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1 Introduction

For determining a winning strategy in a positional game, several advanced
methods have been developed. Some prominent examples are the Grundy
function (e.g., [3, 8, 9]) and its generalizations (e.g., [5]) as well as the de-
composition of a game into a sum of smaller games (e.g., [13]). An almost
complete overview on the existing literature about combinatorial game the-
ory can be found in the dynamic survey [6].

Those techniques, however, assume complete information on the structure
of the game in question.

In this paper we are concerned with the situation where a player has a
winning strategy from the starting position but, lacking a global overview
on the entire game, he/she only knows the (local) alternatives of his/her
possible moves in each position of the game. In the main results of Section 4
we prove that a winning strategy can be learnt after a finite number of plays
lost, even when only this rather limited information is accessible, no matter
how the other players play the game. It does not mean that in an infinite
sequence of plays the winning strategy surely is found; but nevertheless it
does mean that the player eventually wins all subsequent plays .

On the road to permanent winning, only the number of plays lost is
bounded, while the number of intermediate plays won may depend on the
strategies of the other players and it has no universal upper bound. We
prove, however, that if in every play the strategy of each player is uniquely
determined by their strategies played and scores achieved during the pre-
ceding k plays (where k is an arbitrary but fixed positive integer), then the
player with a winning strategy can find a way within a bounded number of
plays (counting both the ones won and lost), how to win all plays afterwards.

Methods of finding a winning strategy do not automatically extend to
determining a strategy for draw, because beside ‘ drawing positions ’ — that
are natural analogues of winning positions — a draw may occur by the rep-
etition of a position that has already been visited. Nevertheless, one of the
learning algorithms presented here can be modified to learn a strategy for
draw, too. Along the way, the algorithm first tests whether there exists a
winning strategy for the player in question; and if the answer is negative,
then it runs for a drawing strategy.

Though the present study is purely mathematical, one of its main moti-
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vations lies in the intersection of robotics and artificial intelligence where it
is an important issue to automatize the process of learning.

Standard notation. In the sequel, N and N0 denote the set of positive
and non-negative integers, respectively. A partition of a set M is a family
{Mi | i ∈ I} of pairwise disjoint non-empty subsets Mi of M such that⋃
i∈I

Mi = M .

2 Terminal games

A terminal game G is defined as a 5-tuple G = (X,P,N,X ,W) with the
following properties.

(G1) X and P are a non-empty sets;

(G2) N is a function from X into the power set 2X of X;

(G3) X = {Xp | p ∈ P} is a partition of X \ T where T = {x ∈ X | N(x) =
∅};

(G4) W = {Wp | p ∈ P} is a family of subsets of T .

The elements of X, T , and P are called positions , terminal positions , and
players , respectively. To illustrate with the NIM game, in this setting any
size distribution of the piles belongs to two positions, distinguished by the
player to turn.

The graph of the terminal game G is defined to be the directed graph
G = G(G) with vertex set V (G) = X and edge set E(G) = {xy | y ∈ N(x)}.
A position x′ is reachable from a position x if there is a finite sequence
x1, . . . , xk of positions such that x1 = x, xk = x′, and xi+1 ∈ N(xi) for every
i ∈ {1, 2, . . . , k − 1}. Let R(x) denote the set of all positions reachable from
a position x ∈ X. A terminal game is called locally finite if R(x) is finite for
every position x ∈ X.

Let Q ⊆ P be a set of players, and let XQ =
⋃

q∈Q Xq. A Q-strategy is
a function f from XQ into X such that f(x) ∈ N(x) for every x ∈ ⋃

q∈Q Xq.
A P -strategy is called a situation. If s is a situation and Q ⊆ P is a set
of players, the restriction of s on XQ is denoted by sQ. Clearly, sQ is a Q-
strategy. If Q = {p}, we shall write p-strategy and sp instead of {p}-strategy
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and s{p}, respectively. Furthermore, we shall write −Q for the set P \Q and
−p for the set P \ {p}.

A play m of a terminal game G = (X, P, N,X ,W) is a pair m = (x, s)
such that x ∈ X and s is a situation. The position x is called the initial
position of the play m = (x, s). The trace of a play m = (x, s) is a sequence
of positions x0, x1, . . . such that

(T1) x0 = x;

(T2) xi+1 = s(xi) if xi ∈ X \ T ;

(T3) the trace is finite with last element xk (for some k ∈ N) if and only if
either xk ∈ T or there is an index 0 ≤ l < k such that xl = xk and
x0, . . . , xk−1 are all distinct.

