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1. Introduction and main result

Georgii Semyonovich Litvinchuk’s favorites included singular integral equations
with Carleman shifts, that is, with diffeomorphisms α for which the mth iterate αm

is the identity map. My favorites are Toeplitz matrices and hence, when receiving
the invitation to contribute to this volume, I thought it might perhaps be an
interesting problem to look for all Toeplitz matrices A whose mth power Am is
equal to the identity matrix I .

The spectrum of an infinite Toeplitz matrix A that generates a bounded
operator on `2 is always connected [6]. Consequently, such a matrix satisfies Am =
I if and only if A = e2πij/mI for some j ∈ {0, 1, . . . , m− 1}, and thus the question
is not interesting for infinite matrices.

So let us consider finite matrices. We denote by Rn×n the set of all real
n × n matrices and define On, Sn, Tn as the subsets of Rn×n constituted by the
orthogonal, symmetric, and Toeplitz matrices, respectively. We also put

OSn = On ∩ Sn, OTn = On ∩ Tn, STn = Sn ∩ Tn, OSTn = On ∩ Sn ∩ Tn.



2 A. Böttcher

The number of elements of a finite set E will be denoted by |E|. Throughout
the paper we assume that n ≥ 2. The following three simple propositions will be
proved in Section 2.

Proposition 1.1. For m ≥ 2, there are uncountably many matrices A ∈ Tn such
that Am = I and Ak 6= I for 1 ≤ k ≤ m − 1.

The infinite set we encounter in Proposition 1.1 seems to have no nice de-
scription. Well, letting ωm := e2πi/m and Tm := {1, ωm, . . . , ωm−1

m }, one could
describe the set as the set of all diagonalizable Toeplitz matrices with eigenvalues
in Tm \ ∪1≤k≤m−1Tk, but this is not what I understand by nice. However, the
problem becomes charming when restricting the search to symmetric matrices.

Proposition 1.2. (a) For m ≥ 3, there is no A ∈ Sn such that Am = I and Ak 6= I
for 1 ≤ k ≤ m − 1.

(b) The set of all A ∈ Sn for which A2 = I but A 6= I coincides with
OSn \ {I}.

This result shows that if A ∈ STn, then Am = I can only happen if A is in
OSTn, in which case A2 = I . We are thus led to the set OSTn = Tn ∩ OSn =
STn ∩ OTn.

Proposition 1.3. The sets Tn, OSn, STn, OTn are all uncountably infinite.

In spite of this proposition, the following fact, which is our main result, is
quite remarkable.

Theorem 1.4. The set OSTn is finite and

|OSTn| =

{

3 · 2n/2 − 2 if n is even,

2
√

2 · 2n/2 − 2 if n is odd.

Our proof of Theorem 1.4 is constructive and will yield all matrices in OSTn.
Here is a simple consequence of Theorem 1.4 that concerns the inverse eigenvalue
problem for Toeplitz matrices.

Corollary 1.5. Let α and β be two prescribed distinct real numbers. The number
of all matrices in STn which have both α and β as eigenvalues and no other
eigenvalues is 3 · 2n/2 − 4 if n is even and 2

√
2 · 2n/2 − 4 if n is odd.

The paper is organized as follows. Section 2 contains the proofs of Proposi-
tions 1.1 to 1.3. In Section 3 we show that every matrix in OSTn is a circulant or
a skew circulant. This is enough to conclude that OSTn is finite. Theorem 1.4 is
proved in Section 4, examples revealing the structure of the matrices in OSTn are
given in Section 5, and Corollary 1.5 is the subject of Section 6.
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2. Proofs of the surrounding results

We denote by circ (a1, . . . , an) the n × n circulant matrix whose first column is
( a1 . . . an )> and by Fn the n × n Fourier matrix,

Fn = (ω(j−1)(k−1)
n )n

j,k=1 =











1 1 1 . . . 1
1 ωn ω2

n . . . ωn−1
n

...
...

...
...

