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Abstract. When characterizing optimal solutions of both scalar and vector
optimization problems usually constraint qualifications have to be satisfied. By
considering sequential characterizations, given for the first time in vector opti-
mization in this paper, this drawback is eliminated. In order to establish them we
give first of all sequential characterizations for a convex composed optimization
problem with geometric and cone constraints. Then, by means of scalarization,
we extend them to the vectorial case. For exemplification we particularize the
characterization in the case of linear and set scalarization.
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1 Introduction

Vector optimization problems have received a great deal of interest from the
scientific community due to their applicability in various practical areas. From
the theoretical point of view comprehensive studies on the subject have been
undertaken by numerous authors, among them we cite here the books of Jahn
([9]), Luc ([11]) and Sawaragi, Nakayama and Tanino ([15]). Due to the fact that
the partial order generated by a convex cone in a topological vector space is not
a complete one, several notions of solutions for a vector optimization problem
have been given. In this article we will address some of them for which we give
so-called sequential characterizations.
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In [2] and [3] Bot, Csetnek and Wanka have given sequential optimality condi-
tions in convex programming, without a constraint qualification, via perturbation
approach, in a general framework. We consider here the convex composed opti-
mization problem with. geometric and cone constraints

(P) inf s(F(2)),

where X is a reflexive Banach space, Y and Z are Banach spaces partially ordered
by the closed convex cones, K and C, respectively, M is a nonempty closed
convex subset of X, F : X — Y* = Y U {ooy} is a proper, K-convex, star
K-lower semicontinuous function, G : X — Z* = Z U {ooz} is a proper, C-
convex, star C-lower semicontinuous function and s : Y* — R is a proper, convex,
lower semicontinuous and K-increasing function. Using the refined version of the
sequential characterizations expressed by means of the classical subdifferential
in [2], we deduce sequential characterizations for the optimal solutions of the
problem (P,), with the help of an appropriate perturbation function. They are
further particularized in the case when the functions involved are continuous.
Then, by taking the cone K = {0} we get improved sequential Lagrange multiplier
conditions for the ordinary convex optimization problem with geometric and cone
constraints

(P.) inf s(z),
"
where s : X — R is a proper, convex and lower semicontinuous function.
Scalarization is probably the oldest and most studied method of characterizing
optimal solutions in vector optimization. It consists in associating to a vector
optimization problem a scalarized one such that making use of the solutions of
the latter, one can obtain important information on the solutions of the original
problem. The literature is quite rich in this respect, and we mention here several
authors, such as Bot [1], Jahn [8] and [9], Luc [11], Tammer and Gopfert [16],
and the list could be continued.
A scalarized problem associated to the vector optimization problem

(P,) v— min F(z
SR
is actually of the form (P;). Having given S a set of scalarization functions we
introduce the so-called S-properly efficient solutions and S-weakly efficient solu-
tions for (P,) and characterize them by making use of the sequential optimality
conditions obtained for (P;). One can notice that each S-properly efficient solu-
tion to (P,) is a (Pareto) efficient solution, while each S-weakly efficient solution
to (P,) is a weakly efficient one. We further particularize the sequential char-
acterizations by taking S as a set of linear functions and as a set of K-strictly
increasing function induced by a given cone, respectively.
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Let us underline again the fact that this optimality conditions do not require
the fulfillment of any constraint qualification.

This article is organized as follows. Section 2 contains the preliminary notions
and results from convex analysis necessary to make this paper self-contained. Se-
quential optimality conditions for convex composed optimization problems with
geometric and cone constraints are given in section 3. The general case when F
and G are, among others, star K-lower semicontinuous and star C-lower semicon-
tinuous, respectively, is treated. Then, they are taken continuous and this leads
to general sequential characterizations. By taking G = 0 we obtain sequential
optimality conditions for composed geometric constrained optimization. In sub-
section 3.2 we obtain along with a particular case of a sequential Lagrange mul-
tiplier conditions, a sequential characterization of the well known Pshenichnyi-
Rockafellar Lemma in [12], which improves Corollary 4.8 in [2] and thus also
Corollary 3.5 in [10].

Section 4 contains the results for vector optimization. In its beginning the
notions of the solution used are defined and the relation among them described.
The sequential characterizations for S-properly efficient and S-weakly efficient
solutions are given in the particular cases when the scalarizing function is linear,
and when it is defined with the help of a given cone, respectively.

