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Abstract. We localize and strengthen Katona’s idea of an edge-toughness to a local topological
toughness. We disprove a conjecture of Katona concerning the conection between edge-toughness
and factors. For the topological toughness we prove a theorem similar to Katona’s 2k-factor-
conjecture, which turned out to be false for his edge-toughness. We prove, that besides this
the topological toughness has nearly all known nice properties of Katona’s edge-toughness and
therefore is worth to be considered.

1. Preliminaries and Results

For notations not defined here we refer to [2]. Unless otherwise stated, t is an arbitrary
non negative real number, k is an arbitrary integer, G is an arbitrary finite graph (loops
and multiple edges allowed), U is an arbitrary subgraph of G, X and H are arbitrary
disjoint subsets of V (G), Y is an arbitrary subset of E(G−X−H), and f is an arbitrary
function that maps H into the positive integers. An H-path is a path connecting two
different vertices of H. A cycle covering H is called an H-cycle. The union of internally
disjoint H-paths is called an H-local k-factor, if all vertices of H have degree k in it, a
partial H-local k-factor, if all vertices of H have at most degree k in it, an H-local f -factor
if each vertex h of H has degree f(h) in it, and a partial H-local f -factor if each vertex
h of H has at most degree f(h) in it. The size of H-local factors is the number of its H-
paths. The maximum number of internally disjoint H-paths is denoted by pG(H). With
G[X] we denote the subgraph of G induced by X, [Y ] denotes the graph with edge set Y
whose vertex set is the set of all vertices incident with edges of Y . Instead of G[V ([Y ])]
we shortly write G[Y ]. E ′(G) denotes the set of all edges in G except the loops. Let C(G)
denote the set of components of G and ∂G(U) denote the set of vertices of U incident with
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edges of G−E(U). For V (U)− ∂G(U) we will write shortly inG(U). According to [10] we
define the permeability of a pair (X, Y ) by:

permG(X, Y ) = |X|+
∑

C∈C([Y ])

⌊
|∂G−X(C)|

2

⌋
The following definitions generalize this concept:
Let G be a graph, and f be a function mapping H∗ ⊆ V (G) into the set of positive

integers. An f -separator of G is a pair (X, Y ) with X ⊆ V (G), Y ⊆ E(G−X) and ∂G−XY
disjoint to H∗ such that G−X − Y has no H∗-paths.

The permeability of an f -separator is

permG,f (X, Y ) = |X \H∗|+
∑

v∈X∩H∗
f(v) +

∑
C∈C([Y ])

1

2

|∂G−XC|+ ∑
v∈V (C)∩H∗

f(v)


In 1997 the second coauthor introduced the concept of edge-toughness (see [8]). It is

strengthening the concept of toughness introduced by Chvátal in 1971. We will define
these concepts.
G is t-tough (in the sense of Chvátal, cf. [1]) if deleting of k vertices of G results in

at most max{1, k
t
} components. The toughness of G (denoted by t(G)) is the supremum

over all reals t such that G is t-tough. It turns out that t(G) = ∞ if any two vertices of

G are adjacent, and t(G) = min
{

|X|
|C(G−X)|

∣∣∣ 2 ≤ |C(G−X)|
}

otherwise.

G is t-edge-tough if for all (X, Y ) with [Y ] = G[Y ] we have:

|C(G−X − Y − inG−X([Y ]))| ≤ max{1, permG(X, Y )

t
}

The edge-toughness of G (denoted by te(G)) is the supremum over all reals t such that G
is t edge-tough.

The ideas are as follows: Every path passing a vertex of X needs another one of these
vertices, every path not counted by this and passing a component C of [Y] needs two
more vertices of the boundary of C in G − X. If G is hamiltonian, then deleting X, Y
and inG−X(Y ) therefore results in at most permG(X, Y ) components incident with edges
not contained in Y . This idea gives Chvatal’s toughness if we restrict (X, Y ) to that pairs
with Y = ∅. Otherwise – as defined before – we get edge-toughness.

We are interested in a local toughness concept, since the topic of the existence of cycles
through prescribed vertices of a graph seems to be of interest (cf. [6,7,5,3,10,11]).

