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Abstract. We give two generalized Moreau-Rockafellar-type results for the
sum of a convex function with the composition of convex functions in separated
locally convex spaces. Then we equivalently characterize the stable strong duality
for composed convex optimization problems through two new regularity condi-
tions, which also guarantee two formulae of the subdifferential of the mentioned
sum of functions. We also treat some special cases, rediscovering older results in
the literature. A discussion on the topological assumptions for the vector func-
tion used in the composition closes the paper.
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1 Introduction

With this paper we cover some missing results concerning composed convex func-
tions in convex analysis. Our scope with this article is twofold. First we give
two generalized Moreau-Rockafellar-type results for composed functions of type
f+g◦h. Depending on how much we perturb this function, we obtain two formu-
lae for its conjugate. For a simpler perturbation function, with a single perturba-
tion variable in the argument of g, f and h remain coupled in the final formula.
On the other hand, when using a more complicated perturbation function, with
two perturbation variables, i.e. perturbing the arguments of both f and g, f and
h are separated in the formula of (f+g◦h)∗. Note that these formulae are always
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valid, not requiring the fulfillment of any sufficient condition. By using these for-
mulae we prove also some characterizations of the epigraph of (f + g ◦ h)∗. The
other aim of the paper is to equivalently characterize two known formulae for the
conjugate of f+g◦h through closedness regularity conditions involving epigraphs,
which are sufficient to yield two formulae for ∂(f + g ◦ h), too. The formulae
for (f + g ◦ h)∗ can be seen also as stable strong duality statements. When par-
ticularizing the functions involved we rediscover older Moreau-Rockafellar-type
results known in the literature, including the classical one, respectively stable
strong duality statements for the Fenchel, Lagrange and Fenchel-Lagrange duals.
Moreover, we give formulae for the conjugate of the supremum of infinitely many
functions and the epigraph of this conjugate.

We work in separated locally convex spaces and the functions f and g are
taken proper, convex and lower semicontinuous, with g also C-increasing, while
h is considered to be proper, C-convex and star C-lower semicontinuous. We gave
in [1] similar characterizations for (f +g ◦h)∗, but there we have considered for h
a more relaxed topological property, namely C-epi-closedness. We observe that
the regularity conditions that equivalently characterize the mentioned formulae
we gave there are stronger than the ones obtained in this paper, thus we end this
paper with a discussion on the topological hypothesis for h, where we formulate
also an open problem for the reader.

2 Preliminaries

Consider two separated locally convex vector spaces X and Y and their topologi-
cal dual spaces X∗ and Y ∗, endowed with the corresponding weak∗ topologies, and
denote by 〈x∗, x〉 = x∗(x) the value at x ∈ X of the continuous linear functional
x∗ ∈ X∗. Take Y to be partially ordered by the nonempty closed convex cone C,
i.e. on Y there is the partial order “≤C”, defined by z ≤C y ⇔ y − z ∈ C,
z, y ∈ Y . To Y we attach a greatest element with respect to “≤C” which
does not belong to Y , denoted by ∞Y and let Y • = Y ∪ {∞Y }. Then for
any y ∈ Y • one has y ≤C ∞Y and we consider on Y • the following operations:
y +∞Y = ∞Y + y = ∞Y and t · ∞Y = ∞Y for all y ∈ Y and all t ≥ 0. A
function g : Y • → R = R ∪ {±∞} is said to be C-increasing if g(∞Y ) = +∞
and for y, z ∈ Y • such that z ≤C y one has g(z) ≤ g(y). The dual cone of C
is C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ C}. By convention, let 〈y∗,∞Y 〉 = +∞
whenever y∗ ∈ C∗.

Given a subset U of X, by |U |, cl(U), co(U), δU and σU we denote its car-
dinality, its closure, its convex hull, its indicator function and support function,
respectively. We use also the projection function PrX : X × Y → X, defined by
PrX(x, y) = x ∀(x, y) ∈ X × Y and the identity function on X, idX : X → X
with idX(x) = x ∀x ∈ X.

For a function f : X → R we use the classical notations for domain dom(f) =
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{x ∈ X : f(x) < +∞}, epigraph epi(f) = {(x, r) ∈ X ×R : f(x) ≤ r}, conjugate
function regarding the set U ⊆ X f ∗U : X∗ → R, f ∗U(x∗) = sup{〈x∗, x〉−f(x) : x ∈
U} and subdifferential at x, where f(x) ∈ R, ∂f(x) = {x∗ ∈ X∗ : f(y)− f(x) ≥
〈x∗, y − x〉 ∀y ∈ X}. Between a function and its conjugate regarding some set
U ⊆ X there is Young’s inequality f ∗U(x∗) + f(x) ≥ 〈x∗, x〉 ∀x ∈ U ∀x∗ ∈ X∗.
When U = X the conjugate regarding the set U is actually the classical (Fenchel-
Moreau) conjugate function of f denoted by f ∗. We call f proper if f(x) > −∞
∀x ∈ X and dom(f) 6= ∅. Considering for each λ ∈ R the function (λf) : X → R,
(λf)(x) = λf(x) ∀x ∈ X, note that when λ = 0 we take (0f) = δdom(f). Given

two proper functions f, g : X → R, we have the infimal convolution of f and g
defined by f�g : X → R,

(
f�g

)
(a) = inf{f(x) + g(a− x) : x ∈ X}. The lower

semicontinuous hull of f is cl(f) : X → R, the function which has as epigraph
cl(epi(f)), and the lower semicontinuous convex hull of f is cl(co(f)) : X → R,
the function which has as epigraph cl(co(epi(f))). The conjugate function of the
conjugate of a function f : X → R is said to be the biconjugate of f and it is
denoted by f ∗∗ : X → R, f ∗∗(x) = sup{〈x∗, x〉 − f ∗(x∗) : x∗ ∈ X∗}.

