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Abstract. For an integer d ≥ 3 let α(d) be the supremum over all α with the property
that for every ε > 0 there exists some g(ε) such that every d-regular graph of order n and
girth at least g(ε) has an independent set of cardinality at least (α− ε)n.

Extending an approach proposed by Lauer and Wormald (Large independent sets in
regular graphs of large girth, J. Comb. Theory, Ser. B 97 (2007), 999-1009) and improving
results due to Shearer (A note on the independence number of triangle-free graphs, II, J.
Comb. Theory, Ser. B 53 (1991), 300-307) and Lauer and Wormald, we present the best
known lower bounds for α(d) for all d ≥ 3.
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1 Introduction

In the present paper we consider the independence number α(G) of finite, simple and
undirected graphs G = (V, E) which are d-regular for some d ≥ 3 and have large girth.

For integers d ≥ 3 and g ≥ 3 let G(d, g) denote the class of all d-regular graphs of girth
at least g and let

α(d, g) := sup {α | α(G) ≥ α · |V | for all G = (V, E) ∈ G(d, g)} .

Clearly, α(d, g) is monotonic non-decreasing in g and bounded above by 1 and we can
consider

α(d) := lim
g→∞

α(d, g).

Note that this definition implies that for every ε > 0 there exists some g(ε) such that
α(G) ≥ (α(d)− ε) · |V | for every graph G = (V, E) ∈ G(d, g(ε)).

Our aim is to prove lower bounds on α(d).
While the first result on the independence number in regular graphs of large girth is

due to Hopkins and Staton [5] who proved α(3) ≥ 7
18
≈ 0.3888, for quite a long time the

best known estimates of α(d) were due to Shearer [8].

Theorem 1 (Shearer 1991) If

βShearer(d) :=


125
302

≈ 0.4139 for d = 3 and

1+d(d−1)βShearer(d−1)
d2+1

for d ≥ 4,

then
α(d) ≥ βShearer(d)

for all d ≥ 3.

Only very recently Lauer and Wormald [6] improved Shearer’s result for d ≥ 7.

Theorem 2 (Lauer and Wormald 2007) For all d ≥ 3

α(d) ≥ βLauWo(d) :=
1− (d− 1)−2/(d−2)

2
.

From a very abstract viewpoint their approaches are actually similar. On the one hand
Shearer constructs an independent set by carefully selecting vertices according to some
degree dependent weight function, adding them to the independent set, deleting them
together with their neighbours and iterating this process. On the other hand Lauer and
Wormald construct an independent set by randomly selecting vertices, adding most of
them to the independent set, deleting them together with their neighbours and iterating
this process.

In order to get some intuition about how to improve these approaches it is instructive
to see that a very simple argument allows to improve Shearer’s bound on α(3).
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Proposition 3 α(3) ≥ 0.4142 > βShearer(3) ≈ 0.4139.

Proof: It follows from Theorem 4 in [8] that for every ε > 0 there is some g(ε) such that:
If G = (V, E) is a graph of order n and girth at least g(ε), with n2 vertices of degree 2 no
two of which are adjacent and n3 = n− n2 vertices of degree 3, then

α(G) ≥
(

79

151
− ε

)
n2 +

(
125

302
− ε

)
n3. (1)

For a cubic graph G of order n and sufficiently large girth g(ε) the 9-th power G9 is
(3 + 3 · 2 + 3 · 22 + ... + 3 · 28) = 1533-regular. Therefore, G9 has an independent set I9

with |I9| ≥ n/ (∆ (G9) + 1) = n/1534 where ∆ (G9) denotes the maximum degree of G9

(cf. e.g. [4, 9]).
Let H arise from G by deleting all vertices within distance at most 3 from I9. We

construct an independent set of G by adding all 7|I9| many vertices at distance 0 or 2 from
a vertex in I9 and by applying (1) to H. It follows that

α(G) ≥ 7|I9|+ α(H)

≥ 7|I9|+
(

79

151
− ε

)
24|I9|+

(
125

302
− ε

)
(n− (22 + 24)|I9|)

≥ (0.4142− ε)n

which completes the proof. �

The proof of Proposition 3 suggests that it is worthwhile to consider the iterative deletion
not just of a vertex and its neighbours — which would induce a rooted tree of depth 1 —
but of rooted trees of larger depths. Locally this should allow us to pack the vertices of
the independent set more densely which hopefully yields an overall improvement.

We follow exactly this intuition by generalizing the random procedure and its analysis
using differential equations proposed by Lauer and Wormald in [6].

2 The Algorithm TREE(k, l, p, f )

In this section we describe a random procedure TREE(k, l, p, f) which depends on two
integers k, l ≥ 0, a real value p ∈ [0, 1] and a function f which maps rooted trees T with root
r to independent subsets f(T, r) of their vertex set. We assume that |f(T, r)| = |f(T ′, r′)|
for isomorphic rooted trees, T rooted at r and T ′ rooted at r′.

The algorithm TREE(k, l, p, f) will be applied to a graph G = (V, E) of girth at least
2(l + 1). It executes k rounds and determines disjoint rooted subtrees of G of depth at
most l. The value p will serve as a probability.

We need a little more notation to describe the algorithm. Let u ∈ V be a vertex of
the graph G. For an integer i ≥ 0 let N i

G(u) and N≤i
G (u) denote the sets of vertices of G
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within distance — measured with respect to G — exactly i from u and at most i from u,
respectively, i.e.

N i
G(u) = {v ∈ V | distG(v, u) = i} and

N≤i
G (u) = {v ∈ V | distG(v, u) ≤ i} .