2 Preliminaries

Consider X a locally convex space and X* its topological dual space endowed
with an arbitrary locally convex topology giving X as dual. The most prominent
examples of such a topology are the weak* topology w(X*, X) or the strong
topology when X is a reflexive Banach space. We denote by (z*,x) the value of
the linear continuous functional z* € X* at x € X. For a subset M C X, its
indicator function, denoted by 0y, is defined as 0y : X — R = R U {#o0}

0, ifx e M,
400, otherwise,

Sur(z) = {

and its support functional, denoted by oy, is defined as oy : X* — R

om(x*) = sup(z*, z).
zeM

For a function f : X — R we denote by dom(f) = {z € X : f(z) < +oo} its
domain and by epi(f) = {(z,r) € X xR : f(z) < r} its epigraph. We call f
proper if dom(f) # and f(z) > —oco Vx € X. For z € X such that f(z) € R, the
subdifferential of f at x is defined by

of(x) ={z* € X*: f(y) — f(z) > {2,y — z) Vy € X}.




The normal cone to a closed subset M of X is defined by

Nas() = A0u)(z) ={z* € X*: (z*,y—2z) <0Vye M}, ifzeM,
M) #= 0, , otherwise.

The conjugate function regarding the set U C X of f is the function ff : X* — R

defined by
fole") = 31615{@*@) - f(z)}-

When U = X we get the classical Fenchel-Moreau conjugate of f denoted by f*.
The so-called Young-Fenchel inequality proves to be extremely useful in applica-
tions, and it reads as follows

f*(z*) + f(z) > (¢*,z) Vo € X V" € X"
For all z € dom(f) and z* € X* one has

z* € 0f(z) &= f*(z") + f(z) = (z", )

The conjugate function of f*, f**: X — R, f**(z) = supgex-{(z*,z) — f*(z*)}
is said to be the biconjugate of f. If f is a proper function one has that f is
convex and lower semicontinuous if and only if f**(z) = f(z) Vz € X.

In case X is a nonreflexive Banach space the biconjugate of f is defined as
0 X = R, (@) = supgeex<{{z*,2*) — f*z9)} U f: X — R is a
proper, convex and lower semicontinuous function, then for all z € X it holds

f(z) = f**(&), where £ is the canonical image of z. One can easily show that
the reverse is also true, namely if f : X — R is a proper function such that
f(z) = f**(&) Yz € X, then f is convex and lower semicontinuous.

Having a non-empty cone C' C X, we denote by C* = {z* € X* : {(z*,z) >
0 for all z € C} its dual cone, and by C*0 = {z* € X*: (z*,x) > Oforall z €
C\{0}} the quasi-interior of the dual cone.

Definition 1 (see also [11]) Let C C X be a nonempty convex cone. A function
s: X — R is called C-increasing if for z,y € X such that x <¢ y it follows that
s(z) < s(y). A C-increasing function is called C-strongly increasing whenever
z # y implies s(x) < s(y). In the case when int(C) # 0 a C-increasing function
is called C-strictly increasing if for y — z € int(C) it holds s(x) < s(y).

There are notions given for functions with extended real values that can be
extended also for function having their ranges in infinite dimensional spaces.
Thus, let us consider Y a locally convex space partially ordered by the nonempty
convex cone K, i.e the partial order <y is defined by z <g y if y —z € K for all
z,y €Y. To Y we attach a greatest element with respect to <, which does not
belong to Y, denoted by ooy, and let us consider Y* =Y U{ocoy }. Then, for each




y € Y*, y <k ooy and we consider on Y'* the following operations: y+ ooy = ooy
and t - ooy = ooy for all y € Y and all ¢ > 0.

For a function F' : X — Y* its domain is defined by dom(F) = {z € X :
F(z) € Y} and F is said to be properif dom(F") # 0. The most common extension
of the classical notion of convexity for extended real valued functions is the notion
of cone-convexity, thus, F' is said to be K — convex if

F(tzx+ (1 —t)y) <g tF(z) + (1 —t)F(y) Vz,y € X Vt € [0, 1].
For each \ € Y* we consider the function (AF) : X — R defined by

| (N F(z)), ifz € dom(F)
A= { ~+00 otherwise.
We say that F' is star K-lower semicontinuous if (AF') is lower semicontinuous
for all A € K*. Several other extensions of the notion of a lower semicontinuous
function have been given in the past in the literature ([14], [11]), however the one
given above fits our interests most of all.

3 Sequential Optimality Conditions for Convex
Composed Optimization Problems with Geo-
metric and Cone Constraints

The general framework used within this section is described in the following. Let
us consider (X, || - ||) a reflexive Banach space,(Y, | - ||) and (Z, || - ||) be Banach
spaces, with (X* || - |l+), (Y* |- |l+), (Z, || - ||+), respectively, their topological dual
spaces. Although the spaces X,Y,Z and X*,Y* Z* are endowed with different
norms, respectively, we use the same notation for the norm, as there will be no

danger of confusion. Let {z¥ : n € N} be a sequence in X*. We write z;, 0

(xF, LY 0) for the case when z}, converges to 0 in the weak* (strong) topology.