Lemma 1. (Fenchel-Moreau) Let f : X → R be a convex function such that
cl(f) is proper. Then f ∗∗ = cl(f).

There are notions given for functions with extended real values that can be
generalized also for functions having their ranges in infinite dimensional spaces.

For a function h : X → Y • one has

· the domain: dom(h) = {x ∈ X : h(x) ∈ Y },

· h is proper : dom(h) 6= ∅,

· h is C-convex : h(tx+ (1− t)y) ≤C th(x) + (1− t)h(y) ∀x, y ∈ X ∀t ∈ [0, 1],

· the C-epigraph epiC(h) = {(x, y) ∈ X × Y : y ∈ h(x) + C},

· h is C-epi-closed if epiC(h) is closed (cf. [8]),

· h is star C-lower semicontinuous : (λh) : X → R, (λh)(x) = 〈λ, h(x)〉,
x ∈ X, is lower semicontinuous ∀λ ∈ C∗ (cf. [7]).

Remark 1. There are other extensions of lower semicontinuity for functions
taking values in infinite dimensional spaces used in convex optimization. We
mention here just the C-lower semicontinuity, introduced in [9] and refined in [6].
When a function is C-lower semicontinuous it is automatically star C-lower semi-
continuous, too, and every star C-lower semicontinuous function is also C-epi-
closed. The reverse statements do not hold in general (see [3, 9]).

3



Given a linear continuous mapping A : X → Y , we have its adjoint A∗ :
Y ∗ → X∗ given by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for any (x, y∗) ∈ X × Y ∗. For the
proper function f : X → R we define also the infimal function of f through A as
Af : Y → R, Af(y) = inf

{
f(x) : x ∈ X,Ax = y

}
, y ∈ Y .

Given a function Φ : X×Y → R, the infimal value function of its conjugate is
ηΦ : X∗ → R, ηΦ(x∗) = infy∗∈Y ∗ Φ∗(x∗, y∗). Since Φ∗ is convex, ηΦ is convex, too.
We give now a result which can be obtained from [10] and plays an important
role in proving the main statements in this paper.

Theorem 1. Let Φ : X × Y → R be a proper convex lower semicontinuous
function with 0 ∈ PrY (dom(Φ)). For each x∗ ∈ X∗ one has

(Φ(·, 0))∗(x∗) = sup
x∈X
{〈x∗, x〉 − Φ(x, 0)} = cl

(
inf

y∗∈Y ∗
Φ∗(·, y∗)

)
(x∗). (1)

Proof. First we determine the conjugate of ηΦ. For all x ∈ X there is

η∗Φ(x) = sup
x∗∈X∗

{
〈x∗, x〉 − inf

y∗∈Y ∗
Φ∗(x∗, y∗)

}
= sup

x∗∈X∗,
y∗∈Y ∗

{〈x∗, x〉 − Φ∗(x∗, y∗)} = Φ∗∗(x, 0).

As Φ is proper, convex and lower semicontinuous, we get further η∗Φ(x) = Φ(x, 0)
∀x ∈ X. Let us prove now that cl(ηΦ) is proper. Assuming that it takes ev-
erywhere the value +∞ we obtain that its conjugate, which coincides with η∗Φ,
is everywhere −∞. This contradicts the properness of Φ. The other possi-
bility of cl(ηΦ) to be improper is to take somewhere the value −∞. Because
0 ∈ PrY (dom(Φ)), there is some x0 ∈ X such that Φ(x0, 0) < +∞. By Young’s
inequality one has ηΦ(x∗) = infy∗∈Y ∗ Φ∗(x∗, y∗) ≥ 〈x∗, x0〉−Φ(x0, 0) ∀x∗ ∈ X∗. As
〈·, x0〉−Φ(x0, 0) is a continuous function we get cl(ηΦ)(x∗) ≥ 〈x∗, x0〉−Φ(x0, 0) >
−∞ ∀x∗ ∈ X∗. Consequently, cl(ηΦ) is everywhere greater than −∞, therefore
it is proper.

The first equality in (1) arises from the definition of the conjugate function.
To obtain the second one we apply Lemma 1 for ηΦ. From the calculations above
one gets η∗∗Φ = (Φ(·, 0))∗ and we are done. �

A consequence of this statement follows, by giving similar characterizations
for the epigraphs of the functions involved in (1).

Theorem 2. Let Φ : X × Y → R be a proper convex lower semicontinuous
function with 0 ∈ PrY (dom(Φ)). Then

epi((Φ(·, 0))∗) = cl
(

epi
(

inf
y∗∈Y ∗

Φ∗(·, y∗)
))

= cl
(
∪

y∗∈Y ∗
epi(Φ∗(·, y∗))

)
.
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Proof. Whenever (x∗, r) ∈ ∪y∗∈Y ∗ epi(Φ∗(·, y∗)) it is clear that infy∗∈Y ∗ Φ∗(x∗,
y∗) ≤ r, thus (x∗, r) ∈ epi

(
infy∗∈Y ∗ Φ∗(·, y∗)

)
.

If (x∗, r) ∈ epi
(

infy∗∈Y ∗ Φ∗(·, y∗)
)
, then for each ε > 0 there is an y∗ ∈ Y ∗

such that Φ∗(x∗, y∗) ≤ r + ε. Thus (x∗, r + ε) ∈ ∪y∗∈Y ∗ epi(Φ∗(·, y∗)) ∀ε > 0,
which yields (x∗, r) ∈ cl

(
∪y∗∈Y ∗ epi(Φ∗(·, y∗))

)
. Then we get

∪
y∗∈Y ∗

epi(Φ∗(·, y∗)) ⊆ epi
(

inf
y∗∈Y ∗

Φ∗(·, y∗)
)
⊆ cl

(
∪

y∗∈Y ∗
epi(Φ∗(·, y∗))

)
,

which implies that the closures of these two sets coincide. Since the previous
theorem yields epi((Φ(·, 0))∗) = cl

(
epi
(

infy∗∈Y ∗ Φ∗(·, y∗)
))

, we are done. �

From these two theorems we can get the following statement, given also in [5].