Local versions of Katona’s edge toughness and Chvatal’s toughness are naturally de-
fined as follows:
H is called k-edge-tough (or k-tough) in G if for all (X, Y ) with [Y ] = G[Y ] (or (X, Y )

with Y = ∅) the graph G−X−Y has at most max{1, permG(X,Y )

k
} components containing

a vertex of H. The local version of Chvatal’s toughness occurs for instance in [5].
What would be useful properties we expect from a local version of toughness? First of

all, we should be sure that in a graph G for a subset H of its vertices not being 1-tough in
G the graph G contains no H-cycle. Second, if a set H is k-tough in G, then every subset
of H with at least two elements should be k-tough, too. Third, the toughness of H in G
should not depend on the length of paths in G, the inner vertices of which have degree 2
in G.
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Obviously the local versions of the mentioned toughnesses fulfill the first and the
second condition, but break the third. The latter is easy to see (e.g. intersect each edge
of a complete graph).

The toughness concepts we have discussed by now deal with disconnecting graphs. Our
idea is to complementary - it deals with connecting vertices.

Every cycle for every k element subset H of vertices has exactly k internally disjoint
H-paths. This simple observation leads to the following definition: H is topological t-tough
in G iff for all H ′ ⊆ H with |H ′| ≥ 2 the graph G contains (at least) t|H ′| internally
disjoint H ′-paths. We chose this name because subdividing edges has obviously no effect
on this value. Moreover, this definition ensures that the topological toughness fulfills all
our three conditions.

If V (G) itself is topological t-tough in G, we will say shorter that G is topological
t-tough. The topological toughness of H in G is the maximal t such that H is t-tough in
G, the topological toughness of G is the topological toughness of V (G) in G.

We want to compare the ideas of edge toughness and topological toughness. For this
we need Mader’s theorem about the number of internally disjoint H-paths (cf. [12]) in G.
We use it in the version of [2].

Theorem 1 (Mader, 1978) pG(H) = |E ′(G[H])| + min{permG(X, Y ) | ∀C ∈ C(G −
X − Y − E ′(G[H])) : |V (C) ∩H| ≤ 1}

Mader’s theorem is often understood as a generalization of Menger’s theorem (cf. [14]).

Theorem 2 (Menger, 1927) Let a and b be nonadjacent vertices of G. The maximum
number pG({a, b}) of internally disjoint ab-paths in G equals the minimum number of
vertices of G− {a, b} separating a from b in G.

In [10] the concept of A-separators is introduced. In our notation we will replace A
by H and call it small H-separator. For an independent set H a pair (X, Y ) is called
an H-separator if G has no H-path avoiding X and Y , and small H-separator, if addi-
tionally permG(X, Y ) < |H| holds. Obviously, G can’t have an H-cycle if G has a small
H-separator. Our topological toughness by Theorem 1 generalizes the idea of small H-
separators: An independent set H is topological 1-tough in G if and only if G has no
H-separator.

For a graph G being t-edge-tough means having a system of at least t|H| H-paths
for certain (but not all!) subsets H of the vertex set of G. Especially using Mader’s
theorem one can prove easily the following lemma which classifies the edge-toughness in
a connector-language:

Lemma 3 If for each independent set H there are at least t|H| internally disjoint H-
paths in G, then G is t-edge-tough. If G is t- edge-tough, then for each induced subgraph
U there are at least |C(U)|t subgraphs of G being U-paths or cycles not disjoint to U which
are disjoint out of U .

Obviously Lemma 3 combined with the definition of topological toughness leads to

Corollary 4 Every topological t-tough graph G is t-edge-tough and therefore t-tough in
Chvátal’s sense.

All the toughnesses are constructed to detect non-hamiltonicity by a toughness value
less than one (which one can prove by presenting a single separator). Let NC be the
set of graphs not being 1-tough, NE be the set of graphs not being 1-edge-tough and
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NT be the set of graphs not being topological 1-tough. The following observation tells
us, that beyond the mentioned versions of toughness, topological toughness detects non-
hamiltonicity best:

Observation 1 The following holds: NC ⊂ NE ⊂ NT

Replacing edge-toughness by the topological toughness unfortunately doesn’t preserve
the strong (linear) connection to Chvátal’s toughness:

Observation 2 Let G be a complete graph on 2k2 + 1 vertices after deleting one of it’s
edges. Then the toughness of G is k2 − 1

2
and the topological toughness is 2k − 3

2
.

