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The inversion of the one–dimensional Radon transform on the rotation group
SO(3) is an ill posed inverse problem which applies to X–ray tomography with
polycrystalline materials. This communication presents a novel approach to the nu-
merical inversion of the one–dimensional Radon transform on SO(3). Based on a
Fourier slice theorem the discrete inverse Radon transform of a function sampled
on the product space S2 × S2 of two two–dimensional spheres is determined as the
solution of a minimization problem, which is iteratively solved using fast Fourier
techniques for S2 and SO(3). The favorable complexity and stability of the algo-
rithm based on these techniques has been confirmed with numerical tests.

1 Introduction

The Radon transform on SO(3) has recently been recognized to be instrumental for the analysis
of crystallographic preferred orientation as it is the cornerstone of the relationship between a
crystallographic orientation density function (ODF) and its experimentally accessible pole den-
sity functions (PDF) cf. [21, 22, 6]. Thus, the major problem to determine a reasonable ODF
from experimental pole intensity data requires the inversion of the Radon transform on SO(3).
This problem has rarely been studied with mathematical rigor even so there are several ad hoc
methods most of which originate in material science, cf. [1, 13, 19, 10].

This communication presents a novel mathematically sound approach building on advanced
methods of the inversion of the Radon transform on R3, cf. [15]. The numerical inversion of the
Radon transform on the rotational group SO(3) is an ill posed inverse problem which requires
careful analysis and design of algorithms. Therefore, we formulate a Fourier slice theorem for
the Radon transform on SO(3) which characterizes the Radon transform as a multiplication
operator in Fourier space.

Based on this characterization we define a discrete inverse Radon transform in terms of dis-
crete Fourier transforms on SO(3) and S2 × S2, respectively, and their inverses. We define
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1 Introduction

the inverse discrete Fourier transform of a function sampled on S2 × S2 as the solution of a
minimization problem. It is iteratively solved applying fast algorithms for spherical harmonics.

In particular, we present for the first time a fast algorithm for the evaluation of the discrete
inverse Radon transform in SO(3) based on fast Fourier techniques on the two–dimensional
sphere S2 and the rotational group SO(3). More precisely, we rely on the nonequispaced Fourier
transforms on S2 and SO(3), cf. [12, 8].

The paper is organized as follows. After introducing the major special functions on the do-
mains S2 and SO(3) we define in Section 2 the Radon transform on SO(3) as the integral opera-
tor

R : L2(SO(3))→ L2(S2 × S2), (Rf)(h, r) =
1

2π

∫
G(h,r)

f(g) dg,

where G(h, r) denotes for any h, r ∈ S2 a geodesic in SO(3). In Theorem 2.7 we derive a
representation of the Radon transform R in Fourier space which might be interpreted as an
analogon to the classical Fourier slice theorem of the Radon transform in Rd.

We proceed by defining two finite dimensional approximations of the inverse Radon transform
of a function P ∈ C(S2 × S2) given its values at a finite set of nodes Γ ⊂ S2 × S2. Depending
on the number of sample nodes and the dimension of the approximation space we define the ap-
proximations of the inverse Radon transform either as the solution of an interpolation problem
or as a the solution of an optimization problem. We end the section by proving the basic approx-
imation Theorem 2.11 relating the approximation error in L2(SO(3)) to the approximation error
in the Fourier space corresponding to S2 × S2.

Section 3 is devoted to the discrete theory. First we present in Theorem 3.4 a factorization of
the discrete Radon transform on SO(3), i.e., of the operator that evaluates the Radon transform
of a polynomial on SO(3) in a finite set of nodes Γ ⊂ S2 × S2. Here we are concerned with sets
of nodes that are of the special form Γ = { (hi, rij) ∈ S2×S2 | i = 1, . . . , N, j = 1, . . . , Ni }.
Based on the factorization of the discrete Radon transform the Algorithms 2 and 3 implement
the direct and the adjoint forward transform with numerical complexity O(NL3 + |Γ|), where
L ∈ N is the maximum polynomial degree used for the approximation of the Radon transform
(cf. Lemma 3.6). This complexity compares favorably to the numerical complexityO(L3 |Γ|) of
the naive algorithm. In Theorem 3.5 the algorithm for the discrete Radon transform is utilized to
derive an algorithm for the computation of the inverse Radon transform that has the numerical
complexity O(NL3 + |Γ|) per iteration. A necessary condition on the structure of the set of
nodes Γ ⊂ S2×S2 and in particular on the number N ∈ N such that the inverse problem is well
posed is given in Theorem 3.9.

In Section 4 we check the CGNR as well as the CGNE based algorithm for various combina-
tions of polynomial degree and sampling sizes. In all our experiments both algorithms converge
if the polynomial degree is chosen sufficiently large. However, in the case that the dimension
of the approximation space is almost equal to the number of sampling nodes none of both algo-
rithms converges. A similar result for the case of approximation on the sphere can be found in
[9].

In the last Section 5 we address the application of the Radon transform on SO(3) to texture
analysis. We formulate the practical problem of recovering an orientation distribution function
from diffraction measurements and perform some sample calculations using the CGNR based
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algorithm. Since in texture analysis one is interested in the Fourier coefficients of certain orders
we analyze the approximation error for each of the harmonic subspaces separately. We observe
that the maximum harmonic order up to which the Fourier coefficients can be approximated is in
general significantly lower than the theoretic bound given in Theorem 3.9. Moreover, we observe
that the approximation error in a fixed harmonic subspace decreases if the total polynomial
degree of approximation is increased. This observation has a direct consequence for the practical
determination of low order Fourier coefficients in texture analysis since it suggests to choose the
total polynomial degree of approximation much higher then the order of the required Fourier
coefficients.

2 Integral Operators

Functions on S2. For the following exposition we refer to [2]. The Legendre polynomials
Pl : [−1, 1] → R, l ∈ N0, are the key special functions in harmonic analysis on the two–
dimensional sphere. They are characterized as classical orthogonal polynomials on the interval
[−1, 1] by the properties

1. Pl is a polynomial of degree l,

2.
∫ 1
−1 Pl(t)Pl′(t) dt = 2

2l+1δl,l′ for l, l′ ∈ N0 .

By property 2 the Legendre polynomials are normed to Pl(1) = 1, l ∈ N0. The associated
Legendre functions Pkl : [−1, 1] → R, l, k ∈ N0, k ≤ l, are defined with the derivatives of the
Legendre polynomials

Pkl (t) =
(

(l − k)!
(l + k)!

)1/2

(1− t2)k/2
dk

dtk
Pl(t), t ∈ [−1, 1].

They satisfy for all l ∈ N0, k = 0, . . . , l, the three term recurrence relation

P ll−1(t) = 0, P ll (t) =

√
(2l)!
2ll!

(1− t2)l/2,

Pkl+1(t) = vkl tPkl (t)− wkl Pkl−1(t), t ∈ [−1, 1],
(2.1)

where

vkl =
2l + 1√

(l − k + 1) (l + k + 1)
and wkl =

√
(l − k) (l + k)

(l − k + 1) (l + k + 1)
.

Let ξ ∈ S2 and let (θ, ρ) ∈ [0, π]× [0, 2π) be its polar coordinates, i.e.,

ξ = (cos ρ sin θ, sin ρ sin θ, cos θ)T.

Then the spherical harmonics given as

Ykl (ξ) =

√
2l + 1

4π
P |k|l (cos θ)eikρ, k = −l, . . . , l, (2.2)
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span the harmonic space Harml(S2) = span
{
Y−ll , . . . ,Y ll

}
of all spherical harmonics with a

fixed degree l ∈ N0. Moreover, the spherical harmonics (2.2) satisfy the orthogonality relation-
ship ∫

S2

Ykl (ξ)Yk′l′ (ξ) dξ = δll′δk,k′ ,

and the function system Ykl , l ∈ N0, k = −l, . . . , l, forms an orthonormal basis of L2(S2).
The harmonic spaces Harml(S2), l ∈ N0, provide a complete system of rotational invariant,
irreducible subspaces of L2(S2), i.e.,

L2(S2) = closL2

∞⊕
l=0

Harml(S2).