Lemma 2. Let Φ : X × Y → R be a proper convex lower semicontinuous
function with 0 ∈ PrY (dom(Φ)). Then PrX∗×R(epi(Φ∗)) is closed if and only if

sup
x∈X
{〈x∗, x〉 − Φ(x, 0)} = min

y∗∈Y ∗
Φ∗(x∗, y∗) ∀x∗ ∈ X∗.

Let us mention that for an attained infimum (supremum) instead of inf (sup)
we write min (max).

3 Moreau-Rockafellar results for composed func-

tions

The main results in this paper are given for the following framework. Consider
the proper convex lower semicontinuous function f : X → R, the proper convex
lower semicontinuous C-increasing function g : Y • → R with g(∞Y ) = +∞ and
the proper C-convex star C-lower semicontinuous function h : X → Y •. We
impose moreover the feasibility condition

(
h(dom(f)) + C

)
∩ dom(g) 6= ∅.

Remark 2. Since g : Y → R is C-increasing, g∗(y∗) = +∞ ∀y∗ /∈ C∗.

We formulate and prove two generalized Moreau-Rockafellar-type formulae
involving composed functions, namely the conjugate function of f + g ◦ h. To
this end, we attach to f + g ◦h a so-called perturbation function Φ : X ×Z → R,
where Z is a separated locally convex space, which is a function that fulfills
Φ(x, 0) = (f + g ◦ h)(x) ∀x ∈ X. We use the results introduced earlier for two
different perturbation functions attached to f + g ◦ h.

Take first the perturbation function

Φ1 : X × Y → R, Φ1(x, y) = f(x) + g(h(x)− y).
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It is proper and convex and its conjugate function turns out, via Remark 2, to
be

Φ∗1 : X∗×Y ∗ → R, Φ∗1(x∗, y∗) = g∗(−y∗)+(f+(−y∗h))∗(x∗) ∀(x∗, y∗) ∈ X∗×−C∗,

and Φ∗1(x∗, y∗) = +∞ otherwise. Then the biconjugate of Φ1 is Φ∗∗1 : X×Y → R,
which at each pair (x, y) ∈ X × Y takes the value (by Lemma 1 and Remark 2)

Φ∗∗1 (x, y) = sup
(x∗,y∗)∈X∗×−C∗

{〈x∗, x〉+ 〈y∗, y〉 − g∗(−y∗)− (f + (−y∗h))∗(x∗)}

= sup
y∗∈−C∗

{
〈y∗, y〉 − g∗(−y∗) + sup

x∗∈X∗
{〈x∗, x〉 − (f + (−y∗h))∗(x∗)}

}
= sup

y∗∈−C∗
{〈y∗, y〉 − g∗(−y∗) + (f + (−y∗h))∗∗(x)}

= sup
y∗∈C∗

{〈y∗,−y〉 − g∗(y∗) + (f + (y∗h))(x)}

= f(x) + sup
y∗∈C∗

{〈y∗,−y〉 − g∗(y∗) + (y∗h)(x)}

= f(x) + sup
y∗∈C∗

{〈y∗, h(x)− y〉 − g∗(y∗)}

= f(x) + g∗∗(h(x)− y) = f(x) + g(h(x)− y) = Φ1(x, y). (2)

Here the assumption h star C-lower semicontinuous is essential for obtaining
the fourth equality, because this hypothesis ensures the lower semicontinuity of
f + (y∗h) for all y∗ ∈ C∗. This function is thus proper, convex and lower semi-
continuous, therefore it coincides with its biconjugate. Note that (2) yields that
the function Φ1 is lower semicontinuous, too. As it is also proper and convex, us-
ing Theorem 1 we obtain the first Moreau-Rockafellar-type formula for (f+g◦h)∗.

Theorem 3. One has

(f + g ◦ h)∗ = cl
(

inf
y∗∈C∗

{g∗(y∗) + (f + (y∗h))∗(·)}
)
. (3)

Corollary 1. It holds

epi((f + g ◦ h)∗) = cl
(

epi
(

inf
y∗∈C∗

{g∗(y∗) + (f + (y∗h))∗(·)}
))

= cl
(

∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((f + (y∗h))∗)

))
.

Proof. The first equality follows directly from Theorem 3. For the second one,
we use Theorem 2. We have (x∗, r) ∈ ∪y∗∈Y ∗ epi(Φ∗1(·, y∗)) if and only if there
is some y∗ ∈ Y ∗ such that Φ∗1(x∗, y∗) ≤ r, which is nothing but the existence
of a y∗ ∈ −C∗ for which g∗(−y∗) + (f + (−y∗h))∗(x∗) ≤ r. Using Remark
2, this turns out to be equivalent to the existence of a y∗ ∈ dom(g∗) fulfilling
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g∗(y∗) + (f + (y∗h))∗(x∗) ≤ r, inequality meaning actually that (x∗, r− g∗(y∗)) ∈
epi((f+(y∗h))∗). This can be rewritten as (x∗, r) ∈ (0, g∗(y∗))+epi((f+(y∗h))∗).
By Theorem 2 we have then

epi((f+g◦h)∗)=epi((Φ1(·, 0))∗)=cl
(

∪
y∗∈dom(g∗)

(
(0, g∗(y∗))+epi((f+(y∗h))∗)

))
.�

Further we apply Lemma 2 for Φ1 and we obtain an equivalent characteriza-
tion through epigraphs of a formula of the conjugate of the function f + g ◦ h,
which acts as a regularity condition for the formula of the subdifferential of the
mentioned function.

Theorem 4. For each x∗ ∈ X∗ we have

(f + g ◦ h)∗(x∗) = min
y∗∈C∗

{
g∗(y∗) + (f + (y∗h))∗(x∗)

}
(4)

if and only if the regularity condition

(RC1) ∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((f + (y∗h))∗)

)
is closed,

is fulfilled.