1 ωn−1
n ω

2(n−1)
n . . . ω

(n−1)(n−1)
n











,

where ωn := e2πi/n. It is well known [2] that the eigenvalues of the circulant
circ (a1, . . . , an) are a(1), a(ωn), . . . , a(ωn−1

n ) where a(z) := a1+a2z+ . . .+anzn−1.
The equations a(ωj−1

n ) = µj (j = 1, . . . , n) may be written in the form

Fn







a1

...
an






=







µ1

...
µn






(1)

or, equivalently,

n







a1

...
an






= F ∗

n







µ1

...
µn






. (2)

Lemma 2.1. Let α, β ∈ R and λ1, . . . , λk ∈ C. If n = 2k+2, there exists a circulant
C ∈ Rn×n having the eigenvalues α, β, λ1, . . . , λk, λ1, . . . , λk, and if n = 2k + 1,
there exists a circulant C ∈ Rn×n whose eigenvalues are α, λ1, . . . , λk, λ1, . . . , λk.

Proof. Let first n = 2k + 2. We define a1, . . . , an by (2) with

(µ1, . . . , µn) = (α, λ1, . . . , λk , β, λ1, . . . , λk).

It remains to show that a1, . . . , an are real. But, for j = 0, 1, . . . , n − 1,

naj+1 = α + ωj(k+1)
n β +

k
∑

p=1

(

ωjp
n λp + ωj(n−p)

n λp

)

= α − β +

k
∑

p=1

2 Re(ωjp
n λp)

and this is a real number. If n = 2k + 1, we take

(µ1, . . . , µn) = (α, λ1, . . . , λk, λ1, . . . , λk)

and define a1, . . . , an by (2). The same argument as before shows that these are
real numbers. �

Proof of Proposition 1.1. If n ≥ 3, Lemma 2.1 yields the existence of a circulant
C ∈ Rn×n with the eigenvalues ωm, ωm, 1, . . . , 1. It follows that Cm = I and
Ck 6= I for 1 ≤ k ≤ m − 1. For µ ∈ R \ {0}, put Dµ = diag (1, µ, . . . , µn−1). Then
A = DµCD−1

µ is a matrix in Tn for which Am = I and Ak 6= I for 1 ≤ k ≤ m− 1.
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As different µ’s produce different A’s we get the assertion. We are left with the
case n = 2. The eigenvalues of

A =

(

a b
c a

)

∈ T2

are a ±
√

bc. Letting a, b, c be any real numbers such that a = cos(2π/m) and
bc = − sin2(2π/m), we obtain uncountably many matrices A with the eigenvalues
ωm and ωm and thus with the desired property that Am = I and Ak 6= I for
1 ≤ k ≤ m − 1. �

Proof of Proposition 1.2. (a) Let m ≥ 3 and A ∈ Sn. Then A = U>DU with an
orthogonal matrix U and a diagonal matrix D which contains all eigenvalues of A.
If Am = I then spA, the set of the eigenvalues of A, is contained in Tm ∩R. Since
Tm ∩ R = {1} for odd m, we see that A = I in this case, which contradicts the
requirement that Ak 6= I for 1 ≤ k ≤ m−1. If m is even, we have Tm∩R = {−1, 1}
and hence A2 = I . As necessarily m ≥ 4, this is again a contradiction to the
requirement that Ak 6= I for 1 ≤ k ≤ m − 1.

(b) Let A ∈ Sn \ {I} and A2 = I . Write A = U>DU as above. The entries of
D are all −1 or 1 and hence D is orthogonal. This implies that A is orthogonal,
too. Conversely, if A ∈ OSn \ {I} then spA ⊂ T ∩ R = {−1, 1}, which shows that
each diagonal entry of D is −1 or 1. It follows that A2 = I . �

Proof of Proposition 1.3. The assertion is trivial for Tn and STn. Since each matrix
of the form U>DU with U ∈ On and a diagonal matrix with sp D ⊂ {−1, 1} is in
OSn, we see that OSn is uncountably infinite. Lemma 2.1 tells us that if τ ∈ T

is any given number, then there is a circulant C ∈ Rn×n (n ≥ 3) having the
eigenvalues τ, τ , 1, . . . , 1. Since C ∈ OTn, we conclude that OTn is uncountably
infinite for n ≥ 3. Finally, the matrix

