Local topological toughness and local factors

Frank Göring* ${ }^{* 1}$, Gyula Y. Katona ${ }^{\dagger 2}$
1 Department of Mathematics
Chemnitz University of Technology 09107 Chemnitz Germany
${ }^{2}$ Dept. of Comp. Sci. and Inf. Th. Budapest University of Technology and Economics Hungary

Abstract

We localize and strengthen Katona's idea of an edge-toughness to a local topological toughness. We disprove a conjecture of Katona concerning the conection between edge-toughness and factors. For the topological toughness we prove a theorem similar to Katona's $2 k$-factorconjecture, which turned out to be false for his edge-toughness. We prove, that besides this the topological toughness has nearly all known nice properties of Katona's edge-toughness and therefore is worth to be considered.

1. Preliminaries and Results

For notations not defined here we refer to [2]. Unless otherwise stated, t is an arbitrary non negative real number, k is an arbitrary integer, G is an arbitrary finite graph (loops and multiple edges allowed), U is an arbitrary subgraph of G, X and H are arbitrary disjoint subsets of $V(G), Y$ is an arbitrary subset of $E(G-X-H)$, and f is an arbitrary function that maps H into the positive integers. An H-path is a path connecting two different vertices of H. A cycle covering H is called an H-cycle. The union of internally disjoint H-paths is called an H-local k-factor, if all vertices of H have degree k in it, a partial H-local k-factor, if all vertices of H have at most degree k in it, an H-local f-factor if each vertex h of H has degree $f(h)$ in it, and a partial H-local f-factor if each vertex h of H has at most degree $f(h)$ in it. The size of H-local factors is the number of its H paths. The maximum number of internally disjoint H-paths is denoted by $p_{G}(H)$. With $G[X]$ we denote the subgraph of G induced by $X,[Y]$ denotes the graph with edge set Y whose vertex set is the set of all vertices incident with edges of Y. Instead of $G[V([Y])]$ we shortly write $G[Y] . E^{\prime}(G)$ denotes the set of all edges in G except the loops. Let $\mathcal{C}(G)$ denote the set of components of G and $\partial_{G}(U)$ denote the set of vertices of U incident with

[^0]edges of $G-E(U)$. For $V(U)-\partial_{G}(U)$ we will write shortly $i n_{G}(U)$. According to [10] we define the permeability of a pair (X, Y) by:
$$
\operatorname{perm}_{G}(X, Y)=|X|+\sum_{C \in \mathcal{C}([Y])}\left\lfloor\frac{\left|\partial_{G-X}(C)\right|}{2}\right\rfloor
$$

The following definitions generalize this concept:
Let G be a graph, and f be a function mapping $H^{*} \subseteq V(G)$ into the set of positive integers. An f-separator of G is a pair (X, Y) with $X \subseteq V(G), Y \subseteq E(G-X)$ and $\partial_{G-X} Y$ disjoint to H^{*} such that $G-X-Y$ has no H^{*}-paths.

The permeability of an f-separator is

$$
\operatorname{perm}_{G, f}(X, Y)=\left|X \backslash H^{*}\right|+\sum_{v \in X \cap H^{*}} f(v)+\sum_{C \in \mathcal{C}([Y])}\left\lfloor\frac{1}{2}\left(\left|\partial_{G-X} C\right|+\sum_{v \in V(C) \cap H^{*}} f(v)\right)\right\rfloor
$$

In 1997 the second coauthor introduced the concept of edge-toughness (see [8]). It is strengthening the concept of toughness introduced by Chvátal in 1971. We will define these concepts.
G is t-tough (in the sense of Chvátal, cf. [1]) if deleting of k vertices of G results in at most $\max \left\{1, \frac{k}{t}\right\}$ components. The toughness of G (denoted by $t(G)$) is the supremum over all reals t such that G is t-tough. It turns out that $t(G)=\infty$ if any two vertices of G are adjacent, and $t(G)=\min \left\{\frac{|X|}{|\mathcal{C}(G-X)|}|2 \leq|\mathcal{C}(G-X)|\}\right.$ otherwise.
G is t-edge-tough if for all (X, Y) with $[Y]=G[Y]$ we have:

$$
\left|\mathcal{C}\left(G-X-Y-i n_{G-X}([Y])\right)\right| \leq \max \left\{1, \frac{\operatorname{perm}_{G}(X, Y)}{t}\right\}
$$

The edge-toughness of G (denoted by $t e(G)$) is the supremum over all reals t such that G is t edge-tough.

