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Abstract. The authors study regularization of non-linear inverse
problems by projection methods. Non-linearity is controlled by
some range invariance assumption. Emphasis is on approximation
theoretic properties of the discretization which determine the con-
vergence rates. Instead of using source conditions for the true
solution to represent the error, the authors show how distance
functions with respect to some benchmark smoothness are able
to replace this. Some examples indicate how the results can be
applied.

1. Introduction

The focus of the present study is on regularization of non-linear
problems between Hilbert spaces X and Y . Such problems are given
by a (non-linear) mapping F : D(F ) → Y , where D(F ) ⊂ X is the
domain of definition of the mapping F . Specifically we assume that
the equation is noisy, i.e.,

(1) yδ = F (x) + δξ,

where ξ ∈ Y is bounded noise with ‖ξ‖ ≤ 1, and δ > 0 is the known
noise level. In general this equation is numerically not feasible, and
discretization is required to treat it. Here we focus on one-sided dis-
cretization, given through a subspace Yn ⊂ Y and respective orthogonal
projection Qn : Y → Y , leaving Yn invariant. Thus, instead of (1) we
are actually given data

(2) Qny
δ = (QnF ) (x) + δQnξ.

As typical for non-linear problems, our a priori knowledge about the
unknown true solution x† ∈ X is given through an initial guess x0 as

(3) x† ∈ Br(x0) ⊂ D(F ).
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where Br(x0) denotes the ball around x0 with known radius r > 0.
In this study the approximate computation of x† from noisy data

Qny
δ is carried out by discretization only, i.e., by using some projection

method (see also [3, Chap. 7], [23, Chap. 3]). Its numerical behavior
is determined by several effects, and these will be discussed. Firstly,
certain approximation theoretic properties of the design spaces Yn ⊂ Y
are important and discussed in Section 2. If these are known, then the
error of the classical linear projection method can be bounded, and this
is briefly sketched in Section 3.

Then, under some range invariance assumption of the non-linear
mapping F we discuss a modification of the projection method, a
fixed point iteration, to be presented and analyzed in Section 4. Error
bounds for this non-linear projection method are obtained in Section 5
under some new perspective. In a first step, in § 5.1, such bounds are
obtained for some benchmark smoothness, given in terms of a source
condition. The main result of the paper refers to the important case
that the solution smoothness fails to satisfy the benchmark smooth-
ness. This degree of failure is expressed by some distance function. In
that general case § 5.2 presents error bounds based on the correspond-
ing distance function. As shown in the concluding paragraph § 5.3 such
distance functions can be verified whenever range inclusions express the
interplay between the solution smoothness and smoothing properties
of the operator F governing the equation (1).

2. Design spaces

Assumption A.3 below assigns the non-linear mapping F a corre-
sponding compact linear mapping A, and we shall use this linear map-
ping to design a projection method. Throughout this paper N (A) and
R(A) denote null-space and range of the linear operator A, respectively.
Several approximation theoretic requirements on the chosen subspaces
Yn are important, we refer to [30] for a compound treatment. Such are
the degree of approximation, i.e., the validity of some Jackson inequal-
ity, and the modulus of injectivity, i.e., the validity of some Bernstein
inequality.

Degree of approximation. It measures the approximation power of some
finite dimensional subspace, sayM ⊂ Y , with respect to the operator A
as

(4) η(M) := sup
‖x‖≤1

dist(Ax,M).
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In general this may be poor and we need to compare it with its best
possible performance. If dim(M) ≤ n then this is given by

(5) dn(A) := inf
dim(M)≤n

η(M),

where the infimum runs over all at most n-dimensional subspaces
M ⊂ Y . The latter quantity is known to be the n-th Kolmogorov width
and it equals the (n+ 1)-st singular number sn+1 of A.

To establish optimality of the projection method, introduced below
we shall require that the design spaces Yn are order optimal in the
following sense.

Assumption A.1 (Jackson inequality). There is a constant
1 ≤ CQ <∞ such that

(6) η(Yn) ≤ CQsn+1, n ∈ N.

For later use we mention that in Hilbert space Y the distance
dist(y,M) of some element y ∈ Y with respect to a given subspace
M ⊂ Y is given by its orthogonal projection onto M . Hence we have

(7) ηn := η(Yn) = ‖(I −Qn)A‖, n ∈ N.