Let X(m) denote the set of all positions that appear in the trace of m.
Note that the trace of a play m is uniquely determined by m. A play is called
finite if its trace is finite, and infinite otherwise. It follows from (T3) that a
play m is infinite if and only if X(m) is infinite. This implies that every play
m of a locally finite terminal game is finite. Furthermore, it is not hard to
see that if m is a play of a locally finite terminal game, then X(m) ∩ T 6= ∅
if and only if no position appears more than once in the trace of m. If two
plays m,m′ have the same trace, we write m ∼ m′.

A play m ends in a draw if and only if it is infinite or X(m) ∩ T = ∅.
Otherwise, the play is finite and the last element t of its trace is in T . Then,
precisely the players p ∈ P with t ∈ Wp win the play and all other players
lose it.

Intuitively, the idea behind the above definitions can be explained as
follows. A terminal game G is played on the graph G(G). At the beginning
of a play m = (x, s) a token is placed at the initial position x. Then the
players move the token along the edges. If the token is at a position y ∈ Xp,
player p moves the token from x to the position s(y). The game ends if and
only if the token is moved to a terminal position or it is placed at one and
the same position for the second time. In the case that the token is moved
to a terminal position t ∈ T , exactly those players p with t ∈ Wp win and all
other players lose the play. In all other cases the play ends in a draw.
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3 Winning and drawing strategies

Let G = (X, N, P,X ,W) be a locally finite terminal game, p ∈ P be a player
and x ∈ X a position. A p-strategy f is called a winning strategy for p at x
if p wins every play m = (x0, s) with x ∈ X(m) and sp = f , and it is called
a drawing strategy for p at x if p does not lose any play m = (x0, s) with
x ∈ X(m) and sp = f . A position x ∈ X is called a winning position for p if
there is a winning strategy for p at x, and it is called a drawing position for
p if there is a drawing strategy for p at x.

For the characterization of winning and drawing positions it is convenient
to generalize these concepts as follows. Let U ⊆ T and Q ⊆ P . A Q-strategy
g is called a U-forcing strategy for Q at x if X(m) ∩ U 6= ∅ for every play
m = (x0, s) with x ∈ X(m) and sQ = g, and it is called a U-avoiding strategy
for Q at x if X(m) ∩ U = ∅ for every play m = (x0, s) with x ∈ X(m) and
sQ = g. A position x ∈ X is called a U-forcing position for Q if there is a
U -forcing strategy for Q at x, and it is called a U-avoiding position for Q if
there is a U -avoiding strategy for Q at x. Clearly, if x is a U -forcing position
for Q, then it is not a U -avoiding position for −Q, and vice versa.

U -forcing and U -avoiding positions in terminal games can be character-
ized in a similar way as this can be done for winning positions in NIM-games.
For Q ⊆ P and U ⊆ T , we define a sequence A0

Q(U), A1
Q(U), . . . of subsets of

X as follows.

(W1) A0
Q(U) = U ;

(W2) Ai+1
Q (U) = Ai

Q(U)∪{x ∈ XQ | N(x)∩Ai
Q(U) 6= ∅}∪{x /∈ XQ | N(x) ⊆

Ai
Q(U)} for i ∈ N0.

Let AQ(U) =
⋃

i∈N0

Ai
Q(U).

Proposition 3.1 Let m = (x0, s) be a play, k ∈ N0, U ⊆ T , and Q ⊆ P .

(a) If X(m)∩Ak
Q(U) 6= ∅ and sQ(x) ∈ Ai

Q(U) for all x ∈ X(m)∩Ai+1
Q (U)∩

XQ with i ∈ {0, 1, . . . , k − 1}, then X(m) ∩ U 6= ∅.

(b) If X(m)\AQ(U) 6= ∅ and s−Q(x) /∈ AQ for all x ∈ (X(m)∩X−Q)\AQ,
then X(m) ∩ U = ∅.
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(c) If x ∈ AQ(U), then x is a U-forcing position for Q.

(d) If x /∈ A−Q(U), then x is a U-avoiding position for Q.

(e) If x is a U-forcing position for Q, then x ∈ AQ(U).

(f) If x is a U-avoiding position for Q, then x /∈ A−Q(U).

Proof. Let x0, x1, . . . be the trace of m.

(a) Let j be the smallest integer such that X(m) ∩ Aj
Q(U) 6= ∅, and let

xl ∈ X(m) ∩ Aj
Q(U). Suppose j > 0. Then xl /∈ T . If xl ∈ Aj

Q(U) ∩ XQ,

then it follows from the condition for sQ that xl+1 = sQ(xl) ∈ Aj−1
Q (U). Oth-

erwise, xl ∈ AQ
j (U) \ XQ, and (W2) implies that xl+1 ∈ Aj−1

Q (U). In both

cases, xl+1 ∈ X(m) ∩ Aj−1
Q (U), contradicting the minimality of j. Hence,

X(m) ∩ A0
Q(U) = X(m) ∩ U 6= ∅.