Furthermore, let Bi
G(u) denote the set of vertices v ∈ N≤i

G (u) which are not adjacent to a
vertex in V \N≤i

G (u), i.e.

Bi
G(u) =

{
v ∈ V | N≤1

G (v) ⊆ N≤i
G (u)

}
.

For a set U ⊆ V of vertices of G the subgraph of G induced by V \U is denoted by G−U
or G[V \ U ].

TREE(k, l, p, f) proceeds as follows:

(1) Set G0 = (V0, E0) := G, Z0 := ∅ and i := 0.

(2) While i < k select a subset Xi of V by assigning every vertex of G to Xi independently
at random with probability p.

Set

Gi+1 = (Vi+1, Ei+1) := Gi −
⋃

u∈Xi∩Vi

N≤l
Gi

(u), (2)

X∗
i := {v ∈ Xi | distG(v, u) ≥ 2l + 1 ∀u ∈ Xi \ {v}} , (3)

Ti(u) := Gi

[
Bl

Gi
(u)
]
, (4)

∆Zi :=
⋃

u∈X∗
i ∩Vi

f (Ti(u), u) , (5)

Zi+1 := Zi ∪∆Zi, (6)

i := i + 1.

(3) Output Zk.

There are some subtleties we want to stress: The definition of Gi+1 in (2) and ∆Zi in
(5) use neighbourhoods within the graph Gi while X∗

i is defined in (3) with respect to G.
Furthermore, the construction of Zi+1 in (4), (5) and (6) does not influence the evolution
of the Gi. By the girth condition, Ti(v) is a tree and f (Ti(v), v) is a well-defined subset of
Bl

Gi
(v).
We first observe that TREE(k, l, p, f) really produces an independent set of G.

Lemma 4 Zk is an independent set of G.
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Proof: For contradiction, we assume that v, w ∈ Zk with vw ∈ E.
Let v ∈ ∆Zi and w ∈ ∆Zj with, say, i ≤ j. Let v ∈ f (Ti(u), u) for some u ∈ X∗

i ∩ Vi.
Since, by the definition of X∗

i in (3), the set N≤l
Gi

(u) ∩ N≤l
Gi

(u′) is empty for all distinct

u, u′ ∈ X∗
i we obtain that w ∈ Vi is a neighbour of v outside of N≤l

Gi
(u) which implies the

contradiction v 6∈ Bl
Gi

(u). �

3 The Analysis of TREE(k, l, p, f )

Throughout this section we will assume that G = (V, E) is a d-regular graph for some
d ≥ 3 and sufficiently large girth. We consider the behaviour of TREE(k, l, p, f) when
applied to this graph. We will specify the necessary girth conditions which are all in terms
of k and l more exactly whenever they are explicitely needed.

It is one of the key observations made by Lauer and Wormald in [6] that for a sufficiently
large girth the probabilities which are suitable to describe the behaviour of their randomized
algorithm can be well understood. The next lemma corresponds to Lemma 2 in [6].

Lemma 5 Let k ≥ 2 and 0 ≤ i ≤ k. Let the girth of G be at least 2(k + 1)l + 2 and let
u ∈ V and vv′ ∈ E.

(i) The probabilities P[u ∈ Vi], P[(v ∈ Vi) ∧ (v′ ∈ Vi)] and P[u ∈ ∆Zi] as well as the
conditional expected value E [|f (Ti(u), u)| | u ∈ X∗

i ∩ Vi] do not depend on the choice
of the vertex u or the edge vv′.

(ii) Conditional upon the event (v ∈ Vi), the event (v′ ∈ Vi) depends only on the inter-
section of the sets X0, X1, ..., Xi−1 with N≤il

G−v(v
′).

Proof: It follows immediately, by induction on i, from the description of TREE(k, l, p, f)
that the events (u ∈ Vi) and (v ∈ Vi) ∧ (v′ ∈ Vi) depend only on the intersection of
the sets X0, X1, ..., Xi−1 with N≤il

G (u) and N≤il
G (v) ∪ N≤il

G (v′), respectively. Furthermore,
the event (u ∈ ∆Zi) depends only on the intersection of the sets X0, X1, ..., Xi−1 with

N
≤(i+1)l
G (u) and the intersection of the set Xi with N≤2l

G (u). Finally, conditional upon the
event (u ∈ X∗

i ∩ Vi), the cardinality of f (Ti(u), u) depends only on the intersection of the

sets X0, X1, ..., Xi−1 with N
≤(i+1)l
G (u).

Since, by the girth condition, the induced subgraphs G
[
N≤2l

G (u)
]
, G
[
N
≤(i+1)l
G (u)

]
and

G
[
N≤il

G (v) ∪N≤il
G (v′)

]
are isomorphic for all choices of the vertex u or the edge vv′, we

obtain (i). Similarly, (ii) follows immediately by induction on i. �

5



By Lemma 5, for 0 ≤ i ≤ k the following quantities

ri := P[u ∈ Vi],

wi :=
P[(v ∈ Vi) ∧ (v′ ∈ Vi)]

P[v ∈ Vi]
= P[(v ∈ Vi) ∧ (v′ ∈ Vi)|v ∈ Vi],

fl(wi) := E [|f (Ti(u), u)| | u ∈ X∗
i ∩ Vi] ,

∆zi := P[u ∈ ∆Zi] and

zi := P[u ∈ Zk \ Zi]

are the same for every vertex u ∈ V and every edge vv′ ∈ E.
Using Lemma 5, we can determine the following recursions for these probabilities.