Remark 3. The result in Theorem 4 can be seen also as the equivalent charac-
terization by the closedness-type regularity condition involving epigraphs (RC1)
of the stable strong duality statement for the primal composed convex optimiza-
tion problem

(P ) inf
x∈X
{f(x) + g ◦ h(x)},

and its conjugate dual problem

(D) sup
y∗∈C∗

{−g∗(y∗)− (f + (y∗h))∗(0)}.

Corollary 2. If (RC1) holds, for all x ∈ dom(f) ∩ h−1(dom(g)), one has

∂(f + g ◦ h)(x) = ∪
λ∈∂g(h(x))

∂
(
f + (λh)

)
(x). (5)

Remark 4. As we have proven, the closedness-type regularity condition we use
in order to have (5), (RC1), is equivalent to (4). On the other hand, according
to Proposition 4.11 in [6], the interiority-type conditions considered so far for (5)
in the literature imply (4), without being equivalent to it, as Example 3.5 in [1]
shows.
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Consider now another perturbation function, namely

Φ2 : X × Y ×X → R, Φ2(x, y, z) = f(x+ z) + g(h(x)− y).

It is proper and convex, too, and its conjugate function is Φ∗2 : X∗×Y ∗×X∗ → R,

Φ∗2(x∗, y∗, z∗) = g∗(−y∗)+f ∗(z∗)+(−y∗h)∗(x∗−z∗) ∀(x∗, y∗, z∗) ∈ X∗×−C∗×X∗,

and Φ∗2(x∗, y∗, z∗) = +∞ otherwise. By similar calculations to the ones used to
determine Φ∗∗1 , one can show, using again that h is star C-lower semicontinuous,
that Φ2 coincides with its biconjugate, thus it is lower semicontinuous, too.

We give now another extended Moreau-Rockafellar-type formula for (f + g ◦
h)∗, provable by using Theorem 1, and other characterizations of the epigraph of
this conjugate function which follow from Theorem 2.

Theorem 5. One has

(f + g ◦ h)∗ = cl

(
inf

z∗∈X∗,
y∗∈C∗

{f ∗(z∗) + g∗(y∗) + (y∗h)∗(· − z∗)}

)

= cl
(

inf
y∗∈C∗

{g∗(y∗) + f ∗�(y∗h)∗(·)}
)
. (6)

Corollary 3. There holds

epi((f + g ◦ h)∗) = cl

(
epi

(
inf

z∗∈X∗,
y∗∈C∗

{f ∗(z∗) + g∗(y∗) + (y∗h)∗(· − z∗)}

))

= cl
(

∪
z∗∈X∗,

y∗∈dom(g∗)

(
(z∗, f ∗(z∗)) + (0, g∗(y∗)) + epi((y∗h)∗)

))
= cl

(
epi(f ∗) + ∪

y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((y∗h)∗)

))
.

Proof. The first two equalities follow analogously to the ones in Corollary 1.
To prove the last one, note that, whenever y∗ ∈ dom(g∗), for each z∗ ∈ X∗ there
is (z∗, f ∗(z∗)) ∈ epi(f ∗), thus ∪z∗∈X∗

(
(z∗, f ∗(z∗)) + (0, g∗(y∗)) + epi((y∗h)∗)

)
⊆

epi(f ∗) + (0, g∗(y∗)) + epi((y∗h)∗). To prove the opposite inclusion, let (x∗, r) ∈
epi(f ∗)+(0, g∗(y∗))+epi((y∗h)∗). Then there is some z∗ ∈ X∗ such that f ∗(z∗)+
g∗(y∗) + (y∗h)∗(x∗ − z∗) ≤ r. Consequently, (x∗ − z∗, r − f ∗(z∗) − g∗(y∗)) ∈
epi((y∗h)∗), which yields (x∗, r) ∈ ∪z∗∈X∗

(
(z∗, f ∗(z∗))+(0, g∗(y∗))+epi((y∗h)∗)

)
.

Thus for all y∗ ∈ C∗ one has

∪
z∗∈X∗

(
(z∗, f ∗(z∗))+(0, g∗(y∗))+epi((y∗h)∗)

)
= epi(f ∗)+(0, g∗(y∗))+epi((y∗h)∗),

and the third desired equality follows at once. �
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Remark 5. Regarding the terms in the right-hand sides of (3) and (6), it can
be easily proven that

inf
y∗∈C∗

{g∗(y∗) + (f + (y∗h))∗(x∗)} ≤ inf
z∗∈X∗,
y∗∈C∗

{f ∗(z∗) + g∗(y∗) + (y∗h)∗(x∗ − z∗)}

and

∪
y∗∈dom(g∗)

(
(0, g∗(y∗))+epi((f+(y∗h))∗)

)
⊇ ∪
z∗∈X∗,

y∗∈dom(g∗)

(
(z∗, f ∗(z∗))+(0, g∗(y∗))+epi((y∗h)∗)

)
.

Though, as shown above, the closures of these functions and sets, respectively,
coincide.

One can introduce another regularity condition which yields (RC1) without
being always implied by it, whose fulfillment ensures a formula for ∂(f + g ◦ h)
where the functions f and h appear separated, as indicated in the following.

Theorem 6. For each x∗ ∈ X∗ we have

(f + g ◦ h)∗(x∗) = min
y∗∈C∗,
z∗∈X∗

{
g∗(y∗) + f ∗(z∗) + (y∗h)∗(x∗ − z∗)

}
(7)

if and only if the regularity condition

(RC2) epi(f ∗) + ∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((y∗h)∗)

)
is closed,

is fulfilled.