(b) Let l be the greatest integer such that xl /∈ AQ(U). If xl ∈ T , then
X(m) ∩ T = {xl}, and since AQ(U) ⊇ U , X(m) ∩ U = ∅. If xl /∈ T , we
distinguish between two cases.

Case 1: xl ∈ XQ \ AQ(U). Then it follows from (W2) that xl+1 ∈
X \ AQ(U).

Case 2: xl ∈ X−Q \ AQ(U). Then the condition for s−Q implies that
xl+1 = s−Q(xl) /∈ AQ(U).

By the maximality of l it follows that there is an index l′ < l such that
xl = xl′ . By (T3) this implies that X(m) ∩ U ⊆ X(m) ∩ T = ∅.

(c) follows from (a) and the fact that N(x) ∩ Ai
Q(U) 6= ∅ for all x ∈

Ai+1
Q (U) ∩XQ with i ∈ {0, 1, . . . , k − 1}.

(d) follows from (b) and the fact that N(x) \ AQ 6= ∅ for all for all
x ∈ X−Q \ AQ.
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(e) If x /∈ AQ(U), then it follows from (d) that x is a U -avoiding position
for −Q, and so x is not a U -forcing position for Q.

(f) If x ∈ A−Q(U), then it follows from (c) that x is a U -forcing position
for −Q, and so x is not a U -avoiding position for Q.

Clearly, a p-strategy f is a winning strategy for p at x if and only if it
is a Wp-forcing strategy for p at x, and it is a drawing strategy for p at x if
and only if it is a (T \Wp)-avoiding strategy for p at x. Thus, we obtain the
following corollary.

Corollary 3.2

(a) A position x ∈ X is a winning position for a player p ∈ P if and only
if x ∈ Ap(Wp).

(b) A position x ∈ X is a drawing position for a player p ∈ P if and only
if x /∈ A−p(T \Wp).

4 Learning to win or to achieve a draw

4.1 Learning rules

Let G = (X, N, P,X ,W) be a locally finite terminal game, and consider an
infinite sequence m1, m2, . . . of plays of G with mi = (xi, si), where i ∈ N.
We say that player p applies a deterministic k-learning rule (k ∈ N) in this
sequence if his/her strategy si

p in the i-th play is uniquely determined by
the traces of the preceding k plays mi−k, . . . ,mi−1 and his/her strategies
si−k

p , . . . , si−1
p in these plays. (The strategies of p in the first k plays are

arbitrary.)
In later subsections we will concentrate on a restricted type of determin-

istic 1-learning rules, where the decision of player p on the strategy to be
applied in the next play depends only on the subsequence of the trace of
the present play consisting of its positions in Xp and on the information
whether p has won or lost the present play. We shall call such learning rules
independent 1-learning rules .

It is clear that the learning success of a player applying an independent
1-learning rule also depends on how the other players play. In particular, if
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player p applies an independent 1-learning rule in a sequence m1, m2, . . . of
plays, then it cannot be guaranteed that for every winning position (resp.,
drawing position) x for p there is a number L(x) such that player p will
win (resp., will not lose) every play mi with x ∈ X(mi) after having played
at least L(x) plays mi with x ∈ X(mi). For example, p may win the first
10,000 plays without using a winning strategy, and none of the other players
changes his strategy. Then, in the 10,001st play some of the other players
change their strategies and p loses this play.

A deterministic k-learning rule is called W -effective (resp., D-effective)
if for every terminal game G and every winning position (resp., drawing
position) x for a player p in G there is a number N(G, x) such that if p
applies this learning rule in sequence m1, m2, . . . of plays of G, then there are
at most N(G, x) plays mi with the following properties:

(i) x ∈ X(mi);

(ii) player p does not win (resp., loses) mi.

We shall prove that there are W -effective and D-effective independent
1-learning rules. In case a player p applies a W -effective deterministic k-
learning rule or a D-effective learning rule and all other players apply some
(not necessarily effective) deterministic k-learning rules, then we can prove
a stronger statement. We need the following proposition.

Proposition 4.1 If all plays in the sequence m1, m2, . . . have the same ini-
tial position x, and every player applies some deterministic k-learning rule
in this sequence, then there are positive integers r, t such that mi ∼ mi+t for
every i ≥ r.

Proof. Since the terminal game G is locally finite, there are only finitely
many distinct traces with initial position x. This implies that there are
indices 0 ≤ u < v such that mu+j ∼ mv+j for every j ∈ {0, . . . , k− 1}. Since
every player applies a deterministic k-learning rule in this sequence, it follows
that mi ∼ mi+v−u for every i ≥ u.