Lemma 6 Let the girth of G be at least 2(k + 1)l + 2.

(i) r0 = w0 = 1 and zi+1 = zi −∆zi for 0 ≤ i ≤ k − 1.

(ii) For 0 ≤ i ≤ k − 1

ri+1 = ri

(
1− p ·

(
1 +

l∑
j=1

d(d− 1)j−1 · wj
i

)
+ O(p2)

)
,

wi+1 = wi

(
1− p ·

(
1 +

l∑
j=1

(d− 2)(d− 1)j−1 · wj
i

)
+ O(p2)

)
and

∆zi = fl(wi) · ri · p ·
2l∏

j=1

(1− p)d(d−1)j−1

where the constants implicit in the O(·)-terms depend only on d and l.

Proof: (i) is immediate from the definitions and we proceed to the proof of (ii).
Let u ∈ V be fixed. For v ∈ N≤l

G (u) let Pv denote the vertex set of the unique path of
length at most l from u to v. The event (u ∈ Vi+1) holds if and only if

(u ∈ Vi) ∧ (u 6∈ Xi) ∧
∧

v:1≤distG(u,v)≤l

(
(v 6∈ Xi) ∨

(
(v ∈ Xi) ∧ (Pv 6⊆ Vi)

))
.

Expanding this representation of the event (u ∈ Vi+1) to a disjunction of conjunctions, all
events corresponding to the conjunctions are disjoint because they differ in

Xi ∩ {v : 1 ≤ distG(u, v) ≤ l}.
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Furthermore, all of those events for which two of the independent events (v ∈ Xi) for some v
with 1 ≤ distG(u, v) ≤ l hold, will contribute together only P[u ∈ Vi] ·O(p2) to P[u ∈ Vi+1]
where the constant implicit in the O(·)-term depends only on d and l. Therefore,

P[u ∈ Vi+1] = P

(u ∈ Vi) ∧ (u 6∈ Xi) ∧
∧

v:1≤distG(u,v)≤l

(v 6∈ Xi)

+ P[u ∈ Vi] ·O(p2)

+
∑

v:1≤distG(u,v)≤l

P

(u ∈ Vi) ∧ (v ∈ Xi) ∧ (Pv 6⊆ Vi) ∧
∧

v′:(v′ 6=v)∧(0≤distG(u,v′)≤l)

(v′ 6∈ Xi)


= P[u ∈ Vi] · (1− p)(1+

Pl
j=1 d(d−1)j−1)

+
∑

v:1≤distG(u,v)≤l

P [(u ∈ Vi) ∧ (Pv 6⊆ Vi)] · p · (1− p)
Pl

j=1 d(d−1)j−1

+P[u ∈ Vi] ·O(p2)

= P[u ∈ Vi] ·

(
1−

(
1 +

l∑
j=1

d(d− 1)j−1

)
p

)
+

∑
v:1≤distG(u,v)≤l

P [(u ∈ Vi) ∧ (Pv 6⊆ Vi)] · p

+P[u ∈ Vi] ·O(p2).

In order to evaluate P [(u ∈ Vi) ∧ (Pv 6⊆ Vi)] let u = u0u1u2...uj = v be the unique path
from u to v for some 1 ≤ j ≤ l.

By Lemma 5 (i) and (ii), we have for 0 ≤ ν ≤ j − 1

P [(u0, u1, ..., uν ∈ Vi) ∧ (uν+1 6∈ Vi)] = P [u0 ∈ Vi]

·P [u1 ∈ Vi | u0 ∈ Vi]

·P [u2 ∈ Vi | u0, u1 ∈ Vi]

·... ·P [uν ∈ Vi | u0, u1, ..., uν−1 ∈ Vi]

·P [uν+1 6∈ Vi | u0, u1, ..., uν ∈ Vi]

= P [u0 ∈ Vi]

·P [u1 ∈ Vi | u0 ∈ Vi]

·P [u2 ∈ Vi | u1 ∈ Vi]

·... ·P [uν ∈ Vi | uν−1 ∈ Vi]

· (1−P [uν+1 6∈ Vi | uν ∈ Vi])

= riw
ν
i (1− wi)
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and we obtain

P [(u ∈ Vi) ∧ (Pv 6⊆ Vi)] = P [(u0 ∈ Vi) ∧ ((u0 6∈ Vi) ∨ (u1 6∈ Vi) ∨ ... ∨ (uj 6∈ Vi)))]

= P [(u0 ∈ Vi) ∧ (u1 6∈ Vi)]

+P [(u0, u1 ∈ Vi) ∧ (u2 6∈ Vi)]

+P [(u0, u1, u2 ∈ Vi) ∧ (u3 6∈ Vi)]

...

+P [(u0, u1, ..., uj−1 ∈ Vi) ∧ (uj 6∈ Vi)]

= ri(1− wi) + riwi(1− wi) + ... + riw
j−1
i (1− wi)

= ri(1− wj
i ).

Putting everything together, we obtain

ri+1 = P[u ∈ Vi+1]

= ri ·

(
1−

(
1 +

l∑
j=1

d(d− 1)j−1

)
p

)
+

l∑
j=1

d(d− 1)j−1ri · (1− wj
i ) · p + ri ·O(p2)

= ri · (1− p)−
l∑

j=1

d(d− 1)j−1ri · wj
i · p + ri ·O(p2)

= ri

(
1− p ·

(
1 +

l∑
j=1

d(d− 1)j−1 · wj
i

)
+ O(p2)

)
.