The ideas are as follows: Every path passing a vertex of X needs another one of these vertices, every path not counted by this and passing a component C of $[\mathrm{Y}]$ needs two more vertices of the boundary of C in $G-X$. If G is hamiltonian, then deleting X, Y and $i n_{G-X}(Y)$ therefore results in at most perm ${ }_{G}(X, Y)$ components incident with edges not contained in Y. This idea gives Chvatal's toughness if we restrict (X, Y) to that pairs with $Y=\emptyset$. Otherwise - as defined before - we get edge-toughness.

We are interested in a local toughness concept, since the topic of the existence of cycles through prescribed vertices of a graph seems to be of interest (cf. [6, 7, 5, 3, 10, 11]).

Local versions of Katona's edge toughness and Chvatal's toughness are naturally defined as follows:
H is called k-edge-tough (or k-tough) in G if for all (X, Y) with $[Y]=G[Y]$ (or (X, Y) with $Y=\emptyset$) the graph $G-X-Y$ has at most $\max \left\{1, \frac{\operatorname{perm}_{G}(X, Y)}{k}\right\}$ components containing a vertex of H. The local version of Chvatal's toughness occurs for instance in [5].

What would be useful properties we expect from a local version of toughness? First of all, we should be sure that in a graph G for a subset H of its vertices not being 1-tough in G the graph G contains no H-cycle. Second, if a set H is k-tough in G, then every subset of H with at least two elements should be k-tough, too. Third, the toughness of H in G should not depend on the length of paths in G, the inner vertices of which have degree 2 in G.

Obviously the local versions of the mentioned toughnesses fulfill the first and the second condition, but break the third. The latter is easy to see (e.g. intersect each edge of a complete graph).

The toughness concepts we have discussed by now deal with disconnecting graphs. Our idea is to complementary - it deals with connecting vertices.

Every cycle for every k element subset H of vertices has exactly k internally disjoint H-paths. This simple observation leads to the following definition: H is topological t-tough in G iff for all $H^{\prime} \subseteq H$ with $\left|H^{\prime}\right| \geq 2$ the graph G contains (at least) $t\left|H^{\prime}\right|$ internally disjoint H^{\prime}-paths. We chose this name because subdividing edges has obviously no effect on this value. Moreover, this definition ensures that the topological toughness fulfills all our three conditions.

If $V(G)$ itself is topological t-tough in G, we will say shorter that G is topological t-tough. The topological toughness of H in G is the maximal t such that H is t-tough in G, the topological toughness of G is the topological toughness of $V(G)$ in G.

We want to compare the ideas of edge toughness and topological toughness. For this we need Mader's theorem about the number of internally disjoint H-paths (cf. [12]) in G. We use it in the version of [2].
Theorem 1 (Mader, 1978) $p_{G}(H)=\left|E^{\prime}(G[H])\right|+\min \left\{\operatorname{perm}_{G}(X, Y) \mid \forall C \in \mathcal{C}(G-\right.$ $\left.\left.X-Y-E^{\prime}(G[H])\right):|V(C) \cap H| \leq 1\right\}$

Mader's theorem is often understood as a generalization of Menger's theorem (cf. [14]).
Theorem 2 (Menger, 1927) Let a and b be nonadjacent vertices of G. The maximum number $p_{G}(\{a, b\})$ of internally disjoint ab-paths in G equals the minimum number of vertices of $G-\{a, b\}$ separating a from b in G.