Modulus of injectivity. Given some finite dimensional subspaceM ⊂ Y
this is given as

(8) β(M) := inf {‖A∗u‖/‖u‖, 0 6= u ∈M} .
In order that β(M) > 0 we need to assume that N (A∗) ∩M = {0},
which in turn is equivalent to M ⊂ R(A), the closure of the range of A
in Y . It describes the quality of inversion of the mapping A restricted
to the subspace M in the image space. It is clear from this definition
that

(9) β(M) ≤ sup
dim(Z)≥n

β(Z) =: bn−1(A
∗),

where the supremum runs over all at least n-dimensional subspaces
Z ⊂ Y . The latter quantity bn−1(A

∗) is well known in approxima-
tion theory as the (n − 1)-st Bernstein width of A∗. For operators in
Hilbert space this coincides with the n-th singular number of A∗, hence
bn−1(A

∗) = sn. For the design spaces Yn this amounts to

(10) β(Yn) ≤ sn, n ∈ N.

We shall require that the spaces Yn are order optimal with respect to
the modulus of injectivity.
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Assumption A.2 (Bernstein inequality). The design spaces Yn obey

Yn ⊂ R(A), and there is a constant CB <∞ for which

(11) sn ≤ CBβ(Yn), n ∈ N.

Remark 1. Although within the present context the Kolmogorov
widths and Bernstein widths coincide, the requirements made in As-
sumptions A.1 and A.2 reflect different aspects of approximation. Typi-
cally the validity of some Bernstein inequality reflects smoothness prop-
erties of the elements in Yn, rather than its approximation power.

For many specific approximation methods their degree of approxima-
tion and modulus of injectivity (with respect to specific operators) are
known up to constants. In the following example we shall see that for
regular finite elements with inverse property both the assumptions A.1
and A.2 are fulfilled, provided the operator A∗ obeys a step condition.

Example 1 (Finite element approximation). Suppose that the target
space Y consists of functions on a (sufficiently smooth) bounded do-
main Ω ⊂ R

d. For such classes of functions we denote byH l(Ω), −∞ <
l <∞ the usual Sobolev spaces of bounded smoothness l for l > 0 and
their duals for l < 0. We denote the respective norms by ‖y‖l :=
‖y‖Hl(Ω). Then we may choose finite element approximations as a
design space. We shall not give many details, instead we allow any
spaces St,k

h (Ω) ⊂ Hk(Ω) of finite elements, which constitute regular
(t,k)-systems with the inverse property in the sense of [1, Chapt. 4], see
also [29, § 4]. Specifically we assume the following inequalities to hold

for the projection Qh : L2(Ω)→ St,k
h (Ω):

‖(I −Qh)y‖−k ≤ Chk‖y‖, y ∈ L2(Ω),(12)

‖y‖ ≤ Ch−k‖y‖−k, y ∈ St,k
h (Ω),(13)

with some t ≥ k > 0 and a common constant C < ∞ which is inde-
pendent of the mesh size h. For recent treatment of this topic we refer
to [12, Chapt. 1, §1.5 and §1.7].

To control the quality of the spaces St,k
h (Ω) with respect to the oper-

ator A we require a step condition to hold for A∗, precisely we require
that there is l > 0 and there are constants 0 < m ≤M <∞ for which

(14) m‖y‖−l ≤ ‖A∗y‖ ≤M‖y‖−l, y ∈ L2(Ω).

Notice that this implies N (A∗)∩St,k
h (Ω) = {0}. If l ≤ k then it follows

from interpolation, that the bounds (12) and (13) extend as

‖(I −Qh)y‖−l ≤ Chl‖y‖, y ∈ L2(Ω),

‖y‖ ≤ Ch−l‖y‖−l, y ∈ St,k
h (Ω).
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Consequently, using the step condition (14) this implies

‖A∗(I −Qh)y‖ ≤M‖(I −Qh)y‖−l ≤MChl‖y‖, y ∈ L2(Ω),

and

‖y‖ ≤ Ch−l‖y‖−l ≤
C

m
h−l‖A∗y‖. y ∈ St,k

h (Ω).

In terms of the degree of approximation and the modulus of injectivity
this rewrites as

η(St,k
h (Ω)) := ‖(I −Qh)A‖ ≤MChl(15)

and respectively

β(St,k
h (Ω)) ≥ m

C
hl.(16)

For regular meshes the dimensions #(St,k
h (Ω)) of the finite element

spaces obey #(St,k
h (Ω)) ³ h−d, which follows from volume considera-

tions. Next we observe that as a consequence we obtain for the singular
numbers of A that

sn+1 ≤ η(St,k
h (Ω)) ≤MChl ³ n−l/d, sn ≥ β(St,k

h (Ω)) ³ n−l/d

Thus, we finally obtain sn ³ η(St,k
h (Ω)) ³ β(St,k

h (Ω)) ³ n−l/d. It means
that for sufficiently good finite element spaces and if the operator A∗

obeys a step condition both the assumptions A.1 and A.2 are fulfilled.