By the same type of argument, it follows that for every edge vv′ ∈ E

P[(v ∈ Vi+1) ∧ (v′ ∈ Vi+1)]

= P[(v ∈ Vi) ∧ (v′ ∈ Vi)]

(
1− p ·

(
2 +

l∑
j=1

(2d− 2)(d− 1)j−1 · wj
i

)
+ O(p2)

)
.

Since wi = P[(v∈Vi)∧(v′∈Vi)]
ri

, the desired equation for wi follows.
Finally, we consider ∆zi. By the definitions in (3) and (5) and Lemma 5, we have

∆zi = P[u ∈ ∆Zi]

=
E[|∆Zi|]
|V |

= fl(wi) ·P[u ∈ X∗
i ∩ Vi] = fl(wi) ·P[u ∈ Vi] ·P[u ∈ X∗

i ]

= fl(wi) · ri · p
2l∏

j=1

(1− p)d(d−1)j−1

which completes the proof. �
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Setting

ai :=
ziwi

ri

= P [u ∈ Zk \ Zi | u ∈ Vi] · wi ≤ wi

for 0 ≤ i ≤ k and

∆ri := ri+1 − ri,

∆wi := wi+1 − wi and

∆ai := ai+1 − ai

for 0 ≤ i ≤ k − 1, we obtain the following.

Lemma 7 For 0 ≤ i ≤ k − 1

∆ai

∆wi

=
fl(wi)− 2ai

((d−1)wi)
l−1

(d−1)wi−1

1 + (d− 2)wi
((d−1)wi)l−1
(d−1)wi−1

+ O(p)

where the constant implicit in the O(·)-term depends only on d and l.

Proof: Note that, by definition, ∆zi = zi− zi+1. Immediately from the previous definitions
it is straightforward to verify that

∆ai

∆wi

=
wi

∆wi

(
ai

∆wi

wi

ri

ri+1
− ∆ri

ri+1

wi

− ∆zi

ri

wi+1

wi

ri

ri+1

)
.

By Lemma 6,

wi+1

wi

= 1−O(p) and

ri

ri+1

= 1 + O(p).

Furthermore,

∆wi

wi

= −

(
1 + (d− 2)wi

l−1∑
j=0

(wi(d− 1))j

)
p + O(p2),

∆ri

ri

= −

(
1 + dwi

l−1∑
j=0

(wi(d− 1))j

)
p + O(p2) and

∆zi

ri

= fl(wi)p + O(p2)

which implies that also

∆ri

ri+1

= −

(
1 + dwi

l−1∑
j=0

(wi(d− 1))j

)
p + O(p2).
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Putting everything together, we obtain

∆ai

∆wi

=
fl(wi)− 2ai

∑l−1
j=0((d− 1)wi)

j + O(p)

1 + (d− 2)wi

∑l−1
j=0((d− 1)wi)j + O(p)

.

Note that fl(wi) is bounded from above by the order of a d-regular tree of radius l, i.e. it is

bounded above in terms of d and l. Clearly,
(
2ai

∑l−1
j=0((d− 1)wi)

j
)

is bounded from above

in terms of d and l while
(
1 + (d− 2)wi

∑l−1
j=0((d− 1)wi)

j
)

is bounded from below by 1

and bounded from above in terms of d and l. Altogether this implies the stated equation
for ∆ai

∆wi
. �

We proceed to our main result which extends Theorem 1 of [6].

Theorem 8 Let d ≥ 3 and l ≥ 0. If fl(w) is continuous on [0, 1], then

α(d) ≥ bl,f (1)

where bl,f is the solution of the linear differential equation

b′l,f (w) = cl,f,0(w) + cl,f,1(w)bl,f (w) and bl,f (0) = 0 (7)

with

cl,f,0(w) =
fl(w)

1 + (d− 2)w ((d−1)w)l−1
(d−1)w−1

and

cl,f,1(w) = −
2 ((d−1)w)l−1

(d−1)w−1

1 + (d− 2)w ((d−1)w)l−1
(d−1)w−1

.

Proof: Note that by definition,

a0 =
z0w0

r0

= z0 = P[u ∈ Zk \ Z0 | u ∈ V0] = P[u ∈ Zk].

Therefore, TREE(k, l, p, f) produces an independent set of G = (V, E) of expected cardi-
nality a0|V | and hence, by the first moment principle, α(d) ≥ a0.

Whenever we use the O(·)-notation, the implicit constants will be in terms of d and l.
Similarly as in [6], we will prove that for every ε > 0 there is some c0 = c0(ε) and a

function p0(c) > 0 such that for pk = c > c0 and p < p0(c) we have

a0 ≥ bl,f (1)−O(ε)

which clearly implies the desired result.

10



Let some ε > 0 be fixed. By Lemma 6, we have

wi+1 ≤ wi

(
1− p + O

(
p2
))

for 0 ≤ i < k. Therefore, for sufficiently small p,

wk ≤ (1− p/2)k =
(
(1− p/2)

1
p

)c

. (8)

Thus for p small enough and c →∞ we have wk → 0. Furthermore, by Lemma 6,

∆wi = O(p) (9)

and hence ∆wi → 0 as p → 0 uniformly for every 0 ≤ i < k.

Since fl(w) is continuous, the function c0(w) := cl,f,0(w) is continuous and bounded on
the compact set [0, 1]. (Note that fl(w) is always bounded in terms of d and l as already
noted in the proof of Lemma 7.) Furthermore, the function c1(w) := cl,f,1(w) is Lipschitz
continuous on [0, 1]. Hence the solution b(w) := bl,f (w) of (7) is also Lipschitz continuous
on [0, 1] where all bounds and Lipschitz constants are in terms of d and l.

