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This note is motivated by recent studies of Ling Huang et al. on distributed PCA

and network anomaly detection and contains a rigorous derivation of bounds for the

expected value and the variance of the spectral norm of the error in large covariance

matrices.

1 Introduction

The covariance matrix Co(A) associated with a matrix A ∈ Rm×n is the n×n matrix
Co(A) = (1/m)A>A, where A> denotes the transpose of A. Suppose X ∈ Rm×n is
a random matrix. We are interested in stochastic estimates for

∆ := Co(A + X) − Co(A) =
1

m

(

A>X + X>A + X>X
)

.

To be more precise, we want to know bounds for the expected value E(‖∆‖) and the
variance σ2(‖∆‖), where ‖ · ‖ is the spectral norm. We assume that X = Z ◦ S :=
(zijσij)

m,n
i=1,j=1 where σij ≥ 0 are given numbers and zij are i.i.d. random variables

such that E(z11) = 0, z11 is symmetric about the origin, σ2(z11) = 1, E(z4
11) < ∞.

We learned of this problem from the interesting paper [4] by Ling Huang and coau-
thors. They consider a network composed of n monitors each of which shows data
of size m from a stream of data. The jth column Xj of the m × n matrix X is
constituted by the error (loss of information) in the data of the jth monitor. This
error is supposed to depend only on the so-called slack parameter of the monitor and
hence it is reasonable to assume that the columns of X are i.i.d. random vectors up
to the variance, which may change from column to column. Under this assumption
we have xij = zijσj and may therefore write the Hadamard product X = Z ◦ S in
the form X = ZD with D = diag (σ1, . . . , σn).
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The argument of [4] is as follows. We have

E(‖A>X‖2) = E(‖X>AA>X‖) = E(λmax(X
>AA>X)),

where λmax(·) stands for the largest eigenvalue, and since the eigenvalues of sym-
metric random matrices are tightly concentrated [2], it is justified to put

E(λmax(X
>AA>X)) ≈ λmax(E(X>AA>X)).

A straightforward computation gives ‖E(X>AA>X)‖ = ‖D‖2‖A‖2
F
, where ‖ · ‖F is

the Frobenius norm. Thus,

E(‖A>X‖2) ≈ ‖D‖2‖A‖2
F
, (1)

Analogously,

E(‖X>A‖2) = E(‖A>XX>A‖) = E(λmax(A
>XX>A)) ≈ λmax(E(A>XX>A)),

which yields
E(‖X>A‖2) ≈ ‖D‖2

F
‖A‖2. (2)

The term E(‖X>X‖2) is considered as negligible. Thus, the bound obtained in [4]
is

E(‖∆‖) ≤ 1

m
E(‖A>X‖) +

1

m
E(‖X>A‖)

≤ 1

m

√

E(‖A>X‖2) +
1

m

√

E(‖X>A‖2)

-
1

m
(‖D‖‖A‖F + ‖D‖F‖A‖) . (3)

The purpose of this note is to point out that the above derivation is based on two
critical arguments and that, consequently, (3) may tell a wrong message. We first
want to clarify that (1) and (2) are used in (3) in the form

E(‖A>X‖2) - ‖D‖2‖A‖2
F
, E(‖X>A‖2) - ‖D‖2

F
‖A‖2

although actually

E(‖A>X‖2) ≥ ‖D‖2‖A‖2
F
, E(‖X>A‖2) ≥ ‖D‖2

F
‖A‖2. (4)

Secondly, it turns out that the term E(‖X>X‖2) cannot always be neglected. We
show that if ε > 0 is given, then

E(‖∆‖) ≥ ‖D‖
(

‖D‖ − 3 ‖A‖√
n

1 +
√

y

y

)

(5)

and

E(‖∆‖) ≤ (1 + ε)
1 +

√
y

y
‖D‖

(

‖D‖(1 +
√

y) +
2 ‖A‖√

n

)

(6)

whenever n and m are sufficiently large and the ratio m/n is close enough to some
value y ∈ (0,∞). Thus, if ‖A‖/√n is small, which happens e.g. for sparse matrices,
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for nearly orthogonal matrices, or for rectangular truncations of infinite matrices
that induce bounded operators on `2, then (5) and (6) yield

(1 − ε)‖D‖2 - E(‖∆‖) - (1 + ε)‖D‖2 (1 +
√

y)2

y
,

which reveals that ‖D‖2 = max σ2
j is the quantity that governs the limiting behavior

of E(‖∆‖). In that case E(‖X>X)‖2) is the dominating term.