3. Linear projection methods

Projection methods for linear ill-posed problems are well known and
their analysis is well understood, starting from the original research
in [29], and recently analyzed in [21]. If we have chosen some design
spaces Yn, then we may construct a projection method as follows. Given
the corresponding projection Qn as in (2) we let

(17) Bn := QnA : X → Y,

and B+
n : Y → Xn the Moore-Penrose inverse of Bn. We associate

each Yn ⊂ Y the space Xn := A∗Yn (= R(B∗n)) and the corresponding
orthogonal projection Pn : X → X. Under the present assumptions we
actually have B+

n = (Bn|Xn
)−1. Indeed, if x ∈ Xn and Bnx = 0 then

x ∈ N (Bn) ∩Xn = R(B∗n) ∩Xn = X⊥
n ∩Xn = {0}, which proves the

injectivity of the operator Bn restricted to Xn.
Now we are going to mention some elementary properties.
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Lemma 1. The following identities hold true.

Bn(I − Pn) = 0(18)

BnB
+
n = Qn,(19)

and

B+
nBn = Pn.(20)

Proof. By construction of Xn we have B∗ny = PnB
∗
ny, y ∈ Y, hence

by duality we obtain (18). The last assertions follow from the Moore-
Penrose identities, see e.g. [11, Eq. (2.12/13)], in particular we obtain

BnB
+
n = QR(Bn) = Qn

and finally

B+
nBn = PN⊥(Bn) = PR(B∗

n) = Pn,

where we used Yn ⊂ R(A) to establish that R(Bn) = Yn. Indeed,
obviously we have R(QnA) ⊂ Yn, and equality holds true since

Yn = QnYn ⊂ QnR(A) = QnR(A) = R(QnA).

¤

For the linear equation yδ = Ax + δξ, the corresponding projection
method (dual least squares method) would now be defined as

(21) xδn = x0 +B+
nQn(y

δ − Ax0).

Remark 2. Notice, that in contrast to most studies we allow for an
initial guess x0. On the one hand, this makes a comparison to the non-
linear case, as studied below more transparent. On the other hand side
this might be useful if the true solution is smooth up to some specific
and known feature, as captured in x0.

The following Lemma relates the norm of B+
nQn to the modulus of

injectivity.

Lemma 2. [see [33, Lemma 1.2], or [21, p. 1528]] If Yn ⊂ R(A) then

‖B+
nQn‖ ≤ 1/β(Yn), n ∈ N.

Proof. The proof is based on the use of Hölder’s inequality as follows.

(22) ‖B∗nu‖2 = 〈B∗nu,B∗nu〉 = 〈BnB
∗
nu, u〉 ≤ ‖BnB

∗
nu‖‖u‖, u ∈ Yn.
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Consequently we deduce, using (19), that

‖B+
nQn‖ = sup

u∈Yn

‖B+
n u‖
‖u‖ = sup

u∈Yn

‖B+
n u‖

‖BnB+
n u‖

≤ sup
v∈Xn

‖x‖
‖Bnx‖

= sup
u∈Yn

‖B∗nu‖
‖BnB∗nu‖

≤ sup
u∈Yn

‖u‖
‖B∗nu‖

=
1

β(Yn)
,

and the proof is complete. ¤

This provides us with the following important bound, if the Bernstein
inequality holds true.

Corollary 1. Under Assumption A.2 we have

(23) ‖B+
nQn‖ ≤ CB/sn, n ∈ N.

From the previous discussion we can derive the following error bound
at any element x† ∈ Br(x0) such that yδ = Ax† + δξ.

Proposition 1. Under assumption A.2 we have

(24) ‖x† −B+
nQny

δ‖ ≤ ‖(I − Pn)(x
† − x0)‖ + CBδ/sn.

The above error bound will be generalized to the non-linear situation
in Theorem 2. In particular, the error analysis in Section 5 for the non-
linear problem extends to the linear case and yields corresponding error
bounds.

4. Projection methods for non-linear problems

As in the linear case also for non-linear ill-posed inverse problems,
which can be written as operator equation (1), regularization methods
are required in order to obtain stable approximate solutions (see, e.g.,
[7, 11, 24, 32]). Besides variants of the Tikhonov regularization method
iterative procedures are frequently applied, where the number of per-
formed iterations plays the role of the regularization parameter. In this
study we focus on projection methods, and the regularization param-
eter corresponds to the dimension of the design space. Precisely, we
consider the natural extension of the projection method from (21) to
non-linear problems, and complement in some crucial points the results
of [21].
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4.1. Range invariance. To obtain convergence rates, in the litera-
ture on regularization methods for non-linear ill-posed problems (see,
e.g., the monographs [11], [2], [22] and the papers [4], [6], [8], [16], [18],
[20], [31]) there were prescribed very different conditions concerning the
smoothness, regularity and structure of the operator F . The method
suggested in the present study will be based on the range invariance
condition (see, e.g., [21]), which assumes that there is a linear opera-
tor A approximating the nonlinearity of F from (1) sufficiently well in
the sense that throughout the ball Br(x0) the operator F maps into
the range R(A) of A.