Clearly, ak = 0. Let b̃(w) be the solution of the differential equation with modified initial
condition

b̃′(w) = c0(w) + c1(w)b̃(w) and b̃(wk) = 0.

By the mentioned continuity/ Lipschitz continuity conditions, it follows from standard
results (cf. Corollary 4 and Corollary 6 in §7 of [2]) that the solution of (7) depends
continuously on the initial contition. Hence, by (8), for p small enough and c large enough,
b̃(wk) = b(wk) + O(ε) which implies

b̃(1) = b(1) + O(ε).

By Lemma 7, we have for 0 ≤ i < k that

ai = ai+1 −∆ai = ai+1 − (c0(wi) + c1(wi)ai + O(p))∆wi

which implies

ai =
ai+1 − (c0(wi) + O(p))∆wi

1 + c1(wi)∆wi

=
ai+1 − c0(wi)∆wi

1 + c1(wi)∆wi

+ O(p)∆wi (10)

for p small enough.
Similarly, the differential equation for b̃ together with the mean value theorem imply

for 0 ≤ i < k and some wi+1 ≤ w̃i ≤ wi that

b̃(wi) = b̃(wi+1)−
(
c0(w̃i) + c1(w̃i)b̃(w̃i)

)
∆wi.
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By (9) and the continuity of c0, c1 and b, this implies that for every δ > 0 there is some
p1(δ) such that for p < p1(δ)

b̃(wi) = b̃(wi+1)−
(
c0(wi) + c1(wi)b̃(wi) + O(δ)

)
∆wi

and thus

b̃(wi) =
b̃(wi+1)− (c0(wi) + O(δ))∆wi

1 + c1(wi)∆wi

=
b̃(wi+1)− c0(wi)∆wi

1 + c1(wi)∆wi

+ O(δ)∆wi (11)

for p small enough.
In view of (10) and (11), we deduce

b̃(wk)− ak = 0 and for 0 ≤ i < k

b̃(wi)− ai =
b̃(wi+1)− ai+1

1 + c1(wi)∆wi

+ (O(p) + O(δ))∆wi.

Since for p small enough

1

1 + c1(wi)∆wi

= 1 + O(∆wi) = 1 + O(p),

we obtain, by induction,

b̃(w0)− a0 = (O(p) + O(δ))
k−1∑
i=0

∆wi(1 + O(p))i

We have
(1 + O(p))k =

(
(1 + O(p))

1
p

)c

which is bounded in terms of c. Therefore, choosing δ small enough in terms of c and
choosing p small enough in terms of c (and δ), we finally obtain

b(1) = a0 +
(
b(1)− b̃(1)

)
+
(
b̃(1)− a0

)
= a0 + O(ε)

and the proof is complete. �

3.1 Some Instructive Choices for l

It is very instructive to consider the behaviour of TREE(k, l, p, f) for l ∈ {0, 1} and
appropriate choices for f .
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For l = 0 we have N≤0
Gi

(v) = {v} and X∗
i = Xi for all 0 ≤ i ≤ k − 1. Furthermore, the set

Bl
Gi

(v) contains the vertex v exactly if all neighbours of v in G are not contained in Vi and
is empty otherwise.

Choosing f(T, r) = VT whenever the vertex set VT of T satisfies |VT | ≤ 1 and f(T, r) = ∅
otherwise, TREE(k, 0, p, f) produces an independent set by Lemma 4. Conditional upon
the event (u ∈ X∗

i ∩ Vi), the expected value of |f(Ti(u), u)| equals

f0(wi) = (1− wi)
d,

because, by Lemma 5 (ii), each of the d neighbours of u are in Vi independently at random
with probability wi. The differential equation (7) simplifies to

b′0,f (w) = f0(w) and b0,f (0) = 0

which has the solution b0,f (w) = 1−(1−w)d+1

1+d
and thus

b0,f (1) =
1

1 + d
.

Therefore, by Theorem 8, asymptotically TREE(k, 0, p, f) produces an independent set of
G which contains exactly the same fraction of the vertices, namely 1

1+d
, as guaranteed by

the lower bound on the independence number of d-regular graphs proved by Caro [4] and
Wei [9].

The reason for this is that for pk →∞ and p → 0, TREE(k, 0, p, f) essentially processes
the vertices of G according to a random linear ordering v1, v2, ..., vn and adds an individual
vertex vi to the constructed independent set exactly if all neighbours of vi are among
{v1v2, ..., vi−1}. Applying this algorithm to a random linear ordering, the probability that
an individual vertex v belongs to the constructed independent set equals exactly 1/(1+d),
because this is the probability that v is the last vertex from N≤1

G (v) with respect to the
linear ordering. In fact, this is exactly the argument used in [1] to prove the bound due to
Caro and Wei [4, 9].

For l = 1 the set B1
Gi

(v) always contains the vertex v itself and we can choose f(T, r) = {r}
in order to obtain an independent set according to Lemma 4.

For this choice TREE(k, 1, p, f) essentially coincides with the randomized p-greedy
algorithm used by Lauer and Wormald in [6] for p = (p1, p2, ..., pk) = (p, p, ..., p). Solving
the differential equation (7) yields the same values for b1,f (1) as obtained by Lauer and
Wormald. In the next section, we consider a choice of f which generalizes their p-greedy
algorithm.

3.2 A Reasonable Choice for f

A reasonable choice for f is to select all vertices within some even distance from the root.
Therefore, let l = 2h + 1 for some integer h ≥ 0 and let

feven(T, r) = {u ∈ VT | distT (r, u) is even}.