Now suppose m and n are large and m/n is very close to y. We can then replace y
by m/n and put ε = 0 in (6). The resulting approximate upper bound is

E(‖∆‖) -

√
n +

√
m

m
‖D‖

(

‖D‖(
√

n +
√

m) + 2 ‖A‖
)

,

which in the case n ≈ m simplifies to

E(‖∆‖) -
2√
m

‖D‖ ‖A‖ +
2√
m

‖D‖ ‖A‖ + 4 ‖D‖2. (7)

Let us denote by U and B the approximate upper bounds in (3) and (7), respectively.
Since ‖A‖ ≥ ‖A‖F/

√
m and ‖D‖ ≥ ‖D‖F/

√
m, we get

B ≥ 2

m
(‖D‖‖A‖F + ‖D‖F‖A‖) + 4 ‖D‖2 = 2U + 4 ‖D‖2,

or equivalently,

U ≤ B

2
− 2 ‖D‖2.

Thus, even for small ‖D‖, the bound U is less than half of the rigorous bound B.
In other words, U is chosen at least twice too small. But an upper bound that
is too small may cause a missed detection rate that is too high. This may be an
explanation for the high missed detection rate of 4% observed in [4].

The key result we need to prove (5) and (6) is fortunately already available. It is
a beautiful theorem by Yin, Bai, and Krishnaiah that was published in 1988 and
sharpens an earlier result by Geman of 1980. The reader will easily observe that all
we will do is nothing but some simple estimations that are based on this theorem.

2 Deterministic Matrix Times Random Matrix

Let the m × n random matrix Z be as in the introduction. A deep result by Yin,
Bai, and Krishnaiah [5] says that if n → ∞ and m/n → y ∈ (0,∞), then n−1/2‖Z‖
converges to 1+

√
y almost surely. Under the additional hypothesis E(|z11|n) ≤ nαn

this is a result of Geman [3]. Moreover, in [5] it is shown that for every ε > 0 there
exist n0 = n0(ε) and δ = δ(ε) > 0 such that if n ≥ n0 and y(1−δ) ≤ m/n ≤ y(1+δ)
then

n−kE(‖Z‖2k) < (1 +
√

y + ε)2k

3



for all k ≥ kn. Thus, if n ≥ n0, y(1 − δ) ≤ m/n ≤ y(1 + δ), and ` is a natural
number, then, for 2k ≥ `,

n−`/2E(‖Z‖`) ≤ n−`/2
(

E(‖Z‖2k)
)`/(2k)

=
(

n−kE(‖Z‖2k)
)`/(2k)

≤ (1 +
√

y + ε)`.

Consequently, if n → ∞ and m/n → y ∈ (0,∞) then

lim sup n−`/2 E(‖Z‖`) ≤ (1 +
√

y)` (8)

for ` = 1, 2, 3, . . ..

Lemma 2.1 Let X = Z ◦ S. Then

‖E(A>XX>A)‖ =

∥

∥

∥

∥

∥

∥



diag





√

√

√

√

n
∑

j=1

σ2
ij





m

i=1



 A

∥

∥

∥

∥

∥

∥

2

, (9)

‖E(X>AA>X)‖ = max
1≤j≤n

∣

∣

∣

∣

∣

m
∑

i=1

(AA>)ii σ2
ij

∣

∣

∣

∣

∣

. (10)

Proof. We have E[(XX>)ij ] = E[
∑n

`=1 xi`xj`] and this is zero for i 6= j (due
to the symmetry of z11 about the origin) and r2

i :=
∑n

`=1 σ2
i` for i = j. Thus,

‖E(A>XX>A)‖ equals

‖A>diag (r2
1, . . . , r

2
m)A‖ = ‖diag (r1, . . . , rm)A‖2,

which is (9). Taking again into account symmetry about the origin, we obtain that
E(X>AA>X) is equal to

diag

(

m
∑

i=1

(AA>)ii σ
2
i1, . . . ,

m
∑

i=1

(AA>)ii σ2
in

)

,

which implies (10). �

Proposition 2.2 Let X = Z ◦ S and put

ξ = E(‖A>X‖2) = E(‖X>A‖2).