Assumption A.3. There are a compact linear operator A : X → Y
and a constant 0 ≤ k < 1 such that

(25) F (x)− F (x̄) = A(x− x̄) + AR(x, x̄), x, x̄ ∈ Br(x0),

where

(26) R : Br(x0)×Br(x0)→ N⊥(A)

is a mapping with

(27) ‖R(x, x̄)‖ ≤ k‖x− x̄‖, x, x̄ ∈ Br(x0).

Remark 3. Plainly, if the mapping F is bounded linear, then we may
take A := F and Assumption A.3 is trivially fulfilled with k = 0. On
the other hand, we note that the mapping R in (26) is unique: Due
to the injectivity of A on the subspace N⊥(A) for given x, x̄ ∈ Br(x0)
with F (x) − F (x̄) ∈ R(A) there is a uniquely determined element
R(x, x̄) ∈ N⊥(A) satisfying the equation (25).

The author of the papers [13, 14] recently studied (ill-posed) Ham-
merstein equations. Often such non-linear equations obey range in-
variance properties as in Assumption A.3. The convergence analysis
of the iterative schemes as considered in that papers is also based on
fixed point arguments, thus similar to ours. However, the assumptions
from there are slightly different (due to the different methods under
consideration), and the issue of discretization is not touched at all.

4.2. The iterative procedure. The following bound will be impor-
tant, and it shows that the imposed range invariance assumption A.3
is useful for the analysis of projection methods.

Lemma 3. Under Assumption A.3 we have

(28) ‖B+
nQn(F (x)− F (x̄)−A(x− x̄))‖ ≤ k‖x− x̄‖, x, x̄ ∈ Br(x0).
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Proof. We use the function R from (26), which was introduced in As-
sumption A.3, to conclude that

B+
nQn(F (x)− F (x̄)− A(x− x̄)) = B+

nQnAR(x, x̄) = PnR(x, x̄).

Taking into account (27) this proves the lemma. ¤

We introduce the mapping

(29) Gn(x) := x0 +B+
nQn(y

δ − F (x)− A(x0 − x)), x ∈ Br(x0).

Remark 4. In the linear case, thus if A := F , then we obtain the
typical form (21), of the projection method in Hilbert space, see e.g. [21,
28].

For specific parameters n and x0 this mapping has a fixed point in
the set x0+Xn∩Bρ(x0). For a similar result we refer to [21, Lemma 2].

First we make the following assumption on the initial guess.

Assumption A.4. For k from Assumption A.3 we assume that the
initial guess x0 obeys

‖x† − x0‖ < ρ
1− k

1 + k
.

Given δ > 0, and under Assumption A.2 we let

(30) M(δ, x0) :=
{

n, CBδ/sn + (1 + k)‖x† − x0‖ < ρ(1− k)
}

.

We stress that under Assumptions A.2, A.4 and for δ small enough the
set M(δ, x0) is not empty. Let δ0 := δ(x0) be such noise level and set

(31) n̄(δ) := max {n, n ∈M(δ, x0)} , 0 < δ ≤ δ0.

For n ≤ n̄(δ) we consider the following iterative procedure.

ITERATE(x)

INIT: x0 := x;
IF: xl ∈ x0 +Xn ∩Bρ(x0)
THEN: xl+1 := Gn(x

l)
ELSE: STOP.

Figure 1. The iterative procedure

Theorem 1. Assume A.2, A.3 and A.4 to hold and let n̄(δ) from (31).
For n ≤ n̄(δ) the procedure ITERATE(x0) converges to a fixed point,
say x0n ∈ x0 +Xn ∩Bρ(x0). Furthermore it holds true that

(32) ‖x0n − xl‖ ≤ klρ, l = 1, 2, . . .
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Proof. We shall apply the variant of the Banach fixed point theorem, as
e.g. formulated in [9, 10.1.2], to the mapping x→ Gn(x)− x0, which,
by construction, maps Xn into itself. We need to show that

‖Gn(x)−Gn(x̄)‖ ≤ k‖x− x̄‖, x, x̄ ∈ x0 +Xn ∩Bρ(x0),(33)

as well as

‖Gn(x0)− x0‖ < ρ(1− k).(34)

The proof of (33) is immediate, since

Gn(x)−Gn(x̄) = B+
nQn(F (x)− F (x̄)− A(x− x̄)),

such that Lemma 3 applies. Furthermore, by adding and subtracting
B+

nQnF (x
†) in the definition of Gn we obtain for any x ∈ Br(x0) that

(35) Gn(x) = x0 +B+
nQn(y

δ − F (x†))

+B+
nQn(F (x

†)− F (x)− A(x† − x)) +B+
nBn(x

† − x0).