The toughness of G is k2 − 1
2

because by deleting vertices one can only separate the
endvertices of the missing edge and has to delete all other vertices for this purpose. For
an h-element subset H of the vertex set of G we find at least (2k2 + 1 − h) +

(
h
2

)
− 1

internally disjoint H-paths and this bound is tight (if H contains the endvertices of the
missing edge this becomes obvious). For the topological toughness of G we get therefore

t = min

{ (
h
2

)
+ (2k2 + 1− h)− 1

h

∣∣∣∣∣ h = 2, . . . , k2 + 1

}
(1)

= −3

2
+ min

{
h

2
+

2k2

h

∣∣∣∣ h = 2, . . . , k2 + 1

}
(2)

= −3

2
+

[
h

2
+

2k2

h

]
h=2k

(3)

= 2k − 3

2
(4)

However, we prove the following:

Theorem 5 If H is (4t2 + 2t)-tough in G and |H| ≥ (t+ 3
2
)2

2
, then H is topological t-tough

in G.

Here 4t2 + 2t is not best possible, as it is seen in the next theorem for small values of
t.

Theorem 6 If t ≤ 1, |H| ≥ 3 and H is 2t-tough in G, then H is topological t-tough in
G.

The connection between k-factors and toughness first was proved in [4]:

Theorem 7 (Enomoto, Jackson, Katerinis, Saito, 1985) Let k be a positive integer
and G be a k-tough graph such that k|V (G)| is even. Then G has a k-factor.

We know that a graph being 1-tough may have a hamiltonian cycle – which is a 2-
factor (more precisely, we know that a graph not being 1-tough cannot be hamiltonian).
Therefore the idea of toughness creates the conjecture that every k-tough graph has a
2k-factor. This was conjectured by the second coauthor for the edge-toughness (see [9])
and proved for k = 1.

Unfortunately, this is not true in general.
Let Cp

q denote the pth power of a cycle on q vertices. (In the pth power of a cycle on
vertices v1, . . . , vq the vertices vi and vj are connected iff |i − j| ≤ p or |i − j| ≥ q − p.)
Then take m disjoint copies of Ck−1

k2+k−1 and denote these by H1, . . . , Hm. Moreover, take
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a complete graph Kx, where x is the largest integer satisfying x < mk2+k−1
k

and connect
each vertex of Kx to each vertex of each Hi. The resulting graph is denoted by Gk,m. It
is worth of mentioning that the smallest such construction for k = 2 is obtained from a
K7 by deleting the edges of a cycle of length 5.

Theorem 8 Then Gk,m is k-edge-tough but has no 2k-factor for all m ≥ 1 and k ≥ 2
integers.

Even a local version of Theorem 7 is not true.

Observation 3 Let G be a copy of K24 after deleting an edge. Let H be a set of 6 vertices
of G not inducing K6. Then H is 11-tough in G but G has no X-local 11-factor because
G has no 33 internally disjoint H-paths.

However, the situation changes if we consider the topological toughness:

Theorem 9 Every topological k-tough graph has a 2k-factor.

This is a consequence of our main result:

Theorem 10 A set H∗ of vertices of a graph G is topological k-tough in G if and only if
for every H ⊆ H∗ with |H| ≥ 2 the graph G has an H-local 2k-factor.

This theorem is a little surprising because it says that it is sufficient to have enough
H-paths for each H ⊆ H∗, |H| ≥ 2, to be able to arrange them in a regular way for each
such H.

To prove Theorem 10 we use the following theorem, which is equivalent to Theorem 2
in [13]:

Theorem 11 Let G be a graph, H∗ ⊆ V (G) be independent in G, and f be a function
that maps H∗ to the positive integers. Then the maximal size of a partial H∗-local f -Factor
equals the minimum of permG,f (X, Y ) taken over all f -separators (X, Y ) of G.