Remark 6. The result proven above can be seen also as the equivalent charac-
terization by a regularity condition of the stable strong duality statement for the
primal composed convex optimization problem (P ) and another conjugate dual
problem attached to it, which can be seen as a refinement of (D),

(D̄) sup
y∗∈C∗,
z∗∈X∗

{−g∗(y∗)− f ∗(z∗)− (y∗h)∗(−z∗)}.

Corollary 4. If (RC2) holds for all x ∈ dom(f) ∩ h−1(dom(g)), one has

∂(f + g ◦ h)(x) = ∂f(x) + ∪
λ∈∂g(h(x))

∂(λh)(x). (8)

Remark 7. The formula (8) was also given in other papers, like [6], but
under more restrictive regularity conditions of interiority-type which, together
with the assumption that h is continuous at a point of dom(f), imply (7), without
being equivalent to it. The regularity condition we give in order to obtain (8),
(RC2), is equivalent to (7) and it yields (8) without requiring additional continuity
hypotheses on h.
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4 Special cases

In this section we treat some special choices of the functions f , g and h, redis-
covering older results from the literature, among which also the classical Moreau-
Rockafellar formula.

4.1 Compositions with linear functions

Consider the proper convex lower semicontinuous function f : X → R, the proper
convex lower semicontinuous function g : Y → R and the linear continuous
operator A : X → Y fulfilling

(
A(dom(f))

)
∩ dom(g) 6= ∅. Taking h to be A

and C = {0} (therefore C∗ = Y ∗) we see that we are in a special case of the
general framework of this paper. For each y∗ ∈ Y ∗ and any x∗ ∈ X∗ one has
(f + (y∗A))∗(x∗) = f ∗(x∗ − A∗y∗). Note also that

(y∗A)∗(x∗) =

{
0, if A∗y∗ = x∗,
+∞, otherwise.

Therefore in this case (3) and (6) collapse into the following result.

Theorem 7. For each x∗ ∈ X∗ there is

(f + g ◦ A)∗(x∗) = cl
(

inf
y∗∈Y ∗

{f ∗(· − A∗y∗) + g∗(y∗)}
)

(x∗) = cl(f ∗�A∗g∗)(x∗).

Proof. The first equality follows directly from Theorem 3 (or Theorem 5),
by applying the formulae given above. The second equality is a consequence of
Theorem 5, which yields

(f + g ◦ A)∗(x∗) = cl

(
inf

z∗∈X∗,
y∗∈C∗

{f ∗(z∗) + g∗(y∗) + (y∗A)∗(· − z∗)}

)
(x∗).

For each x∗ ∈ X∗ we have

inf
z∗∈X∗,
y∗∈C∗

{f ∗(z∗) + g∗(y∗) + (y∗A)∗(x∗ − z∗)} = inf
z∗∈X∗,y∗∈C∗,
A∗y∗=x∗−z∗

{f ∗(z∗) + g∗(y∗)}

= inf
z∗∈X∗

{
f ∗(z∗)+ inf

y∗∈C∗,
A∗y∗=x∗−z∗

g∗(y∗)

}
= inf

z∗∈X∗
{f ∗(z∗) + A∗g∗(x∗ − z∗)}

= (f ∗�A∗g∗)(x∗),

which leads to the desired conclusion. �
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In the following consequence of this statement we denote by (A∗×idR)(epi(g∗))
the image of the set epi(g∗) through the function (A∗× idR) : Y ∗×R→ X∗×R,
defined by (A∗ × idR)(y∗, r) = (A∗y∗, r).

Corollary 5. It holds

epi((f + g ◦ A)∗) = cl
(

epi
(

inf
y∗∈Y ∗

(g∗(y∗) + f ∗(· − A∗y∗))
))

= cl
(

epi(f ∗) + (A∗ × idR)(epi(g∗))
)

= cl
(

epi(f ∗�A∗g∗)
)
.

Proof. The first equality follows directly from Corollary 1. Note that
epi(y∗A)∗ = {(A∗y∗)}×R+ ∀y∗ ∈ Y ∗. Thus ∪y∗∈dom(g∗)((0, g

∗(y∗)) + epi((y∗A)∗))
= (A∗ × idR)(epi(g∗)) and the second equality follows by Corollary 3. For the
third one we use the first equality in Corollary 3 and the calculations in the proof
of Theorem 7. �

Specializing further A to be the identity operator we have to take X = Y and
we rediscover the following results (cf. [4, 11, 12]), the first of them being known
as the classical Moreau-Rockafellar formula.

Corollary 6. If f and g are proper convex lower semicontinuous functions
defined on X with values in R such that dom(f) ∩ dom(g) 6= ∅, then

(a) (f + g)∗ = cl(f ∗�g∗),

(b) epi((f + g)∗) = cl(epi(f ∗�g∗)) = cl(epi(f ∗) + epi(g∗)).

Like in the general case, we turn now our attention to stable strong duality. In
the framework considered in the beginning of the subsection, the primal problem
(P ) turns into

(PA) inf
x∈X
{f(x) + g(A(x))},

while its mentioned duals turn both into

(DA) sup
y∗∈Y ∗

{−f ∗(A∗y∗)− g∗(−y∗)},

which is the classical Fenchel dual problem to (PA). Because of the continuity of
A it follows that in this case the regularity conditions (RC1) and (RC2) collapse
both into
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(RCA) epi(f ∗) + (A∗ × idR)(epi(g∗)) is closed.

This condition is valid if and only if there is stable strong duality for (PA)
and (DA). Moreover, this regularity condition coincides with the one given in
Theorem 3.1 in [4] and then rediscovered in Theorem 5.4 in [1] to equivalently
characterize (f + g ◦ A)∗.