We use this representation for x := x0 and Lemma 3 to conclude that

‖G(x0)− x0‖ ≤ δ‖B+
nQn‖ + k‖x† − x0‖ + ‖x† − x0‖.

By the choice of n ≤ n̄(δ) this allows to complete the proof of (34).
The proof the fixed point theorem also provides us with the estimate

(36) ‖xl+m − xl‖ ≤ kl

1− k
‖G(x0)− x0‖ ≤ klρ, l ∈ N.

Letting m→∞ we can complete the proof. ¤

Remark 5. In the linear case, i.e., for k = 0 the first iterate x1 = x0n
is already the fixed point and this coincides with xδn from (21). There
is no iteration necessary in this case.

Let, as in Theorem 1, the element x0n denote the unique fixed point of
the mapping Gn. The following error bound, similar to [21, Lemma 3],
holds true.

Lemma 4. Under Assumptions A.2, A.3 and A.4 we have

(37) ‖x† − x0n‖ ≤
1

1− k

(

CBδ/sn + ‖(I − Pn)(x
† − x0)‖

)

.

Proof. We use the representation (35) for x := x0n = Gn(x
0
n). The norm

bound from Lemma 3 implies

‖x† − x0n‖ = ‖x† − x0 −B+
nQn(y

δ − F (x0n)− A(x0 − x0n))‖
≤ δ‖B+

nQn‖ + ‖(I − Pn)(x
† − x0)‖ + k‖x† − x0n‖,

from which the proof can easily be completed. ¤
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This bound gives us a hint how long to carry out the iteration, based
solely on the discretization level n and the noise level δ. Under Assump-
tions A.2 and A.4, and given n ≤ n̄(δ) from (31), we let

(38) l̄ = l(n, δ) := min
{

l, klρ(1− k) ≤ CB δ/sn
}

.

The following error bound holds true for the iterate xl(n,δ) ∈ Xn at the
true solution x† and we let

(39) en(x
†, δ) := ‖x† − xl(n,δ)‖.

Theorem 2. Under Assumptions A.2, A.3 and A.4 for n ≤ n̄(δ) and
l̄ chosen according to (38) we have

(40) en(x
†, δ) ≤ 1

1− k

(

2CBδ/sn + ‖(I − Pn)(x
† − x0)‖

)

The error bound in (40) corresponds to the error decomposition in
the linear case. It is a sum, for which the first term expresses the
noise propagation (stability), whereas the second term characterizes
the discretization error in the case of noiseless data (approximation).
As we shall see in Section 5 bounds for the discretization error will
result in overall error bounds by balancing both terms. However, the
following a posteriori parameter choice will allow for error bounds based
solely on the size of the noise propagation term.

4.3. A posteriori parameter choice. Based on the error bound (40)
one might want to choose n which minimizes this bound, thus we let

(41) nopt = argmin
{

en(x
†, δ), n = 1, 2, ..., n̄(δ)

}

.

Under assumptions A.2 – A.4, the resulting quantity enopt(x
†, δ) is the

best possible accuracy that can be guaranteed by using the iterative
procedure. Of course, to find the discretization level nopt that real-
izes this best possible accuracy one needs a reliable estimate for the
quantity ‖(I−Pn)(x

†−x0)‖, which depends on the (usually unknown)
smoothness of the unknown solution x†. We will now present a rule
for the adaptive choice of the discretization level n+ that allows us to
reach the best possible accuracy up to the multiplier 6D, where

D = max {sn−1/sn, n = 1, 2, ..., n̄(δ)} .
As we will see, such n+ can be chosen without any a priori information
about ‖(I −Pn)(x

†− x0)‖. The idea of this adaptive choice rule is the
same as for the balancing principle that was introduced in the context
of ill-posed problems in [15] and attracts some interest recently (see,
for example, [25] and the references therein).
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Let N(δ) be the set of discretization levels n < n̄(δ) such that

N(δ) :=

{

n, ‖xl(n,δ) − xl(m,δ)‖ ≤ 8CBδ

sm(1− k)
, for all n < m ≤ n̄(δ)

}

.

The discretization level n+ we are interested in is now defined as

(42) n+ = min {n, n ∈ N(δ)} .
We stress that no information about ‖(I − Pn)(x

† − x0)‖ is involved
for this choice of n+. The same argument as in [25] gives the following
result, called oracle inequality, sometimes.