Theorem 4.2 Let G = (X, N, P,X ,W) be a locally finite terminal game,
p ∈ P a player, and k ∈ N. Then for every position x ∈ Ap(Wp) (resp.,
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x /∈ A−p(T \ Wp)) there exists an integer L(x, k) such that the following
statement holds.

If (m1, m2, . . .) is a sequence of plays of G with initial position x, in which
player p applies a W -effective (resp., D-effective) deterministic k-learning
rule and every other player applies some k-learning rule, then player p wins
every (does not lose any) play mi with i > L(x, k).

Proof. By Proposition 4.1, there are positive integers r, t such that mi ∼
mi+t for every i ≥ r. This implies that p will win every (resp., cannot lose
any) play mi with i ≥ r. For, if p does not win (resp., loses) a play mi

with i ≥ r, then p would not win (resp., would lose) every play mi+kt with
k ∈ N0, contradicting the assumption that N(G, x) is finite. This shows that
the theorem holds with L(x, k) = r.

4.2 Latest Non-Winning Trace

Next, we define a special deterministic 1-learning rule. Let for every position
x ∈ X \ T , πx be a cyclic permutation of N(x).

LNWT algorithm (Latest Non-Winning Trace). We say that a player
p ∈ P applies the learning rule of Latest Non-Winning Trace — LNWT, for
short — in m1, m2, . . . if the strategy si+1

p of p in the play mi+1 is determined
by si

p and the trace of the preceding play mi as follows:

si+1
p (x) =

{
πx(s

i
p(x)) if p does not win mi and x ∈ X(mi)

si
p(x) otherwise

for each x ∈ Xp and i ≥ 1.

Theorem 4.3 Let G = (X, N, P,X ,W) be a locally finite terminal game,
and p ∈ P a player. Then, for every position x ∈ Ap(Wp), there exists an
integer K(x) such that for every sequence m1, m2, . . . of plays of G in which
player p applies the learning rule LNWT, there are at most K(x) plays mi

with the following properties:

(i) x ∈ X(mi);

(ii) player p does not win mi.
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Proof. If x ∈ Ap(Wp), then there is a smallest integer n such that x ∈
An

p (Wp). We shall prove the existence of K(x) by induction on n.
By definition, p wins every play mi with X(mi) ∩ A0

p(Wp) = X(mi) ∩
Wp 6= ∅. Therefore, K(x) = 0 for every position x ∈ A0

p(Wp). Let n ≥ 1,
x0 ∈ An

p (Wp), and suppose that K(x) exists for every position x ∈ An−1
p (Wp).

Let mi1 , mi2 , . . . be the subsequence of m1, m2, . . . consisting of all plays mi

with x0 ∈ X(mi) and the property that p does not win mi. Let l be length
of the sequence mi1 , mi2 , . . . , and let zj denote the successor of x0 in the
trace of mij . The inductive hypothesis implies that, for every y ∈ An−1

p (Wp),
there are at most K(y) distinct indices j ∈ {1, . . . , l} such that zj = y. We
distinguish between two cases.

Case 1: x0 ∈ An
p (Wp) ∩ Xp. Then there is a position y ∈ N(x0) ∩

An−1
p (Wp). Suppose that l ≥ (K(y) + 1)|N(x0)|. Since p applies the learning

rule LNWT, zj+1 = πx0(zj) for j ∈ {1, . . . , l}. Consequently, there are K(y)+
1 distinct indices j ∈ {1, . . . , l} with zj = y — a contradiction.

Case 2: x0 ∈ An
p (Wp) \Xp. By definition, N(x0) ⊆ An−1

p (Wp). Suppose
that l ≥ 1 +

∑
y∈N(x0)

K(y). Then it follows from the pigeon-hole principle

that there is a position y ∈ An−1
p (Wp) such that zj = y for at least K(y) + 1

distinct indices j ∈ {1, . . . , l} — a contradiction.

This shows that if x0 ∈ An
p (Wp) ∩ Xp, then K(x0) < (K(y) + 1)|N(x0)|

for every position y ∈ N(x0) ∩ An−1
p (Wp) (the worst case occurring if y is

the last element of the list N(x0)), and K(x0) ≤ ∑
y∈N(x0)

K(y) otherwise.

Consequently, K(x) exists for all positions x ∈ Ap(Wp).

Corollary 4.4 Let Kh = max{K(x) | x ∈ Ah
p(Wp)}. If |N(x)| ≤ d for all

x ∈ X, then Kh < (d + 1)h.