Theorem 11 also has the following corollary, which provides a necessary and sufficient
condition for the existence of H∗-local f -Factors:

Corollary 12 For G, H∗ and f defined as in Theorem 11 G has an H∗-local f -factor if
and only if for each f -separator (X, Y ) we get:

permG,f (X, Y ) ≥ 1

2

∑
h∈H∗

f(h)

Corollary 12 has the following special case (f(h) = 2k for each h ∈ H∗):

Corollary 13 Let G and H∗ be defined as above. Then G has an H∗-local 2k-factor if
and only if if for each (X, Y ) such that X ⊆ V (G), Y ⊆ V (G−X), ∂G−XY ⊆ V (G−H∗),
and G−X − Y has no H∗-path, we get:

|X \H∗|+ 2k|H∗ ∩X|+ k|H∗ ∩ V ([Y ])|+
∑

C∈C([Y ])

⌊
1

2
|∂G−XC|

⌋
≥ k|H∗|
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2. Proofs

We only need to prove the Theorems 5, 6, 8 and 10. Because the equivalence of Theorem
11 and Theorem 2 in [13] is not easy to deduce, we will give a proof of Theorem 11, too.

Proof of Theorem 5. Suppose H is not topological t-tough in G. Then there is a
set H ′ ⊆ H with |H ′| ≥ 2 such the maximum number of internally disjoint H ′-paths
in G is smaller than t|H ′|. By Mader’s Theorem (Theorem 1) there is a total separator
(X ′, Y ′) of H ′ in G − E(G[H ′]) satisfying permG(X ′, Y ′) + |E ′(H ′)| < t|H ′|. Let α be

the independence number of G[H ′] and set x = |H′|
α

. Let G be the simple graph on H ′ in

which two vertices are adjacent only if they are not adjacent in G. Clearly G is Kα+1-free.
By Turán’s Theorem (cf. [2]) it has at most as many edges as a complete r-partite graph
with nearly equal partition classes, such that the sizes of classes differ by at most one.
Thus G[H ′] has at least αx(x−1)

2
edges. Therefore we have αx(x−1)

2
≤ |H ′|t = αxt. This

leads to x ≤ 2t+ 1.
Consider for the first case α ≥ 2. Let H ′′ be an independent subset of H ′ in G with

|H ′′| = α. Then in (X ′, Y ′), we can replace each component C of C(Y ′) by all but one ver-
tices of ∂G−X(C), and replace the edges induced by H ′ by the vertices of H ′\H ′′. This oper-
ation leads to a total separator (X ′′, ∅) of H ′′ with |X ′′| ≤ 2 (permG(X ′, Y ′) + |E(G[H ′])|).
For the Chvatal-toughness tc of G we get:

tc ≤
|X ′′|
|H ′′|

=
|X ′′|
α

=
x|X ′′|
|H ′|

≤ 2(permG(X ′, Y ′) + |E(G[H ′])|)x
|H ′|

< 2tx ≤ 4t2 + 2t

Consider now the other case α = 1. If every vertex of H \ H ′ is contained in X ′, we
get t|H ′| > |H| − |H ′|+

(|H′|
2

)
. This leads to:

|H| < 1

2
(2t+ 3− |H ′|)|H ′| ≤

(t+ 3
2
)2

2
.

Therefore, suchH is not considered in the theorem we have to prove. Hence we may assume
that H contains a vertex v not contained in H ′ ∪X ′. Furthermore, we may assume that

for every component C of [Y ′] we have
⌊
|∂G−X′ (C)|

2

⌋
≥ 1, that is, every component has

a nonzero contribution to the permeability of (X ′, Y ′) in G. Let X∗ contain all vertices
of X ′ and for each component C of [Y ′] all but one element of ∂G−X′(C), chosen such
that X∗ does not contain v. Such X∗ exists because X ′ does not contain v. Clearly,
G −X∗ − E(G[H ′]) has no component containing two vertices of H ′, but it may have a
component containing v and a vertex w of H ′, but no other vertex of H ′. If this is the
case, set X ′′ = X∗ ∪ {w}, otherwise set X ′′ = X∗. In both cases let H ′′ consist of v and
one element of H ′ \ X ′′. Then X ′′ separates H ′′. We get |X ′′| ≤ 2permG(X ′, Y ′) + 1 <
2(t|H ′| − |E ′(G[H ′])|) + 1 ≤ 2(t|H ′| −

(|H′|
2

)
) + 1 = (2t+ 1− |H ′|)|H ′|+ 1 < (t+ 1

2
)2 + 1.

