space. For this semi-
discretization, the Nitsche finite element method will be employed. For the characterization
of this method we shall need a subdivision of Ω into subdomains. Throughout this paper
we restrict ourselves to the case of two subdomains Ω1, Ω2, with some interface Γ,

Ω = Ω
1
∪ Ω

2
, Ω1 ∩ Ω2 = ∅, Γ = Ω

1
∩ Ω

2
.

Moreover, assume that these subdomains are polygonally bounded. There are different
cases for the position of the two subdomains: Figure 1(a) shows the case ∂Ωi ∩ Γ 6= ∅ for
i = 1, 2, and in Figure 1(b) we have ∂Ω ∩ Γ = ∅, Γ = ∂Ω2. In view of the subdivision of Ω
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Figure 1: Domain Ω with subdomains Ω1, Ω2

we introduce the restrictions vi := v|Ωi of some function v on Ωi as well as the vectorized
form v = (v1, v2), i.e. vi(x) = v(x) holds for x ∈ Ωi (i = 1, 2). It should be noted that
for simplicity we use here the same symbol v for denoting the function on Ω as well as the
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vector (v1, v2). Using this notation we obtain that the solution of the BVP (1) is equivalent
to the solution of the following problem: Find (u1, u2) such that

ui
t − ∆ui = f in Ωi (i = 1, 2), for 0 < t ≤ T

ui = 0 on ∂Ωi ∩ ∂Ω (i = 1, 2), for 0 < t ≤ T

ui(·, t = 0) = u0 in Ωi (i = 1, 2) (5)

u1 = u2 on Γ, for 0 < t ≤ T

∂u1

∂n1

+
∂u2

∂n2

= 0 on Γ, for 0 < t ≤ T,

are satisfied, where ni (i = 1, 2) denotes the outward normal to ∂Ωi ∩ Γ.
Further we introduce the ’broken’ space V0 by

V0 = V 1
0 × V 2

0 , with V i
0 := {v ∈ H1(Ωi) : v|∂Ωi∩∂Ω = 0} for i = 1, 2

(note that V i
0 = H1(Ωi) if ∂Ωi ∩ ∂Ω = ∅).

Now we describe the finite element discretization of (5) with non-matching meshes. We
cover Ωi (i = 1, 2) by a triangulation T i

h (i = 1, 2) consisting of triangles K (K = K), where
T 1

h and T 2
h are independent of each other. Moreover, compatibility of the nodes of T 1

h and
T 2

h along the ’mortar interface’ Γ = ∂Ω1 ∩ ∂Ω2 is not required, i.e., non-matching meshes
on Γ are admitted. Let h denote the mesh parameter of the triangulation Th := T 1

h ∪ T 2
h ,

with 0 < h ≤ h0 and sufficiently small h0. Take e.g. h = max{hK : K ∈ Th}, where hK

denotes the diameter of the triangle K. In the sequel, positive constants C occurring in
the inequalities are generic constants.
Since in the next section, the case of a regular solution of (5) will be considered, we
start with quasi-uniform meshes, i.e., we suppose that the following assumption on the
triangulations T i

h (i = 1, 2) is fulfilled.

Assumption 1a

(i) For i = 1, 2, it holds Ω
i
= ∪K∈T i

h
K, and two arbitrary triangles K, K ′ ∈ T i

h (K 6= K ′)
are either disjoint or have a common vertex, or a common edge.

(ii) The mesh in Ω
i
(i = 1, 2) is quasi-uniform, i.e. the relation

max
K∈T i

h

hK (min
K∈T i

h

ρK)−1 ≤ C (i = 1, 2) (6)

holds for h ∈ (0, h0], where ρK denotes the diameter of inscribed circle of K.

For i = 1, 2 and according to V i
0 we introduce finite element spaces V i

0h of functions vi
h

on Ω
i
by

V i
0h := { vi

h ∈ C(Ω
i
) : vi

h ∈ P1(T ) ∀K ∈ T i
h , vi

h|∂Ωi∩∂Ω = 0 },

i.e., employ linear finite elements. The finite element space V0h of vectorized functions vh

with components vi
h on Ωi is given by

V0h := V 1
0h × V 2

0h = {vh = (v1
h, v

2
h) : v1

h ∈ V 1
0h, v

2
h ∈ V 2

0h}.
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It should be pointed out that the functions vh in V0h are in general not continuous across Γ.
Further we introduce a triangulation Eh of the mortar interface Γ by intervals E (E = E),
i.e., Γ = ∪E∈Eh

E, where hE denotes the diameter of E. We suppose that two segments E, E ′

are either disjoint or have a common endpoint. A natural choice for the triangulation Eh is
Eh := E1

h or Eh := E2
h, where E1

h and E2
h denote the triangulations of Γ defined by the traces

of T 1
h and T 2

h on Γ, resp.:

E i
h := {E : E = ∂K ∩ Γ, if E is a segment, K ∈ T i

h } for i = 1, 2. (7)

Subsequently we use real parameters α1 and α2 with

0 ≤ αi ≤ 1 (i = 1, 2), α1 + α2 = 1. (8)

The asymptotic behaviour of the triangulations T 1
h , T 2

h and of Eh should be consistent on Γ
in the following sense.

Assumption 2

(i) For E ∈ Eh and K ∈ T i
h with ∂K ∩ E 6= ∅, i = 1 and i = 2, there are positive

constants C1 and C2 independent of hK , hE and h (0 < h ≤ h0) such that the
following condition is satisfied

C1hK ≤ hE ≤ C2hK . (9)

(ii) In the special case Eh := E i
h and αi := 1 (cf. (7), (8)), where i = 1 or i = 2, for E ∈ Eh

and K ∈ T 3−i
h with ∂K ∩ E 6= ∅, instead of relation (9) the following condition is

required
C1hK ≤ hE. (10)

Relation (9) means that the diameter hK of the triangle K touching the interface Γ at E
is asymptotically equivalent to the diameter of the segment E, i.e. the equivalence of hK ,
hE is required only locally. In contrast, condition (10) is weaker and admits even locally
at Γ a different asymptotics of the triangles T1 ∈ T 1

h , T2 ∈ T 2
h : T1 ∩ T2 6= ∅.

For the Nitsche finite element approximation of the function u(t) = u(·, t) we shall need
bilinear forms Bh(·, ·) and functionals F(t). The definitions of Bh(·, ·) and F(t) are moti-
vated by the related definitions in case of elliptic problems (cf. [4, 16, 17, 18, 27]). Thus
we introduce

Bh(u(t), v) :=

2
∑

i=1

(∇ui(t),∇vi) −
〈

α1
∂u1(t)

∂n1
− α2

∂u2(t)

∂n2
, v1 − v2

〉

Γ
(11)

−
〈

α1
∂v1

∂n1
− α2

∂v2

∂n2
, u1(t) − u2(t)

〉

Γ
+ γ

∑

E∈Eh

h−1
E (u1(t) − u2(t), v1 − v2)L2(E)

〈F(t), v〉 := (f(t), v), with u(t), v ∈ V0, t ∈ (0, T ].