We make the following convention: if in a certain property we write z; — 0
(n — 400), we understand that the property holds no matter which of the two
topologies (weak* or strong) is used. The following property will be frequently
used in the paper:

if z* — 0 and z, — a (n — +00), then (z,,z,) — 0 (n — +00),

where {z, :n € N} C X, a € X and z, — a (n — +00) means ||z, —al — 0
(n — 400), that is the convergence in the topology induced by the norm on X.

Furthermore, on Y and Z we consider the partial orders induces by the
nonempty closed convex cones K C Y and C C Z, respectively, denoted by
<k and <g, respectively.




We are going to give sequential optimality conditions for the following convex
composed optimization problem with geometric and cone constraints

(Ps) inf  s(F(z)),

i
G(Z%W—c
where M is a nonempty closed convex subset of X, F': X — Y* is a proper, K-
convex, star K-lower semicontinuous function, G : X — Z* is a proper, C-convex,
star C-lower semicontinuous function and s : Y* — R is a proper, convex, lower
semicontinuous and K-increasing function, for which we make the convention
that s(coy) = +o0. Furthermore, the following feasibility condition is required

(FC) F(M ndom(F) NG *(—C)) Ndom(s) # 0.

Remark 1 One should notice that in the framework stated above, since s is K-
increasing on Y, one has that s*(y*) = +oo for all y* & K*.

Recently, in [2] and [3], Bot, Csetnek and Wanka have given sequential op-
timality conditions in convex optimization via perturbation approach improving
several preexisting results. Such characterizations in optimization prove to be of
major importance due to the fact that optimality conditions are given without re-
quiring the fulfillment of any constraint qualification, the case encountered when
dealing with optimality conditions obtained by other means, say for example by
duality. We extend the results in [2] and [3] to the case of convex composed
optimization problems with geometric and cone constraints rediscovering some
of the results in the above mentioned papers as particular cases of the ones given
here. Furthermore, they prove to be helpful in giving sequential characterizations
of solutions for vector optimization problems. In section 5 of [2] the following
theorem is given.

Theorem 1 Let ® : X x Y — R be a proper convez and lower semicontinuous
function such that inf,cx ®(x,0) < +o00. The following statements are equivalent:

a) a € dom(®(-,0)) is a minimizer of ®(-,0) on X;
b) there exist sequences (Tp,Yn) € dom(®) and (z7,y:) € OP(xn, yn) such that
Ty = 0,20 = a4 — 0, (Y7, Yn) = 0 (n — o0)
®(z,, yn) — ®(a,0) = 0 (n — 400).
We are going to rewrite (P;) equivalently as

(PO) gg}fc @(x,0,0),




where ® : X x Y x Z — R is the perturbation function
®(z,y,2) = { s(F(z)+y), ifze M,G(z)—z€-C,

00, otherwise.

In order to be able to appb.f Theorem 1 to (P,) we first need to prove that ® is
a proper convex and lower semicontinuous function.

Lemma 2 The function ® is proper, convex and lower semicontinuous.

Proof. Since the feasibility condition (F'C) is satisfied, ® is a proper function.
We prove that ® = ®**| -, 5, Where Y and Z are the images of Y and Z through
the canonical embedding into Y** and Z**, respectively. This will guarantee that
® is convex and lower semicontinuous. We start by computing the conjugate
function of ®, ®* : X* x Y* x Z* — R. For (z*,y*, 2*) € X* x Y* x Z* we have

d*(z*,y*,2") = sup {(z*z) + (V") + (27, 2) — (2,9, 2)}

zeX, yey,
z€Z
= sup {{z*, z) + (y*,y) + (2, 2) — s(F(x) + y) }-
TeEM, y€eyY,

z€Z, G(x)—ze-C

Introducing the new variables t :== F(z) +y € Y and ¢ :== z — G(z) € C we
obtain

®*(e",y",7") = __sup et e+t - F(z)) + (z",q + G(z)) — s(t)}
qéCE '

= sup{(z", ) — (y"F)(2) + (z"G)(2)} + sup{(y", t) — s(t)} +sup{(z*, )}

zeM tey qeC

= ((y'F) = (#"G) + 6ar)" (2") + 5" (y") + sup(2", @)

qeC

From Remark 1 we have s*(y*) = +oo for all y* ¢ K*. Moreover

. 0, z* e —C*,
sup(z*,q) = )

+00, otherwise.

geC
Therefore,
Ho¥ gk SRY ((y*F) - (Z*G) +5M)* (.’1}*) +S*(y*)7 y* € K*7Z* € —0*7
P v )= { +00, otherwise.