Let L ∈ N0. Then any function

f ∈
L⊕
l=0

Harml(S2)

is called spherical polynomial of degree L.
For a given function f ∈ L2(S2) we define its Fourier sequence f̂ ∈ `2(I),

I = { (l, k) ∈ Z2 | l ∈ N0, k = −l, . . . , l },

as the sequence of coefficients with respect to the basis Ykl , (l, k) ∈ I , i.e.,

f̂(l, k) =
∫

S2

f(ξ)Ykl (ξ) dξ, (l, k) ∈ I.

Moreover, we define the index set

IL = { (l, k) ∈ Z2 | l = 0, . . . , L, k = −l, . . . , l },

of the Fourier coefficients of the space of spherical polynomials of degree L ∈ N0 which has the
dimension

|IL| = (L+ 1)2.

Definition 2.1. We define the continuous Fourier transform FS2 in L2(S2) as the operator

FS2 : `2(I)→ L2(S2), f̂ 7→
∑

(l,k)∈I

f̂(l, k)Ykl . (2.3)

By Parseval’s theorem the operators FS2 , F−1
S2 are well defined isometries between L2(S2)

and `2(I) and we have for any function f ∈ L2(S2),

F−1
S2 f = f̂ .
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2 Integral Operators

Functions on SO(3). By SO(3) we denote the Lie group of all orthogonal 3 × 3 matrices
with determinant one. Setting

J = { (l, k, k′) ∈ Z3 | l ∈ N0, k, k
′ = −l, . . . , l },

we consider a basis system Dkk′
l ∈ L2(SO(3)), (l, k, k′) ∈ J of harmonic functions on SO(3)

following [23]. These functions Dkk′
l , (l, k, k′) ∈ J are called Wigner–D functions and are

defined by the representation properties

Dkk′
l (g) =

∫
S2

Yk′l (g−1ξ)Ykl (ξ) dξ, (l, k, k′) ∈ J, g ∈ SO(3). (2.4)

The Wigner–D functions form an orthogonal basis in L2(SO(3)) with respect to the Haar
measure. In particular, every function f ∈ L2(SO(3)) has a unique series expansion in terms of
Wigner–D functions

f =
∑

(l,k,k′)∈J

(l + 1
2)

1
2

2π
f̂(l, k, k′)Dkk′

l , (2.5)

with Fourier coefficients f̂(l, k, k′), (l, k, k′) ∈ J , given by the integrals

f̂(l, k, k′) =
(l + 1

2)
1
2

2π

∫
SO(3)

f(g)Dkk′
l (g) dg.

Note that the Wigner–D functions Dkk′
l are not normalized in the L2–sense but satisfy

∥∥Dkk′
l

∥∥2

L2(SO(3))
=
∫

SO(3)

∣∣∣Dkk′
l (g)

∣∣∣2 dg =
4π2

l + 1
2

,

with the measure on SO(3) normalized to
∫

SO(3) dg = 8π2.
Let l ∈ N0. Then the harmonic space Harml(SO(3)) of degree l is defined as

Harml(SO(3)) = span
{
Dkk′
l | k, k′ = −l, . . . , l

}
.

For reasons of analogy we call any function f ∈
⊕L

l=0 Harml(SO(3)) a polynomial on SO(3)
of degree L ∈ N0 and correspondingly define the truncated index set

JL = { (l, k, k′) ∈ Z3 | l = 0, . . . , L, k, k′ = −l, . . . , l }.

The dimension of the space of these polynomials is given by

|JL| =
1
3

(L+ 1)(2L+ 1)(2L+ 3).

Similar to the spherical case we introduce the Fourier transform in L2(SO(3)).
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Definition 2.2. The continuous Fourier transform in L2(SO(3)) is defined as the operator

FSO(3) : `2(J)→ L2(SO(3)), f̂ 7→
∑

(l,k,k′)∈J

(l + 1
2)

1
2

2π
f̂(l, k, k′)Dkk′

l . (2.6)

By Parseval’s theorem the operators FSO(3), F−1
SO(3) are well defined isometries between

L2(SO(3)) and `2(J) and we have for any function f ∈ L2(SO(3))

F−1
SO(3)f = f̂ .

The One–Dimensional Radon Transform on SO(3). The initial Radon transform in-
troduced by Funk [3] and Radon [18] was largely generalized by Helgason, see [4, 5] and the
references therein. For more specific details concerning the Radon transform on SO(3) see also
[14].

Let h, r ∈ S2. Then the set

G(h, r) = {g ∈ SO(3) | gh = r }

of all rotations that map the vector h onto the vector r defines a geodesic in SO(3). Moreover,
for any geodesic G ⊂ SO(3) there is a pair (h, r) ∈ S2 × S2 such that G = G(h, r). The pair
(h, r) is well defined up to the symmetry G(h, r) = −G(h, r).

Let h, r ∈ S2 and let g0 ∈ G(h, r) be an arbitrary rotation mapping h onto r. Then the
geodesic G(h, r) allows for the parameterization

G(h, r) = {Rotr(ω)g0 ∈ SO(3) | ω ∈ [0, 2π) },

where Rotr(ω) denotes the rotation about the rotational axis r by the rotation angle ω.
We now step to the definition of the one–dimensional Radon transform on SO(3) as a bounded

operator between L2(SO(3)) and L2(S2×S2). The strict way to do so is to first define the Radon
transform for the class of continuous functions, show that it is bounded with respect to the L2–
norm and then extend it to a bounded operator between L2(SO(3)) and L2(S2 × S2). However,
we only refer to [22] and immediately define the Radon transform in the Hilbert space setting.

Definition 2.3. The (one–dimensional) Radon transform on SO(3) is defined as the integral
operator

R : L2(SO(3))→ L2(S2 × S2),

(Rf)(h, r) =
1

2π

∫
G(h,r)

f(g) dg, (h, r) ∈ S2 × S2.

For completeness we prove the following Lemma (see also [22]).

Lemma 2.4. Let l ∈ N0 and k, k′ = −l, . . . , l. The Radon transform of the Wigner–D function
Dkk′
l is given by

RDkk′
l (h, r) =

2π
l + 1

2

Yk′l (h)Ykl (r), h, r ∈ S2. (2.7)
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Proof. For arbitrary l ∈ N0, k, k′ = −l, . . . , l we obtain by equation (2.4)

RDkk′
l (h, r) =

1
2π

∫
G(h,r)

Dkk′
l (g) dg

=
1

2π

∫
G(h,r)

∫
S2

Yk′l (g−1ξ)Ykl (ξ) dξ dg

=
1

2π

∫
S2

Yk′l (ξ)
∫
G(h,r)

Ykl (gξ) dg dξ. (2.8)

Since we have for any ξ,h, r ∈ S2 and g0 ∈ G(h, r),

{gξ ∈ S2 | g ∈ G(h, r) } = {Rotr(ω)g0ξ ∈ S2 | ω ∈ [0, 2π) }

the inner integral rewrites as

1
2π

∫
G(h,r)

Ykl (gξ) dg =
1

2π

∫ 2π

0
Ykl (Rotr(ω)g0ξ) dω = Pl(r · g0ξ)Ykl (r).

Here we have applied the spherical mean value theorem (cf. [2, eq. 3.6.15]). Together with (2.8)
and the Funk–Hecke theorem (cf. [2, Th. 3.6.1]) we obtain

RDkk′
l (h, r) =

∫
S2

Yk′l (ξ)Pl(h · ξ)Ykl (r) dξ =
2π
l + 1

2

Yk′l (h)Ykl (r).

As a direct consequence of the above lemma we obtain the following characterization of the
range of the Radon transformR on SO(3).