Theorem 3. Under the Assumptions of Theorem 2

en+
(x†, δ) ≤ 6Denopt(x

†, δ).

5. Error bounds

Throughout the error analysis all assumptions as made in A.1 – A.4
are assumed to hold. We shall not mention this explicitly.

For linear ill-posed problems, i.e., when (1) holds for a linear operator
A := F , it is reasonable to assume the true solution x† obeys a source
representation

(43) x† = x0 + ψ(A∗A)v,

for some known element x0 and some index function ψ, where we say
that ψ(t) defined for 0 ≤ t ≤ ‖A‖2 is an index function if ψ is continu-
ous and strictly increasing with ψ(0) = 0. This theory (with x0 = 0) is
well established, and we only mention the papers [27, 5]. For non-linear
mappings F one might instead assume, as in [21], that (43) holds true
for the neighboring linear mapping A from Assumption A.3. Here, in
order to obtain convergence rates, we adopt an alternative approach,
for example suggested in [19] and [17]. We are going to use the method
of approximate source conditions, where the element x† − x0 fulfills a
benchmark source condition, only approximately. Error bounds will be
obtained in terms of distance functions, which measure the degree of
violation.

5.1. Error bound under benchmark smoothness. We shall briefly
discuss the case of the benchmark smoothness, and we give an ex-
plicit error bound under an a priori parameter choice. Recall that
the degree of approximation of the subspaces Yn was measured by
ηn := ‖(I − Qn)A‖, see (7). How does this transfer to approxima-
tion properties of the projections Pn, which proves to be important
in Theorem 2 and which was introduced in Section 3? If this can be
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answered in terms of smoothness properties of x†−x0, then it is reason-
able to choose an appropriate limit situation as benchmark smoothness.
The following result points in this direction.

Lemma 5. Let Qn be as in (2) and Pn the corresponding projection
onto Xn with degree of approximation (7). Then we have the estimate

(44) ‖(I − Pn)A
∗A‖ ≤ η2n.

Proof. We start with Lemma 1 to infer that (I − Pn)B
∗
n = 0. Hence

(I − Pn)A
∗A = (I − Pn)(A

∗A−B∗nBn),

which implies

‖(I − Pn)A
∗A‖ = ‖(I − Pn)(A

∗A−B∗nBn)‖ ≤ ‖A∗A−B∗nBn‖,
and with

‖A∗A−B∗nBn‖ = ‖(I −Qn)A‖2 = η2n
the assertion of the lemma. ¤

For the prescription of an appropriate benchmark smoothness for a
wide class of projection operators Qn in our approach we would be
interested in finding index functions ϕ(t) with maximal decay rate to
zero as t→ 0 such that an inequality

(45) ‖(I − Pn)ϕ(A
∗A)‖ ≤ Cϕ ϕ(η

2
n)

for some constant 1 ≤ Cϕ < ∞ gets valid. By the inequality (45)
a qualification concept for regularization by discretization with reg-
ularization parameter n ∈ N can be introduced complementing the
qualification concept presented in [27, Definition 1] for regularization
methods with continous regularization parameters α > 0. Evidently
from Lemma 5 we have ϕ(t) = t with Cϕ = 1 as such function. On the
other hand, from [26, Proposition 2] we see that an inequality

‖(I − Pn)ζ((A
∗A)2)‖ ≤ ζ(‖(I − Pn)A

∗A‖2)
holds true for functions ζ with ζ2 concave, and hence setting ϕ = ζ2

the monomials ϕ(t) = tκ satisfy (45) with Cϕ = 1 if 0 < κ ≤ 1.
This gives some motivation to choose x† − x0 ∈ R(A∗A) as bench-

mark smoothness, i.e., we assume that there is a unique v ∈ N ⊥(A∗A)
for which x† − x0 = A∗Av. Precisely, let

(46) x† = x0 + A∗Av, ‖v‖ ≤ L.

Then norm bounds for (I − Pn)(x
† − x0) will be given in terms of ηn

and L. Precisely, Lemma 5 implies that

(47) ‖(I − Pn)(x
† − x0)‖ ≤ Lη2n.
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For simplicity we shall restrict our subsequent analysis to L := 1, and
we let

(48) x† ∈ H1 := {x, x = x0 + A∗Av, ‖v‖ ≤ 1} .
Both the bounds from Theorem 2 and Lemma 5 provide us with the

main error estimate. For its formulation we let

(49) n = n(δ) := max







n, sn ≥
(

2CB

C2
Q

δ

)1/3






.