Then the maximum of the right-hand sides of (9) and (10) is a lower bound for ξ
for all m and n. Given ε > 0, there exist n0 = n0(ε) and δ = δ(ε) > 0 such that if
n ≥ n0 and y(1 − δ) ≤ m/n ≤ y(1 + δ), then

ξ ≤ (1 + ε)‖A‖2 ‖S‖2(1 +
√

y)2n. (11)

Proof. First of all it is clear that ‖A>X‖2 = ‖X>A‖2. From the triangle inequality
we infer that

E(‖A>X‖2) = E(‖X>AA>X‖) =

∫

Ω
‖X>(ω)AA>X(ω)‖dP (ω)

≥
∥

∥

∥

∥

∫

Ω
X>(ω)AA>X(ω)dP (ω)

∥

∥

∥

∥

= ‖E(X>AA>X)‖
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and, analogously,
E(‖X>A‖2) ≥ ‖E(A>XX>A)‖.

Lemma 2.1 therefore shows that ξ is greater than or equal to the maximum of the
right-hand sides of (9) and (10).

From (8) we deduce that E(‖Z‖2) ≤ (1 + ε)(1 +
√

y)2n if n0 is large enough, δ > 0
is sufficiently small, n ≥ n0, and y(1 − δ) ≤ m/n ≤ y(1 + δ). An inequality by
M. Marcus says that ‖Z ◦ S‖ ≤ ‖Z‖ ‖S‖ (see, for example, [1, Problem I.6.13]).
Consequently,

ξ = E(‖A>(Z ◦ S)‖2) ≤ ‖A‖2 ‖S‖2 E(‖Z‖2), (12)

which implies (11). �

Things look nicer in the case of interest in [4], that is, in the case where S is constant
along the columns and thus X = ZD with D = diag (σ1, . . . , σn).

Corollary 2.3 If X = ZD and ξ is as in Proposition 2.2, then

max
(

‖D‖2
F
‖A‖2, ‖D‖2‖A‖2

F

)

≤ ξ (13)

for all m and n, and for each ε > 0 there exist n0 = n0(ε) and δ = δ(ε) > 0 such
that

ξ ≤ (1 + ε)‖A‖2 ‖D‖2(1 +
√

y)2n (14)

whenever n ≥ n0 and y(1 − δ) ≤ m/n ≤ y(1 + δ).

Proof. In the case at hand, σij = σj and hence the right-hand sides of (9) and (10)
become

∥

∥

∥

∥

∥

∥



diag





√

√

√

√

n
∑

j=1

σ2
j





m

i=1



 A

∥

∥

∥

∥

∥

∥

2

=
∥

∥

∥
‖D‖F Im×m A

∥

∥

∥

2
= ‖D‖2

F
‖A‖2,

max
1≤j≤n

∣

∣

∣

∣

∣

m
∑

i=1

(AA>)ii σ2
j

∣

∣

∣

∣

∣

= max
1≤j≤n

σ2
j

∣

∣

∣tr (AA>)
∣

∣

∣ = ‖D‖2 ‖A‖2
F
.

This in conjunction with Proposition 2.2 proves (13). We have

S = (σ1 . . . σn ) ⊗ ( 1 . . . 1 )>

and thus ‖S‖ = ‖D‖F

√
m. Estimate (11) therefore yields

ξ ≤ (1 + ε)‖A‖2 ‖D‖2
F
(1 +

√
y)2nm,

which is weaker than (14). However, the analogue of (12) is

ξ = E(‖A>(ZD)‖2) ≤ ‖A‖2 ‖D‖2 E(‖Z‖2),

and this gives exactly (14). �

Note that (13) proves (4).
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3 The Error in Covariance Matrices

Here is our main result.

Theorem 3.1 Let X = Z ◦S. Given ε > 0, there exist n0 = n0(ε) and δ = δ(ε) > 0
such that if n ≥ n0 and y(1 − δ) ≤ m/n ≤ y(1 + δ), then

E(‖∆‖) ≤ (1 + ε)
1 +

√
y

y
‖S‖

(

‖S‖(1 +
√

y) +
2 ‖A‖√

n

)

, (15)

σ2(‖∆‖) ≤ 3 (1 + ε)
(1 +

√
y)2

y2
‖S‖2

(

‖S‖2(1 +
√

y)2 +
2 ‖A‖2

n

)

, (16)