4.2 The case g = δ−C

Working in the hypotheses of Section 3 we consider now the function g to be
δ−C , which is proper, convex, lower semicontinuous and C-increasing, while the
feasibility condition becomes h(dom(f)) ∩ (−C) 6= ∅. The conjugate of g is
g∗ = σ−C = δC∗ , thus dom(g∗) = C. Let U ⊆ X be nonempty, convex and closed
and take h : X → Y • to be defined as follows

h(x) =

{
w(x), if x ∈ U,
∞Y , otherwise,

where w : X → Y • is a proper, C-convex and C-epi-closed function.
The perturbation functions considered earlier become ΦC

1 (x, y) = f(x) +
δ{(x,y)∈U×Y :w(x)−y∈−C}(x, y) ∀(x, y) ∈ X × Y and, respectively, ΦC

2 (x, y, z) =
f(x + z) + δ{(x,y)∈U×Y :w(x)−y∈−C}(x, y) ∀(x, y, z) ∈ X × Y × X. By construc-
tion ΦC

1 and ΦC
2 are obviously proper and convex. Because w is C-epi-closed and

U is closed, one has that h is C-epi-closed, too. Then it is straightforward that
ΦC

1 and ΦC
2 are lower semicontinuous functions. Note that in this case it is not

necessary to consider the function h to be star C-lower semicontinuous in order to
be able to apply the theory developed earlier for the case when the perturbation
functions are lower semicontinuous. From Theorem 1 one can derive the new
Moreau-Rockafellar-type formulae listed below. Note that if h were star C-lower
semicontinuous they could be obtained from Theorems 3 and 5.

Theorem 8. For each x∗ ∈ X∗ there is

sup
x∈U,

w(x)∈−C

{〈x∗, x〉 − f(x)} = (f + δ−C(w))∗U(x∗) = cl
(

inf
y∗∈C∗

(f + (y∗w))∗U

)
(x∗)

= cl
(

inf
y∗∈C∗

f ∗�(y∗w)∗U

)
(x∗).

12



Corollary 7. It holds

epi((f + δ−C(w))∗U) = cl
(

epi
(

inf
y∗∈C∗

(f + (y∗w))∗U

))
= cl

(
∪

y∗∈C∗
epi((f + (y∗w))∗U)

)
= cl

(
∪

y∗∈C∗
epi(f ∗�(y∗w)∗U)

)
= cl

(
epi(f ∗) + ∪

y∗∈C∗
epi((y∗w)∗U)

)
.

From these results one can obtain characterizations via epigraphs of the stable
strong duality statements for the problem

(PC) inf
x∈U,

w(x)∈−C

f(x),

and its duals

(DC) sup
y∗∈C∗

{−(f + (y∗w))∗U(0)},

and

(D̄C) sup
y∗∈C∗,
z∗∈X∗

{−f ∗(z∗)− (y∗w)∗U(−z∗)}.

Notice that (DC) is actually the Lagrange dual problem to (PC), while (D̄C)
is its Fenchel-Lagrange dual. The regularity conditions used in this paper turn
out to be in this case

(RCC
1 ) ∪

y∗∈C∗
epi((f + (y∗w))∗U) is closed,

and, respectively,

(RCC
2 ) epi(f ∗) + ∪

y∗∈C∗
epi((y∗w)∗)U is closed,

which are actually the conditions used in [2] to equivalently characterize the stable
strong duality for (PC) and (DC), respectively for (PC) and (D̄C). Like in this
special case, also in [2] the function w has been supposed to be C-epi-closed.

5 The conjugate of the supremum of infinitely

many functions

In this section we discuss the Moreau-Rockafellar representation of the conjugate
of the supremum of infinitely many functions and give formulae of the epigraph
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of this conjugate function.
Let T be a possibly infinite index set and let RT be the space of all functions

y : T → R, endowed with the product topology and with the operations being
the usual pointwise ones. For simplicity, denote yt = y(t) ∀y ∈ RT ∀t ∈ T . The
dual space of RT is (RT )∗, the space of generalized finite sequences λ = (λt)t∈T
such that λt ∈ R ∀t ∈ T , and with only finitely many λt different from zero.
The positive cone in RT is RT

+ = {y ∈ RT : yt = y(t) ≥ 0 ∀t ∈ T}, and its dual
is the positive cone in (RT )∗, namely (RT

+)∗ = {y∗ = (y∗t )t∈T ∈ (RT )∗ : y∗t ≥ 0
∀t ∈ T}. Take g : RT → R, g(y) = supt∈T yt, which is a proper, convex,
lower semicontinuous and RT

+-increasing function and the proper convex lower
semicontinuous functions ht : X → R, such that dom

(
supt∈T ht

)
6= ∅. Consider

the function

h : X → (RT )•, h(x) =

{
(ht(x))t∈T , if x ∈ ∩

t∈T
dom(ht),

∞RT , otherwise.

One can easily see that h is proper, RT
+-convex and RT

+-epi-closed.
Note that for all x ∈ X there is

sup
t∈T

ht(x) = sup
S⊆T,
|S|<+∞

sup
y∗s>0∀s∈S,P

s∈S y
∗
s =1

∑
s∈S

y∗shs(x).

For all the finite subsets S of T and for any y∗s > 0 ∀s ∈ S fulfilling
∑

s∈S y
∗
s = 1,

the function x 7→
∑

s∈S y
∗
shs(x) is proper, convex and lower semicontinuous. By

Lemma 1 it is equal to its biconjugate, thus for all x ∈ X there is

sup
t∈T

ht(x)= sup
S⊆T,
|S|<+∞

sup
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗∗
(x)=

 inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
∗

(x).

Proposition 1. The function

η : X∗ → R, η(x∗) = inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
(x∗)

is proper and convex.

Proof. Whenever S ⊆ T with S finite and y∗s > 0 ∀s ∈ S with
∑

s∈S y
∗
s = 1,

the function
(∑

s∈S y
∗
shs
)∗

is proper, thus η cannot be identical +∞. Assuming
the existence of some x∗ ∈ X∗ where η(x∗) = −∞, it follows that supt∈T ht is
identical +∞, which contradicts the feasibility hypothesis dom

(
supt∈T ht

)
6= ∅.