(

a b
−b a

)

∈ T2

is orthogonal whenever a2 + b2 = 1. This shows that OT2 is an uncountable set. �

Remark 2.2. Let UHTn be the set of all unitary Hermitian Toeplitz matrices in
Cn×n. The symmetric Toeplitz matrix B with the top row

(

n−2
n − 2

n . . . − 2
n

)

belongs to OSTn. Let Dµ = diag (1, µ, . . . , µn−1). If µ ∈ T, then Dµ is unitary and
hence DµBD−1

µ is in UHTn. This shows that UHTn is uncountably infinite. The
matrices in OST2 are

(

1 0
0 1

)

,

(

−1 0
0 −1

)

,

(

0 1
1 0

)

,

(

0 −1
−1 0

)

,

and it is easily seen that UHT2 equals
{(

0 µ
µ 0

)

: µ ∈ T

}

∪
{(

a i
√

1 − a2

−i
√

1 − a2 a

)

: a ∈ [−1, 1] \ {0}
}

.
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This reveals that not every matrix in UHT2 is of the form DµAD−1
µ with A ∈ OSTn

and µ ∈ T.

3. The set OSTn is finite

We denote by T (a1, . . . , an) the symmetric Toeplitz matrix whose top row is
( a1 . . . an ). Let A = T (a1, . . . , an) be a matrix in OSTn.

Suppose first that n = 2k + 1 is odd. Consider, for example,

T (a, b, c, d, e) =













a b c d e
b a b c d
c b a b c
d c b a b
e d c b a













.

Since each row has `2 norm 1, it follows that e2 = b2 and d2 = c2. Thus, d = δc
and e = εb with ε, δ ∈ {−1, 1} and therefore

T (a, b, c, d, e) = T (a, b, c, δc, εb).

In the general case we see in this way that T (a1, . . . , an) must be of the form

A = T (a1, . . . , an) = T (a, b1, . . . , bk, εkbk, . . . , ε1b1) (3)

with εj ∈ {−1, 1}. If ε1 = . . . = εk = 1, then (3) is a circulant. For instance,

T (a, b, c, c, b) =













a b c c b
b a b c c
c b a b c
c c b a b
b c c b a













is a circulant. If εj = −1 and bj = 0, we change εj to 1. This does not change A.
Thus, we may assume that bj 6= 0 whenever εj = −1.

Lemma 3.1. If −1 ∈ {ε1, . . . , εk}, then bj = 0 whenever εj = 1.

Proof. We denote the rows of A by r1, . . . , r2k+1. Since A is orthogonal, the scalar
product (ri, rj) is zero for i 6= j. Let εi = −1 and thus bi 6= 0 for some i.

Step 1. We show that if i ≥ 2 and εi−1 = 1, then bi−1 = 0. Let us first
consider the example

A = T (a, b, c, d, e, f,−f, e, d, c,−b) (4)

in which ε1 = −1, ε2 = 1, ε3 = 1, ε4 = 1, ε5 = −1, f 6= 0, b 6= 0. We have i = 5
and we want to show that e = 0. The rows 4 to 6 of (4) are





r4

r5

r6



 =





d c b a b c d e f −f e
e d c b a b c d e f −f
f e d c b a b c d e f



 .



6 A. Böttcher

Thus,

0 = (r4, r5) = (de + . . . + (−f)f) + e(−f),

0 = (r5, r6) = (de + . . . + (−f)f) + ef,

which gives e = 0 as desired because f 6= 0. In the general case we have

0 = (ri−1, ri) = Σ + bi−1(−bi), 0 = (ri, ri+1) = Σ + bi−1bi,

which implies that bi−1 = 0. Analogously one can show that bi+1 = 0 if i ≤ k − 2
and εi+1 = 1.