Proof. It follows from the proof of Theorem 4.3 that Kh satisfies the
inequality Kh+1 ≤ (Kh + 1)d− 1 for all k ∈ N. This implies the claim, since
K0 = 0.

The following example shows that the upper bound on K(x) cannot be
improved in general to subexponential in |R(x)| (the number of positions
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reachable from x) if a player applies LNWT. In fact, the number of plays
mk with x ∈ X(mk), lost by player p, will turn out to be exponential for all
winning positions x in that game. For n ∈ N let Gn be the terminal game
with just one player p and with the positions a1, . . . , an; l1, . . . , ln; w such that

• N(ai) = {ai−1, li} for i = 2, . . . , n and N(a1) = {w, l1};

• l1, . . . , ln and w are terminal positions;

• Wp = {w}.

It is clear that an (and every ai) is a winning position for p, and the
unique winning strategy s is s(ai) = ai−1 for i > 1 and s(a1) = w. Let
m1 = (an, s

1), m2 = (an, s
2), . . . be a sequence of plays of Gn in which p

applies LNWT with the initial strategy s1 given by s1(ai) = li for i = 1, . . . , n.
Clearly, if p wins a play, then he/she will win all succeeding plays. Let C(n)
denote the number of plays lost in this sequence. Then p loses exactly the
plays m1, . . . ,mC(n). Obviously, p loses m1 and C(1) = 1. Hence, we assume
n > 1. By the definition of LNWT, sk(an) alternates between an−1 and tn in
the subsequence of plays lost. If sk(an) = tn (i.e., if k is odd), then p does not
change his/her strategy for the subgame Gn−1 after this play. If sk(an) = an−1

(i.e., if k is even), then p changes his/her strategy also for the subgame
Gn−1 according to the learning rule LNWT. Since sC(n)(an) = s1(an) = tn,
this implies that C(n) = 2C(n − 1) + 1. Finally, with C(1) = 1, we get
C(n) = 2n − 1.

4.3 Latest Non-Winning Position

An alternative way to learn a winning strategy if it exists is obtained if the
player does not modify the strategy on the entire trace of the latest play lost,
but only at a carefully chosen position of it. Instead of a circular list, here
we assume that for each position x ∈ X \ T , N(x) is stored as a linear list
equipped with the successor operator σx. If y is the last element of N(y),
then σx(y) := NIL is defined to be a dummy symbol. Adopting this notation,
the following learning method is proposed.

LNWP algorithm (Latest Non-Winning Position). We say that a
player p ∈ P applies the learning rule of Latest Non-Winning Position —
LNWP, for short — in m1, m2, . . . if the strategy si+1

p of p in the play mi+1
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is determined by the preceding play mi as follows:

si+1
p (x) =


σx(s

i
p(x)) if p does not win mi and x is the last position

in X(mi) ∩Xp with σx(s
i
p(x)) 6= NIL

si
p(x) otherwise

for each x ∈ Xp and i ≥ 1. Before the first play, s1
p(x) is set to be the head

of the list N(x), for all x ∈ Xp.
We mention, that if the learning rule LNWP is applied to a game with

just one player p, then it visits the positions in the same order as depth-first
search until the first terminal vertex in Wp has been found.

Recall that R(x) denotes the set of all positions reachable from x ∈ X.
Let us define Mp(x) =

∑
y∈R(x)∩Xp

|N(y)| for p ∈ P and for x ∈ X.

Proposition 4.5 Let G = (X, N, P,X ,W) be a locally finite terminal game,
p ∈ P a player, and let m1, m2, . . . be a sequence of plays of G in which player
p applies the learning rule LNWP. Furthermore, let xi

0, x
i
1, . . . be the trace

of the play mi for i ∈ N, and let si
p be the strategy of p in mi.

(a) If si
p(x) ∈ Ak−1

p (Wp) for a position x ∈ Ak
p(Wp) ∩Xp (for any k ∈ N),

then sj
p(x) = si

p(x) for all j ≥ i.

(b) If X(mi) ∩ Ap(Wp) 6= ∅, then p wins the play mi if and only if si
p =

si+1
p .

(c) There are at most Mp(x) plays mi such that

(i) x ∈ X(mi);

(ii) there is a y ∈ R(x) ∩Xp with si
p(y) 6= si+1

p (y).

Proof. (a) Suppose that the assertion is not true. Then there is a smallest
index i0 such that there exists a k ∈ N and a position x ∈ Ak

p(Wp) with the
property that si0

p (x) ∈ Ak−1
p (Wp) and si0+1

p (x) 6= si0
p (x). It follows from the

definition of the learning rule LNWP that x ∈ X(mi
0). Assume that x = xi0

l .
Since player p applies LNWP and si0+1

p (x) 6= si0
p (x), it follows that

(i) p does not win the play mi0 , and
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(ii) y /∈ Xp or σy(s
i0
p (y)) = NIL for all y = xi0

r with r > l.