Finally, the toughness of H ′ in G is at most |X
′′|

2
< 4t2 + 2t. �

Proof of Theorem 6. It suffices to prove the following for all H: If |H| ≥ 3 and there
is a set H ′ with |H ′| ≥ 2 such that G has no t|H ′| internally disjoint H ′-paths, then H
has an independent subset H ′′ such that there is a set X ′′ ⊆ V (G − H ′′) being a total
separator of H ′′ with 2t|H ′′| > X ′′.

If G[H ′] is connected, then it has at least |H ′| − 1 edges. Its edges are internally
disjoint H ′-paths. Therefore it has at most |H ′| − 1 edges. Thus it is a tree and t > 1

2

holds. Furthermore, G− E(G[H ′]) has no H ′-path.
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If, furthermore, |H ′| = 2, then there is a vertex h ∈ H \ H ′. In this case let H ′ =
{h1, h2}. Clearly, either G−h1 has no {h, h2}-path or G−h2 has no {h, h1}-path. Suppose
w.l.o.g. the latter is the case. Then with H ′′ = {h, h1} and X ′′ = {h2} we are done.

If, otherwise, |H ′| > 2, then G[H ′] has a cutvertex x. Let H ′′ consist of two vertices of
different components of G[H ′]− x. We are done with X ′′ = {x}.

So we may suppose that G[H ′] contains at least 2 components. Choose for H ′′ one
vertex of each of these components.

By Theorem 1 there is a set X ′ ⊆ V (G − H ′) and a set Y ′ ⊆ V (G − H ′ − X ′) such
that permG(X ′, Y ′) + |E ′(G[H ′])| < t|H ′| and G−X ′ − Y ′ −E ′(G[H ′]) has no H ′-paths.
Therefore, by the construction of H ′′, the graph G−X ′−Y ′ has no H ′′-paths. Furthermore,
we get permG(X ′, Y ′) < t|H ′|−|E ′(G[H ′])| < t|H ′′|. LetX ′′ consist of all vertices ofX ′ and
all but one vertices of ∂G−X′(C) for all C ∈ C([Y ]). Then |X ′′| ≤ permG(X ′, Y ′) < t|H ′′|
but G−X ′′ has no H ′′-path. �

Proof of Theorem 8. First we prove that Gk,m has no 2k-factor. Since each Hi is
2k−2 regular, and they are disjoint from each other, each vertex of each Hi in a 2k-factor
must send at least 2 edges to Kx, so there must be at least 2m(k2 +k−1) edges ending in
Kx. However, x is given such that this is not possible, because in a 2k-factor each vertex
of Kx is incident to at most 2k of these edges.

Now we prove that Gk,m is k-edge-tough. By Lemma 3 it is enough to prove that for
any independent vertex set H ⊂ V (Gk,m) there are at least k|H| internally disjoint H-
paths. It is clear that H cannot contain any vertex of Kx. Let hi = |H ∩ V (Bi)|. Since all
Bi are copies of Ck−1

k2+k−1, there are at most k independent vertices in it, so hi ≤ k. One
can easily see that if i ≤ j − k, then there are k − 1 disjoint paths from vi to vj using
only vertices vi′ with i < i′ < j. This implies that in each Bi there are at least (k − 1)hi
internally disjoint H-paths. Thus there we have d := x+

∑m
i=1(k−1)hi internally disjoint

H-paths in Gk,m. Since x > mk2+k−1
k
− 1 and

∑m
i=1 hi ≤ km straightforward calculation

gives that d ≥ k
∑m

i=1 hi holds if m ≥ 2, which proves our claim in this case. If m = 1,
then x = k and similar argument shows that our claim holds, so the proof is complete. �

Before we start to prove Theorem 11, we add some notation and provide some lemmas.
The neighborhood of a vertex v in a graph G is the set of v and all vertices adjacent to

v in G and we denote it by NG(v). Let (X, Y ) be an optimal H∗-separator, if (X, Y ) is
an H∗-separator and permG(X, Y ) = pG(H∗). Since H∗ is independent in G, an optimal
H∗-separator exists by Theorem 1. In a first lemma we refine this Observation.