Lemma 2.5. The range of the Radon transformR is the subspace of all functions P ∈ L2(S2×
S2) that have a Fourier expansion of the form

P =
∑

(l,k,k′)∈J

P̂ (l, k, k′)Yk′l (◦1)Ykl (◦2) (2.9)

with Fourier coefficients P̂ (l, k, k′), (l, k, k′) ∈ J satisfying the summation property∑
(l,k,k′)∈J

(2l + 1)
∣∣∣P̂ (l, k, k′)

∣∣∣2 <∞.
In particular, any function P ∈ RL2(SO(3)) in the range of the Radon transform possesses the
symmetry property

P (h, r) = P (−h,−r), h, r ∈ S2. (2.10)

For the specific subspace in L2(S2 × S2) spanned by the range of the Radon transform we
define the following Fourier transform.
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Definition 2.6. By the operator

FR : `2(J)→ L2(S2 × S2), FRP̂ =
∑

(l,k,k′)∈J

P̂ (l, k, k′)Yk′l (◦1)Ykl (◦2)

we denote the restriction of the Fourier transform in L2(S2 × S2) to the subspace spanned by
functions of the form (2.9).

Next we want to derive an equivalent to the classical Fourier slice theorem for the Radon
transform in Rd. To this end we define the following two operators. The first operator V is given
as

V : `2(J)→ `2(I, L2(S2)), (VP̂ )(l, k) =
l∑

k′=−l
P̂ (l,−k, k′)Yk′l (2.11)

and defines for any sequence P̂ ∈ `2(J) a sequence of functions VP̂ (l, k) ∈ L2(S2), (l, k) ∈ I .
The norm in `2(I, L2(S2)) is given as

‖VP̂‖2`2(I,L2(S2)) =
∑

(l,k)∈I

‖VP̂ (l, k)‖2L2(S2) =
∑

(l,k)∈I

∫ π

0

∫ 2π

0

∣∣∣VP̂ (l, k)(θ, ρ)
∣∣∣2 dρ sin θ dθ.

The second operatorM : `2(J)→ `2(J) we define as the multiplication operator

Mf̂(l, k, k′) =
π√

2l + 1
f̂(l, k, k′), (l, k, k′) ∈ J. (2.12)

Theorem 2.7 (Fourier slice). The Radon transform R on SO(3) is a multiplication operator in
Fourier space

R = FRMF−1
SO(3). (2.13)

Moreover, we have the decomposition

FR = FS2V, (2.14)

which finally leads to
R = FS2VMF−1

SO(3).

Proof. The first decomposition (2.13) is a direct consequence of Lemma 2.4. In order to prove
the decomposition (2.14) we consider an arbitrary Fourier sequence P̂ ∈ `2(J) and verify

FS2VP̂ =
∑

(l,k)∈I

(VP̂ )(l, k)Ykl =
∑

(l,k,k′)∈J

P̂ (l,−k, k′)Yk′l Ykl

=
∑

(l,k,k′)∈J

P̂ (l, k, k′)Yk′l Ykl = FRP̂ .
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2 Integral Operators

The decomposition of the Radon transform R in Theorem 2.7 can be expressed in a commu-
tative diagram as

L2(SO(3)) R−−−−→ L2(S2 × S2)xFSO(3)

xFR
`2(J ) M−−−−→ `2(J ).

(2.15)

The Inverse Radon Transform. By Lemma 2.4 the inverse Radon transform

R−1 : L2(S2 × S2)→ L2(SO(3))

is an unbounded operator and hence its numerical evaluation is an ill posed problem. Regulariza-
tion of the ill posed problem means to approximate the unbounded operator R−1 by a bounded
one. For this purpose we first define two approximations of the inverse Fourier transform F−1

R .
The next result concerns minimization problems in discrete norms in `2, where `2 is either

`2(I) or `2(J). Therefore, we define the weighted norm ‖w‖W , w ∈ `2 for any nonnegative
operatorW : `2 → `2 called weight as

‖w‖W = ‖W1/2w‖2 .

Let Γ ⊂ S2×S2 be a finite subset of nodes and let L ∈ N0. Then we define for any continuous
function P ∈ C(S2 × S2) the set of Fourier sequences

ΩL,Γ(P ) = {ω ∈ `2(J) |ω(l, k, k′) = 0 for l > L and

(FRω)(h, r) = P (h, r) for (h, r) ∈ Γ }.

Lemma 2.8. Let Γ ⊂ S2 × S2 be a finite subset of nodes and let L ∈ N0 such that for any
P ∈ C(S2 × S2) the set ΩL,Γ(P ) is not empty. Then the minimization problem

ω̃ = argmin
ω∈ΩL,Γ(P )

‖ω‖2W (2.16)

has a unique solution for any positive operatorW and defines a linear, bounded operator

T EL,Γ : C(S2 × S2)→ `2(J), T EL,ΓP = ω̃. (2.17)

Proof. Existence and uniqueness of a solution of minimization problem (2.16) follows from
the fact that ‖◦‖2W is a strictly convex functional on the convex set ΩL,Γ(P ). Since the set
ΩL,Γ(P ) is finite dimensional the solution of the minimization problem (2.16) coincides with
the solution of the corresponding normal equations of second kind (cf. [20]). In particular, the
solution depends linearly on the given continuous function P . Since the operator T EL,Γ is finite
dimensional it is bounded.

Replacing the normal equations of second kind by normal equations of first kind the proof of
the next lemma is analogous to the previous proof.
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Lemma 2.9. Assume that a finite set of nodes Γ ⊂ S2 × S2 and a polynomial degree L ∈ N0

are chosen such that for any P ∈ C(S2× S2) the set of Fourier coefficients ΩL,Γ(P ) contains at
most one element. Then the minimization problem

ω̃ = argmin
{ω∈`2(J) |ω(l)=0 for l>L }

∥∥(FRω)(Γ)− P (Γ)
∥∥2

2
+ ‖ω‖2W (2.18)

has a unique solution for any positive operatorW and defines a linear, bounded operator

T RL,Γ : C(S2 × S2)→ `2(J), T RL,ΓP = ω̃. (2.19)

Obviously a necessary condition for the existence of the first operator is |Γ| ≤ |JL| whereas
the existence of the operator T RL,Γ requires |Γ| ≥ |JL|. In the general case of arbitrarily scattered
nodes Γ one can expect the operators T EL,Γ and T RL,Γ to be well defined if |Γ| < |JL| or |Γ| > |JL|,
respectively. A more precise result depending on the set of nodes Γ will be given in Lemma 3.9.

Definition 2.10. Let Γ ⊂ S2 × S2 be a finite subset of nodes and let L ∈ N0 be a polynomial
degree. If the operator T EL,Γ exists then we construct the operator

REL,Γ : C(S2 × S2)→ C(SO(3)), REL,Γ = FSO(3)M−1T EL,Γ,

and if the operator T RL,Γ exists then we construct the operator

RRL,Γ : C(S2 × S2)→ C(SO(3)), RRL,Γ = FSO(3)M−1T RL,Γ.

The operators REL,Γ and RRL,Γ are finite dimensional approximations of the inverse Radon
transformR−1 which we will use for the numerical inversion. They share the characteristic that
for any function P ∈ C(S2 × S2) the functions REL,ΓP and RRL,ΓP , respectively, depend only
on the values of the function P at the set of nodes Γ ⊂ S2 × S2. The subscript L ∈ N0 indicates
that the range of both operators contains only functions of polynomial degree L. The following
theorem gives an estimate on the quality of approximation of the operatorsREL,Γ andRRL,Γ.

Theorem 2.11. Let Γ ⊂ S2 × S2 be a finite subset of nodes and let L ∈ N0 be a polynomial
degree such that the operator REL,Γ is well defined. Then we have for any P ∈ C(S2 × S2) the
equality

‖R−1P −REL,ΓP‖L2(SO(3)) = ‖P̂ − T EL,ΓP‖M−2 , (2.20)

whereM is the multiplication operator defined in (2.12).
If the set of nodes Γ and the polynomial degree L are chosen such that the operator RRL,Γ is

well defined then an analogous equality is satisfied, i.e.,

‖R−1P −RRL,ΓP‖L2(SO(3)) = ‖P̂ − T RL,ΓP‖M−2 . (2.21)

Proof. Since FSO(3) is an isomorphism we have by Theorem 2.7

‖R−1P −REL,ΓP‖L2(SO(3)) = ‖FSO(3)M−1F−1
R P −FSO(3)M−1T EL,ΓP‖L2(SO(3))

= ‖M−1F−1
R P −M−1T EL,ΓP‖2

= ‖P̂ − T EL,ΓP‖M−2 .