We first show the following

Lemma 6. There is δ1 > 0 such that

(50) n(δ) ≤ n̄(δ), 0 < δ ≤ δ1.

Proof. To this end we need to show that there is δ1 > 0 with the prop-

erty: If n is such that sn ≥
(

2CBδ/C
2
Q

)1/3
then n ∈ M(δ0, x0), the set

from (30). Indeed, the assumption implies that 1/sn ≤
(

C2
Q/(2CBδ)

)1/3
,

and hence

CBδ/sn + (1 + k)‖x† − x0‖ ≤
C

1/3
Q CBδ

21/3C
1/3
B δ1/3

+ (1 + k)‖x† − x0‖

≤
(

CQ

2

)1/3

(CBδ)
2/3 + (1 + k)‖x† − x0‖.

Under A.4 the right hand side can be made smaller than ρ(1− k) if δ
is small enough, from which the proof can be completed. ¤

Now we are ready to formulate convergence rates results under bench-
mark smoothness.

Theorem 4. Let n from (49), l̄ be as in (38) and δ1 from Lemma 6.
Then we have for x† satisfying (48)

(51) ‖x† − xl̄(n,δ)‖ ≤ 2

1− k
(2CBCQδ)

2/3 , 0 < δ ≤ δ1.

Proof. The proof directly follows from the error estimate (40) taking

into account 1/sn ≤
(

C2
Q/(2CBδ)

)1/3
for the noise propagation term

and the upper bound (44) for the discretization error term. The latter
contains the expression η2n, which can further be estimated from above
by the assumed Jackson inequality (6) as

η2n ≤ C2
Qs

2
n+1 ≤ C2

Q

(

2CB

C2
Q

)2/3

δ2/3,
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since sn+1 ≤
(

2CB
C2
Q

)1/3

δ1/3. This yields (51) and completes the proof.

¤

Corollary 2. The a posteriori parameter choice n+ from (42) provides
for x† satisfying (48) an error estimate

en+
(x†, δ) ≤ 12D

1− k
(2CBCQδ)

2/3 , 0 < δ ≤ δ1.

We finish this paragraph with the remark that an analogue to The-
orem 4 can also be formulated if a condition (46) is satisfied instead of
(48). Then by (47) the estimate (51) attains the form

(52) ‖x† − xl̄(n,δ)‖ ≤ 2L

1− k

(

2CBCQ

(

δ

L

))2/3

, 0 < δ ≤ δ1

(see also [28]).

5.2. Distance functions for non-linear problems. If the element
x† − x0 is not smooth enough, i.e.,

(53) x† − x0 /∈ R(A∗A),

then we propose to measure its lack of smoothness by a decay rate
of a certain distance function with respect to the benchmark smooth-
ness H1. Here, we generalize the concept of distance functions in-
troduced in [17] to the present case and consider as relevant distance
function

(54) ρx†(t) := dist(t(x† − x0), H1 − x0), t ≥ 0.

This definition extends the previous one to non-centralized sets, as H1,
which however are centered around some element, say x0. The result
from [17, Lemma 5.3] extends to the present situation and we can state
Lemma 7.

Lemma 7. Under the assumption (53) the functions ρx†(t) (0 ≤ t <
∞) and ρx†(t)/t (0 < t < ∞) are both index functions. Moreover, we
have lim

t→∞
ρx†(t) =∞, and the inverse ρ−1

x†
(t) (0 ≤ t <∞) exists and is

also an index function.

We may restrict our consideration to the set H1. If some L-fold
multiple of the ball would be used then a simple calculation reveals
that

dist(t(x† − x0), L(H1 − x0)) = Lρx†(t/L),

such that the general case follows from this one in a simple manner.
An analog situation occurs in the context of formula (52).
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For obtaining convergence rates again the discretization error has to
be estimated from above.

Lemma 8. Let ηn be as in (7) and let x
† satisfy (53). Then for the

corresponding distance function ρx†(t) from (54) we can estimate

(55) ‖(I − Pn)(x
† − x0)‖ ≤ 2

η2n
ρ−1
x†
(η2n)

, n ∈ N.

Proof. Let x̄ be the element of best approximation to t(x − x0) from
H1 − x0. Using

t(x† − x0) = t(x† − x0)− (x̄− x0) + (x̄− x0), t > 0,

we arrive at

(56) ‖(I − Pn)(x
† − x0)‖ ≤

1

t
(‖(I − Pn)(x̄− x0)‖ + ρx†(t)) , t > 0.

Using the bound from Lemma 5 (for the element x̄ instead of x†) and
letting t := ρ−1

x†
(η2n) the proof is complete. ¤

Given ρx† we can introduce the two auxiliary functions

f(t) :=
t

ρ−1
x†
(t)

, Θ(t) :=
√
t f(t) , t > 0.