Here, 〈·, ·〉Γ denotes the H
−

1

2

∗ (Γ) × H
1

2

∗ (Γ)-duality pairing, where H
1

2

∗ (Γ) (also written

H
1

2

00(Γ)) is defined as the trace space of H1
0 (Ω) provided with the quotient norm (see

5



e.g. [13]), and H
−

1

2

∗ (Γ) is the dual space of H
1

2

∗ (Γ). If ∂Ωi ∩ ∂Ω = ∅ holds for i = 1 or

i = 2, we have H
1

2

∗ (Γ) = H
1

2 (Γ). Moreover, γ is a sufficiently large positive constant (the
restriction of γ will be given subsequently) and α1 as well as α2 are taken from (8). The
Nitsche finite element approximation uh : [0, T ] → V0h of u(t) is defined to be the solution
of the equation

(uh,t(t), vh) + Bh(uh(t), vh) = 〈F(t), vh〉 ∀ vh ∈ V0h, ∀t ∈ (0, T ] (12)

satisfying the initial condition

uh(0) = u0h, (13)

where u0h is some approximation of u0 in V0h.
In order to state the boundedness and ellipticity of the forms Bh(·, ·) we impose the re-
striction γ > CI on the parameter γ from (11), where the constant CI is taken from the
estimate (see [17, ineq. (17)])

∑

E∈Eh

hE

∥

∥

∥
α1

∂v1

h

∂n1

− α2

∂v2

h

∂n2

∥

∥

∥

2

L2(E)
≤ CI

2
∑

i=1

α2
i ‖∇vi

h‖
2
L2(Ωi) for vh ∈ V0h, (14)

with α1, α2 from (8). Moreover, we shall need the h-dependent norm ‖ · ‖1,h defined by

‖vh‖
2
1,h :=

2
∑

i=1

‖∇vi
h‖

2
L2(Ωi) +

∑

E∈Eh

h−1
E ‖v1

h − v2
h‖

2
L2(E). (15)

Lemma 1 Let Assumptions 1a and 2 be satisfied for T i
h (i = 1, 2) and for Eh. Then there

exists a constant µ1 > 0 such that the following estimate holds,

|Bh(wh, vh)| ≤ µ1‖wh‖1,h‖vh‖1,h ∀wh, vh ∈ V0h. (16)

If the constant γ in (11) is independent of h and fulfills γ > CI (CI from (14)), then the
inequality

Bh(vh, vh) ≥ µ2‖vh‖
2
1,h ∀vh ∈ V0h (17)

holds with a positive constant µ2. The constants µ1, µ2 are independent of h.

For the proof we refer to [17].

Furthermore, for functions w ∈ V0 satisfying ∂wi

∂ni
∈ L2(Γ) (i = 1, 2), the estimate

|Bh(w, vh)| ≤ µ3‖w‖h,Ω‖vh‖1,h (18)

(see also [17]) can be stated for all functions vh ∈ V0h. Here, the norm ‖ · ‖h,Ω is defined by

‖w‖2
h,Ω :=

2
∑

i=1

{

‖∇wi‖2
L2(Ωi) +

∑

E∈Eh

hE

∥

∥

∥
αi

∂wi

∂ni

∥

∥

∥

2

L2(E)

}

+
∑

E∈Eh

h−1
E ‖w1 − w2‖2

L2(E).

The norms ‖ · ‖1,h and ‖ · ‖h,Ω are equivalent on the space V0h:

‖vh‖1,h ≤ ‖vh‖h,Ω ≤ C‖vh‖1,h ∀vh ∈ V0h. (19)
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3 Convergence of the semi-discretization: case of a

regular solution

In the following we also consider the elliptic problem

−∆u = f in Ω
(20)

u = 0 on ∂Ω,

which is the corresponding stationary problem assigned to (1). The variational formulation
of (20) reads:

Find u ∈ H1
0 (Ω) such that a(u, v) := (∇u,∇v) = (f, v) ∀v ∈ H1

0 (Ω). (21)

Throughout this section we assume that the domain Ω is convex. Then, it is well-known
that for f ∈ L2(Ω), the solution u of (21) belongs to the space H2(Ω).
In order to derive convergence estimates for the semi-discretization, we introduce for v ∈ V0

the Ritz projection Rhv ∈ V0h. Usually the Ritz projection is defined by means of the
bilinear form a(·, ·) from (21), see e.g. [23, 29]. But we introduce it by means of the
h-dependent bilinear form Bh(·, ·) (see (11)) of the Nitsche finite element approach,

Bh(Rhv, vh) = Bh(v, vh) ∀vh ∈ V0h. (22)

Moreover, let Ihv := (Ihv
1, Ihv

2), where Ihv
i (i = 1, 2) denotes the usual Lagrange inter-

polant of vi in the space V i
0h. In the next two lemmas, estimates of the error Rhv − v are

given. They generalize the results well-known for the bilinear form a(·, ·) like in [23, 29].

Lemma 2 Let Assumptions 1a and 2 be fulfilled for T i
h (i = 1, 2) and for Eh. Moreover,

assume that γ > CI holds (see Lemma 1). Then, for v ∈ H2(Ω)∩H1
0 (Ω), the function Rhv

from (22) satisfies the estimate

‖Rhv − v‖1,h ≤ Ch‖v‖H2(Ω). (23)

Proof: First we obtain the inequality

‖Rhv − v‖1,h ≤ ‖Rhv − Ihv‖1,h + ‖v − Ihv‖1,h ≤ ‖Rhv − Ihv‖1,h + ‖v − Ihv‖h,Ω. (24)

Using the abbreviation χ := Rhv − Ihv, the first term on the right-hand side of (24) can
be estimated by means of relations (17), (22), and (18):

‖χ‖2
1,h ≤ CBh(χ, χ) = C(Bh(Rhv, χ) − Bh(Ihv, χ)) = C(Bh(v, χ) − Bh(Ihv, χ))

= C(Bh(v − Ihv, χ) ≤ C‖v − Ihv‖h,Ω‖χ‖1,h. (25)

The interpolation error can be bounded by ‖v − Ihv‖h,Ω ≤ Ch‖v‖H2(Ω), which follows
from [17, proof of Theorem 2]). This, together with the estimates (24) and (25) leads
to (23).

Lemma 3 Under the assumptions of Lemma 2, for v ∈ H2(Ω) ∩ H1
0 (Ω) the following

estimate holds,
‖Rhv − v‖L2(Ω) ≤ Ch2‖v‖H2(Ω). (26)
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Proof: We introduce the auxiliary elliptic problem: find ṽ ∈ H1
0 (Ω) such that

a(ṽ, w) = (v − Rhv, w) ∀w ∈ H1
0 (Ω), (27)

with a(·, ·) from (21). Owing to the assumptions on the domain Ω, the solution ṽ of this
problem belongs to H2(Ω). The Nitsche finite element approximation ṽh ∈ V0h of ṽ is then
given by (cf. [17]): Bh(ṽh, vh) = (v −Rhv, vh) ∀vh ∈ V0h. As a result of [17, Lemma 1], the
solution ṽ is consistent with this variational equation, i.e.