Lemma 14 Let G′ be a graph and H∗ be an independent subset of V (G′). Then G′ has
an optimal H∗-separator (X, Y ) satisfying the following conditions:

1. If u, v, w ∈ V (G−H −X), w ∈ NG(v) = NG(w), and {u, v} ∈ Y , then {u,w} ∈ Y .
2. If u, v ∈ V (G−H), NG(u) ⊆ NG(v), and u ∈ X, then v ∈ X.
3. For each component C of [Y ] the graph G′ obtained from G by deleting all elements of

X∪Y \E(C) and contracting C to a vertex c has no pair G′1, G
′
2 of subgraphs such that

H∗ ∩ V (G′2) = ∅, |V (G′1 ∩ G′2)| = 1, and G′1 ∪ G′2 = G′ ( G′ has no endblock disjoint
from H∗).

Proof of Lemma 14. We give a constructive proof of the conditions, starting with an
arbitrary optimal separator (X, Y ). In each step of the construction we apply a transfor-
mation, which changes X and Y while permG(X, Y ) is nonincreasing and (X, Y ) remains
an H∗-separator of G. Hence, permG(X, Y ) is constant, and (X, Y ) remains an optimal
H∗-separator of G.
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This is the general step with its three cases:

Case 1)

If (X, Y ) infringes condition 1 we proceed as follows: Since having the same neighborhood
in G−H∗ −X is an equivalence relation, it induces a partition of V (G−H∗ −X) into
a finite set A of classes. All A ∈ A for which there are vertices v, w ∈ A and a vertex
u ∈ NG(v) = NG(w), such that {u, v} ∈ Y , and {u,w} /∈ Y we call asymmetric classes.
The vertices u we call the asymmetric neighbors of A, the elements of NG(v) \ v we call
the neighbors of A.

Infringement of condition 1 yields at least one asymmetric class A. If there is a neighbor
of A, which is not contained in V ([Y ]), we delete all edges from Y , which connect an
asymmetric neighbor of A with an element of A. Otherwise we add all edges incident with
vertices in A to Y .

In the first situation, some components of [Y ] may split, but ∂Y may only loose vertices.
Hence permG(X, Y ) will not increase. Furthermore, the ends of the deleted edges where
before this step connected in G−X −Y . Hence, an H∗-path of G−X −Y after this step
yields an H∗-path of G−X − Y befor this step. Thus, if before this step (X, Y ) was an
optimal H∗-separator of G, in this step it remains an optimal H∗-separator

In the second situation, all at most |A| components of [Y ] containing vertices of A glue
together; but if there are more than one such components, then ∂G−XY looses at least |A|
vertices.

Hence, permG(X, Y ) will not increase, too. Thus, clearly, (X, Y ) remains an optimal
H∗-separator of G, too.

Both variants of our transformation cannot produce asymmetric neighbors of another
class A′ ∈ A.

Hence, this step decreases the number of asymmetric classes.

Case 2)

If, otherwise, (X, Y ) infringes condition 2, then there are vertices u, v ∈ V (G −H) such
that NG(u) ⊆ NG(v), u ∈ X, and v /∈ X. In this case, we delete u from X and add all
edges to Y that connect u to a neighbor of v in Y .

In G−X − Y this transformation adds u to the component which contains v, but all
components remain separated. Hence (X, Y ) stays an H∗-separator of G.

In permG(X, Y ) the term |X| decreases by one, while u is added ∂G−XC with C be-
ing the component of [Y ] containing v (which must exist, because otherwise we have a
contradiction to the optimality of (X, Y ) before this step). Since nothing else changes in
permG(X, Y ), the H∗-separator (X, Y ) stays optimal.

In this case, condition 1 obviously remains satisfied, whereas |X| increases.