Step 2. Suppose i ≥ 3 and consider bi−2. If εi−2 = −1, we have nothing to
prove. So assume that εi−2 = 1. We want to show that bi−2 = 0. If εi−1 = −1,
then bi−2 = 0 by Step 1. Thus, let εi−1 = 1. From Step 1 we know that bi−1 = 0.
Example (4) for i = 5 illustrates just this situation. We have (with e = 0)









r3

r4

r5

r6









=









c b a b c d 0 f −f 0 d
d c b a b c d 0 f −f 0
0 d c b a b c d 0 f −f
f 0 d c b a b c d 0 f









and hence

0 = (r3, r5) = (bd + . . . + fd) + d(−f),

0 = (r4, r6) = (bd + . . . + fd) + df,

which yields d = 0 as desired. In the general case,

0 = (ri−2, ri) = Σ + bi−2(−bi), 0 = (ri−1, ri+1) = Σ + bi−2bi

and thus bi−2 = 0. Similarly one gets bi+2 = 0 if i ≤ k − 3 and εi+2 = 1.

Step 3. Continuing as above we see that bi±` = 0 whenever i± ` ∈ {1, . . . , k}
and εi±` = −1. �

Lemma 3.1 implies that if at least one of the numbers ε1, . . . , εk is −1, then
A is a skew circulant, that is, a matrix that results from a circulant by multiplying
all entries below the main diagonal by −1. For example,

T (a, 0, c,−c, 0) =













a 0 c −c 0
0 a 0 c −c
c 0 a 0 c

−c c 0 a 0
0 −c c 0 a













is a skew circulant. Let scirc (a1, . . . , an) be the skew circulant whose first column
is ( a1 . . . an )>. Thus,

scirc (a1, a2, a3) =





a1 −a3 −a2

a2 a1 −a3

a3 a2 a1



 .
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The eigenvalues of scirc (a1, . . . , an) are a(σn), a(σnωn), . . . , a(σnωn−1
n ) where

σn = eπi/n and ωn and a(z) are as above (see [2]). The equations a(σnωj−1
n ) = µj

(j = 1, . . . , n) now take the form

Fn











a1

σna2

...
σn−1

n an











=











µ1

µ2

...
µn











, (5)

which is equivalent to

n











a1

a2

...
an











= F ∗
n











µ1

σnµ2

...
σn−1

n µn











. (6)

At this point we are in a position to prove the following weakened version of
Theorem 1.4.

Proposition 3.2. If n is odd, then OSTn is a finite set and |OSTn| ≤ 2n+1 − 2.

Proof. We have seen that a matrix A in OSTn is a circulant or a skew circulant. The
eigenvalues of A belong to {−1, 1}. Thus, if A = circ (a1, . . . , an), then a1, . . . , an

are given by (2) with each µj being −1 or 1, and if A = scirc (a1, . . . , an), then
a1, . . . , an are determined by (6) with each µj in {−1, 1}. The two matrices I and
−I are counted both as a circulant and as a skew circulant. This gives at most
2 · 2n − 2 solutions. (That |OSTn| will actually turn out to be much smaller than
2n+1 − 2 is due to the circumstance that not every right-hand side of (2) and (6)
with µj ∈ {−1, 1} gives a left-hand side with real numbers.) �

Now suppose n = 2k + 2 ≥ 2 is even. The case k = 0 was disposed of in
Remark 2.2, where we observed that OST2 consists of exactly four matrices. So
let k ≥ 1. We denote the rows of A by r1, . . . , r2k+2. Consideration of the scalar
products (rj , rj) = 1 shows that A is of the form

A = T (a1, . . . , an) = T (a, b1, . . . , bk, c, bk, . . . , b1)

with εj ∈ {−1, 1}. Again we will assume without loss of generality that εj = 1 if
bj = 0. If all εj are 1, then A is a circulant. For example,

T (a, b, d, c, d, b) =

















a b d c d b
b a b d c d
d b a b d c
c d b a b d
d c d b a b
b d c d b a

















is a circulant. Thus, assume there is a −1 among ε1, . . . , εk.