Bh(ṽ, vh) = (v − Rhv, vh) ∀vh ∈ V0h. (28)

Taking into account the definitions of Bh(·, ·) and a(·, ·) and using v as a test function
in (27), we obtain

Bh(ṽ, v) = a(ṽ, v) = (v − Rhv, v). (29)

Choosing vh := Rhv in (28) and using (29) we are led to

‖v − Rhv‖
2
L2(Ω) = (v − Rhv, v) − (v − Rhv, Rhv) = Bh(ṽ, v) − Bh(ṽ, Rhv)

(30)
= Bh(v − Rhv, ṽ − Ihṽ),

where the last equality follows from symmetry of Bh(·, ·) and relation (22) with vh := Ihṽ.
Employing the Hölder and Cauchy-Schwarz inequalities, the interpolation error estimate
‖Ihṽ − ṽ‖h,Ω ≤ Ch‖ṽ‖H2(Ω) as well as the a priori estimate ‖ṽ‖H2(Ω) ≤ C‖v −Rhv‖L2(Ω) of
the solution ṽ, the term on the right-hand side of (30) can be bounded as follows,

Bh(v −Rhv, ṽ − Ihṽ) ≤ ‖v −Rhv‖h,Ω‖ṽ − Ihṽ‖h,Ω ≤ Ch‖v −Rhv‖h,Ω‖v −Rhv‖L2(Ω). (31)

Therefore it remains to find an estimate for ‖v −Rhv‖h,Ω. Inserting Ihv and using (19) we
obtain

‖v − Rhv‖h,Ω ≤ ‖v − Ihv‖h,Ω + C‖Ihv − Rhv‖1,h. (32)

Thanks to (17), (22), and (18) we get ‖Ihv − Rhv‖
2
1,h ≤ CBh(Ihv − Rhv, Ihv − Rhv) =

CBh(Ihv − v, Ihv − Rhv) ≤ C‖Ihv − v‖h,Ω‖Ihv − Rhv‖1,h. This implies ‖Ihv − Rhv‖1,h ≤
C‖Ihv−v‖h,Ω, and together with the interpolation error estimate ‖Ihv−v‖h,Ω ≤ Ch‖v‖H2(Ω)

as well as relations (30)–(32) we obtain (26).

In the following, the error between the solutions of the semi-discrete and continuous prob-
lems is estimated in the L2-norm and the norm ‖ · ‖1,h. These error estimates are based on
the splitting of the error (see e.g. [23, 29]):

uh(t) − u(t) = θ(t) + ρ(t), with θ = uh − Rhu, ρ = Rhu − u, (33)

and Rh defined by relation (22).
We require in the following that the solution (resp. the given data) of the parabolic problem
has such a regularity that all norms arising on the right-hand sides of the estimates are
finite.

Lemma 4 Let the assumptions of Lemma 2 be satisfied. Then, for the solutions u and uh

from (1) and (12), with u0h = Rhu0, the following error estimate holds,

‖uh(t) − u(t)‖L2(Ω) ≤ Ch2
{

‖u0‖H2(Ω) +

t
∫

0

‖ut‖H2(Ω)dτ
}

, for t ≤ T. (34)
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Proof: In view of Lemma 3 and the fact that u ∈ H2(Ω), the summand ρ(t) occurring in
the splitting (33) can be bounded by

‖ρ(t)‖L2(Ω) = ‖Rhu(t) − u(t)‖L2(Ω) ≤ Ch2‖u(t)‖H2(Ω)

≤ Ch2
(

‖u(0)‖H2(Ω) +

t
∫

0

‖ut‖H2(Ω)dτ
)

. (35)

In order to find an estimate for the remaining summand θ(t) we use (12) and (22) leading
to

(θt, vh) + Bh(θ, vh) = (uh,t, vh) + Bh(uh, vh) − ((Rhu)t, vh) − Bh(Rhu, vh)
(36)

= (f, vh) − (Rhut, vh) − Bh(u, vh) = (ut, vh) − (Rhut, vh) = −(ρt, vh)

for vh ∈ V0h. With the special choice vh := θ this yields

(θt, θ) + Bh(θ, θ) = −(ρt, θ),

and by means of (17) and the Cauchy-Schwarz inequality we get

1

2

d

dt
‖θ‖2

L2(Ω) = ‖θ‖L2(Ω)
d

dt
‖θ‖L2(Ω) ≤ ‖ρt‖L2(Ω)‖θ‖L2(Ω).

After dividing by ‖θ‖L2(Ω) and integrating this implies in consideration of the assumption
u0h = Rhu0 (i.e. θ(0) = 0),

‖θ(t)‖L2(Ω) ≤ ‖θ(0)‖L2(Ω) +

t
∫

0

‖ρt‖L2(Ω)dτ =

t
∫

0

‖ρt‖L2(Ω)dτ, (37)

and thanks to (26), the norm of ρt can be bounded as follows,

‖ρt‖L2(Ω) = ‖Rhut − ut‖L2(Ω) ≤ Ch2‖ut‖H2(Ω). (38)

Finally, the assertion is a result of relations (33) and (35)–(38).

Lemma 5 Under the assumptions of Lemma 2, the solutions u and uh from (1) and (12),
with u0h = Rhu0, satisfy the following error estimate,

‖uh(t) − u(t)‖1,h ≤ Ch
{

‖u0‖H2(Ω) +

t
∫

0

‖ut‖H2(Ω)dτ
}

, for t ≤ T. (39)

Proof: Owing to (15) we have

‖uh(t) − u(t)‖2
1,h =

2
∑

i=1

‖∇(ui
h(t) − ui(t))‖2

L2(Ωi) +
∑

E∈Eh

h−1
E ‖u1

h(t) − u1(t) − (u2
h(t) − u2(t))‖2

L2(E). (40)
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For any vh ∈ V0h the first term on the right-hand side of (40) can be estimated as follows,

2
∑

i=1

‖∇(ui
h(t) − ui(t))‖2

L2(Ωi) ≤ 2
2

∑

i=1

(‖∇(ui
h(t) − vi

h)‖
2
L2(Ωi) + ‖∇(vi

h − ui(t))‖2
L2(Ωi))

=: 2
2

∑

i=1

(Si
1 + Si

2), (41)

where Si
1 and Si

2 are abbreviations for the corresponding norm terms. Since the mesh is

supposed to be quasi-uniform in Ω
i
, the term Si

1 from (41) may be bounded by means of
an inverse inequality (see e.g. [10]), i.e. we obtain for i = 1, 2:

Si
1 ≤ Ch−2‖ui

h(t) − vi
h‖

2
L2(Ωi) ≤ Ch−2(‖ui

h(t) − ui(t)‖2
L2(Ωi) + ‖ui(t) − vi

h‖
2
L2(Ωi)). (42)

Setting vh = Ihu(t), i.e. vi
h = Ihu

i(t) (i = 1, 2), using Lemma 4 for estimating the first
summand on the right-hand side of (42) and employing some interpolation error estimate
for the second summand we arrive at

Si
1 ≤ Ch2

{

‖ui
0‖

2
H2(Ωi) +

[

t
∫

0

‖ui
t‖H2(Ωi)dτ

]2

+ ‖ui(t)‖2
H2(Ωi)

}

, i = 1, 2. (43)

For estimating Si
2 (i = 1, 2) from (41), these terms will be considered in combination with

some terms arising from the second summand in (40). With the notation

Si
3 =

∑

E∈Eh

h−1
E ‖ui

h(t) − vi
h‖

2
L2(E), Si

4 =
∑

E∈Eh

h−1
E ‖vi

h − ui(t)‖2
L2(E), i = 1, 2,

we obtain for the second summand in (40)

∑

E∈Eh

h−1
E ‖u1

h(t) − u1(t) − (u2
h(t) − u2(t))‖2

L2(E) ≤ 2
2

∑

i=1

(Si
3 + Si

4). (44)