The second equality follows analogously.
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3 Discrete Operators

This section is devoted to the discrete theory. Our main goal is to develop a fast numerical algo-
rithm for the evaluation of the operators REL,Γ and RRL,Γ. Therefore we first introduce discrete
versions of the Fourier transforms in L2(S2) and inRL2(SO(3)), respectively.

Discrete Fourier Transforms. Let P ∈
⊕L

l=0 Harml(S2) be a spherical polynomial of
degree L ∈ N0. Then we use for the finite Fourier sequence P̂ of P the vector notation P̂ ∈ CIL

with P̂l,k = P̂ (l, k) for (l, k) ∈ IL, where the length of the vector is |IL|. According to [8], we
consider the evaluation of the function P at a list of arbitrary nodes given its vector of Fourier
coefficients.

Definition 3.1. [Discrete spherical Fourier transform] Let ξ = (ξ1, . . . , ξN ) be a vector of
N ∈ N arbitrary nodes ξj ∈ S2 and let P̂ ∈ CIL be a vector of Fourier coefficients associated
to a spherical polynomial of degree L ∈ N0. Then the linear operator

FL,ξ : CIL → CN , [FL,ξP̂]j =
∑

(l,k)∈IL

P̂l,kYkl (ξj), j = 1, . . . , N,

is called discrete spherical Fourier transform. Its adjoint operator

FH
L,ξ : CN → CIL , [FH

L,ξc]l,k =
N∑
j=1

cjYkl (ξj), (l, k) ∈ IL,

is called adjoint discrete spherical Fourier transform.

A naive implementation of the discrete spherical Fourier transform and of its adjoint trans-
form for N ∈ N arbitrary nodes and for polynomial degree L ∈ N0 requires O(NL2) flops.
However, there exist much faster algorithms. The algorithm described in [12] and [7] calculates
both transforms in an approximate way with numerical complexity of O(L2 log2 L+N) flops.
We refer to this algorithm as the nonequispaced fast spherical Fourier transform (NFSFT). An
implementation of this algorithm is availably as a part of the NFFT–library [8].

Analogously to the spherical case, we use for the Fourier sequence f̂ of a polynomial f ∈
L2(SO(3)) of degree L ∈ N0 the vector notation f̂ ∈ CJL , f̂l,k,k′ = f̂(l, k, k′), (l, k, k′) ∈ JL.

Definition 3.2. [Discrete Fourier transform on SO(3)] Let g = (g1, . . . ,gN ) be a vector of
N ∈ N arbitrary nodes gi ∈ SO(3) and let f̂ ∈ CJL be the vector of Fourier coefficients
associated to a polynomial f ∈ L2(SO(3)) of degree L ∈ N0. Then the linear operator

FL,g : CJL → CN , [FL,g f̂ ]j =
∑

(l,k,k′)∈JL

(l + 1
2)

1
2

2π
f̂l,k,k′Dkk′

l (gj), j = 1, . . . , N,

is called discrete Fourier transform on SO(3). Its adjoint operator

FH
L,g : CN → CJL , [FH

L,gc]l,k,k′ =
(l + 1

2)
1
2

2π

N∑
j=1

cjDkk′
l (gj),

(l, k, k′) ∈ JL, is called adjoint discrete Fourier transform on SO(3).

11



3 Discrete Operators

We notice that a naive implementation of the discrete Fourier transform on SO(3) and of
its adjoint transform for N ∈ N arbitrary nodes and for a polynomial degree L ∈ N0 has
the numerical complexity ofO(NL3) flops. AnO(L4) algorithm for the case of regular aligned
nodes withN = O(L3) was proposed in [11], based on a separation of variables. This algorithm
was generalized in [17] to anO(L3 log2 L+N) algorithm that works for arbitrary nodes, based
on the nonequispaced fast Fourier transform (cf. [16]).

For our purposes we introduce a discrete version FL,Γ of the operator FR as defined in Defi-
nition 2.6 with respect to a finite set of nodes Γ ⊂ S2×S2. Therefore, we abbreviate the Fourier
sequence P̂ of a polynomial P ∈ RL2(SO(3)) of degree L ∈ N0 by the vector P̂ ∈ CJL ,
P̂l,k,k′ = P̂ (l, k, k′), (l, k, k′) ∈ JL.

Definition 3.3. Let L ∈ N0 be a certain polynomial degree and let Γ ⊂ S2 × S2 be a finite set
of nodes of the form

Γ =
(
(h1, r1,1), (h1, r1,2), . . . , (h1, r1,N1),
(h2, r2,1), (h2, r2,2), . . . , (h2, r2,N2), . . . , (hN , rN,NN )

)
,

where N,Ni ∈ N, i = 1, . . . , N . Then we define the operator FL,Γ as

FL,Γ : CJL → CΓ, [FL,Γw]ij =
∑

(l,k,k′)∈JL

wl,k,k′Yk
′
l (hi)Ykl (rij), (3.1)

with i = 1, . . . , N , j = 1, . . . , Ni, and call

FH
L,Γ : CΓ → CJL , [FH

L,Γu]l,k,k′ =
N∑
i=1

Ni∑
j=1

ui,jYk
′
l (hi)Ykl (rij), (3.2)

with (l, k, k′) ∈ JL, its adjoint operator.

Discrete Fourier Slice Theorem. Now we are going to give a discrete analogon to the
Fourier slice Theorem 2.7 by decomposing the operator FL,Γ intoN independent discrete spher-
ical Fourier transforms and an operator that is almost diagonal and acts separately on the har-
monic spaces.

The sum in (3.1) can be rewritten in the following way:

[FL,Γw]i,j =
L∑
l=0

l∑
k=−l

vi,l,kYkl (rij) = [FL,rivi]j , i = 1, . . . , N, j = 1, . . . , Ni (3.3)

with

vi,l,k =
l∑

k′=−l
wl,−k,k′Yk

′
l (hi), i = 1, . . . N, (l, k) ∈ IL. (3.4)

Here we have used the vector notation vi = (vi,l,k)(l,k)∈IL ∈ CIL , i = 1, . . . , N . The decompo-
sition of the operator FL,Γ will be based on the following matrices. We define the permutation
matrix Π ∈ CN |IL|×N |IL| by

[Πx]i,(l,k) = x(l,−k),i,

12



3 Discrete Operators

where x ∈ C|IL|N . Furthermore, we define the matrices Vl ∈ CN×(2l+1), l = 0, . . . , N , and
V ∈ C|IL|N×|JL| as

Vl = (Ykl (hi))i=1,...,N, k=−l,...,l, V = ([Vl]i,k̃′δl,l̃δk,k̃)((l,k)∈IL,i=1,...,N),((l̃,k̃,k̃′)∈JL).

The matrices Vl, l = 0, . . . , L, and V may also be written as

Vl =

Y
−l
l (h1) . . . Y ll (h1)

...
. . .

...
Y−ll (hN ) . . . Y ll (hN )

 , V =

I1 ⊗V0

. . .
I2L+1 ⊗VL

 ,

where the matrices I2l+1, l ∈ N0 are the identity matrices of C(2l+1)×(2l+1) and ⊗ denotes the
Kronecker product.

Finally, we assume the set of nodes Γ ⊂ S2 × S2 to be indexed as specified in Definition 3.3
and additionally introduce the notation ri = (ri,1, . . . , ri,Ni).