Because of (i), and since xi0
l+1 = si0

p (x) ∈ Ak−1
p (Wp), it follows from Propo-

sition 3.1(a) that there is an index t ≥ l + 1 and a q ∈ N such that
xi0

t ∈ Aq
p(Wp) and xi0

t+1 = si0
p (xi0

t ) /∈ Aq−1
p (Wp). Let z = xi0

t . We claim
that z ∈ Aq

p(Wp) ∩ Xp. For if z ∈ (Aq
p(Wp) \ Xp), then, by the definition

of Aq
p(Wp), we have N(z) ⊆ Aq−1

p (Wp) and consequently xi0
t+1 ∈ Aq−1

p (Wp).
Hence, it follows from (ii) that σz(s

i0
p (z)) = NIL. Since z ∈ Aq

p(Wp), there is
an index j < i0 such that sj

p(y) ∈ Aq−1
p (Wp) and sj+1

p (y) /∈ Aq−1
p (Wp). This

contradicts the minimality of i0 and proves (a).

(b) It follows from the definition of the learning rule LNWP that if p
wins the play mi, then si

p = si+1
p . Conversely, if si

p = si+1
p and p does not win

the play mi, then, again by LNWP, σx(s
i
p(x)) = NIL for all x ∈ X(mi) ∩Xp.

By (a) this implies that σx(s
i
p(x)) ∈ Ak−1

p (Wp) for all x ∈ X(mi)∩Xp∩Ak
p(Wp)

and all k ∈ N. Since X(mi) ∩Ap(Wp) 6= ∅, Proposition 3.1(a) implies that p
wins the play mi.

(c) By the definition of LNWP, for every y ∈ Xp there are at most |N(y)|
plays mi such that si

p(y) 6= si+1
p (y). This implies (c).

Theorem 4.6 Let G = (X, N, P,X ,W) be a locally finite terminal game,
p ∈ P a player, x ∈ Xp, and m1, m2, . . . a sequence of plays of G in which
player p applies the learning rule LNWP.

(a) If x ∈ Ap(Wp), then there are fewer than Mp(x) plays mi such that

(i) x ∈ X(mi);

(ii) p does not win mi.

(b) If p does not win mi and σx(s
i
p(x)) = NIL for all x ∈ X(mi) ∩ Xp,

then x /∈ Ap(Wp).

Proof. (a) follows immediately from Proposition 4.5 (b) and (c).

(b) If σx(s
i
p(x)) = NIL for all x ∈ X(mi) ∩ Xp, then LNWP means si

p =
si+1

p . Since p does not win mi, Proposition 4.5(b) implies x /∈ Ap(Wp).
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If we restrict consideration to learning rules that change the strategy
after the k-th play only in positions contained in Xp∩ (∪k

i=1X(mi)), then the
example at the end of Subsection 4.2 shows that in the worst case player p
loses Ω(|Xp|) plays before a winning strategy is found. Hence, the learning
rule LNWP is best possible in a sense. However, there are cases where LNWT
works much faster than LNWP. For n ∈ N let Kn be the terminal game with
just one player p and the positions a, b, w, l1, . . . , ln, where w, l1, . . . , ln are
terminal positions, N(a) = {w, b}, N(b) = {l1, . . . , ln}, and Wp = {w}. A
p-strategy s is a winning strategy for p at a if and only if s(a) = w. If p
applies LNWP in a sequence of plays and the initial strategy is not a winning
strategy, then p will lose exactly the first n plays. Applying LNWT, p will
lose exactly one play.

4.4 Learning to achieve draw

We consider modifications, called LLT and LLP, of the learning rules LNWT
and LNWP. Generally speaking, LLT and LLP are obtained from LNWT
and LNWP, respectively, by modifying the rule from “ if p does not win” to
“ if p loses”. At first glance, it seems to be likely that these modified learning
rules will find drawing strategies in the same way as the original rules find
winning strategies. As we shall see, this is indeed true in case of the learning
rule LLP, but it proves false for LLT.

Using the notation from Section 4, we define the learning rules LLT and
LLP as follows.

LLT algorithm (Latest Losing Trace). We say that a player p ∈ P
applies the learning rule of Latest Losing Trace — LLT, for short — in
m1, m2, . . . if the strategy si+1

p of p in the play mi+1 is determined by si
p and

the trace of the preceding play mi as follows:

si+1
p (x) =

{
πx(s

i
p(x)) if p loses mi and x ∈ X(mi)

si
p(x) otherwise

for each x ∈ Xp and i ≥ 1.