Taking into account that vh = Ihu(t) and using the estimate for ‖u − Ihu‖h,Ω from [17,
Proof of Theorem 2] leads to

2
∑

i=1

(Si
2 + Si

4) ≤ Ch2
2

∑

i=1

‖ui(t)‖2
H2(Ωi) ≤ Ch2‖u(t)‖2

H2(Ω). (45)

Hence it remains to find an estimate for Si
3 from (44). The summation over E ∈ Eh can

be rewritten such that the estimates of ui
h(t) − Ihu

i(t), i = 1 or i = 2, involve the side F

of the triangle T ⊂ Ω
i
(T = TF ) with TF ∩ Γ = F ∈ E i

h (E i
h from (7)):

Si
3 =

∑

E∈Eh

h−1
E ‖ui

h(t) − Ihu
i(t)‖2

L2(E) ≤ C
∑

F∈Ei
h

h−1
F ‖ui

h(t) − Ihu
i(t)‖2

L2(F ). (46)

Then we get by means of [30, Theorem 3] for i = 1, 2:

‖ui
h(t) − vi

h‖
2
L2(F ) ≤ C(h⊥

F )−1‖ui
h(t) − vi

h‖
2
L2(TF ), (47)
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where h⊥
F is the height of the triangle TF over the side F . Using h−1

F ≤ Ch−1 and (h⊥
F )−1 ≤

Ch−1, relations (46) and (47) imply

Si
3 ≤ C

∑

K∈T i
h
:

T∩Γ 6=∅

h−2‖ui
h(t) − Ihu

i(t)‖2
L2(TF ) ≤ Ch−2‖ui

h(t) − Ihu
i(t)‖2

L2(Ωi)

≤ Ch−2{‖ui
h(t) − ui(t)‖2

L2(Ωi)
+ ‖ui(t) − Ihu

i(t)‖2
L2(Ωi)

}.

Then, employing once more Lemma 4 and some interpolation error estimate we obtain

Si
3 ≤ Ch2

{

‖ui
0‖

2
H2(Ωi) +

[

t
∫

0

‖ui
t‖H2(Ωi)dτ

]2

+ ‖ui(t)‖2
H2(Ωi)

}

, i = 1, 2. (48)

Finally, relations (40), (41), (43)–(45), and (48), together with

‖ui(t)‖H2(Ωi) ≤ ‖ui
0‖H2(Ωi) +

t
∫

0

‖ui
t‖H2(Ωi)dτ,

lead to the desired estimate.
The terms on the right-hand sides of (34) and (39) still comprise norms of the derivative
of the solution u. The next aim is to establish an estimate in terms of data of the problem.
For this purposes we apply some results from [29].

Theorem 1 Let Assumptions 1a and 2 be fulfilled for T i
h (i = 1, 2) and for Eh. Moreover,

assume that γ > CI holds (see Lemma 1), and let the function g be defined by

g := ut(0) = f(0) + ∆u0. (49)

Then the solutions u and uh from (1) and (12), with u0h = Rhu0, satisfy the following
error estimates,

‖uh(t) − u(t)‖L2(Ω) ≤ Ch2
{

‖u0‖H2(Ω) + ‖g‖Hε(Ω) +

t
∫

0

‖ft‖Hε(Ω) dτ
}

(t ≤ T ), (50)

‖uh(t) − u(t)‖1,h ≤ Ch
{

‖u0‖H2(Ω) + ‖g‖Hε(Ω) +

t
∫

0

‖ft‖Hε(Ω) dτ
}

(t ≤ T ), (51)

for any ε ∈ (0, 1
2
) and with C = C(ε, T ).

Proof: According to [29, Lemma 19.1], the estimate

t
∫

0

(‖ut‖H2(Ω) + ‖utt‖L2(Ω)) dτ ≤ C
{

‖g‖Hε(Ω) +

t
∫

0

‖ft‖Hε(Ω) dτ
}

, t ≤ T, (52)

with C = C(ε, T ) holds for ε ∈ (0, 1
2
) and convex domains Ω. This, together with Lemmas 4

and 5, yields the assertion.
Consequently, if for the semi-discretization of the initial-boundary value problem (1) the
Nitsche finite element method is applied, then the same convergence rate as in case of a
semi-discretization with the standard finite element method is achieved, see [29, chapter 19].
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4 Convergence of the semi-discretization: solution with

singularities

Throughout this section we consider non-convex domains Ω. For simplicity we assume
that there is only one reentrant corner P , with angle β, π < β < 2π. Then, according
to [13, 14], the solution u of the elliptic problem (21) in general does not belong to H2(Ω),
but admits a splitting into a regular and a singular part:

u = w + s, with w ∈ H2(Ω), s = s(r, θ) = η(r)rλ sin(λθ), λ :=
π

β
,

1

2
< λ < 1. (53)

In (53), (r, θ) denote polar coordinates with respect to the reentrant corner, and η(r) is a
smooth cut-off function with

0 ≤ η ≤ 1, η = 1 for 0 ≤ r ≤
r0

3
, η = 0 for r ≥

2r0

3
.

For the singular part s of the solution holds s ∈ H1+λ−ε(Ω) with any ε > 0. Furthermore,
according to [9, 29], the singular part s belongs to the space Ḣ2(Ω) defined by (2). This
regularity statement will be essentially needed for subsequent estimates.
As it is shown e.g. in [2, 3, 7, 24, 26], the convergence rate of the standard finite element
method on quasi-uniform meshes is reduced when this method is applied for the solution of
boundary value problems with singularities of the type (53). This gives reason to modify the
assumptions on the meshes given in Section 2 such that meshes with some local grading are
admitted. Instead of Assumption 1a we suppose from now on that the following assumption
is fulfilled.

Assumption 1b

(i) For i = 1, 2, it holds Ω
i
= ∪K∈T i

h
K, and two arbitrary triangles K, K ′ ∈ T i

h (K 6= K ′)
are either disjoint or have a common vertex, or a common edge.

(ii) The mesh in Ω
i

(i = 1, 2) is shape regular, i.e., the following relation holds (ρK :
radius of inscribed circle of K),

hKρK
−1 ≤ C for K ∈ T i

h , h ∈ (0, h0]. (54)

Relation (54) means that the triangulations T i
h (i = 1, 2) do not have to be quasi-uniform

in general. Moreover, for providing a framework for graded meshes, we introduce the real
grading parameter µ, 0 < µ ≤ 1, the grading function Ri (i = 0, 1, . . . , n) with some real
constant d > 0, and the step size hi for the mesh associated with layers [Ri−1, Ri] × [0, θ0]
around the reentrant corner P :

Ri := d(ih)
1

µ (i = 0, 1, . . . , n), hi := Ri − Ri−1 (i = 1, 2, . . . , n). (55)

Here n := n(h) denotes an integer of the order h−1, n := [δh−1] for some real δ > 0 ([·]
means the integer part). We shall choose d and δ such that 2

3
r0 < Rn < r0 holds.

Using the step size hi (i = 1, 2, . . . , n) from (55) we define a mesh which is graded locally
in the neighbourhood of the vertex P of the reentrant corner and quasi-uniform in the
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remaining part of the domain Ω. The diameter hK of a triangle K ∈ Th is now characterized
by the mesh size h (0 < h ≤ h0), by the distance RK of K from P , and by the grading
parameter µ, with fixed µ: 0 < µ ≤ 1. The properties of Th are summarized in the following
assumption.