As a consequence of Lemma 7 both f and Θ are index functions on the
non-negative half axis. Similarly to (49) we let

(57) n = n(δ) := max{n, s2n ≥ Θ−1(CBδ/C
2
Q)}.

As in Lemma 6 there is δ2 > 0 such that

(58) n(δ) ≤ n̄(δ), 0 < δ ≤ δ2.

The main error bound using distance functions is as follows.

Theorem 5. Let n from (57), l̄ be as in (38) and δ2 from above. Then
for given distance function ρx†(t) from (54) and x

† satisfying (53) we
obtain the bound

(59) ‖x† − xl̄(n,δ)‖ ≤ 4C2
Q

1− k
f(Θ−1(CBδ/C

2
Q)), 0 < δ ≤ δ2.

Proof. The proof is again based on the error estimate (40) taking into
account the Jackson inequality (6) as well as the bounds (55) and (57).
This yields because of the identity

t
√

Θ−1(t)
= f

(

Θ−1(t)
)

, t > 0,

and because of the inequality

f(C2
Bt) ≤ C2

Bf(t) (t > 0) for CB ≥ 1,
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being a consequence of the decreasing character of the function
f(t)/t = 1/ρx†(t) (t > 0), the estimates

‖x†−xl̄(n,δ)‖ ≤ 1

1− k

(

2CBδ

sn
+ 2f(η2n)

)

≤ 1

1− k

(

2CBδ

sn
+ 2C2

Q f(s
2
n+1)

)

≤ 2

1− k





CBδ
√

Θ−1(CBδ/C2
Q)

+ C2
Q f(Θ

−1(CBδ/C
2
Q))





≤ 4C2
Q

1− k
f(Θ−1(CBδ/C

2
Q)).

This yields (59) and hence completes the proof. ¤

Example 2 (The monomial case). We indicate the error bounds ob-
tained from Theorem 5 for distance functions of monomial type

ρx†(t) = t1/κ, t ≥ 0,

where 0 < κ < 1 must hold in order to have the properties of Lemma 7.
Consequently, there occur the functions

f(t) = t1−κ, Θ(t) = t
3

2
−κ, Θ−1(t) = t

2

3−2κ , t ≥ 0.

This yields a convergence rate of order

(60) ‖x† − xl̄(n,δ)‖ = O
(

δ
2−2κ
3−2κ

)

as δ → 0.

As κ varies in (0, 1) any rate exponent from the open interval (0, 2
3
) can

be obtained.

5.3. Range inclusions yield distance functions. In the last para-
graph we have shown that distance functions ρx† can be utilized to
obtain convergence rates for regularization by discretization applied to
equation (1) when the benchmark smoothness x† − x0 ∈ H1 is vio-
lated. Such functions ρx† can be verified if the a priori smoothness is
characterized as

(61) x† − x0 ∈ R(G)

with some self-adjoint bounded linear operator G : X → X having
non-closed range. Since G can, in principle, be independent of A, this
assumption is rather general. On the other hand, we need some link
condition combining G and A. For a discussion of the universe of
such link conditions we refer to [5] and [17]. Here we focus on range
inclusions recently studied in [5, 10, 17, 19]. Due to the benchmark
smoothness characterized by H1 we shall assume that

(62) R(γ(G)) ⊆ R(A∗A)
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holds for some index functions γ(t) (0 ≤ t ≤ ‖G‖). In order to use
the range inclusion from (62) for bounding the decay of the distance
function ρx† for x

† from (61) we need to assume that R(γ(G)) ⊂ R(G).
From [17, Proof of Theorem 6.7], and in somewhat different notation
from [10, Lemma 4.2], we derive the following proposition.

Proposition 2. Under the conditions (61) and (62) and if there is
some 0 < ε ≤ ‖G‖ such that

q(0) := 0, q(t) :=
γ(t)

t
(0 < t ≤ ε)

is an index function on [0, ε], then we have for sufficiently small t > 0
an upper bound

(63) ρx†(t) ≤ K1 γ(q
−1(K2 t))

for the distance function from (54) with some constants K1, K2 > 0.

The bound (63) thus obtained allows for error estimates (59) when-
ever δ > 0 is sufficiently small.

In case of Example 2 we have for

γ(t) = t
1

1−κ , t ≥ 0,

where 0 < κ < 1 must hold,

q(t) = t
κ

1−κ , q−1(t) = t
1−κ
κ

and thus
ρx†(t) ≤ K3 t

1

κ

for some constant K3 > 0 and sufficiently small t > 0. This reduces the
present analysis to the situation of Example 2.

References
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