By calculating the value of the biconjugate function of ®, &** : X xXY**xZ** — R,
n (r,9,2) € X x Y** x Z** for (z,y,2) € X XY X Z, one gets

(2, 9,2) =  sup {(z",2) +(§,y") +(2,27) - (2", y" 2} =
.’L‘*EX*, %*GY*7
2*eZ*




= sup  {@"@)+ )+ (" 2) — (W' F) - (2°G) +6m)" (&%) = s"(y")} =

= Sup {(y*,y>+(-z*,2f> —s"(y") + sup {(z",2) — ((v'F) = (z°G) +m)" (27)}
Z*E—C; vex

= sup {9} +(,2) = ' (0) + (07F) = (°6) + )" @),
FEcH
The functions I’ and G are proper, K-convex and star K-lower semicontinuous
and proper, C-convex and star C-lower semicontinuous, respectively, therefore
since y* € K* the function (y*F') is proper, convex and lower semicontinuous and
since z* € —C*, (—2*G) is also proper, convex and lower semicontinuous. The
same applies also for the function §,. Thus

(y"F) + (=2"G) +0m)™ (z) = (y'F) + (=2"G) + ou) (z) Vz € X.
Using this we obtain that

e (z,9,2) = sup {{y",y) +(z"2) = s"(y") + (V' F) + (=2"G) + om) (2)} =

y*eK*
z*e-C*
_ { swpper {7y T F@) = 5 (0) } + 5P o (27,2 = Gla)), we M,
+00, ' otherwise

_ s**(y:-F\(x)), zeM,z—G(z) € C,
00, otherwise

+00, otherwise = &(z,y, 2).

:{ s(ly+ F(z)), z€ M,G(z) —z€ —C,

In conclusion ®**|y v, » = ® and this implies that ® is convex and lower semi-
continuous. M

The following theorem gives sequential optimality conditions for (F), which
are actually optimality conditions for (P;). '

Theorem 3 An element a € M N G~H(—C) Ndom(F) is an optimal solution of
problem (Ps) if and only if

[ A(Zn, Yn, 2n) € (M Ndom(F)) x dom(s) x —C,3(zk, vz, 25) € X* x K* x C*,
zr € O((YiF) + (2:G) + dmr) (), ¥l € 05(yn), (25, 2n) = 0 Vn € N,

zt — 0,2, — a,Yp — F(zn) — 0,2, — G(z,) = 0, (n — +00),

| @t — F(a)) — (25, G(a)) = 0, (n = +00),

(yn, F(xn) — F(a)) + {2z, G(zn) — G(a)) — 0, (n — +00),

L 5(¥n) — s(F(a)) — 0, (n — +o0).

}




Proof. We notice first that ® is a proper convex and lower semicontinuous
function such that inf,ex ®(z,0,0) < +00. By Theorem 1 and taking (F'C) into
consideration we have that a € M N G~}(—C) N dom(F) is an optimal solution
of problem (P;) if and only if it is also an optimal solution of (Fp). So, a is
an optimal solution of (P,) if and only if there exist the sequences (zy, tn, vn)
€ dom(®), (zk, ur, —vk) € 0P(zy, Uy, vn) such that

zy, = 0,2 = a, (Un, vn) — 0, (g, —v7,), (Un, vn)) — 0, (n — +00) and

D(zp, Up,vy) — P(a,0,0) — 0, (n — +00).

For all n € N from (z,,, up, v,) € dom(®) we get that z, € M Ndom(F), F(z,)+
up, € dom(s) and G(z,,) —v, € —C. For (x}, u}, —v%) € OP(xy, Un, Un) We use the
characterization

®*(m;7u;7 _U;:,) + q)(xm un,vn) = <CE:L: xn) + <u:,,7un> - <U;,Un>-
Thus, for all n € N, we obtain equivalently that v € K*,v; € C* and

(U, F)+ (01G) -+ 830)* (@) 5 (1) 4 5(F () tn) = (@) + {1 ) — (8, 00).

@)
As v} € C* and G(z,,)—v, € —C we have (v}, G(z,)—v,) < 0. Using the Fenchel-
Young inequality we also get ((u:F)+ (viG)+0n)*(x}) > (xk, xn) — (U F)(z,) —
(UnG)(xn) = Or(Tn) > (T, Tn) — (up F)(@0) — (vg;, vn) and s*(up ) +5(F(zn)+us) =
(ur, up)+(up F)(x,) Vn € N. Thus, by (2) we obtain equality in all the inequalities
above. Hence (z,uk, —v}) € 0D(zy, upn,v,) is equivalent to u}, € K*, v € C*,
zh € O((urF) + (viG) + 0p) (), up, € Os(F(zy) + uy) and (v}, G(z,) —vyp) = 0.
Consequently, a € M N G~1(—C) N dom(F) is an optimal solution of problem
(Ps) if and only if

(3, Un,vn) € (M Ndom(F)) XY X Z,

F(z,) + uy, € dom(s), G(z,) — v, € —C,

A(zr,uk,vr) € X* x K* x C*,zf € O ((uhF) + (viG) + 0um) (xn),

Q uk € 9s(F(xy) + uy), (vi,G(xn) — v,) =0Vn €N, (3)
zt — 0,2, — a,u, — 0,v, = 0,(n — +00),

<u1*17 un)> - <’U;, vn> =), (n = +OO)>

s(F(zn) +un) — s(F(a)) — 0,(n — +00).