Assumption 3

Let the triangulation Th satisfy Assumption 1b. Furthermore, Th is provided with a local
grading around the vertex P of the reentrant corner such that hK := diam K depends on
the distance RK of K from P , RK := dist (K, P ) in the following way:

c1h
1

µ ≤ hK ≤ c−1
1 h

1

µ for K ∈ Th : RK = 0,

c2hR1−µ
K ≤ hK ≤ c−1

2 hR1−µ
K for K ∈ Th : 0 < RK < Rg, (56)

c3h ≤ hK ≤ c−1
3 h for K ∈ Th : Rg ≤ RK ,

with some constants ci, 0 < ci ≤ 1 (i = 1, 2, 3) and some real Rg, 0 < Rg < Rg < Rg,

where Rg, Rg are fixed and independent of h.

In (56), Rg is the radius of the sector with mesh grading, and w.l.o.g. we may assume
Rg = Rn. The value µ = 1 yields a quasi-uniform mesh in the whole domain Ω, i.e.
the relation maxK∈T i

h
hK(minK∈T i

h
ρK)−1 ≤ C (i = 1, 2) holds instead of (54). Owing to

Assumption 3, the asymptotic behaviour of hK is determined by the relations

ε1hj ≤ hK ≤ ε−1
1 hj for K ∈ Th : Rj−1 ≤ RK ≤ Rj (j = 1, 2, . . . , n),

(57)
ε2h ≤ hK ≤ ε−1

2 h for K ∈ Th : Rn ≤ RK ,

where 0 < εl ≤ 1 (l = 1, 2) holds, and hj, Rj as well as n are taken from (55). Examples
of meshes with local grading as described in Assumption 3 will be given in Section 6.
It should be noted that the total number of nodes of Th satisfying Assumption 3 is always
of the order O(h−2). In [7, 17, 24, 26], related methods of mesh grading are given. In [9],
a mesh grading is described which guarantees an optimal convergence rate even in the
C(Ω)-norm.
Under the Assumptions 1b, 2, and 3, the definitions of the spaces V i

0h and V0h remain the
same as in Section 2. Moreover, the Nitsche finite element approximation uh : [0, T ] → V0h

of the solution u is defined by (12), (13) as before. The statement concerning boundedness
and ellipticity of Bh(·, ·) (see Lemma 1) is also valid in case of graded meshes, cf. [17].
Now we turn to error estimates of the semi-discretization. In view of the splitting (33) of
the error uh − u, we need estimates for u−Rhu in the case that the solution u of (21) has
singularities.

Lemma 6 Let u be the solution of (21), where the representation (53) holds. Further,
let Assumptions 1b, 2, and 3 be satisfied for T i

h (i = 1, 2) and for Eh. If γ > CI (see
Lemma 1), then the inequalities

‖Rhu − u‖1,h ≤ Cκ(h, µ)‖∆u‖L2(Ω) (58)

‖Rhu − u‖L2(Ω) ≤ Cκ2(h, µ)‖∆u‖L2(Ω) (59)
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hold, with

κ(h, µ) =











h
λ
µ for λ < µ ≤ 1

h| lnh|1/2 for µ = λ

h for 0 < µ < λ.

(60)

Proof: We find by analogy to the proof of Lemma 2 that

‖Rhu − u‖1,h ≤ C‖u − Ihu‖h,Ω. (61)

Further, due to [17, Lemma 7] and since −∆u = f ∈ L2(Ω) we obtain

‖u − Ihu‖h,Ω ≤ Cκ(h, µ)‖f‖L2(Ω) = Cκ(h, µ)‖∆u‖L2(Ω), (62)

with κ(h, µ) from (60). Then, inequalities (61) and (62) lead to (58).
In order to prove (59), we observe that the estimate

Bh(u − Rhu, ũ − Ihũ) ≤ C‖u − Rhu‖h,Ω‖ũ − Ihũ‖h,Ω ≤ C‖u − Ihu‖h,Ω‖ũ − Ihũ‖h,Ω (63)

holds. This inequality is obtained by analogy to the proof of Lemma 3, now with ũ as the
solution of the auxiliary elliptic problem with the right-hand side u−Rhu. Using again [17,
Lemma 7] we are led to (59).

Further, according to [29, Lemma 19.3], the estimate ‖∆u‖L2(Ω) ≤ C‖u‖Ḣ2(Ω) holds with
‖ · ‖Ḣ2(Ω) defined by (2). This, together with Lemma 6 yields the inequalities

‖Rhu − u‖1,h ≤ Cκ(h, µ)‖u‖Ḣ2(Ω), ‖Rhu − u‖L2(Ω) ≤ Cκ2(h, µ)‖u‖Ḣ2(Ω). (64)

Now we are ready to give estimates of the error between the solutions of the semi-discrete
and continuous problems.

Theorem 2 Let Assumptions 1b, 2, and 3 be fulfilled for T i
h (i = 1, 2) and for Eh, and

let γ > CI (see Lemma 1). Then, for the solutions u and uh from (1) and (12), with
u0h = Rhu0, the error estimate

‖uh(t) − u(t)‖L2(Ω) ≤ Cκ2(h, µ)
{

‖∆u0‖L2(Ω) + ‖g‖Hε(Ω) +

t
∫

0

‖ft‖Hε(Ω) dτ
}

(t ≤ T ) (65)

holds, with κ(h, µ) from (60), g from (49) and any ε ∈ (0, 1
2
). The constant C in (65)

depends on ε and T .

Proof: Taking into account relations (33) and (37), the error can be estimated by

‖uh(t) − u(t)‖L2(Ω) ≤ ‖ρ(t)‖L2(Ω) + ‖θ(t)‖L2(Ω) ≤ ‖ρ(0)‖L2(Ω) + 2

t
∫

0

‖ρt‖L2(Ω)dτ. (66)

In view of Lemma 6 and the assumption u0h = Rhu0 we obtain

‖ρ(0)‖L2(Ω) = ‖u(0) − Rhu(0)‖L2(Ω) ≤ Cκ2(h, µ)‖∆u0‖L2(Ω), (67)
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such that it remains to estimate the integral on the right-hand side of (66). Using the
second relation from (64) we get

t
∫

0

‖ρt‖L2(Ω)dτ =

t
∫

0

‖ut − Rhut‖L2(Ω)dτ ≤ Cκ2(h, µ)

t
∫

0

‖ut‖Ḣ2(Ω)dτ. (68)

The right-hand side of this inequality can be bounded in terms of data of the problem
when the estimate (see [29, Lemma 19.5] or [9, Lemma 3.1])

t
∫

0

(‖ut‖Ḣ2(Ω) + ‖utt‖L2(Ω)) dτ ≤ C
{

‖g‖Hε(Ω) +

t
∫

0

‖ft‖Hε(Ω) dτ
}

, t ≤ T, (69)

with C = C(ε, T ) is applied. Hence, the assertion of the theorem can be deduced from (66)–
(69).

Theorem 3 Under the assumptions of Theorem 2 we have for t ≤ T the error estimate

‖uh(t) − u(t)‖1,h (70)

≤ Cκ(h, µ)
{

‖∆u0‖L2(Ω) + ‖g‖H1

0
(Ω) +

(

t
∫

0

‖ft‖
2
L2(Ω) dτ

)1/2

+

t
∫

0

‖ft‖Hε(Ω) dτ
}

,

with ε ∈ (0, 1
2
) and C = C(ε, T ).