Lemma 3.3. Let −1 ∈ {ε1, . . . , εk}. Then c = 0 and bj = 0 whenever εj = 1.
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Proof. It can be shown as in the proof of Lemma 3.1 that bj = 0 if εj = 1. Let us
prove that c = 0. Again we first do an example. If

A = T (a, 0, d, c,−d, 0) =

















a 0 d c −d 0
0 a 0 d c −d
d 0 a 0 d c
c d 0 a 0 d

−d c d 0 a 0
b −d c d 0 a

















,

with d 6= 0, then 0 = (r3, r4) = 2cd = 0 gives c = 0. In the general case the
argument is as follows. If εk = −1 and hence bk 6= 0, then

(rk, rk+1) = (rk+1, rk+2) − 2cbk,

and since (rk, rk+1) = (rk+1, rk+2) = 0, it follows that c = 0. So let εk = 1 and
thus bk = 0. If εk−1 = −1, then bk−1 6= 0 and

(rk−1, rk+1) = (rk, rk+2) − 2cbk−1,

which gives c = 0 as before. If εk = 1, bk = 0, εk−1 = 1, bk−1 = 0, εk−2 = −1,
bk−2 6= 0 we have

(rk−2.rk+1) = (rk−1, rk+2) − 2cbk−2

and so on. Eventually we get c = 0. �

Lemma 3.3 reveals that if −1 ∈ {ε1, . . . , εk}, then A is a skew circulant. For
example,

T (a, b, d, 0,−d,−b) =

















a b d 0 −d −b
b a b d 0 −d
d b a b d 0
0 d b a b d

−d 0 d b a b
−b −d 0 d b a

















is a skew circulant.

Proposition 3.4. If n is even, then OSTn is finite and |OSTn| ≤ 2n+1 − 2.

Proof. Proceed as in the proof of Proposition 3.2. �

4. The matrices in OSTn

In this section we prove Theorem 1.4.
Let first n = 2k + 1 ≥ 3 be odd. By the results of Section 3, a matrix A is in

OSTn if and only if spA ∈ {−1, 1} and A is a circulant of the form

A = circ (a1, . . . , an) = circ (a, b1, . . . , bk, bk, . . . , b1) (7)

or a skew circulant of the form

A = scirc (a1, . . . , an) = scirc (a, b1, . . . , bk,−bk, . . . ,−b1) (8)
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Suppose A is the circulant (7). We denote the right-hand side of (1) by

( γ ε1 . . . εk δk . . . δ1 )>.

The numbers γ, εj , δj are all −1 or 1. Abbreviating ωn to ω we then get from (1)
that

εj = a +

k
∑

p=1

bp

(

ωpj + ω(n−p)j
)

= a +

p
∑

k=1

bp

(

ωpj + ω−pj
)

,

δj = a +

k
∑

p=1

bp

(

ωp(n−j) + ω(n−p)(n−j)
)

= a +

p
∑

k=1

bp

(

ω−pj + ωpj
)

,

whence εj = δj for 1 ≤ j ≤ k. Conversely, choose γ, ε1, . . . , εk in {−1, 1}, insert

(µ1, . . . , µn) = (γ, ε1, . . . , εk, εk, . . . , ε1)

in (2), denote the column on the left of (2) by

( a b1 . . . bk ck . . . c1 )>,

and pass to complex conjugates. Clearly, a = γ + 2
∑

εj is real. Furthermore,

nbj = γ +

k
∑

p=1

εp

(

ωpj + ωj(n−p)
)

= γ +

k
∑

p=1

εp

(

ωpj + ω−pj
)

,

ncj = γ +
k
∑

p=1

εp

(

ωp(n−j) + ω(n−j)(n−p)
)

= γ +
k
∑

p=1

εp

(

ω−pj + ωpj
)

.

It follows that bj = cj for 1 ≤ j ≤ k, and since ωpj + ω−pj is real, the numbers bj

are also real. As there are exactly 2k+1 choices of γ, ε1, . . . , εk in {−1, 1}k and as
different right-hand sides of (1) give different (a1, . . . , an), we conclude that OSTn

contains exactly 2k+1 matrices of the form (7).