Therefore η is proper.
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In order to prove its convexity, let λ ∈ [0, 1] and x∗1, x
∗
2 ∈ X∗. What we have

to show is
η(λx∗1 + (1− λ)x∗2) ≤ λη(x∗1) + (1− λ)η(x∗2). (9)

If λ ∈ {0, 1} or η(x∗1) = +∞ or η(x∗2) = +∞, (9) is valid. Let further λ ∈ (0, 1)
and η(x∗1), η(x∗2) ∈ R. Then there are some α, β ∈ R such that η(x∗1) < α and
η(x∗2) < β. Thus there exist the finite subsets S1 and S2 of T and y∗s > 0
∀s ∈ S1 ∪ S2 such that

∑
s∈S1

y∗s = 1,
∑

s∈S2
y∗s = 1,

(∑
s∈S1

y∗shs
)∗

(x∗1) < α and(∑
s∈S2

y∗shs
)∗

(x∗2) < β. Thus

η(λx∗1 + (1− λ)x∗2) ≤
(
λ
∑
s∈S1

y∗shs + (1− λ)
∑
s∈S2

y∗shs

)∗
(λx∗1 + (1− λ)x∗2)

≤
(∑
s∈S1

λy∗shs

)∗
(λx∗1) +

(∑
s∈S2

(1− λ)y∗shs

)∗
((1− λ)x∗2) < λα + (1− λ)β.

If α converges towards η(x∗1) and β towards η(x∗2), (9) turns out to hold in this
case, too. As α, x∗1 and x∗2 were arbitrarily chosen, it follows that η is convex.�

The function cl(η) is convex and lower semicontinuous, and its properness can
be proven similarly to the one of η. Applying again Lemma 1 one gets

(
sup
t∈T

ht

)∗
= cl

 inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗ . (10)

Since

⋃
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

epi

((∑
s∈S

y∗shs

)∗)
⊆ epi

 inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗

⊆ cl


⋃

S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

epi

((∑
s∈S

y∗shs

)∗)
 ,
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it follows

epi
((

sup
t∈T

ht

)∗)
= cl

epi

 inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗


= cl


⋃

S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

epi

((∑
s∈S

y∗shs

)∗)
 .

On the other hand, for all x∗ ∈ X∗ there is(
sup
t∈T

ht

)∗
(x∗) ≤ inf

y∗∈P
(y∗h)∗(x∗) ≤ inf

S⊆T,|S|<+∞
y∗s>0 ∀s∈SP

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
(x∗), (11)

where P = {y∗ ∈ (RT
+)∗ :

∑
t∈T y

∗
t = 1}.

As the first inequality in (11) is obvious, we prove only the second one. Let be
x∗ ∈ X∗. If the infimum in the right-hand side of the desired inequality is equal
to +∞ there is nothing to prove. Otherwise, take an arbitrary r ∈ R strictly
greater than this infimum. Thus there is a finite subset S of T and some y∗s > 0
for all s ∈ S with

∑
s∈S y

∗
s = 1 for which (

∑
s∈S y

∗
shs)

∗(x∗) < r. Considering a
ȳ∗ ∈ P which satisfies ȳ∗s = y∗s when s ∈ S and ȳ∗s = 0 otherwise, it follows that
infy∗∈P(y∗h)∗(x∗) ≤ (ȳ∗h)∗(x∗) ≤ (

∑
s∈S y

∗
shs)

∗(x∗) < r. Since r was arbitrarily
chosen, (11) follows.

By taking (10) and (11) into consideration it yields(
sup
t∈T

ht

)∗
(x∗) = cl

(
inf
y∗∈P

(y∗h)∗
)

(x∗).

On the other hand, we have

∪
y∗∈P

epi(y∗h)∗ ⊆ epi

(
inf
y∗∈P

(y∗h)∗
)
⊆ cl

(
∪

y∗∈P
epi(y∗h)∗

)
.

The relations above lead to

epi
((

sup
t∈T

ht

)∗)
= cl

(
∪

y∗∈P
epi((y∗h)∗)

)
= cl

(
epi

(
inf
y∗∈P

(y∗h)∗
))

. (12)

For every finite subset S of T and all y∗s > 0 ∀s ∈ S with
∑

s∈S y
∗
s = 1, there is

epi

(∑
s∈S

y∗shs

)∗
= cl

(∑
s∈S

epi
(
(y∗shs)

∗)) = cl

(∑
s∈S

y∗s epi
(
h∗s
))

⊆ cl

(
co

(
∪
t∈T

epi(h∗t )

))
,

16



whence

epi
((

sup
t∈T

ht

)∗)
⊆ cl

(
co

(
∪
t∈T

epi(h∗t )

))
. (13)

Taking an arbitrary element (x∗, r) ∈ co
(
∪t∈T epi(h∗t )

)
, there is a finite sub-

set S of T and some y∗s > 0, s ∈ S with
∑

s∈S y
∗
s = 1 for which (x∗, r) ∈∑

s∈S y
∗
s epi(h∗s) ⊆ epi

((∑
s∈S y

∗
shs
)∗)

. This yields
(∑

s∈S y
∗
shs
)∗

(x∗) ≤ r. For
any ȳ∗ ∈ (RT

+)∗ fulfilling
∑

t∈T ȳ
∗
t = 1 which satisfies ȳ∗s = y∗s when s ∈ S and

ȳ∗s = 0 otherwise, there is

(ȳ∗h)∗(x∗) =

(∑
s∈S

y∗shs + δ ∩
s∈T\S

dom(hs)

)∗
(x∗) ≤

(∑
s∈S

y∗shs

)∗
(x∗) ≤ r.