Proof: Since we consider meshes which are not quasi-uniform, the technique of the proof
of Lemma 5 based on an inverse inequality cannot be applied. Therefore we use the
splitting (33) and derive estimates for the norms of ρ(t) and θ(t).
First we obtain by Lemma 6, relation (58),

‖ρ(t)‖1,h ≤ Cκ(h, µ)‖∆u(t)‖L2(Ω) ≤ Cκ(h, µ)
{

‖∆u0‖L2(Ω) +

t
∫

0

‖∆ut‖L2(Ω) dτ
}

. (71)

Using ‖∆ut‖L2(Ω) ≤ C‖ut‖Ḣ2(Ω) and inequality (69), we are led to

‖ρ(t)‖1,h ≤ Cκ(h, µ)
{

‖∆u0‖L2(Ω) +

t
∫

0

‖ut‖Ḣ2(Ω) dτ
}

(72)

≤ Cκ(h, µ)
{

‖∆u0‖L2(Ω) + ‖g‖Hε(Ω) +

t
∫

0

‖ft‖Hε(Ω) dτ
}

.

Further, relation (36) with vh := θt yields (θt, θt) + Bh(θ, θt) = −(ρt, θt), and by means of
the Cauchy-Schwarz inequality we obtain

‖θt‖
2
L2(Ω) +

1

2

d

dt
Bh(θ, θ) ≤

1

2
‖ρt‖

2
L2(Ω) +

1

2
‖θt‖

2
L2(Ω),
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which implies

1

2
‖θt‖

2
L2(Ω) +

1

2

d

dt
Bh(θ, θ) ≤

1

2
‖ρt‖

2
L2(Ω).

After omitting the first term on the left-hand side, integrating and using the ellipticity
of Bh(·, ·) (see Lemma 1) as well as the assumption u0h = Rhu0 (i.e. θ(0) = 0) we arrive at

‖θ(t)‖2
1,h ≤ CBh(θ(t), θ(t)) ≤ C

t
∫

0

‖ρt‖
2
L2(Ω)dτ. (73)

Lemma 6, relation (59), yields an estimate for the norm of ρt leading to

‖θ(t)‖2
1,h ≤ Cκ4(h, µ)

t
∫

0

‖∆ut‖
2
L2(Ω)dτ,

and by the use of [29, Lemma 19.6] for bounding the integral on the right-hand side of this
inequality we obtain

‖θ(t)‖2
1,h ≤ Cκ4(h, µ)

{

‖g‖2
H1

0
(Ω) +

t
∫

0

‖ft‖
2
L2(Ω)dτ

}

. (74)

Finally, we deduce from (33), (72), and (74) that the estimate (70) holds.

5 Estimates for the fully discrete method

For the discretization in time of the spatially semi-discrete problem (12), the backward
Euler method is applied. The constant time step is denoted by k. Further we use the
notation Un = Un

h , where Un
h means the approximation in V0h of the exact solution u(t) =

u(·, t) from (1) at time t = tn = nk, n = 0, 1, . . . , NT . The fully discrete problem then
reads

(∂Un, vh) + Bh(U
n, vh) = 〈F(tn), vh〉 ∀ vh ∈ V0h, 1 ≤ n ≤ NT ,

(75)
U0 = u0h = Rhu0,

with ∂Un = (Un − Un−1)/k.
First we give error estimates in case of a convex domain, i.e. the results from Section 3 for
the semi-discretization will be used. The L2-norm of the error for the fully discrete method
can be bounded as follows.

Theorem 4 Let Ω be a convex domain and let the assumptions of Lemma 2 be satisfied.
Then, for the solution Un of (75) and the solution u(tn) of (1), with 0 ≤ n ≤ NT , we
obtain the error estimate

‖Un − u(tn)‖L2(Ω) ≤ C(h2 + k)
{

‖u0‖H2(Ω) + ‖g‖Hε(Ω) +

tn
∫

0

‖ft‖Hε(Ω)dτ
}

, (76)

with g from (49), ε ∈ (0, 1

2
) and C = C(ε, T ).
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Proof: We follow the techniques of [29, Proof of Theorem 1.5], with the necessary mod-
ifications due to Bh(·, ·). By analogy to (33), we employ the following splitting of the
error

Un − u(tn) = (Un − Rhu(tn)) + (Rhu(tn) − u(tn)) =: θn + ρn. (77)

The estimate of the term ρn = ρ(tn) can be deduced from relations (35) and (52). Further,
for bounding the term θn we introduce ωn as follows,

ωn = ωn
1 + ωn

2 = (Rh − I)∂u(tn) + (∂u(tn) − ut(tn)). (78)

Some calculations analogously to (36) show that ωn satisfies the relation

(∂θn, vh) + Bh(θ
n, vh) = −(ωn, vh) ∀ vh ∈ V0h, 1 ≤ n ≤ NT , (79)

where ∂θn is defined by ∂θn = (θn − θn−1)/k. Taking θn for vh in (79) and using the
Cauchy-Schwarz inequality we are led to (∂θn, θn) ≤ ‖ωn‖L2(Ω)‖θ

n‖L2(Ω). Then, by means

of the definition of ∂θn we get the inequalities

‖θn‖2
L2(Ω) − (θn−1, θn) ≤ k‖ωn‖L2(Ω)‖θ

n‖L2(Ω), ‖θn‖L2(Ω) ≤ ‖θn−1‖L2(Ω) + k‖ωn‖L2(Ω). (80)

Applying the second relation in (80) repeatedly and using θ(0) = 0 (since u0h = Rhu0) as
well as (78) we arrive at

‖θn‖L2(Ω) ≤ ‖θ0‖L2(Ω) + k
n

∑

j=1

‖ωj‖L2(Ω) ≤ k
n

∑

j=1

‖ωj
1‖L2(Ω) + k

n
∑

j=1

‖ωj
2‖L2(Ω) =: S1 + S2. (81)

In order to bound S1, we use the definition of ωj
1 (cf. (78)) leading to

ωj
1 = (Rh − I)k−1

tj
∫

tj−1

ut dτ = k−1

tj
∫

tj−1

(Rh − I)ut dτ, (82)

and by means of Lemma 3 (applied to ut) we obtain

k
n

∑

j=1

‖ωj
1‖L2(Ω) ≤

n
∑

j=1

tj
∫

tj−1

Ch2‖ut‖H2(Ω) dτ = Ch2

tn
∫

0

‖ut‖H2(Ω) dτ. (83)

To find an estimate of the term S2 from (81) we use

kωj
2 = u(tj) − u(tj−1) − kut(tj) = −

tj
∫

tj−1

(τ − tj−1)utt(τ) dτ,

which implies

k
n

∑

j=1

‖ωj
2‖L2(Ω) ≤

n
∑

j=1

∥

∥

∥

tj
∫

tj−1

(τ − tj−1)utt(τ)dτ
∥

∥

∥

L2(Ω)
≤ k

tn
∫

0

‖utt‖L2(Ω)dτ. (84)

Relations (81)–(84), together with inequality (52), yield the estimate for θn.
The next theorem contains the error estimate in the norm ‖ · ‖1,h.
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Theorem 5 Under the assumptions of Theorem 4, the following error estimate holds for
the solution Un of (75) and the solution u(tn) of (1), 0 ≤ n ≤ NT ,

‖Un − u(tn)‖1,h ≤ C(h + k)
{

‖u0‖H2(Ω) + ‖g‖H1

0
(Ω) +

(

tn
∫

0

‖ft‖
2
L2(Ω)dτ

)1/2
+

tn
∫

0

‖ft‖Hε(Ω)dτ
}

, (85)

with ε ∈ (0, 1

2
) and C = C(ε, T ).