13



Note that B2h+1
Gi

(u) contains all vertices of N≤2h+1
Gi

(u) within distance at most 2h from u.

Conditional upon the event (u ∈ X∗
i ∩ Vi), the probability for the event (v ∈ B2h+1

Gi
(u))

for some vertex v with distG(u, v) = 2j for some 1 ≤ j ≤ h equals exactly the probability
that all vertices of the unique path from u to v within N≤2h+1

G (u) lie in Vi. Using Lemma 5
in the same way as for the calculation of P [(u0, u1, ..., uν ∈ Vi) ∧ (uν+1 6∈ Vi)] in the proof
of Lemma 6, this conditional probability equals w2j

i .
By linearity of expectation, we deduce

(feven)2h+1(w) = 1 +
h∑

j=1

d(d− 1)2j−1w2j

= 1 + d(d− 1)w2

h−1∑
j=0

((d− 1)w)2j

= 1 + d(d− 1)w2 ((d− 1)w)2h − 1

((d− 1)w)2 − 1
.

Now the differential equation (7) reads as follows.

b′2h+1,feven
(w) =

(
1 + d(d− 1)w2 ((d−1)w)2h−1

((d−1)w)2−1

)
− 2b2h+1,feven(w) ((d−1)w)2h+1−1

(d−1)w−1

1 + (d− 2)w ((d−1)w)2h+1−1
(d−1)w−1

(12)

b2h+1,feven(0) = 0.

The algorithm proposed by Lauer and Wormald in [6] corresponds to the choice h = 0 in
which case (12) simplifies to

b′1,feven
(w) =

1− 2b1,feven(w)

1 + (d− 2) w
.

The solution of this differential equation is

b1,feven (w) =
1− (1 + wd− 2 w)−2/(d−2)

2

which together with Theorem 8 immediately implies one of the main results from [6].

Corollary 9 (Lauer and Wormald, cf. Theorem 1 in [6]) For every d ≥ 3, we have

α(d) ≥ 1− (d− 1)−2/(d−2)

2
.

Next we consider the behaviour of b2h+1,feven(w) for h →∞. Our analysis naturally splits
into the two cases (d− 1)w < 1 and (d− 1)w > 1.

The intuitive reason for this is that for values of wi with (d− 1)wi < 1 the sets N≤l
Gi

(u)
typically contain no vertices far from u, while for values of wi with (d− 1)wi > 1 the sets

14



N≤l
Gi

(u) may contain vertices up to distance l from u, i.e. the trees induced by the sets
Bl

Gi
(u) “die out” quickly for small values of the “probability of survival” wi.
Considering the two intervals

[
0, 1

d−1

)
and

(
1

d−1
, 1
]

it follows from standard results (cf.
Corollary 6 in §7 of [2]) that for h →∞ the solutions of (12) converge to the solutions of

b′∞,feven
(w) =



�
1− d(d−1)w2

((d−1)w)2−1

�
+

2b∞,feven
(w)

(d−1)w−1

1− (d−2)w
(d−1)w−1

for 0 ≤ w < 1/(d− 1)

�
d(d−1)w2

((d−1)w)2−1

�
−2b∞,feven (w)

(d−1)w
(d−1)w−1

(d−2)w
(d−1)w

(d−1)w−1

for 1/(d− 1) < w ≤ 1

=


(d−1)w2+1

((d−1)w+1)(1−w)
− 2

1−w
b∞,feven(w) for 0 ≤ w < 1/(d− 1)

d
((d−1)w+1)(d−2)

− 2
(d−2)w

b∞,feven(w) for 1/(d− 1) < w ≤ 1
(13)

b∞,feven(0) = 0.

Corollary 10 For every d ≥ 3, we have α(d) ≥ b∞,feven(1).

Solving (13) for d = 3 yields

b∞,feven(w) =


w
3

+ w2

6
+ 2

9
ln
(

2w+1
1−w

)
for 0 ≤ w < 1/(d− 1)

3
4

w−1
w

+ 1
w2

(
23
96

+ 3
8
ln(2w + 1)− 25

72
ln(2)

)
for 1/(d− 1) < w ≤ 1

and hence in this case

b∞,feven(1) =
23

96
+ 3/8 ln (3)− 25

72
ln (2) ≈ 0.4108.

Similarly, we obtain

b∞,feven(1) ≈


0.3579 for d = 4
0.3201 for d = 5
0.2911 for d = 6.

3.3 An Optimal Choice for f

In this section we consider a function fopt for which fopt(T, r) is a maximum independent
set within the rooted tree T . For some tree T with root r the set fopt(T, r) is obtained
by applying the following algorithm Aopt: Start with fopt(T, r) = ∅. Iteratively add to
fopt(T, r) all vertices at maximum distance from the root r within the current tree and
delete them together with their parents.

For this algorithm it follows immediately from the definition of Bl
Gi

(v) that

fopt(Ti(v), v) = Bl
Gi

(v) ∩ fopt

(
Gi

[
N≤l+1

Gi
(v)
]
, v
)
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for every v ∈ X∗
i ∩ Vi.

By Lemma 5, for 0 ≤ i < k and −1 ≤ j ≤ l + 1 the probability

pl(j, i) = P
[
v ∈ fopt

(
N≤l+1

Gi
(u), u

)
|
(
(u ∈ X∗

i ∩ Vi) ∧
(
v ∈ N l+1−j

Gi
(u)
))]

does not depend on the choice of u, v ∈ V with distG(u, v) = l + 1 − j, i.e. pl(j, i) is
well-defined.