Now suppose A is of the form (8). Put σ := σn and notice that

(1, σ, . . . , σn) = (1, σ, . . . , σk ,−σk+1, . . . ,−σ2k).

We denote the columns on the left and right of (5) by

( a σb1 . . . σkbk − σk+1bk . . . − σ2kb1 )> and ( ε1 . . . εk γ δk . . . δ1 )>,

respectively. The numbers γ, εj , δj are all in {−1, 1}. From (5) we infer that

εj = a +

k
∑

p=1

bp

(

ω(j−1)pσp − ω(j−1)(n−p)σ2k+1−p
)

,

δj = a +
k
∑

p=1

bp

(

ω(n−j)pσp − ω(n−j)(n−p)σ2k+1−p
)

.
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Since ωn = 1, σ2k+1 = −1, ω = σ2, we have

ω(j−1)pσp = σ2jp−p, −ω(j−1)(n−p)σ2k+1−p = ω−p(j−1)σ−p = σp−2jp,

ω(n−j)pσp = ω−jpσp = σp−2jp, −ω(n−j)(n−p)σ2k+1−p = ωjpσ−p = σ2jp−p,

which shows that εj = δj for 1 ≤ j ≤ k. Conversely, choose γ, ε1, . . . , εk in {−1, 1},
insert

(µ1, . . . , µn) = (ε1, . . . , εk, γ, εk, . . . , ε1),

in (6), write (a1, . . . , an) as (a, b1, . . . , bk, ck, . . . , c1), and pass to complex conju-
gates. It follows that a = γ + 2

∑

εk is real and that

nbj = σjωjkγ +

k
∑

p=1

εp

(

σjωj(p−1) + σjωj(n−p)
)

,

ncj = σn−jω(n−j)kγ +

k
∑

p=1

εp

(

σn−jω(n−j)(p−1) + σn−jω(n−j)(n−p)
)

.

Taking into account that ωn = 1, σ2k+1 = −1, ω = σ2, we see as above that
cj = −bj for 1 ≤ j ≤ k and that b1, . . . , bk are real. Thus, what we obtained is a
real matrix of the form (8). This proves that there are exactly 2k+1 matrices of
the form (8) in OSTn.

The matrix A is both of the form (7) and of the form (8) if and only if
b1 = . . . = bk = 0, that is, if and only if A = I or A = −I . Thus, in summary the
number of matrices in OSTn is

2 · 2k+1 − 2 = 2 · 2(n+1)/2 − 2 = 2
√

2 · 2n/2 − 2.

In addition, we have proved the following.

Theorem 4.1. Let n = 2k + 1 ≥ 3. The set OSTn consists of the 2k+1 circulants
T (a1, . . . , an) which are given by (2) with (µ1, . . . , µn) = (γ, ε1, . . . , εk, εk, . . . , ε1)
and

(γ, ε1, . . . , εk) ∈ {−1, 1}k+1

and the 2k+1−2 skew circulants T (a1, . . . , an) which result from (6) with the choice
(µ1, . . . , µn) = (ε1, . . . , εk, γ, εk, . . . , ε1) and

(ε1, . . . , εk, γ) ∈ {−1, 1}k+1 \ {(1, 1, . . . , 1), (−1,−1, . . . ,−1)}.
Now suppose n = 2k +2 ≥ 4 is even. We know from Section 3 that A belongs

to OSTn if and only if sp A ⊂ {−1, 1} and A is a circulant of the form

A = circ (a1, . . . , an) = circ (a, b1, . . . , bk, c, bk, . . . , b1) (9)

or a skew circulant of the form

A = scirc (a1, . . . , an) = scirc (a, b1, . . . , bk, 0,−bk, . . . ,−b1) (10)

Proceeding as in the case where n is odd, we see that if A is given by (9), then the
right-hand side of (1) is

(µ1, . . . , µn) = (γ, ε1, . . . , εk, β, εk, . . . , ε1)
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with γ, β, εj ∈ {−1, 1} and that different such right-hand sides produce different
real matrices of the form (9) via (2). Analogously, a matrix of the form (10) yields

(µ1, . . . , µn) = (ε1, . . . , εk, γ, β, εk, . . . , ε1) (11)

with γ, β, εj ∈ {−1, 1} in (5). If we insert such a right-hand side in (6), we obtain
a left-hand side with

(a1, . . . , an) = (a, b1, . . . , bk, d, ck, . . . , c1).