Proof: According to (77), we have to find estimates for θn and ρn. By means of (23) and
(52) we obtain

‖ρn‖1,h ≤ Ch
{

‖u0‖H2(Ω) + ‖g‖Hε(Ω) +

tn
∫

0

‖ft‖Hε(Ω) dτ
}

. (86)

Further, relation (79), now with the special choice vh := ∂θn, together with the linearity
of Bh(·, ·) and the Cauchy-Schwarz inequality, leads to ∂Bh(θ

n, θn) ≤ ‖ωn‖2
L2(Ω). A repeated

application of this estimate, taking into account θ(0) = 0 and the ellipticity of Bh(·, ·) (see
Lemma 1), yields

‖θn‖2
1,h ≤ C

{

k
n

∑

j=1

‖ωj
1‖

2
L2(Ω) + k

n
∑

j=1

‖ωj
2‖

2
L2(Ω)

}

. (87)

Then, using relations (83) and (84) we are led to

k
n

∑

j=1

‖ωj
1‖

2
L2(Ω) + k

n
∑

j=1

‖ωj
2‖

2
L2(Ω) ≤ Ch4

tn
∫

0

‖ut‖
2
H2(Ω) dτ + Ck2

tn
∫

0

‖utt‖
2
L2(Ω)dτ. (88)

For the integrand in the first term on the right-hand side of (88) holds (cf. [29, Proof of
Lemma 19.1]): ‖ut‖

2
H2(Ω) ≤ C(‖utt‖

2
L2(Ω) + ‖ft‖

2
L2(Ω)). Therefore it remains to find a bound

for the second integral on the right-hand side of (88). Here we make use of [29, Lemma 19.6]
which yields, together with inequality (87),

‖θn‖1,h ≤ C(h2 + k)
{

‖g‖H1

0
(Ω) +

(

tn
∫

0

‖ft‖
2
L2(Ω)dτ

)1/2}

. (89)

The assertion of Theorem 5 is a consequence of (77), (86), and (89).

Now we turn to the case of a non-convex domain, i.e. consider solutions with singularities.
For this case, the convergence of the semi-discretization has been analyzed in Section 4.
We start with the error estimate for the fully discrete method in the L2-norm.

Theorem 6 Let Ω be a non-convex domain, with the interior angle β at the reentrant
corner, and let the assumptions of Theorem 2 be satisfied. Then, for the solutions Un and
u(tn) from (75) and (1), the error estimate

‖Un − u(tn)‖L2(Ω) ≤ C(κ2(h, µ) + k)
{

‖∆u0‖L2(Ω) + ‖g‖Hε(Ω) +

tn
∫

0

‖ft‖Hε(Ω)dτ
}

(90)
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holds with ε ∈ (0, 1

2
), C = C(ε, T ), and κ(h, µ) from (60) (with λ :=

π

β
).

Proof: In view of (66)-(69), we can state that the term ρn = ρ(tn) from (77) satisfies the
following inequality,

‖ρn‖L2(Ω) ≤ Cκ2(h, µ)
{

‖∆u0‖L2(Ω) + ‖g‖Hε(Ω) +

tn
∫

0

‖ft‖Hε(Ω)dτ
}

. (91)

The norm of θn can be estimated by means of (81), with ωj defined by analogy to (78).
For the term S1 on the right-hand side of (81) we obtain by using (82) and (68),

S1 = k
n

∑

j=1

‖ωj
1‖L2(Ω) ≤

n
∑

j=1

tj
∫

tj−1

Cκ2(h, µ)‖ut‖Ḣ2(Ω)dτ = Cκ2(h, µ)

tn
∫

0

‖ut‖Ḣ2(Ω)dτ, (92)

whereas inequality (84) remains valid for the term S2 = k
n

∑

j=1

‖ωj
2‖L2(Ω). Summing up these

estimates for S1 and S2 and applying (69) yields the desired bound for θn.

Finally, the error of the fully discrete method is to be estimated in the norm ‖ · ‖1,h.

Theorem 7 Under the assumptions of Theorem 6, the solutions Un and u(tn) from (75)
and (1) satisfy the estimate

‖Un − u(tn)‖1,h (93)

≤ C(κ(h, µ) + k)
{

‖∆u0‖L2(Ω) + ‖g‖H1

0
(Ω) +

(

tn
∫

0

‖ft‖
2
L2(Ω)dτ

)1/2
+

tn
∫

0

‖ft‖Hε(Ω)dτ
}

,

with ε ∈ (0, 1

2
), C = C(ε, T ), and κ(h, µ) from (60) (with λ :=

π

β
).

Proof: The term ρn from (77) can be bounded by means of relations (58), (64), and (69)
as follows,

‖ρn‖1,h ≤ Cκ(h, µ)
{

‖∆u0‖L2(Ω) + ‖g‖Hε(Ω) +

tn
∫

0

‖ft‖Hε(Ω) dτ
}

. (94)

In order to estimate θn, we start from inequality (87). Then, by means of (82), (58), (84),
and [29, Lemma 19.6] we obtain

k
n

∑

j=1

‖ωj
1‖

2
L2(Ω) + k

n
∑

j=1

‖ωj
2‖

2
L2(Ω) ≤ Cκ4(h, µ)

tn
∫

0

‖∆ut‖
2
L2(Ω) dτ + Ck2

tn
∫

0

‖utt‖
2
L2(Ω)dτ

≤ C(κ4(h, µ) + k2)
{

‖g‖2
H1

0
(Ω) +

tn
∫

0

‖ft‖
2
L2(Ω)dτ

}

.
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This, together with (94), yields the assertion of Theorem 7.

Theorems 6 and 7 imply that for solutions with singularities, the presented method has
the same convergence order as in case of regular solutions if an appropriate mesh grading
parameter is chosen.

6 Numerical results

For verifying the convergence rate of the investigated approach, some numerical experi-
ments were carried out. Some hints concerning the implementation can be found in [6].
First we observe the convergence in case of a convex domain, i.e. for regular solutions. We
consider some initial-boundary value problem of type (1) in the domain Ω = (−1, 1)×(0, 1).
Let the two subdomains Ωi, i = 1, 2, be given by Ω1 = (−1, 0)×(0, 1) and Ω2 = (0, 1)×(0, 1),
cf. Figure 2. We take t ∈ [0, 1] for the time interval. The right-hand side f and the initial
function u0 are chosen such that the solution of (1) is

u(x, t) = (1 − x2
1)(1 − x2)x2(1 + t)−0.8.