Furthermore, by Lemma 5 (ii), the events(
v ∈ fopt

(
N≤l+1

Gi
(u), u

))
|
(
(u ∈ X∗

i ∩ Vi) ∧
(
v ∈ N l+1−j

Gi
(u)
))

and (
v′ ∈ fopt

(
N≤l+1

Gi
(u), u

))
|
(
(u ∈ X∗

i ∩ Vi) ∧
(
v′ ∈ N l+1−j

Gi
(u)
))

are independent for different v, v′ ∈ N l+1−j
G (u).

Let tj(w) be defined recursively for integers j ≥ −1 by

tj(w) :=

{
0 for j = −1 and
(1− wtj−1(w))d−1 for j ≥ 0.

Obviously, by definition and the first step of the algorithm Aopt,

t−1(wi) = pl(−1, i) = 0 and

t0(wi) = pl(0, i) = 1.

For j ≥ 0 the event(
v ∈ fopt

(
N≤l+1

Gi
(u), u

))
|
(
(u ∈ X∗

i ∩ Vi) ∧
(
v ∈ N l+1−j

Gi
(u)
))

is equivalent to the event that none of the vertices v′ ∈ N1
G(v) ∩ N

l+1−(j−1)
G (u) is in the

set fopt

(
N≤l+1

Gi
(u), u

)
, i.e. either they are not in Vi or they are in Vi but not in the set

fopt

(
N≤l+1

Gi
(u), u

)
.

By Lemma 5 (ii), conditional upon the event
(
(u ∈ X∗

i ∩ Vi) ∧
(
v ∈ N l+1−j

Gi
(u)
))

, the

probability that v′ ∈ N1
G(v)∩N

l+1−(j−1)
G (u) is not in Vi equals (1−wi), and the probability

that such a v′ is in Vi but not in fopt

(
N≤l+1

Gi
(u), u

)
equals wi(1− pl(j − 1, i)).

Hence, the probability that such a v′ is in not fopt

(
N≤l+1

Gi
(u), u

)
equals

(1− wi) + wi(1− pl(j − 1, i)) = 1− wipl(j − 1, i)

and, by Lemma 5 (ii),

pl(j, i) = (1− wipl(j − 1, i))

���N1
G(v)∩N

l+1−(j−1)
G (u)

���
.
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For 0 ≤ j ≤ l the values pl(j, i) satisfy the same recursion as the tj(wi) starting with the
same value 0 at j = −1 and altogether we obtain

pl(j, i) =

{
tj(wi) for − 1 ≤ j ≤ l and
(1− witl(wi))

d for j = l + 1

(for j = l + 1 remember that the root u has d possible children while all internal vertices
have d− 1.)

By linearity of expectation,

(fopt)l(wi) = E
[∣∣fopt

(
Bl

Gi
(u), u

)∣∣ | u ∈ X∗
i ∩ Vi

]
=

∑
v∈N≤l

G (u)

P
[
v ∈ fopt(B

l
Gi

(u), u) | u ∈ X∗
i ∩ Vi

]

= pl(l + 1, i) +
l∑

j=1

d(d− 1)l−jwl+1−j
i · pl(j, i)

= pl(l + 1, i) +
l∑

j=1

wid((d− 1)wi)
l−j · pl(j, i)

= (1− witl(wi))
d +

l∑
j=1

wid((d− 1)wi)
l−j · tj(wi)

= (1− witl(wi))
d + wid

l−1∑
j=0

((d− 1)wi)
j · tl−j(wi). (14)

In the case w(d−1) < 1 and l →∞ the limit behaviour of the recursion for tj(w) becomes
important. The function

t 7→ (1− wt)d−1

maps the unit interval [0, 1] into itself and the absolute value of its derivative (d− 1)w(1−
wt)d−2 is strictly smaller than 1 for t ∈ [0, 1] and w(d − 1) < 1. Hence the recursion for
tj(w) is a contractive map and converges to a unique fixed point t(w) which solves the
equation

t(w) = (1− wt(w))d−1.

Because for w(d− 1) < 1 the factors preceeding tj(w) in (14) decrease exponentially in j,
we obtain

lim
l→∞

(fopt)l(w) = (1− wt(w))d + t(w)wd
∞∑

j=0

((d− 1)w)j

= t(w)

(
1− wt(w) +

wd

1− (d− 1)w

)
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and

c∞,fopt,0(w) = lim
l→∞

cl,fopt,0(w)

=
t(w)

1− w
(dw + (1− wt(w))(1− (d− 1)w)) .

Because in this case

c∞,fopt,1(w) = lim
l→∞

cl,fopt,1

=
2

w − 1
,

we are able to solve the differential equation for l →∞ in the interval [0, 1
d−1

) and obtain

b∞,fopt(w) = (w − 1)2

w∫
0

c∞,fopt,0(w)

(t− 1)2
δt

= (w − 1)2

w∫
0

t(w) (dw + (1− wt(w))(1− (d− 1)w))

(1− w)(t− 1)2
δt.

The integral is solveable at least for d = 3 in which case we obtain

b∞,fopt(w) =
1 + 6w −

√
4w + 1

(1 +
√

4w + 1)2
.

The most interesting value in this case is at 1
d−1

= 1
2

b∞,fopt

(
1

2

)
=

11

2
− 6

√
3 ≈ 0.3038.