\

Making the following notations: y, := F(xy,) + tn, 2n = G(Tn) — Vp, Y = u
zt =} for all n € N, (3) becomes

A(Zn, Yn, 2n) € (M Ndom(F)) x dom(s) x —C,I(zk, yk, zk) € X* x K* x C*,
T, € 9 ((y:LF) + (Z:LG) + 6M) (mn),y; = 8S(yn)a <z:z> Zn) =0VneN,

zt — 0,2z, = a,y, — F(z,) — 0,2, — G(z,) — 0, (n — +00),

<y:wyn - F(l‘n» - <Zr*n G(xn» — Oa (TL 2 +OO),

$(yn) — 8(F(a)) — 0, (n — +o00),




Further, we improve the relations in (4), by proving that under the hypotheses

(Tn, Yn, 2n) € (M Ndom(F)) x dom(s) x —C, (z,y5, 1) € X* x K* x C*,
z; €0((YrF) + (22G) + dmr) (zn), ¥ € 05(yn), (2%, 2,) = 0Vn €N,

zy — 0,2, = d,Yp — F(z,) = 0, 2, — G(z,) — 0, (n — +00),

8(4n) = (F(a)) = 0, (n — +o00).

(5)

for the following three real sequences defined as:
bn := (U5, Un — F(a)) + (23, —G(a)) Vn €N,
¢n = (U, F(xn) — F(a)) + (25, G(za) — G(a)) Yn € N
and
an, = (Y, Yo — F(z,)) — (25, G(z,)) = b, — ¢, Vn €N,
we have

an — 0 (n — +00) if and only if b, — 0 and ¢, — 0 (n — +00).

The sufficiency follows at once. Therefore, it remains to prove the necessity.
Assume now that a, — 0. For all n € N, since y; € 9s(y,), it holds (y},y, —
F(a)) > 5(yn) —s(F(a)). From G(a) € —C and z; € C* we have (2}, —G(a)) > 0.
Hence

bn 2 5(yn) — s(F(a)) + (23, —G(a)) = s(ya) — s(F(a)) Vn € N. (6)
Furthermore, '

—tn = (4 F) + (2,G)) (a) — (4 F) + (27,G)) (zn)
= (U F) + (22G) + 0umr) (@) = (YnF) + (2,G) + Om) (20) 2 (25,0 — ),
as z, € 0 ((yi F) + (2:G) + 0p) (z,,) Vn € N. Thus,
—Cp > (X}, a0 — x,) Vn € N. (7)

From (6) and (7) we get

$(yn) = s(F(a)) < bp = an + cp < an + (2}, 2, — a) ¥n € N. (8)

For n — +o0, since a,, — 0 and taking into consideration that, by (5), s(y,) —

s(F(a)) — 0, and 2}, — 0 and z,—a — 0, which imply (z*, z,,—a) — 0, we obtain

from (8) that b, = an + ¢, — 0 (n — 400) and thus also ¢, — 0 (n — +00).
Therefore (1) is equivalent to (4) and the theorem is proved. m

Theorem 3 is stated under rather weak assumptions imposed on the sets and
the functions involved in its formulation. By specializing some of these objects,
we are able to obtain as particular cases some other important results we use
later, but also sequential characterizations of optimality previously given in the
literature.
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3.1 The Case when VF and G are Continuous

The framework we work within remains basically the same as in the beginning
of this section. Imposing stronger conditions on the functions involved in defin-
ing the optimization problem (P;) the sequential characterization of the optimal
solutions in Theorem 3 can be substantially refined.

Take F': X — Y and G : X — Z continuous, thus dom(F') = dom(G) = X
and the feasibility condition (F'C) becomes

(FCg) F(M NG Y~C)) Ndom(s) # 0.
With these hypotheses we get the following result.

Theorem 4 An element a € M N G~Y(—C) is an optimal solution of problem
(Py) if and only if

[ 3(Zn, Yn, 2n) € M x dom(s) x —C,

I(ut, vk, 85,y 25) € X* x X* x X* x K* x C*,

uy € Y F)(zn), v € 0(22G)(xn), t: € Ny(xy), vt € 03(yn), (25, 20) =0 Vn €N,
up + v+t — 0,2, — a,y, — F(a), z, — G(a), (n = +00),

(U9 — F(a)) = (2;,G(a)) — 0,(n — +00),

(s F(@) — F(@)) + (22, Glzn) — G(a) — 0, (n — +o0),

[ 5(¥n) — s(F(a)) = 0,(n — +o00).