The initial mesh shown in Figure 2 is used for the semidiscretization in space. This mesh
is refined globally by dividing each triangle into four equal triangles such that the mesh
parameters form a sequence {h1, h2, h3, h4} given by hi+1 = 0.5 hi. The mortar parameters
(cf. Section 2) are chosen as follows: α1 = α2 = 0.5 and γ = 6. The triangulation Eh of the
mortar interface Γ is defined as

Eh := {E : E = ∂T1 ∩ ∂T2, if E is a segment; Ti ∈ T i
h with Ti ∩ Γ 6= ∅ for i = 1, 2}, (95)

i.e. the nodes of both triangulations T 1
h , T 2

h lying on Γ establish the endpoints of the
intervals E ∈ Eh. For the discretization in time we employ three levels ki, i = 1, 2, 3, where
k1 = 1

10
and ki+1 = 0.5ki.

x1

x2

-

6

0−1 1

1

Ω1 Ω2

Figure 2: Initial triangulation (first example)

For the approximate measuring of the convergence rates stated in Theorems 4 and 5, the
hypothesis for the tests is that

‖Un − u(tn)‖L2(Ω) ≈ C
(0)
1 hσ0 + C

(0)
2 kτ0 , ‖Un − u(tn)‖1,h ≈ C

(1)
1 hσ1 + C

(1)
2 kτ1 , (96)
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with Un defined in Section 5 (n = 0, 1, . . . , NT ). The parameters C
(i)
1 and C

(i)
2 (i = 0, 1)

are assumed to be approximately constant for three consecutive levels of h and k. Then,
the exponent σ0 in (96) can be approximately computed by means of relation

σ0 = log2

e0(hi, kj) − e0(hi+1, kj)

e0(hi+1, kj) − e0(hi+2, kj)
, (97)

where e0(hi, kj) denotes the L2-norm of the approximation error for discretization param-
eters hi for the Nitsche finite element method and kj for the backward Euler method, i.e.
three consecutive levels of the mesh parameter h and a fixed time step k are used. An
analogous relation holds for the convergence rate σ1 if in (97) the errors e0(·, ·) are replaced
by e1,h(·, ·) denoting the approximation errors in the {1, h}-norm. Further, the exponent
τ0 in (96) is approximately calculated by using the relation

τ0 = log2

e0(hi, kj) − e0(hi, kj+1)

e0(hi, kj+1) − e0(hi, kj+2)
, (98)

with e0(·, ·) as in (97), i.e. three consecutive levels of the time step k and a fixed mesh
parameter h are included. An analogous relation holds with τ1 instead of τ0 and e1,h(·, ·)
instead of e0(·, ·).
Table 1 shows the approximation errors e0(hi, kj) and e1,h(hi, kj) for i = 1, . . . , 4 and j = 3

at the level tn = T as well as the observed convergence rates σobs
0 and σobs

1 which are
obtained by using formula (97) and its analogue for σ1, with i = 2 and j = 3. According to
Theorems 4 and 5, the theoretically expected convergence rates are σ0 = 2 and σ1 = 1, and
the observed rates σobs

i from Table 1 are approximately equal to σi, i = 1, 2. In Table 2
we represent the approximation errors e0(hi, kj) and e1,h(hi, kj) for i = 4 and j = 1, 2, 3

at the level tn = T as well as the observed convergence rates τobs
0 and τobs

1 obtained by
formula (98) and its analogue for τ1, with i = 4 and j = 1. The observed values confirm
approximately the expected convergence rates τ0 = τ1 = 1, cf. Theorems 4 and 5.

level e0(hi, k3) e1,h(hi, k3)

h1 3.13072e-2 1.88140e-1

h2 1.01964e-2 9.59374e-2

h3 5.07436e-3 4.92381e-2

h4 3.88784e-3 2.68348e-2

σobs
0 = 2.11 σobs

1 = 1.06

Table 1: Error norms and convergence rates for h = h1, . . . , h4 and k = k3

In order to investigate the convergence rate in presence of singularities arising in case of
non-convex domains, we consider the initial-boundary value problem (1) in the L-shaped
domain Ω = (−1, 1) × (−1, 1) \ [0, 1) × (−1, 0]. We choose Ω1 = (−1, 0) × (−1, 1) and
Ω2 = (0, 1) × (0, 1) as subdomains. The time interval is again [0, 1]. Let the right-hand
side f and the initial function u0 be given such that the solution of problem (1) is

u(x, t) = (1 − x2
1)(1 − x2

2) rλ sin(λθ)(1 +
1

2
e−t), λ =

2

3
,
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level e0(h4, kj) e1,h(h4, kj)

k1 3.92313e-3 2.68924e-2

k2 3.89884e-3 2.68527e-2

k3 3.88783e-3 2.68348e-2

τobs
0 = 1.14 τobs

1 = 1.15

Table 2: Error norms and convergence rates for h = h4 and k = k1, k2, k3

where (r, θ) are polar coordinates centered at (0, 0), cf. Section 4.

(a) (b)

Ω1 Ω2 Ω1 Ω2

Figure 3: Triangulations on the levels h = h1 and h = h2 (second example)

For the Nitsche finite element discretization, the initial mesh (with mesh parameter h1)
depicted in Figure 3(a) is employed. Near the reentrant corner, this mesh is provided with
local grading as defined in Section 4, the grading parameter is µ = 0.7λ ≈ 0.47. The
subsequent meshes (with mesh parameters hi, i = 2, 3, 4, hi+1 = 0.5hi) arise by dividing
each triangle into four equal triangles in the quasi-uniform part of the mesh and by local
grading with µ = 0.7λ ≈ 0.47 near the reentrant corner, see Figure 3(b) for the mesh with
h = h2. The mortar parameters are the same as in the first example, the triangulation Eh

is defined by (95). For the discretization in time we take the three levels k1, k2, and k3

with k1 = 1
20

, ki+1 = 0.5ki. For the computation of approximate convergence rates we use
again (97), (98), and analogous relations for σ1, τ1.
Table 3 contains the approximation errors e0(hi, kj) and e1,h(hi, kj) for i = 1, . . . , 4 and

j = 3 at the level tn = T as well as the observed convergence rates σobs
0 and σobs

1 .
The observed values σobs

0 , σobs
1 are approximately equal to the expected convergence rates

σ0 = 2 and σ1 = 1 stated in Theorems 6 and 7. The errors e0(hi, kj) and e1,h(hi, kj) for
i = 4 and j = 1, 2, 3 at the level tn = T are reported in Table 4. The convergence rates
resulting from these errors are very close to the expected values τ0 = τ1 = 1.
The numerical examples presented in this paper illustrate that Nitsche mortaring combined
with the backward Euler method is a suitable approach for the numerical treatment of
initial-boundary value problems for the heat equation in polygonally bounded domains.
In particular, for solutions with singularities, the use of meshes with a grading parameter
µ < λ leads to the same convergence rates as for regular solutions.
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level e0(hi, k3) e1,h(hi, k3)

h1 3.83180e-2 3.82840e-1

h2 1.46901e-2 1.90226e-1

h3 9.48033e-3 9.84876e-2

h4 8.23570e-3 5.32338e-2

σobs
0 = 2.07 σobs

1 = 1.02

Table 3: Error norms and convergence rates for h = h1, . . . , h4 and k = k3

level e0(h4, kj) e1,h(h4, kj)

k1 8.26364e-3 5.32740e-2

k2 8.24468e-3 5.32467e-2

k3 8.23570e-3 5.32338e-2

τobs
0 = 1.08 τobs

1 = 1.08

Table 4: Error norms and convergence rates for h = h4 and k = k1, k2, k3
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