Case 3)

If, finally, (X, Y ) only infringes condition 3, the graph G′ obtained from G by deleting all
elements of X ∪ Y \E(C) and contracting C to a vertex c has a pair G′1, G

′
2 of subgraphs

such that H∗ ∩ V (G′2) = ∅, |V (G′1 ∩G′2)| = 1, and G′1 ∪G′2 = G′.

This may glue some components C1, . . . Ck of [Y ] together resulting in a component C ′.

Hence, in permG(X, Y ) the only change is, that the part
k∑
i=1

⌊
1
2
|∂G−XCi|

⌋
of the sum-term

will be replaced by
⌊

1
2
|∂G−XC ′|

⌋
. Furthermore, ∂G−XC

′ ⊆
k⋃
i=1

∂G−XCi. If Ci 6= C we get
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additionally |∂G−XCi \ ∂G−XC ′| ≥ 1. Hence,⌊
1

2
|∂G−XC ′|

⌋
≤

⌊
1

2
1− k +

k∑
i=1

|∂G−XCi|

⌋

≤
k∑
i=1

⌊
1

2
|∂G−XCi|

⌋
Consequently, (X, Y ) stays an optimal H∗-separator of G. In this last case, condition 1
remains satisfied, while |X| stays constant and |Y | increases.

This algorithm will stop after a finite number of steps, because G is finite. The resulting
optimal H∗-separator (X, Y ) of G obviously proves the lemma. �

The next lemma is a consequence of Lemma 14.

Lemma 15 Let G be a graph and H be an independent subset of V (G). Then, G has an
optimal H-separator (X, Y ) such that for each h with the property, that the neighborhoods
of the neighbors of h are identical, one of the following conditions holds

1. The neighborhood of h is disjoint to X and no edge of Y is incident to a vertex of it.
2. Each vertex adjacent to h is contained in X.
3. Each edge incident with a neighbor of h but not incident with h is in Y .

Proof of Lemma 15. Let (X, Y ) be an optimal H-separator of G satisfying the condi-
tions of Lemma 15 and let h be an arbitrary vertex with the property, that the neighbor-
hoods of the neighbors of h are identical.

Suppose there is a vertex of X in the neighborhood of an h. By condition 2 of Lemma
15 condition 2 of Theorem 15 holds.

If, otherwise, conditions 1 of Lemma 15 are violated, Y contains an edge connecting a
neighbor v of h with a vertex w 6= h.

By condition 1 of Lemma 14, each neighbor of h is connected with w in [Y ]. If, further-
more, condition 3 of Lemma 15 is violated, too, G−X−Y contains an edge e connecting
v with a vertex u 6= h.

Let C be the component of [Y ] containing w and D be the component of G−X − Y
containing e. We have V (D)∩H = {h}. After contracting C in D to a vertex c, this vertex
becomes a cutvertex of D. This contradicts condition 3 of Lemma 14, and the proof is
done. �

The following lemma is a big step toward the proof of Theorem 11.

Lemma 16 Let G be a graph, H∗ be an independent subset of V (G), and f be a function
mapping H∗ into the positive integers. Let G∗ be obtained from G by deleting each edge
incident (in G) with a vertex of H∗ and, for each h ∈ H∗, adding f(h) new vertices
connected to h and all neighbors (in G) of h.

Then the maximal size of a partial f -Factor of G is pG∗(H
∗).

Proof of Lemma 16. If we have a partial f -factor of G of size s, it is obvious, that
G′ has s internally disjoint H-paths. For the other direction, consider a set S of pG∗(H

∗)
internally disjoint paths. By construction of G∗, S is a partial f -factor of G′.

Beyond all possibilities choose S with a minimal number of edges in the union of its
paths. This additional condition yields, that a path P containing a neighbor of a vertex
h ∈ H∗ also contains the edge connecting it to h. Hence, by if we contract all edges
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incident with an element of H∗, G∗ becomes G and S becomes a partial f -factor of G of
the same size |S|. This completes the proof. �

Proof of Lemma 11. Let G∗ be the graph obtained from G as described in Lemma
16.