9)

Proof. From Theorem 3 we have that a € M NG~ (—C) is an optimal solution
of problem (P) if and only if (1) is satisfied. Using Theorem 2.8.7 in [17], for
each n € N, from the fact that F' and G are continuous functions we have

O ((YnF) + (2,G) + 0ur) (zn) = Oy F)(2n) + 0(2,G)(@n) + Nae(@n).
Thus for all z}, € 0 ((y:F) + (2:G) + 0um) (zn),n € N, taking into consideration
the equality above, one obtains the existence of other three sequences such that
U s Tele, € X arid '

z, =u, +un+t,, u €0yrF)(z,), vy € znG)(xn), b € Nu(zy).

Since x}, — 0, we have u) + v+t — 0, (n — +00). As F' and G are continuous
and z, — a when n — +o0, it holds F(z,) — F(a) and G(z,) — G(a) when
n — +o0o. Then y, — F(z,) — 0 and 2, — G(x,) — 0 is the same with

Yn — F(a) and 2z, — G(a), (n — +00).

Changing in (1) the sequences according to the facts listed above, we obtain
exactly (9). m
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3.9 The Case of a Convex Composed Optimization Prob-
lem with ”only” Geometric Constraints

The aforementioned particular case can be further specialized when considering
only geometric constrained problems, i.e in the case when the function G = 0.
In this situation we obtain the following result which is a natural consequence of
Theorem 4, therefore its proof is omitted.

Corollary 5 An element a € M 1is an optimal solution of the optimization prob-
lem

() inf s(F(x))
if and only if
.:_](.'L'n,yn) e M x dOHl(S))EI(u;’t;“”y:‘l) EX*x X*% K*7
Uy, € 8(y:lF)(wn)7t:L € NM($n>7y:l = 38(1/”) vn € N,
ul +tt — 0,2, — a,yn — F(a),(n — +00), (10)
(W yn — F(a)) = 0, (ys, F(zs) — F(a)) = 0, (n — +00),
s(yn) — s(F(a)) = 0, (n — +00).

3.3 Sequential Lagrange Multiplier Conditions

The convex composed optimization problem (P;) can be reduced to an ordinary
one, by taking X =Y, the function F' as the identity function on X,ie. F': X —
X,F(z) = z for all z € X, and the cone K = {0}. Using again Theorem 4 we
are able to develop sequential optimality conditions for the convex optimization
problem with geometric and cone constraints

(PC) mlél]& S(.’I}),
G(x)e—C

where s © X — R is a proper, convex and lower semicontinuous function, G :
X — 7 is a C-convex and continuous function and the feasibility condition

(FCor) MNG(=C)Ndom(s) # 0
is satisfied. Then the following sequential optimality conditions can be given.

Theorem 6 An element a € M N G~(=C) Ndom(s) is a solution of the opti-
mization problem (P.) if and only if

( (@, Yn, 20) € M x dom(s) x —C, 3V}, th, Y, 75) € X* X X X X X c,
vt € (2:G) (%), th € Ny (n),Yr € 05(yn), (22, 2,)=0¥neN,
yi+ vk 4+t —= 0,5, > a,Yn = 0,20 = G(a), (n — +00),

| (W50 — @) — (22 Gl@) = 0, (n — +00),

(2, xn — a) + (25, G(za) — G(a)) — 0, (n — +00),

[ 5(yn) — s(a) = 0, (n — +o0).

(11)
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Proof. One can easily see that (F.) is nothing but a particularization of (Pj).
Since K = {0} its dual is K* = X* and s is K-increasing. Using Theorem 4 we
have that a € MNG~(—C)Ndom(s) is a solution of (P,) if and only if (9) holds.
Since F'is the identity on X and u} € d(y}F)(z,) it is easy to see that u} = y*
for all n € N, i.e. (9) becomes (11). =

Let us mention that Theorem 6 is in fact an improvement of the sequential
Lagrange multiplier condition in Theorem 4.10 in [2].

A sequential generalization of the well-known Pshenichnyi-Rockafellar Lemma,
can be given, by taking in Theorem 6 only geometric constraints. It is stated
bellow.

Theorem 7 Let s: X — R be a proper, convez and lower semicontinuous func-
tion such that M Ndom(s) # 0. Then a € M Ndom(s) is an optimal solution of
the problem

(Per)  J2f5(a)
if and only if
a(l’n,yn) e M x dom(s), a(t;’y;’) E X* x X*,
Y € 05(Yn), by, € Ny(xn) ¥ € N,
Yn t 1 — 0,20 — a,yn — a, (n — +00), (12)

<y:;,7 Yn — CL> =7 Oa <y:u$n = CL> =¥ 0, (n —2 +OO),
s(yn) — s(a) — 0, (n — +00).