LLP algorithm (Latest Losing Position). We say that a player p ∈ P
applies the learning rule of Latest Losing Position — LLP, for short — in

14



m1, m2, . . . if the strategy si+1
p of p in the play mi+1 is determined by the

preceding play mi as follows:

si+1
p (x) =


σx(s

i
p(x)) if p loses mi and x is the last position

in X(mi) ∩Xp with σx(s
i
p(x)) 6= NIL

si
p(x) otherwise

for each x ∈ Xp and i ≥ 1. Before the first play, s1
p(x) is set to be the head

of the list N(x), for all x ∈ Xp.

We consider the following example. Let H be the terminal game with the
only player p and the positions a, b, c, t such that

x a b c t
N(x) {b, c} {c, t} {b, t} ∅

and Wp = ∅. Clearly, t is the only terminal position, p has no winning
strategy at any position, and there is a drawing strategy f for p at a with

x a b c
f(x) b c b

Let g and h be the following p-strategies:

x a b c
g(x) b c t
h(x) c t b

The plays mg = (a, g) and mh = (a, h) have the traces a, b, c, t and a, c, b, t,
respectively, and consequently, p loses mg and mh. Let m1 = (a, s1), m2 =
(a, s2), . . . be an infinite sequence of plays of H in which player p applies the
learning rule LLT where s1 = g. (Note that, because of |N(a)| = |N(b)| =
|N(c)| = 2, there is exactly one cyclic permutation πx for any position x ∈
{a, b, c}.) It is not hard to see that si = g if i is odd and si = h otherwise.
Hence, p loses all plays in this sequence. This shows that the learning rule
LLT is not D-effective.

In case of the learning rule LLP we essentially follow the reasoning from
Subsection 4.3. To simplify notation, we set Bp = X \ A−p(T \ Wp). Re-
call that a position x is a drawing position for a player p ∈ P if and only

15



if x ∈ Bp (see Corollary 3.2(b)). As in Subsection 4.3, we let Mp(x) =∑
y∈R(x)∩Xp

|N(y)| for p ∈ P and for x ∈ X. We can now formulate the
following analogue of Proposition 4.5.

Proposition 4.7 Let G = (X, N, P,X ,W) be a locally finite terminal game,
p ∈ P a player, and let m1, m2, . . . be a sequence of plays of G in which player
p applies the learning rule LLP. Furthermore, for i ∈ N, let xi

0, x
i
1, . . . be the

trace of the play mi and let si
p be the strategy of p in mi.

(a) If si
p(x) ∈ Bp for a position x ∈ Bp ∩ Xp, then sj

p(x) = si
p(x) for all

j ≥ i.

(b) If X(mi) ∩Bp 6= ∅, then p wins the play mi if and only if si
p = si+1

p .

(c) There are at most Mp(x) plays mi such that

(i) x ∈ X(mi);

(ii) there is a y ∈ R(x) ∩Xp with si
p(y) 6= si+1

p (y).

Proof. The argument is quite similar to the proof of Proposition 4.5.

(a) Suppose that the assertion is not true. Let i0 be the smallest index
such that there exists a position x ∈ Bp with the property that si0

p (x) ∈ Bp

and si0+1
p (x) 6= si0

p (x). It follows from the definition of the learning rule LLP

that x ∈ X(mi
0). Assume that x = xi0

l . Since player p applies LLP and
si0+1

p (x) 6= si0
p (x) it follows that

(i) p loses the play mi0 , and

(ii) y /∈ Xp or σy(s
i0
p (y)) = NIL for all y = xi0

r with r > l.

Because of (i), and since xi0
l+1 = si0

p (x) ∈ Bp, it follows from Proposition 3.1(b)

that there is an index t ≥ l + 1 such that xi0
t ∈ Bp and xi0

t+1 = si0
p (xi0

t ) /∈ Bp.

Let z = xi0
t . We claim that z ∈ Bp ∩Xp. For if z ∈ Bp \Xp = X−p \A−p(T \

Wp), then, by the definition of A−p(T \ Wp), N(z) ∩ A−p(T \ Wp) = ∅, and
consequently xi0

t+1 /∈ A−p(T \ Wp), i.e., xi0
t+1 ∈ Bp. Hence, it follows from

(ii) that σz(s
i0
p (z)) = NIL. Since z ∈ Bp, there is an index j < i0 such that

sj
p(y) ∈ Bp and sj+1

p (y) /∈ Bp. This contradicts the minimality of i0 and
proves (a).
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(b) It follows from the definition of the learning rule LLP that if p does
not lose the play mi, then si

p = si+1
p . Conversely, if si

p = si+1
p and p loses

the play mi, then LLP yields σx(s
i
p(x)) = NIL for all x ∈ X(mi) ∩ Xp.