Theorem 3.4. The operator FL,Γ satisfies the decomposition

FL,Γ =

FL,r1

. . .
FL,rN

ΠV. (3.5)

Proof. Let L ∈ N0 and let Γ ⊂ S2 × S2 be a set of nodes as specified in Definition 3.3. Then
we have, for any vector of Fourier coefficients w ∈ CJL , the equality

[ΠVw]i,(l,k) = [Vw](l,−k),i =
l∑

k′=−l
wl,−k,k′Yk

′
l (hi) = vi,l,k, i = 1, . . . , N, (l, k) ∈ IL.

Thus we obtain for any j = 1, . . . , Ni,

[FL,rivi]j =
∑

(l,k)∈IL

[vi]l,kYkl (rij)

=
∑

(l,k,k′)∈JL

wl,−k,k′Yk
′
l (hi)Ykl (rij)

=
∑

(l,k,k′)∈JL

wl,k,k′Yk
′
l (hi)Ykl (rij) = [FL,Γw]ij .

The decomposition of the operator FL,Γ leads to a fast algorithm for its computation. Let w ∈
CJL and (ρi, θi) ∈ [0, 2π) × [0, π] be the polar coordinates of the node hi ∈ S2, i = 1, . . . , N .

13



3 Discrete Operators

Then the vectors vi ∈ CIL , i = 1, . . . , N , given in (3.4) have, for (l, k) ∈ IL, the form

[vi]l,k =

√
2l + 1

4π

l∑
k′=−l

wl,−k,k′P
|k′|
l (cos θi)eik′ρi

=

√
2l + 1

4π
wl,−k,0P0

l (cos θi)

+

√
2l + 1

4π

l∑
k′=1

(
wl,−k,k′eik′ρi + wl,−k,−k′e−ik′ρi

)
Pk′l (cos θi).

Utilizing the three term recurrence relation (2.1) of the associated Legendre polynomials, Algo-
rithm 1 presents an implementation for the calculation of the vectors vi ∈ CIL given in (3.4),
where all P k

′
l (cos(θi)) are precomputed. One recognizes that Algorithm 1 has the numerical

complexity of O(L3) flops and requires O(L2) memory units to store all values of the associ-
ated Legendre polynomials P kl . Algorithm 2 reorganizes Algorithm 1 such that only four values
of P kl are retained in memory. Together with Theorem 3.4 we conclude that utilizing the NFSFT
for the calculation of FL,rivi, i = 1, . . . , N , i. e. the sum (3.3), we obtain the overall complexity
of O(NL3 + |Γ|) flops for the computation of FL,Γw.

Let u = (uT1 , . . . ,u
T
N )T , ui ∈ CNi , i = 1, . . . , N . For the adjoint operator FH

L,Γ we rewrite
(3.2) in the following way

[FH
L,Γu]l,k,k′ =

N∑
i=1

ṽi,l,−kYk
′
l (hi), (l, k, k′) ∈ JL, (3.6)

with

ṽi,l,k =
Ni∑
j=1

ui,jYkl (ri,j) = FH
L,riui, i = 1, . . . , N, (l, k) ∈ IL.

Again we use the vector notation ṽi = (ṽi,l,k)(l,k)∈IL ∈ CIL , i = 1, . . . , N , and mention that,
given the vectors ui ∈ CNi , the vectors ṽi, i = 1, . . . , N , can be computed by N adjoint
NFSFTs with the numerical complexity of O(NL2 log2 L+ |Γ|) flops.

It remains to compute (3.6). Therefore, we define the vectors w̃i ∈ CJL , i = 1, . . . , N , as

w̃i
l,k,k′ = ṽi,l,−kYk

′
l (hi) =

√
2l + 1

4π
[ṽi]l,−ke−ik′ρiP |k

′|
l (cos θi), (l, k, k′) ∈ JL, (3.7)

the computation of which is implemented in Algorithm 3. Performing this algorithm N times
and summing up the vectors w̃i ∈ CJL , i = 1, . . . , N , results in the numerical complexity of
O(NL3) flops. Hence, we have the overall numerical complexity ofO(NL3 + |Γ|) flops for the
application of the adjoint operator FH

L,Γ.
Summarizing the above we obtain the following result.

Theorem 3.5. Let L ∈ N0 be a polynomial degree, and let Γ ⊂ S2 × S2 be a set of nodes
as specified in Definition 3.3. Then, for any vector w ∈ CJL and any vector u ∈ CΓ, the
approximative computation of FL,Γw and FH

L,Γu using the NFSFT and the Algorithms 2 and
3, respectively, has the complexity of O(NL3 + |Γ|) flops, whereas a naive algorithm has the
complexity of O(|Γ|L3) flops.
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3 Discrete Operators

Algorithm 1: Computation of vi = [ΠVw]i ∈ CIL given in (3.4) (naive algorithm).
input : w ∈ CJL

ρi ∈ [0, 2π)
θi ∈ [0, π] /* polar coordinates of the nodes hi ∈ S2

*/

output: vi = [ΠVw]i ∈ CIL

P 0
0 ← 1 /* Comp. of P0

0 (cos θi). */

P 0
−1 ← 0 /* Comp. of P0

l (cos θi), 0 < l ≤ L. */

for l← 1, . . . , L do
P 0
l ←

2l−1
l

cos θi · P 0
l−1 −

l−1
l
· P 0
l−2

end

for k′ ← 1, . . . , L do

Pk
′

k′ ← Pk
′−1

k′−1
·
q

2k′−1
2k′ sin θi /* Comp. of Pk′

k′ (cos θi), 0 < k′ ≤ L. */

Pk
′

k′−1
← 0 /* Comp. of Pk′

l (cos θi), (l, k′) ∈ IL, 0 < k′ < l. */

for l← k′ + 1, . . . , L do

Pk
′

l ←
2l−1√
l2−k′2

cos θi · Pk
′

l−1 −
r

(l−k′−1)·(l+k′−1)

l2−k′2 · Pk′
l−2

end
end

for (l, k) ∈ IL do /* Comp. of vi. */
vi,(l,k) ← wl,−k,0 · P 0

l

for k′ = 1, . . . , l do
vi,(l,k) ← vi,(l,k) +

“
wl,−k,k′eik′ρi + wl,−k,−k′e−ik′ρi

”
· Pk′
l

end
end

for (l, k) ∈ IL do vi,(l,k) ←
q

2l+1
4π

vi,(l,k)

Numerical Inversion of the Radon Transform. Next we are going to combine the dis-
crete Fourier transforms introduced in the previous section in order to derive numerical methods
for the inversion of the Radon transform on SO(3). By Theorem 2.11 the operators

REL,Γ = FSO(3)M−1T EL,Γ and RRL,Γ = FSO(3)M−1T RL,Γ

provide finite dimensional approximations of the inverse Radon transform R−1. Since a fast
algorithm for the Fourier transform FSO(3) exists (cf. [11, 17]), we focus on the computation of
the operators T EL,Γ and T RL,Γ. To be precise we emphasize now the dependence of the operators
T EL,Γ and T RL,Γ on the weightsW : `2(J) → `2(J) and introduce W ∈ CJL×JL as its canonical
restriction to an operator acting between CJL and CJL .

Restricting the minimization problems (2.16) and (2.18) to their effective domains and ranges
Lemma 2.8 and Lemma 2.9 may be rewritten using the discrete operators FL,Γ and W.