The numbers b1, . . . , bk and c1, . . . , ck are real if and only if γ = β. (This is not
obvious but requires a computation, which, however, is straightforward.) If γ = β,
then cj = −bj for all j and d = 0, that is, we get indeed a real matrix of the form
(10). Different choices of (11) with γ = β lead to different left-hand sides of (9),
and A = I and A = −I are the only matrices that are both of the form (9) and
the form (10). Thus, we arrive at the conclusion that the number of matrices in
OSTn is

2k+2 + 2k+1 − 2 = 3 · 2k+1 − 2 = 3 · 2n/2 − 2

and that, moreover, OSTn can be described as follows.

Theorem 4.2. Let n = 2k + 2 ≥ 4. The set OSTn consists of the 2k+2 circulants
T (a1, . . . , an) which result from (2) with (µ1, . . . , µn) = (γ, ε1, . . . , εk, β, εk, . . . , ε1)
and

(γ, ε1, . . . , εk, β) ∈ {−1, 1}k+2

and the 2k+1 − 2 skew circulants T (a1, . . . , an) which are obtained from (6) with
(µ1, . . . , µn) = (ε1, . . . , εk, β, β, εk, . . . , ε1) and

(ε1, . . . , εk, β) ∈ {−1, 1}k+1 \ {(1, 1, . . . , 1), (−1,−1, . . . ,−1)}.

5. Examples

OST7. By Theorem 1.4, |OST7| = 30. Theorems 4.1 and 4.2 in conjunction with
some obvious simplifications provide us with all matrices in OST7. Formula (2)
with

(µ1, . . . , µ7) = (γ, ε1, ε2, ε3, ε3, ε2, ε1)

and (γ, ε1, ε2, ε3) ∈ {−1, 1}4 yields the 16 matrices

circ (a, b1, b2, b3, b3, b2, b1) = T (a, b1, b2, b3, b3, b2, b1)

with

7a = γ + 2ε1 + 2ε2 + 2ε3,

7b1 = γ + 2ε1 cos
2π

7
+ 2ε2 cos

4π

7
+ 2ε3 cos

6π

7
,

7b2 = γ + 2ε1 cos
4π

7
+ 2ε2 cos

6π

7
+ 2ε3 cos

2π

7
,

7b3 = γ + 2ε1 cos
6π

7
+ 2ε2 cos

2π

7
+ 2ε3 cos

4π

7
.
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The remaining 14 matrices are delivered by (6) with

(µ1, . . . , µ7) = (ε1, ε2, ε3, γ, ε3, ε2, ε1)

and (ε1, ε2, ε3, γ) ∈ {−1, 1}4 \ {(1, 1, 1, 1), (−1,−1,−1,−1)}. These matrices are

scirc (a, b1, b2, b3,−b3,−b2,−b1) = T (a, b1, b2, b3,−b3,−b2,−b1)

with

7a = γ + 2ε1 + 2ε2 + 2ε3,

7b1 = −γ + 2ε1 cos
π

7
+ 2ε2 cos

3π

7
− 2ε3 cos

2π

7
,

7b2 = γ + 2ε1 cos
2π

7
− 2ε2 cos

π

7
− 2ε3 cos

3π

7
,

7b3 = −γ + 2ε1 cos
3π

7
− 2ε2 cos

2π

7
+ 2ε3 cos

π

7
.

This “parametrization” of OST7 indicates that our approach perfectly fits with
the problem and that any attempt to tackle the problem straightforwardly seems
to be a hopeless venture. For instance, a matrix A of the form T (a, b, c, d, d, c, b)
is orthogonal if and only if

a2 + 2b2 + 2c2 + 2d2 = 1,

2ab + 2bc + 2cd + d2 = 0,

2ac + b2 + 2bd + 2cd = 0,

2ad + 2bc + 2bd + c2 = 0.