Proof. Fix ε > 0 and define γ > 0 by 1 + γ = 4
√

1 + ε. We have

E(‖∆‖) ≤ 1

m
E(‖A>X‖) +

1

m
E(‖X>A‖) +

1

m
E(‖X>X‖)

=
2

m
E(‖A>X‖) +

1

m
E(‖X‖2)

≤ 2

m

√

ξ +
‖S‖2

m
E(‖Z‖2).

and

E(‖∆‖2) =
1

m2
E
(

‖A>X + X>A + X>X‖2
)

≤ 3

m2
E
(

‖A>X‖2 + ‖X>A‖2 + ‖X>X‖2
)

=
6

m2
ξ +

3

m2
E(‖X‖4) ≤ 6

m2
ξ +

3

m2
‖S‖4 E(‖Z‖4).

By Proposition 2.2 and (8) there are n0 = n0(ε) and δ = δ(ε) > 0 such that

1 + γ

1 − δ
<

√
1 + ε (17)

and such that if n ≥ n0 and y(1 − δ) ≤ m/n ≤ y(1 + δ), then

ξ ≤ (1 + γ)2‖A‖2‖S‖2(1 +
√

y)2n,

E(‖Z‖2) ≤ (1 + γ)(1 +
√

y)2n,

E(‖Z‖4) ≤ (1 + γ)2(1 +
√

y)4n2.

Since m ≥ ny(1 − δ), it follows that

E(‖∆‖) ≤ 2
1 + γ

1 − δ
‖A‖ ‖S‖1 +

√
y

y

1√
n

+
1 + γ

1 − δ
‖S‖2 (1 +

√
y)2

y
,

which gives (15) because of (17). Analogously,

E(‖∆‖2) ≤ 6
(1 + γ)2

(1 − δ)2
‖A‖2 ‖S‖2 (1 +

√
y)2

y2

1

n
+ 3

(1 + γ)2

(1 − δ)2
‖S‖4 (1 +

√
y)4

y2
,

which, by (17), implies (16). �

In the case where S is constant along the columns we have the following.
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Theorem 3.2 Let X = ZD with D = diag (σ1, . . . , σn). For each ε > 0 there exist
n0 = n0(ε) and δ = δ(ε) > 0 such that if n ≥ n0 and y(1 − δ) ≤ m/n ≤ y(1 + δ),
then

‖D‖
(

‖D‖ − 3 ‖A‖√
n

1 +
√

y

y

)

≤ E(‖∆‖), (18)

E(‖∆‖) ≤ (1 + ε)
1 +

√
y

y
‖D‖

(

‖D‖(1 +
√

y) +
2 ‖A‖√

n

)

, (19)

σ2(‖∆‖) ≤ 3 (1 + ε)
(1 +

√
y)2

y2
‖D‖2

(

‖D‖2(1 +
√

y)2 +
2 ‖A‖2

n

)

. (20)

Proof. The upper bounds (19) and (20) do not result from Theorem 3.1, because,
as already observed in the proof of Corollary 2.3, ‖S‖ = ‖D‖F

√
m. However, re-

placing in the proof of Theorem 3.1 the reference to Proposition 2.2 by reference to
Corollary 2.3, we obtain precisely the bounds (19) and (20). To get (18) note first
that

mE(‖∆‖) ≥ E(‖X‖2) − 2E(‖A>X‖).
Corollary 2.3 implies that there are absolute constants n1 and δ > 0 such that

2E(‖A>X‖) ≤ 2
√

ξ ≤ 2.5 ‖A‖‖D‖(1 +
√

y)
√

n

for n ≥ n1 and y(1 − δ) ≤ m/n ≤ y(1 + δ). We also assume that 2.5/(1 − δ) ≤ 3.
We have

E(‖X‖2) = E(‖ZD‖2) = E(‖D>Z>ZD‖) ≥ ‖E(D>Z>ZD)‖

(recall the proof of Proposition 2.2 for the last inequality). Because

E(D>Z>ZD) = diag (mσ2
1 , . . . ,mσ2

n),

we see that
‖E(D>Z>ZD)‖ = m max

1≤j≤n
σ2

j = m ‖D‖2.

In summary,

E(‖∆‖) ≥ ‖D‖2 − 2.5

m
‖A‖‖D‖(1 +

√
y)
√

n.

Taking into account that m ≥ ny(1 − δ), we arrive at (18). �
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