Lemma 3.6. Let Γ ⊂ S2×S2 be a finite set of nodes and let L ∈ N0 be a polynomial degree such
that the operator T EL,Γ is well defined. Then for any function P ∈ C(S2 × S2) the minimization
problem

wE = argmin
{w∈CJL |FL,Γw=P (Γ) }

‖w‖2W (3.8)
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3 Discrete Operators

Algorithm 2: Computation of vi = [ΠVw]i ∈ CIL given in (3.4) (optimized algorithm).
input : w ∈ CJL

ρi ∈ [0, 2π)
θi ∈ [0, π] /* polar coordinates of the nodes hi ∈ S2

*/

output: vi = [ΠVw]i ∈ CIL

Pdiag ← 1 /* Add P 0
0 (cos(θi)). */

vi,(0,0) ← w0,0,0

P ′ ← Pdiag; P ′′ ← 0 /* Add P 0
l (cos(θi)), 0 < l ≤ L. */

for l← 1, . . . , L do
P ← 2l−1

l
cos θi · P ′ − l−1

l
· P ′′

P ′′ ← P ′; P ′ ← P
for k ← −l, . . . , l do

vi,(l,k) ← wl,−k,0 · P
end

end

for k′ ← 1, . . . , L do

Pdiag ← Pdiag ·
q

2k′−1
2k′ sin θi /* Add Pk

′
k′ (cos(θi)), 0 < k′ ≤ L. */

for k ← −k′, . . . , k′ do
vi,(k′,k) ← vi,(k′,k) +

“
wk′,−k,k′eik′ρi + wk′,−k,−k′e−ik′ρi

”
· Pdiag

end

P ′ ← Pdiag; P ′′ ← 0 /* Add Pk
′

l (cos(θi)), (l, k′) ∈ IL, 0 < k′ < l. */
for l = k′ + 1, . . . , L do

P ← 2l−1√
l2−k′2

cos θi · P ′ −
r

(l−k′−1)(l+k′−1)

l2−k′2 · P ′′

P ′′ ← P ′; P ′ ← P
for k = −l, . . . , l do

vi,(l,k) ← vi,(l,k) +
“
wl,−k,k′eik′ρi + wl,−k,−k′e−ik′ρi

”
· P

end
end

end

for (l, k) ∈ IL do vi,(l,k) ←
q

2l+1
4π

vi,(l,k)

has a unique solution wE ∈ CJL , which coincides with T EL,ΓP in the sense of

wE
l,k,k′ = T EL,ΓP (l, k, k′), (l, k, k′) ∈ JL. (3.9)

Lemma 3.7. Assume that the set of nodes Γ ⊂ S2 × S2 and the polynomial degree L ∈ N0 are
chosen such that the operator T RL,Γ is well defined. Then for any function P ∈ C(S2 × S2) the
minimization problem

wR = argmin
w∈CJL

‖FL,Γw − P (Γ)‖22 + ‖w‖2W (3.10)

has a unique solution wR ∈ CJL , which coincides with T RL,ΓP in the sense of (3.9).

The minimization problems (3.8) and (3.10) can be numerically solved by the CGNE and
the CGNR algorithm, respectively, cf. e.g. [20], which results in a fast numerical method
for the approximate calculation of the inverse Fourier transform FR in the range of the Radon
transform. More precisely, we obtain from Theorem 3.5 the following result.
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3 Discrete Operators

Algorithm 3: Computation of w̃i ∈ CJL from ṽi ∈ CIL as defined in (3.7).
input : ṽi ∈ CIL

ρi ∈ [0, 2π)
θi ∈ [0, π] /* polar coordinates of the nodes hi ∈ S2

*/

output: w̃i ∈ CJL

Pdiag ← 1 /* Comp. of P 0
0 (cos(θi)). */

w̃i
0,0,0 ← ṽi,(0,0)

P ′ ← Pdiag; P ′′ ← 0 /* Comp. of P 0
l (cos(θi)), 0 < l ≤ L. */

for l← 1, . . . , L do
P ← 2l−1

l
cos θi · P ′ − l−1

l
· P ′′

P ′′ ← P ′; P ′ ← P
for k ← −l, . . . , l do

w̃i
l,k,0 ← ṽi,(l,−k) · P

end
end

for k′ ← 1, . . . , L do

Pdiag ← Pdiag ·
q

2k′−1
2k′ sin θi /* Comp. of Pk

′
k′ (cos(θi)), 0 < k′ ≤ L. */

for k = −k′, . . . , k′ do
w̃i
k′,k,k′ ← ṽi,(k′,−k)e

−ik′ρi · Pdiag

w̃i
k′,k,−k′ ← ṽi,(k′,−k)e

ik′ρi · Pdiag

end

P ′ ← Pdiag; P ′′ ← 0 /* Comp. of Pk
′

l (cos θi), (l, k′) ∈ IL, 0 < k′ < l. */
for l← k′ + 1, . . . , L do

P ← 2l−1√
l2−k′2

cos θi · P ′ −
r

(l−k′−1)(l+k′−1)

l2−k′2 · P ′′

P ′′ ← P ′; P ′ ← P
for k ← −l, . . . , l do

w̃i
l,k,k′ ← ṽi,(l,−k)e

−ik′ρi · P
w̃i
l,k,−k′ ← ṽi,(l,−k)e

ik′ρi · P
end

end
end

for (l, k, k′) ∈ JL do w̃i
l,k,k′ ←

q
2l+1
4π

w̃i
l,k,k′

Theorem 3.8. Let L ∈ N0 be a polynomial degree and assume that the set of nodes Γ ∈ S2×S2

has the structure as described in Definition 3.3. Then wR = T RL,ΓP or wE = T EL,ΓP can be
computed by the CGNR or CGNE algorithm, respectively. Moreover, both algorithms can be
implemented such that each iteration step has the numerical complexity of O(NL3 + |Γ|) flops.

The complexity of O(NL3 + |Γ|) flops for a single iteration step using the NFSFT compares
to the complexity of O(L3 |Γ|) flops of a naive implementation. Hence, the asymptotic superi-
ority of our algorithm depends on the quotient O(|Γ| /N). Next we are going to show that this
quotient can not be better then O(L2).

Theorem 3.9. For the matrix FL,Γ to be injective it is necessary that |Γ| =
∑N

i=1Ni ≥ |JL|
and that N ≥ 2L+ 1.

Proof. The first condition follows immediately from the dimension of the matrix FL,Γ. For the
second condition we use the decomposition (3.5) and observe that the matrix V ∈ CN |IL|×|JL|
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4 Numerical Tests

has full row rank |JL| if and only if each block Vl has full row rank 2l + 1. In particular, we
obtain for the last block VL the condition N ≥ 2L+ 1.

If O(|Γ|) = O(|JL|) and O(N) = O(L), our NFFT based algorithm has the numerical
complexity of O(|Γ|4/3) flops per iteration which compares to the numerical complexity of
O(|Γ|2) flops of a naive implementation.

Once the minimization problem (3.8) or (3.10) has been solved the numerical evaluation of
R−1P (g) ≈ FH

L,gMwE/R for a vector of rotations g = (g1, . . . ,gK) has the complexity of
O(L3 log2 L+K) flops by applying a fast Fourier transform on SO(3) [17]. Here the operator
M ∈ CJL×JL denotes the canonical restriction of the multiplication operator M : `2(J) →
`2(J).

4 Numerical Tests

Let f ∈
⊕L

l=0 Harml(SO(3)) be an arbitrary function with polynomial degree at most L ∈ N0.
Let furthermore

ΓN,N ′ = { (hi, rj) ∈ S2 × S2 | i = 1, . . . , N, j = 1, . . . , N ′ } (4.1)

be a set of nodes, P ∈ CN×N ′ with Pij = P (hi, rj) = Rf(hi, rj), i = 1, . . . , N, j =
1, . . . , N ′ be a sampling of the Radon transform of the function f . In the previous section we
introduced two algorithms for the calculation of an approximation of the Fourier coefficients
of Rf up to a polynomial degree L ∈ N0, namely wE = T EL,ΓN,N′P and wR = T RL,ΓN,N′P .
In Theorem 2.7 we have already mentioned that there is a one to one relationship between
the Fourier coefficients of f and the Fourier coefficients of Rf specified by the multiplication
operatorM. Let f̂ ∈ CJL be the vector of Fourier coefficients of f and let M ∈ RJL×JL be the
discrete version of the multiplication operatorM, i.e.,

M = diag(m), m ∈ RJL , ml,k,k′ =
π√

2l + 1
, (l, k, k′) ∈ JL.

Then f̂ is approximated by the vector of Fourier coefficients MwE or MwR, respectively. In
particular, we have the equality

‖f −FSO(3)MwE/R‖L2(SO(3)) = ‖f̂ −MwE/R‖2 . (4.2)

In this section we analyze the error (4.2) in dependency of the set of nodes ΓN,N ′ and the
polynomial degree L in numerical experiments.