(Incidentally, the same system is produced when applying the results of Gu and
Patton [4] to the equation A>A−I ·I = 0.) Thus, we arrived at four equations with
four unknowns. This makes us expect that the set of solutions is finite. However,
proving that the system has indeed only finitely many solution and even finding
the solutions is another story. The skeptical reader is invited to try and solve this
system “directly” and to find the 16 solutions listed above.

OST2. We have |OST2| = 4 and OST2 = {T (ε, 0), T (0, ε) : ε ∈ {−1, 1}}.

OST3. The 6 matrices in the set OST3 are T (ε, 0, 0) and T
(

ε
3 , 2δ

3 ,− 2ε
3

)

with
ε, δ ∈ {−1, 1}.

OST4. The set OST4 consists of the 10 matrices

T (ε, 0, 0, 0), T (0, 0, ε, 0), T

(

ε

2
,
δ

2
,−ε

2
,
δ

2

)

, T

(

0,
ε√
2
, 0,− ε√

2

)

with ε, δ ∈ {−1, 1}.
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OST5. A list of the 14 matrices in OST5 is

T (ε, 0, 0, 0, 0), T

(

3ε

5
,
2δ

5
,−2ε

5
,
2δ

5
,−2ε

5

)

,

T

(

1

5
ε,

1 + γ
√

5

5
δ,

1 − γ
√

5

5
ε,

1 − γ
√

5

5
δ,

1 + γ
√

5

5
ε

)

with ε, δ, γ ∈ {−1, 1}.
OST6. The set OST6 is constituted by the 22 matrices

T (ε, 0, 0, 0, 0, 0), T (0, 0, 0, ε, 0, 0),

T

(

0,−2ε

3
, 0,

ε

3
, 0,−2ε

3

)

, T

(

ε

3
, 0,

2δ

3
, 0,−2ε

3
, 0

)

,

T

(

ε

3
,
δ

3
,
ε

3
,−2δ

3
,
ε

3
,
δ

3

)

, T

(

−2ε

3
,
δ

3
,
ε

3
,
δ

3
,
ε

3
,
δ

3

)

,

T

(

ε

3
,

δ√
3
,−ε

3
, 0,

ε

3
,− δ√

3

)

with ε, δ ∈ {−1, 1}.

6. An inverse eigenvalue problem

The inverse eigenvalue problem for symmetric Toeplitz matrices consists in finding
all A ∈ STn for which sp A is a prescribed set of at most n points on R. The
pioneering work on this problem is due to Delsarte and Genin [3], who in particular
solved the problem for n ≤ 4. Henry Landau [5] proved that if E ⊂ R is any set
with |E| ≤ n, then there exists a matrix A ∈ STn with sp A = E. In connection
with the problem studied in the present paper, we mention the paper [1] by Chu
and Erbrecht, which deals with the question of finding all matrices in STn that
have two prescribed pairs of eigenvalues and eigenvectors. The following result in
conjunction with Theorems 4.1 and 4.2 provides us with all matrices A ∈ STn for
which spA is a given doubleton.

Proposition. Let α < β be two real numbers. The set of all matrices A ∈ STn with
sp A = {α, β} is

α + β

2
+

β − α

2
OST ′

n,

where OST ′
n := OSTn \ {I,−I}.

Proof. Let f(λ) := α+β
2 + β−α

2 λ and f−1(λ) := 2
β−α

(

λ − α+β
2

)

. If A ∈ STn and

sp A = {α, β}, then f−1(A) ∈ STn and sp f−1(A) = {f−1(α), f−1(β)} = {−1, 1}.
It follows that f−1(A) ∈ OST ′

n and hence A ∈ f(OST ′
n). Conversely, if A is in

f(OST ′
n) then A is in STn and spA = {f(−1), f(1)} = {α, β}. �

Clearly this proposition and Theorem 1.4 yield Corollary 1.5.
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