Proof. Problem (Ppg) is nothing else than (P,) when G = 0. Relation (12) is
nothing else than (11) in Theorem 6 in this particular case. m

Theorem 7 is also a refinement of Corollary 4.8 in [2] and thus of Corollary
3.5 in [10].

4 Sequential Optimality Conditions in Vector
Optimization |

Vector optimization problems are thoroughly studied due to their utility in vari-

ous practical areas. In the literature, several approaches in defining and studying

optimal solutions of a vector optimization problems have been undertaken.
Let us consider the following vector optimization problem

(P) v-— grélﬁ F(z)
G(z)e-C

where X is a reflexive Banach space, Y and Z are Banach spaces, K C Y and
C C Z are closed convex cones which define partial orders on Y and Z denoted
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by <k and <¢, respectively. We also assume that K is pointed (KN—K = {0}).
Let M be a nonempty closed convex subset of X, F' : X — Y be a K-convex
continuous function and G : X — Z be a C-convex continuous function such that
the following feasibility condition is satisfied

MNG(=C) #0.

Definition 2 (see [9]) An elementa € MNG™(—C) is called a (Pareto) efficient
solution to (P,) if from F(z) <k F(a) for an x € M N G~(=C) it follows that
F(x) = F(a).

Let us consider the set of convex and K-strongly increasing functions on Y’
S ={s:Y — R:sis convex and K-strongly increasing}.

Definition 3 (see [6], [7]) An element a € M N G~ (=C) is said to be a S-
properly efficient solution to (P,) if there exists a function s € S such that
s(F(a)) < s(F(z)) for allz € M NG Y(=C), i.e. if it is an optimal solution of
the problem

(P,) inf s(F(z)).

zeEM
G(z)e—-C

Remark 2 Each S-properly efficient solution to (P,) is also an efficient one.

If int(K) # () one can also introduce another efficiency notion, the so-called
weakly efficient solution.

Definition 4 (see [9]) An element a € M N G™'(—=C) is said to be a weakly
efficient solution to (P,) if there exists no x € M N G~(=C) such that F(z) —
F(a) € —int(K).

Considering the set of convex and K-strictly increasing functions on Y’
T ={s:Y — R: sis convex and K-strictly increasing},
one can define the following new class of efficient solutions.

Definition 5 An element a € M N G~1(=C) is said to be a T-weakly efficient
solution to (P,) if there exists a function s € T such that s(F(a)) < s(F(z)) for
allz € MNG=Y(=C), i.e. if it is an optimal solution of the problem (F).

Remark 3 An easy consequence of the last definition is that each T-weakly effi-
cient solution to (P,) is also a weakly efficient one.
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Using the results from the previous section we can give sequential optimal-
ity conditions for both S-properly and T-weakly efficient solutions to (P,). One
must acknowledge the fact that such conditions hold without any other constraint
qualification, therefore they represent an improvement for the optimality condi-
tions given so far in the literature (see [4]). They can also be stated in the case
when the functions F' and G are only star K-lower semicontinuous, star C-lower
semicontinuous, respectively, but for the simplicity of the presentation we have
chosen to express them in the continuous case.

Sequential characterization of optimal solutions for problem (P;) have already
been given in Theorem 4. Since they look identical both for S-properly efficient
solutions and T-weakly efficient solutions, the only difference being that for the
first one the function s is K-strongly increasing while for the second the function
is K-strictly increasing, they are not repeated here at this point. Nevertheless, in
the following subsections we give two particular cases by specializing the scalar-
izing function. For them, we state explicitly the sequential optimality conditions.

It is worth to mention that our theory can be applied to a wider area of
scalarizing functions. Nevertheless, we restrict ourselves to the afore mentioned
particular cases since besides being representative they also suffice as examples
of obtaining sequential optimality conditions for vector optimization by means of
scalarization.

4.1 Linear Scalarization

The most famous and used scalarization in vector optimization is the one with
K-strongly increasing linear functionals. Let us start by noticing that for each
A € K*0 the function sy : Y — R defined by

sx)=\y) Vyey
is K-strongly increasing, continuous and convex. Then, considering the set
Si={sx:Y = R:s(y)=(\y) VyeY,\e K*},

an element a € M N G~1(—C) is a Sj-properly efficient solution to (P,) if there
exists a A € K*0 such that (\, F(a)) < (\, F(y)) for all y € M N G~1(—~C). The
following sequential optimality condition can be given.