General Setting. First of all we construct approximative equidistributions hi ∈ S2, i =
1, . . . , 2N and rj ∈ S2, j = 1, . . . , N ′, N ′ ≈ (N/2)2 on the sphere following [2] such that
hi = −hi+N , i = 1, . . . , N , and define the set of nodes ΓN,N ′ ⊂ S2 × S2 as

ΓN,N ′ = { (hi, rj) ∈ S2 × S2 | i = 1, . . . , N, j = 1, . . . , N ′ }.
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4 Numerical Tests

The reason to include only one of the vectors hi,−hi, i = 1, . . . , N , at time into the set of nodes
ΓN,N ′ is the symmetry property (2.10) of the function we are going to sample.

Second, we randomly generate Fourier coefficients f̂(l, k, k′) ∈ C, (l, k, k′) ∈ JL by taking
a |JL|–dimensional random sample of the uniform distribution on the disc D = { z ∈ C | |z| ≤
1 } and dividing it by (l + 1)2, l = 0, . . . , L. This ensures a decay of the Fourier coefficients
of O(l−2). In general this decay rate assured continuity of the corresponding function and its
Radon transform (cf. [6, Lemma 2.22]).

Third, we evaluate the Radon transform Rf of the function f specified by its Fourier coeffi-
cients f̂ at the nodes ΓN,N ′ , i.e., we calculate

Pij = P (hi, rj) =
∑

(l,k,k′)∈JL

π√
2l + 1

f̂(l, k, k′)Yk′l (hi)Ykl (rj).

In a fourth step we apply the CGNE and CGNR algorithms to the minimization problems
(3.8) and (3.10), respectively, and calculate the vectors wE = T EL,ΓN,N′P and wR = T RL,ΓN,N′P .
Hereby, we utilize Theorem 3.4 for fast multiplications with the matrix FL,ΓN,N′ . The weight
matrix W ∈ C|JL|×|JL| is the zero matrix in the case of the CGNR, and the identity matrix in
the case of the CGNE algorithm.

Finally, we calculate the relative residual norms ‖P− FL,ΓN,N′w
E/R‖2 / ‖P‖2 and the rela-

tive `2-errors in the Fourier space ‖f̂ −MwE/R‖2 / ‖f̂‖2 which, according to (4.2), are equal to
the relative approximation error ‖f −FSO(3)MwE/R‖L2(SO(3)) / ‖f‖L2(SO(3)) in L2(SO(3)).

For each choice of L,N andN ′, we repeat the steps above for 10 times and take the geometric
means of the resulting relative residual norms and approximation errors, which we call mean
relative residual norm and mean relative approximation error, respectively.

Numerical Results. All calculations have been executed on computers of ”TSP IT Sys-
teme”, each of which has an AMD Athlon 64, 3000+ processor, 512 Mb RAM with SUSE
Linux 10.

For the concrete numerical experiment we have chosen the polynomial degree L from the
set L ∈ {5, 10, 20, 40, 80}, and the numbers N , N ′ of different nodes hi, rj ∈ S2 from the
sets N ∈ {11, 23, 41, 92, 164, 308} and N ′ ∈ {34, 156, 460, 2248, 6974, 23898}. This results
in a total number of

∣∣ΓN,N ′∣∣ ∈ {374, 3588, 18860, 206816, 1143736, 7360584} nodes which
compares to the dimensions |JL| ∈ {286, 1771, 12341, 91881, 708561} of the harmonics spaces
on SO(3) up to polynomial degree L.

In Figures 4.1a and 4.2a the (mean) relative residual norms and approximation errors for the
CGNR based algorithm are given for any combination of the polynomial degree L and the set
of nodes ΓN,N ′ . In Figures 4.1b and 4.2b the (mean) relative residual norms and approximation
errors for the CGNE based algorithm are given.

In Figure 4.1 we see that the original function f can be reconstructed, provided the number
of nodes is large enough. More precisely, we observed that, if f can be reconstructed with a
certain set of nodes ΓN,N ′ , then f can also be reconstructed with each set of nodes ΓÑ,Ñ ′ under
consideration such that N > Ñ and N ′ > Ñ ′. In the case of the CGNE algorithm, we observe
that the approximation error becomes worse if the number of nodes becomes too large. This is
due to the fact that the CGNE algorithm requires |ΓN,N ′ | < |JL|.
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(b) Algorithm: CGNE

Figure 4.1: The relative approximation error ‖f −FSO(3)MwR‖L2(SO(3)) / ‖f‖L2(SO(3)) in
L2(SO(3)) of the CGNE and CGNR based algorithms for polynomial degrees L = 5 ( ),
L = 10, ( ) L = 20 ( ), L = 40 ( ), L = 80 ( ), which correspond to the
dimensions |JL| ∈ {286, 1771, 12341, 91881, 708561}.

In Figure 4.2, we see that the relative residual norms in most cases become very small. As
mentioned above, if |ΓN,N ′ | >> |JL|, then the relative residual norms of the CGNE algo-
rithm become worse. Interestingly, the CGNR algorithm behaves well even in the cases with
|ΓN,N ′ | << |JL|. The peaks in the cases of |ΓN,N ′ | ≈ |JL| indicate that the underlying ma-
trices are ill-conditioned. By construction of the sets of nodes the condition |ΓN,N ′ | ≈ |JL|
implies in particular N ′ ≈ |IL|.

Runtime. In order to compare the performance of the NFSFT based algorithm with a direct
approach we measure the computation time of a forward transform FL,Γ using the NFSFT and
a direct implementation, respectively. Using the same parameters L, N , N ′ as in the previous
experiment we observe that the NFSFT based algorithm is substantially faster. As Table 4.1
shows the difference in runtime between the NFSFT based algorithm and the direct algorithm
increases as the polynomial degree increases.
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(b) Algorithm: CGNE

Figure 4.2: The relative residual norm ‖P− FL,ΓwR‖2 / ‖P‖2 in L2(SO(3)) of the CGNE and
CGNR based algorithms for polynomial degrees L = 5 ( ), L = 10 ( ), L = 20
( ), L = 40 ( ), L = 80 ( ), which correspond to the dimensions |JL| ∈
{286, 1771, 12341, 91881, 708561}.

5 An Application to Texture Analysis

The Radon transform on SO(3) is of central importance for the analysis of crystallographic
preferred orientations, the technical term of which is texture analysis cf. [24]. It establishes
the relationship between the so called orientation density function (ODF) f : SO(3)/G → R,
which models the distribution of crystal orientations within a polycrystalline specimen and the
so called pole density function (PDF) P : S2/G × S2 → R, which models the distribution of
crystallographic lattice planes within the specimen. Here G ⊂ SO(3) denotes a finite subgroup
of SO(3) which represents the crystal symmetries. In terms of the Radon transform the relation-
ship between the ODF f ∈ L2(SO(3)/G) and the PDF P ∈ L2(S2/G ×S2) of a specimen reads
as

P (h, r) =
1
2
(
Rf(h, r) +Rf(−h, r)

)
. (5.1)

PDFs can experimentally be sampled by diffraction techniques like X-ray, neutron, or syn-
chrotron diffraction, whereas ODFs cannot directly be measured by these techniques. A central
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Parameter Runtime in sec.
L N N’ fast alg. direct alg.

10 23 156 0.25 0.61
20 41 460 1.22 6.30
40 92 2248 8.38 233
80 164 6974 60.5 5092

Table 4.1: Runtime comparison between the fast algorithm using the NFSFT and the direct
algorithm.

problem in texture analysis is the estimation of the ODF of a specimen given its measured
PDF cf. [1]. Of particular importance are the lower order Fourier coefficients of the ODF since
they characterize the macroscopic properties of the specimen, e.g. the second order Fourier co-
efficients characterize thermal expansion, optical refraction index, and electrical conductivity
whereas the fourth order Fourier coefficients characterize the elastic properties of the specimen
cf. [1, sec. 13].