By (a) this implies that σx(s
i
p(x)) ∈ Bp for all x ∈ X(mi) ∩Xp ∩ Bp. Since

X(mi)∩Bp 6= ∅, Proposition 3.1(b) implies that p does not lose the play mi.

(c) By the definition of LLP, for every y ∈ Xp there are at most |N(y)|
plays mi such that si

p(y) 6= si+1
p (y). This implies (c).

The analogue of Theorem 4.6 is

Theorem 4.8 Let G = (X, N, P,X ,W) be a locally finite terminal game,
p ∈ P a player, x ∈ Xp and m1, m2, . . . a sequence of plays of G in which
player p applies the learning rule LLP.

(a) If x ∈ Bp, then there are fewer than Mp(x) plays mi such that

(i) x ∈ X(mi);

(ii) p loses mi.

(b) If p loses mi and σx(s
i
p(x)) = NIL for all x ∈ X(mi)∩Xp, then x /∈ Bp.

Proof. (a) follows immediately from Proposition 4.7 (b) and (c).

(b) If σx(s
i
p(x)) = NIL for all x ∈ X(mi)∩Xp, then LLP yields si

p = si+1
p .

Since p loses mi, Proposition 4.7(b) implies x /∈ Bp.

The learning rules LNWP and LLP can be combined in the following way.
We consider a sequence m1, m2, . . . of plays with mk = (x, sk) for k ∈ N. It
follows from Proposition 4.5(b) that if player p applies the learning rule
LNWP and p does not win two consecutive plays using the same strategy,
then x is not a winning position for p. If this situation occurs, then LNWP
will never again change the strategy of p. Hence, it makes sense to use the
learning rule LLP from now on in order to find a drawing strategy if there is
one; i.e., we start again from the heads of all lists, and modify the rule from
“ if p does not win” to “ if p loses”. In this way, p can escape from losing an
infinite number of plays, whenever possible.
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5 Comments and discussion

This section includes some further comments.

(a) Memory requirements. The application of our learning rules LNWT,
LNWP and LLP by a player p requires to maintain a table containing all
positions x ∈ Xp and the respective moves sk(x) used in the present play
mk. In case of the learning rule LNWT the positions in X(mk) ∩ Xp must
be marked. For the learning rules LNWP and LLP a pointer is needed that
indicates the last element of the trace of mk in Xp. Consequently, the table
requires a memory of size O(|Xp|). The storage of the cyclic permutations
πx or the successor operators σx requires a memory of size O(

∑
x∈Xp

|N(x)|).
So, in total the memory requirements are linear in

∑
x∈Xp

|N(x)|, i.e., linear
in the number of edges of the game graph.

(b) Reinforcement learning. The learning rules discussed in the present
paper belong, in some sense, to the theory of reinforcement learning. In the
terminology of Sutton and Barto [1] those are evolutionary methods. LNWP
and LLP are closely related to a trial-and-error learning system called MEN-
ACE (cf. [10, 11]). The learning rule LNWP can be described in a similar
way. Each position is represented by a matchbox. Initially, these matchboxes
contain for each possible move a colored bead whereas the moves are encoded
by the colors. In the first play the player puts an arbitrary bead on top of the
respective box. The colors of these beads represent his/her strategies. If the
player wins, then he/she leaves his/her beads in place. Otherwise, he/she
finds the last box used during play that contains yet another bead (if there
is any), discards the bead on top of the box, and puts another bead out of
the box on top of it.

(c) Relative winning strategies. We consider the case where one of the
players, say q, in a 2-player game uses only a subset S of his/her possible
strategies. It can occur that, for some fixed position x, the other player p
has a strategy f(g), called a relative winning strategy , such that p wins every
play (x, s) with sq = g and sp = f(g) for every q-strategy g ∈ S. Using a
deterministic k-learning rule, player p has to decide on the strategy to be
used in the next play before it starts. Since q may choose another g′ ∈ S for
which f(g′) 6= f(g), we obtain that k-learning rules do not suffice to learn
relative winning strategies.
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(d) Randomized learning rules. There is a natural randomized version
rLNWT of the learning rule LNWT: Choose si+1

p (x) uniformly at random if
p does not win mi and x ∈ X(mi), and let si+1

p (x) = si
p(x) otherwise. If player

p applies rLNWT, then sk almost surely converges to a winning strategy (if
there is any). Clearly, the learning rule LLT can be randomized in the same
way. While LLT is not D-effective, the application of its randomization rLLT
yields almost sure convergence to a drawing strategy if there is one (see [4]).
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