This means that (x∗, r) ∈ epi((ȳ∗h)∗), which yields

co
(
∪
t∈T

epi(h∗t )
)
⊆
⋃
y∗∈P

epi((y∗h)∗). (14)

Consequently,

∪
t∈T

epi(h∗t ) ⊆ epi
(

inf
t∈T

h∗t

)
⊆ cl

(
epi
(

inf
t∈T

h∗t

))
⊆ cl

(
co
(

epi
(

inf
t∈T

h∗t

)))
,

and

cl
(

co
(

epi
(

inf
t∈T

h∗t

)))
= cl

(
co
(
∪
t∈T

epi(h∗t )
))

= epi
(

cl
(

co
(

inf
t∈T

h∗t
)))

.

Therefore we rediscover the known formulae(
sup
t∈T

ht

)∗
= cl

(
co
(

inf
t∈T

h∗t

))
and, via (12), (13) and (14),

epi
((

sup
t∈T

ht

)∗)
= cl

(
co
(
∪
t∈T

epi(h∗t )
))
.

One can also show that for all x∗ ∈ X∗ there is

inf
y∗∈P

(y∗h)∗(x∗) ≤ inf
S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
(x∗).

Let x∗ ∈ X∗. If the infimum in the right-hand side of the inequality above is
equal to +∞ there is nothing to prove. Otherwise, there is some r ∈ R greater
than this infimum. Thus there is a finite subset S of T and some y∗s > 0, s ∈ S
with

∑
s∈S y

∗
s = 1 for which (

∑
s∈S y

∗
shs)

∗(x∗) < r. Considering a ȳ∗ ∈ P which
satisfies ȳ∗s = y∗s when s ∈ S and ȳ∗s = 0 otherwise, it follows that the infimum in
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the left-hand side is less than or equal to (
∑

s∈S y
∗
shs)

∗(x∗). Since r was arbitrar-
ily chosen, the inequality follows.

Remark 8. From (12) and (14) one obtains that(
sup
t∈T

ht

)∗
(x∗) = min

y∗∈P
(y∗h)∗(x∗) = min

S⊆T,|S|<+∞,
y∗s>0∀s∈S,P

s∈S y
∗
s =1

(∑
s∈S

y∗shs

)∗
(x∗) ∀x∗ ∈ X∗

holds if
epi
((

sup
t∈T

ht

)∗)
= co

(
∪
t∈T

epi(h∗t )
)
,

the latter meaning actually that co
(
∪t∈T epi(h∗t )

)
is closed.

6 Discussion and an open problem

We equivalently characterized in this paper the formulae (4) and, respectively,
(7) with regularity conditions involving epigraphs. The discussion will be further
carried on only for the formula (4), because for (7) the things work similarly.

Before proceeding, we need some prerequisites. A set U ⊆ X is said to be
closed regarding the closed subspace Z ⊆ X if U ∩ Z = cl(U) ∩ Z. Note that we
always have

U ∩ Z ⊆ cl(U ∩ Z) ⊆ cl(U) ∩ Z. (15)

In the preliminary section we have introduced two different extensions of
lower semicontinuity to vector functions, namely C-epi-closedness and star C-
lower semicontinuity. It is known that the star C-lower semicontinuous functions
are always C-epi-closed and next we give an example which shows that the op-
posite assertion does not always hold.

Example 1. Consider the function

g : R→ (R2)• = R2 ∪ {∞}, g(x) =

{
( 1
x
, x), if x > 0,
∞, otherwise.

One can verify that g is R2
+-convex and R2

+-epi-closed, but not star R2
+-lower

semicontinuous. For instance, for λ = (0, 1)T ∈ (R2
+)∗ = R2

+ one has

((0, 1)Tg)(x) =

{
x, if x > 0,
+∞, otherwise,

which is not lower semicontinuous.
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In this paper we have shown that (4) is valid if and only if

(RC1) ∪
y∗∈dom(g∗)

(
(0, g∗(y∗)) + epi((f + (y∗h))∗)

)
is closed.

The formula (4) was equivalently characterized also in [1], where the assump-
tion of star C-lower semicontinuity considered here for h was relaxed to C-epi-
closedness, with another regularity condition, namely

(RC ′1) {0} × epi(g∗) + ∪
λ∈C∗

{
(a,−λ, r) : (a, r) ∈ epi

(
f + (λh))∗

}
is closed

regarding the subspace X∗ × {0} × R.

Denoting byM the set asked to be closed regarding the subspace X∗×{0}×R
in (RC ′1), it can be proven that (RC1) is equivalent to saying that M∩ (X∗ ×
{0} × R) is closed. Using (15), it follows that (RC ′1) implies (RC1).

We noticed that by strengthening the initial topological assumptions on the
function h, namely by considering it star C-lower semicontinuous instead of C-
epi-closed we obtain that (4) is equivalent to a condition that is weaker than the
one which equivalently characterizes (4) in the framework of [1]. Thus, one “loses”
something by restricting the hypotheses, but there is a “gain” in the regularity
condition which equivalently characterizes (4). In each of these contexts, the
formula in discussion is the weakest regularity condition known to us that ensures
the subdifferential formula (5). Thus it is up to the user to decide what is
more important in each specific situation: weaker hypotheses or weaker regularity
conditions.

A similar discussion can be made also for (7), equivalently characterized in
this paper, where h is taken star C-lower semicontinuous, by (RC2) and in [1]
where h is considered C-epi-closed by the condition

(RC ′2) {0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈C∗

{
(p,−λ, r) : (p, r) ∈

epi
(
λh
)∗}

is closed regarding the subspace X∗ × {0} × R.

We conclude this discussion by challenging the reader to provide an example.

Conjecture. Let the separated locally convex spaces X and Y , the latter par-
tially ordered by a closed convex cone C, a proper convex lower semicontinuous
function f : X → R, a proper convex lower semicontinuous C-increasing function
g : Y → R and a proper C-convex C-epi-closed function h : X → Y • which
is not star C-lower semicontinuous, such that

(
h(dom(f)) + C

)
∩ dom(g) 6= ∅.

We conjecture that it is possible to choose X, Y , f , g and h such that (RC1) is
fulfilled, but (RC ′1) fails.
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