By Proposition 2.4 we have the following relationship between the even order Fourier coeffi-
cients of an ODF f ∈ L2(SO(3)/G) and the corresponding PDF P ∈ L2(S2/G × S2),

P = FRMevenF−1
SO(3)f,

where the multiplication operatorMeven is defined by

Mevenf̂(l, k, k′) =

{
π√

2l+1
f̂(l, k, k′) l even,

0 l odd.

Because for any (l, k, k′) ∈ J we have

1
2
(
RDkk′

l (h, r) +RDkk′
l (−h, r)

)
=

{
RDkk′

l (h, r) l even,
0 l odd,

(5.2)

the odd order Fourier coefficients of the ODF f cannot be reconstructed from the PDF P without
additional modeling assumptions.

Let Γ ⊂ S2/G × S2 be a finite set of nodes as specified in Definition 3.3 and let P = (Pij),
i = 1, . . . , N , j = 1, . . . , Ni, be a sample of the PDF P at the nodes Γ, i.e., P (hi, rij) = Pij .
Furthermore, let us fix a polynomial degree L ∈ N0 such that either the operator T EL,Γ or the
operator T RL,Γ is well defined. Then M−1T EL,ΓP(l, k, k′) or M−1T RL,ΓP(l, k, k′), l ∈ 2N0,
k, k′ = −l, . . . , l are approximations of the even order Fourier coefficients of the ODF f .

In real world applications the sampling grid Γ ⊂ S2/G × S2 is typically strongly clustered.
Commonly, it contains about N = 6 classes of crystallographically equivalent directions Ghi ∈
S2, i = 1, . . . , N and about Ni = 10, 000 different directions rij ∈ S2, j = 1, . . . , Ni. As
a consequence, only the Fourier coefficients of lowest order can be calculated from the PDF
sample Pij , i = 1, . . . , N , j = 1, . . . , Ni.
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5 An Application to Texture Analysis

In order to apply our algorithm to the PDF – to – ODF inversion problem we fix two specific
crystal symmetry groups

G1 =
〈
−Id,Rote1(π),Rote3(2π

3 )
〉

and
G2 =

〈
−Id,Rote1(π2 ),Rote1+e2(π),Rote1+e2+e3(2π

3 )
〉

generated by the specified rotations and called trigonal and cubic crystal symmetry, respectively.
With respect to these symmetry groups we define three sets H1, H2 and H3 by

H1 = G1

{(
1
0
0

)
,
(

1
0
1

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

0
1
2

)
,
(

0
0
1

)}
,

H2 = G1

{(
1
0
0

)
,
(

0
1
1

)
,
(

1
0
1

)
,
(

1
1
0

)
,
(

1
0
2

)
,
(

1
1
1

)
,
(

0
2
1

)
,
(

1
1
2

)
,
(

0
1
2

)
,
(

2
0
1

)
,
(

0
0
1

)}
,

H3 = G2

{(
1
0
0

)
,
(

1
1
0

)
,
(

1
1
1

)
,
(

2
1
0

)
,
(

2
1
1

)
,
(

3
1
1

)
,
(

3
2
1

)}
,

which results in N1 = 19, N2 = 37, and N3 = 73 different directions hi, respectively. The
nodes rj , j = 1, . . . , N ′, N ′ = 9791 we choose independently as an approximative equidistri-
bution on the hemisphere S2

+ and define the three sets of nodes Γ1, Γ2, and Γ3 analogously as in
Section 4 as

Γs = { (hi, rj) | i = 1, . . . , N s, j = 1, . . . , N ′ }, s = 1, 2, 3.

Processing as in Section 4 we randomly generate Fourier coefficients f̂(l, k, k′), (l, k, k′) ∈
JL0 , up to the polynomial degree L0 = 128 with decay rate O(l−10.5) and simulate three sam-
plings of the corresponding PDF by calculating Ps = FL0,ΓsMevenf̂ , s = 1, 2, 3. Applying
the CGNR algorithm with L = 0, 2, 4, 8, . . . , 32 to the samples Ps ∈ RΓs we obtain Fourier
coefficients P̂s ∈ CJL , s = 1, 2, 3. In fact, we use a modified version of the CGNR algorithm
which ensures that the components P̂s

l,k,k′ of P̂s with l odd become zero. The weight matrix W
is the zero matrix. By setting

ε(L, l) =

 l∑
k,k′=−l

∣∣∣∣f̂(l, k, k′)−
√

2l + 1
π

P̂s
l,k,k′

∣∣∣∣2
1/2 l∑

k,k′=−l

∣∣∣f̂(l, k, k′)
∣∣∣2
−1/2

(5.3)

we compute the relative error between the calculated and the initial Fourier coefficients of the
ODF separately for each harmonic space Harml(SO(3)), l = 0, . . . , L. Obviously, we have
ε(L, l) = 1 in the case that l > L or l is odd. In Figure 5.1 the relative errors ε(L, l), l =
0, 2, . . . , L are plotted for different maximum polynomial degrees L ∈ N of calculation and for
the sets of nodes Γ1, Γ2, Γ3.

Again, all calculations have been executed on computers of ”TSP IT Systeme”, each of which
has an AMD Athlon 64, 3000+ processor, 512 Mb RAM with SUSE Linux 10.

According to Lemma 3.9 and [1, sec. 4.2.2.1] the maximum polynomial degrees up to which
the Fourier coefficients can be reconstructed given the samplings Ps, s = 1, 2, 3 are l = 9,
l = 18 and l = 42, respectively. However, our numerical experiments show that the polynomial
degree up to which the Fourier coefficients are reconstructed is in general lower. For the first
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(a) set of nodes Γ1 with N1 = 19, N ′ = 979
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(b) set of nodes Γ2 withN2 = 37, N ′ = 979
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(c) set of nodes Γ3 withN3 = 73, N ′ = 979

Figure 5.1: The approximation error ε(L, l) of the Fourier coefficients of a function with poly-
nomial degree L0 = 128 in dependency of their order l and the total bandwidth used for approx-
imation L = 0 ( ), L = 2 ( ), L = 4 ( ), L = 8 ( ), L = 16 ( ),
L = 32 ( ).
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6 Conclusions

two samplings P1 and P2 the approximation error ε(L, l) is significantly lower than 1 only for
the orders l = 0, 2, 4. Interestingly, the approximation error ε(L, l) decreases as the bandwidth
L = 0, 2, 4, . . . , 32 used for the approximation of the Radon transform increases.

For the third sampling P3 the approximation error ε(L, l) is significantly smaller than 1 for
all harmonic subspaces with even degree l ≤ L and L < 32. In the case L = 32, ε(L, l) is
significantly smaller than 1 for l ≤ 26. The observation that ε(L, l) increases with increasing
l = 0, 2, . . . , L is due to the decay rateO(l−10.5) of the generated Fourier coefficients f̂(l, k, k′)
implying that the denominator in (5.3) decreases as l increases. Again we mention that the
approximation error ε(L, l), l = 0, 2, 4, 8, 16 of the low order Fourier coefficients decreases as
the bandwidth L increases.

6 Conclusions

Analogously to the classical Radon transform in Euclidean spaces the representation of the
Radon transform on SO(3) in Fourier space has been shown to lead to a fast algorithm for its
inversion. Primarily the Fourier space representation allows to define a discrete inverse Radon
transform as the solution of a minimization problem. Applying fast Fourier transforms on S2

and SO(3) it can iteratively be solved with standard algorithms. Numerical tests have confirmed
the convergence of CGNE and CGNR based algorithms for appropriate assumptions.

As with respect to the practical application in texture anaylsis we have shown that the classical
“harmonic method” can largely be improved. The first low order Fourier coefficients which are
required to compute antipodally symmetric macroscopic specimen properties from the corre-
sponding single crystal properties are better approximated if the polynomial degree of the ansatz
function is much larger than commonly used by practitioners of texture analysis. The frequently
heard objection that large polynomial degrees result in numerical instability and eventually in
unreliable numbers is obsolete.
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