Theorem 8 An element a € MNG~Y(—C) is a S;- properly efficient solution to
(Py) if and only if there exists a A € K*° such that
I&ny Yns 2n) € M XY x —C, I(ul, v}, th,2) € X* x X* x X* x C*,
uy € O(AF) (), vp € 0(22G) (), th € Npr(z0), (25, 20) = 0 Vn €N,
up + v, +tr — 0,2, — a,y, — F(a), z, — G(a), (n — +00),
(27, G(a)) = 0, (2, G(zn)) — 0, (n — +00).

(13)

15




Proof. An element a € M N G~1(—C) is a Sj-properly efficient solution to (P,)
if and only if there exists a A € K*° such that it is an optimal solution to the
problem

Py) inf () F(x)),

) i
which is nothing but a reformulation of problem (P;) in this framework. Since all
the function involved are continuous and sy is K-increasing, we can use Theorem
4 where the sequential characterization of the optimal solutions is given by system
(9). Due to the particular form of s, the following changes are made. First of all
dom(sy) = Y while y € 9s,(y,) means actually that y; = X for all n € N. By
replacing y* with X in (9) we obtain exactly (13), taking also into account that
sy and F are continuous, and y,, — F(a) for n — oo, thus becoming superfluous
for us to write the conditions sx(y,) — sx(F'(a)) — 0, (\,y, — F(a)) — 0 and
(\, F(z,) — F(a)) = 0. m

4.2 Set Scalarization

Some quite recent scalarization methods are based on already given or constructed
sets which have to satisfy some conditions. The scalarization functions we use in
the following are inspired from Gerth and Weidner [5].

To the general framework from the beginning of the section we add the as-
sumption that the convex closed cone K fulfills int(K') # (0. For each u € int(K)
we consider the function '

s, Y > Rys,(y)=inf{te R:yctpy— K},

which is K-strictly increasing, convex and continuous, according to [5]. Let us
consider the following set of K-strictly increasing, convex and continuous func-
tions

T, = {s, : p € int(K)}.

Then an element a € M N G~Y(—C) is a Ts-weakly efficient solution to (P,) if
there exists a p € int(K) such that a is an optimal solution to problem
(Fu) mlél]\f/l su(F ().
G(z)e—-C
The following sequential characterization of Ts-weakly efficient solutions can be
given.
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Theorem 9 An element a € M N G~Y(—C) is a T,-weakly efficient solution to
(P,) if and only if there exists a p € int(K) such that

(3@, Yn, 20) € M XY x —C,A(ul, vf, 15, 4%, 2%) € X* x X* x X* x K* x C¥,
Uy, € O(YpF)(@n), vy, € 0(23,G)(wn), 1, € Nas(n), (23, 20) =0,
<y:u/'l’> = 170{A€K*:(A,u):1} (yn) = (y:wyn> VneN
uy, + oy, +tn — 0,2, — a,y, — F(a), z, — G(a), (n — +c0),
(U, 4 — F(a)) — (z;,G(a)) — 0, (n — +00),
( (U, F(zn) — F(a)) + (25, G(za) — G(a)) — 0, (n — +00).

A\

(14)

Proof. For p € int(K) problem (P,) is nothing but a reformulation of problem
(P;) in this particular framework. From Theorem 4 we know that a is an optimal
solution of (P,) if and only if (9) holds. In order to be able to reexpress it, we
need to establish the conjugate of s,,, S Y*r— R. For each y* € K* one has

su(y*) =sup ¢ (y",y) — inf ¢t5 = sup {(y*,y)—t}=
yey teR teR
yetu—K yetp—K

= sup{—t+ a1p <y*,u+w>} = sup{e((y", ) — )} + sup (') =

teR ue—K ue—K
_ o (=1
400, otherwise.

Thus, for y, € Y and y}; € K*, yi € 9s,(yn) is equivalent to

ol =1 inf = i i
(Yo, ) and teR’ylnréwﬂKt (Yr,yn) Yn € N (15)

The above expression can be further refined thus obtaining a more interesting
formulation of it. Let y, € Y,n € N, be fixed. Since p € int(K) it is easy to
verify the Slater condition for the optimization problem

(PI) inf t,

i.e. there exists ¢ € R such that ¢ — y, € int(K). Thus, strong duality holds
between (Pr) and its Lagrange dual problem. Therefore

inf  t= sup inlg{t + (N yn —tp)} = sup {()\, Yn) + %gﬂg{t — (A,tu)}} =

teR,ynctu—K AeK* t€ AeK*
= sup (N ¥n) = 0prek, (=1} (Un)- (16)
AEK* (A p)=1

From (15) and (16) we obtain that, for y, € Y and y} € K*, y € 0s,(y») if and
only if
(U, 1) =1 and o rer (=13 (Un) = (U5, ¥n) ¥n € N.
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Taking into account that s, is continuous and y, — F(a) for all n — oo, it is
superfluous to write the condition s,(yn) — su(F(a)) — 0. By replacing in (9)
everything according to the discussion above, we obtain exactly (14). =
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