Clearly, (feven)∞ (w) ≤ (fopt)∞ (w) and we can use (feven)∞ (w) in order to determine a
lower bound for b∞,fopt(1) in the case d = 3 by solving (13) on the interval

[
1
2
, 1
]

using as
initial condition the value b∞,fopt

(
1
2

)
at w = 1/2. We obtain for w ∈

[
1
2
, 1
]

the following
lower bound

b∞,fopt(w) ≥
25− 12

√
3− 12w + 12w2 + 6 ln(1

2
+ w)

16w2
.

Corollary 11 α(3) ≥ b∞,fopt(1) ≥ 25−12
√

3+6 ln( 3
2
)

16
≈ 0.4155 > βShearer(3).

In general the following observations are useful for estimating lim
l→∞

cl,fopt,0(w) in the case

w(d− 1) > 1.
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• Observation 1
Because the recursion for tj(w) is based upon a strictly monotonic decreasing function
which contracts the unit interval, and starts with t−1(w) = 0 we obtain

t2j(w) > t2j+1(w),

t2(j+1)(w) < t2j(w) and

t2(j+1)+1(w) > t2j+1(w)

for j ≥ 0.

• Observation 2
Consider a modified algorithm A− applied to a tree T with root r which behaves like
Aopt up to some distance j +1 from r, chooses less vertices at distance j from r than
Aopt and continues like Aopt for smaller distances to r.

For distances larger than j to r the output of A− coincides with the output of Aopt.
For distances at most j to r the output of A− coincides with the output of Aopt when
applied to a proper subtree of the tree induced by the vertices at distance at most j
to r.

Therefore, the set produced by A− will contain at most as many vertices as the set
produced by Aopt.

Conversely, if A+ chooses more vertices at distance j from r than Aopt — possibly
neglecting independence — and behaves like Aopt otherwise, then the set produced
by A+ will contain at least as many vertices as the set produced by Aopt.

Iteratively applying these observations allows to derive lower and upper bounds on (fopt)l (w)
for (d− 1)w > 1:

We choose an integer j∗.
If for all j ≥ j∗ we replace in (14) t2j−1 by t2j∗−1 and t2j by t2j∗ , then Observation 1

and Observation 2 for A− imply that we obtain a lower bound on (fopt)l (w).
If for all j ≥ j∗ we replace in (14) t2j+1 by t2j∗+1 and t2j by t2j∗ , then Observation 1

and Observation 2 for A+ imply that we obtain an upper bound on (fopt)l (w).

Therefore, we obtain

(fopt)l(w)

(w(d− 1))l
=

(1− wtl(w))d

(w(d− 1))l
+ wd

l∑
j=1

tj(w)

(w(d− 1))j

≥ wd

2j∗−2∑
j=1

tj(w)

(w(d− 1))j
+

b l
2c∑

j=j∗

t2j∗(w)

(w(d− 1))2j
+

b l+1
2 c∑

j=j∗

t2j∗−1(w)

(w(d− 1))2j−1
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and

(fopt)l(w)

(w(d− 1))l
≤ 1

(w(d− 1))l

+wd

2j∗−1∑
j=1

tj(w)

(w(d− 1))j
+

b l
2c∑

j=j∗

t2j∗(w)

(w(d− 1))2j
+

b l−1
2 c∑

j=j∗

t2j∗+1(w)

(w(d− 1))2j+1

 .

Using these inequalities it is possible to derive lower and upper bounds for c∞,fopt,0(w).

c∞,fopt,0(w) =
w(d− 1)− 1

(d− 2)w
lim
l→∞

(fopt)l(w)

(w(d− 1))l

≥ d(w(d− 1)− 1)

d− 2

(
2j∗−2∑
j=1

tj(w)

(w(d− 1))j
+

∞∑
j=j∗

t2j∗(w) + w(d− 1)t2j∗−1

(w(d− 1))2j

)

=
d

d− 2

(
t2j∗(w) + w(d− 1)t2j∗−1(w)

(w(d− 1) + 1)(w(d− 1))2j∗−2
+

2j∗−2∑
j=1

(w(d− 1)− 1)tj(w)

(w(d− 1))j

)
and

c∞,fopt,0(w) ≤ d(w(d− 1)− 1)

d− 2

(
2j∗−1∑
j=1

tj(w)

(w(d− 1))j
+

∞∑
j=j∗

w(d− 1)t2j∗+1(w) + t2j∗(w)

(w(d− 1))2j+1

)

=
d

d− 2

(
t2j∗(w) + w(d− 1)t2j∗+1(w)

(w(d− 1) + 1)(w(d− 1))2j∗−1
+

2j∗−1∑
j=1

(w(d− 1)− 1)tj(w)

(w(d− 1))j

)
.

Choosing j∗ sufficiently large and numerically solving the corresponding two differential
equations, we can obtain estimates for b∞,fopt(1) with any desired precision.

Corollary 12 For d ≥ 3 we have α(d) ≥ b∞,fopt(1).

The next table summarizes the numerically obtained values for selected values of d. The
entry γ(d) is an upper bound on α(d) which is derived from the analysis of random d-regular
graphs [3, 7].

d max{βShearer(d), βLauWo(d)} b∞,fopt(1) γ(d)

3 0.4139 0.4193 0.4554
4 0.3510 0.3664 0.4136
5 0.3085 0.3279 0.3816
6 0.2771 0.2982 0.3580
7 0.2558 0.2744 0.3357
8 0.2386 0.2548 0.3165
9 0.2240 0.2382 0.2999
10 0.2113 0.2241 0.2852
20 0.1395 0.1455 0.1973
50 0.0748 0.0770 0.1108
100 0.0447 0.0457 0.0679
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