First, let (X∗, Y ∗) be an optimal H∗-separator of G∗ satisfying the conditions of Lemma
14 and set X = (V (G)∩X∗)∪{h ∈ H∗ | NG∗(h) ⊆ X} and Y = (E(G)∩Y ∗)∪{{h, x} ∈
E(G) | N[Y ∗](x) = NG∗(h)}. Then, by Lemma 15, (X, Y ) is an f -separator of G with
permG,f (X, Y ) = permG∗(X

∗, Y ∗).

Second, let (X, Y ) be an f -separator of G and set X∗ = (X \H) ∪
⋃

x∈X∩H
NG∗(x) and

Y ∗ = E([Y ] − H) ∪ {{v, w} ∈ E(G∗) | ∃h ∈ H∗ : v ∈ NG∗(h) ∧ w 6= h}. Then (X∗, Y ∗)
is an H∗-separator of G∗ with permG∗(X

∗, Y ∗) = permG,f (X, Y ). Thus, the maximum
number of internally disjoint H∗-paths equals the minimum of permG,f (X, Y ) taken over
all f -separators of G. With Lemma 16, the proof is complete. �

Proof of Theorem 10. If all the local 2k-factors exist, the assertion is trivial. Hence
we only have to prove the other direction. Therefore H∗ is assumed to be topological
k-tough in G. Consequently, every subset of H∗ is topological k-tough in G and thus it
suffices to prove that there is an H∗-local 2k-factor.

We’ll do this indirectly, i.e. in the sequel we assume, that there is no H∗-local 2k-factor,
and we have to show, that there is an H ⊆ H∗, such that pG(H) < k|H| (i.e. G has no
k|H| internally disjoint H-paths).

Because intersecting edges by additional vertices will neither destroy H∗-local 2k-
factors, nor change the maximum number of internally disjoint H∗-paths, we may and
will assume in the sequel, that H∗ is independent in G.

By Corollary 13 (with f(h) = 2k for all h ∈ H∗) there is a pair (X, Y ) such that

1. X ⊆ V (G),
2. Y ⊆ E(G−X),
3. ∂G−X [Y ] ⊆ V (G−H∗)
4. G−X − Y has no H∗-path, and
5. |X \H∗|+ 2k|X ∩H∗|+ k|V ([Y ]) ∩H∗|+

∑
C∈C([Y ])

⌊
1
2
|∂G−XC|

⌋
< k|H∗|.

From property 5, we deduce |H∗ \ (X ∪ V ([Y ]))| ≥ 1.

In a first case we study equality. In this case let H be the set of the unique vertex
h ∈ H∗ \ (X ∪V ([Y ])), and an arbitrary other vertex h′ from H∗. Note, that here Y must
(and will) not be contained in G−X −H.

Property 5 in this case yields |X ∩H∗| = 0. Hence [Y ] has a component Ch containing
h′. By property 3 we get that X ∪ ∂G−XCh in G separates h from h′. Finally, property 5

yields |X|+
⌊
|∂G−XC|

2

⌋
≤ k − 1, and hence |X ∪ ∂G−XCh| ≤ 2k − 1, which by Theorem 2

completes the proof in this case.

In the remaining case we set H = H∗ \ (X ∪ V ([Y ])). Here X ⊆ V (G − H) and
Y ⊆ E(G −H −X) hold, and G −X − Y has no H-path. Finally, Theorem 1 together
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with property 5 yield

pG(H) ≤ |X|+
∑

C∈C([Y ])

⌊
1

2
|∂G−XC|

⌋
≤ |X \H∗|+ 2k|X ∩H∗|+ k|V ([Y ]) ∩H∗| − k|H∗ ∩ (X ∪ V ([Y ]))|+

+
∑

C∈C([Y ])

⌊
1

2
|∂G−XC|

⌋
< k(|H∗| − |H∗ ∩ (X ∪ V ([Y ]))|) = k|H∗ \ (X ∪ V ([Y ]))| = k|H|

�
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1. V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Mathematics 5, (1973) 215-228.

2. R. Diestel, Graph Theory (Springer, 2000) Graduate Texts in Mathematics 173(2000).

3. G. A. Dirac, 4-chromatische Graphen und vollständige 4-Graphen, Mathematische Nach-
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