In [10] the concept of A-separators is introduced. In our notation we will replace A by H and call it small H-separator. For an independent set H a pair (X, Y) is called an H-separator if G has no H-path avoiding X and Y, and small H-separator, if additionally $\operatorname{perm}_{G}(X, Y)<|H|$ holds. Obviously, G can't have an H-cycle if G has a small H -separator. Our topological toughness by Theorem 1 generalizes the idea of small H separators: An independent set H is topological 1-tough in G if and only if G has no H-separator.

For a graph G being t-edge-tough means having a system of at least $t|H| H$-paths for certain (but not all!) subsets H of the vertex set of G. Especially using Mader's theorem one can prove easily the following lemma which classifies the edge-toughness in a connector-language:
Lemma 3 If for each independent set H there are at least $t|H|$ internally disjoint H paths in G, then G is t-edge-tough. If G is t - edge-tough, then for each induced subgraph U there are at least $|\mathcal{C}(U)| t$ subgraphs of G being U-paths or cycles not disjoint to U which are disjoint out of U.

Obviously Lemma 3 combined with the definition of topological toughness leads to
Corollary 4 Every topological t-tough graph G is t-edge-tough and therefore t-tough in Chvátal's sense.

All the toughnesses are constructed to detect non-hamiltonicity by a toughness value less than one (which one can prove by presenting a single separator). Let $N C$ be the set of graphs not being 1-tough, $N E$ be the set of graphs not being 1-edge-tough and
$N T$ be the set of graphs not being topological 1-tough. The following observation tells us, that beyond the mentioned versions of toughness, topological toughness detects nonhamiltonicity best:

Observation 1 The following holds: $N C \subset N E \subset N T$
Replacing edge-toughness by the topological toughness unfortunately doesn't preserve the strong (linear) connection to Chvátal's toughness:
Observation 2 Let G be a complete graph on $2 k^{2}+1$ vertices after deleting one of it's edges. Then the toughness of G is $k^{2}-\frac{1}{2}$ and the topological toughness is $2 k-\frac{3}{2}$.

The toughness of G is $k^{2}-\frac{1}{2}$ because by deleting vertices one can only separate the endvertices of the missing edge and has to delete all other vertices for this purpose. For an h-element subset H of the vertex set of G we find at least $\left(2 k^{2}+1-h\right)+\binom{h}{2}-1$ internally disjoint H-paths and this bound is tight (if H contains the endvertices of the missing edge this becomes obvious). For the topological toughness of G we get therefore

$$
\begin{align*}
t & =\min \left\{\left.\frac{\binom{h}{2}+\left(2 k^{2}+1-h\right)-1}{h} \right\rvert\, h=2, \ldots, k^{2}+1\right\} \tag{1}\\
& =-\frac{3}{2}+\min \left\{\left.\frac{h}{2}+\frac{2 k^{2}}{h} \right\rvert\, h=2, \ldots, k^{2}+1\right\} \tag{2}\\
& =-\frac{3}{2}+\left[\frac{h}{2}+\frac{2 k^{2}}{h}\right]_{h=2 k} \tag{3}\\
& =2 k-\frac{3}{2} \tag{4}
\end{align*}
$$

However, we prove the following:
Theorem 5 If H is $\left(4 t^{2}+2 t\right)$-tough in G and $|H| \geq \frac{\left(t+\frac{3}{2}\right)^{2}}{2}$, then H is topological t-tough in G.

Here $4 t^{2}+2 t$ is not best possible, as it is seen in the next theorem for small values of t.

Theorem 6 If $t \leq 1,|H| \geq 3$ and H is $2 t$-tough in G, then H is topological t-tough in G.

The connection between k-factors and toughness first was proved in [4]:
Theorem 7 (Enomoto, Jackson, Katerinis, Saito, 1985) Let k be a positive integer and G be a k-tough graph such that $k|V(G)|$ is even. Then G has a k-factor.

We know that a graph being 1-tough may have a hamiltonian cycle - which is a 2 factor (more precisely, we know that a graph not being 1-tough cannot be hamiltonian). Therefore the idea of toughness creates the conjecture that every k-tough graph has a $2 k$-factor. This was conjectured by the second coauthor for the edge-toughness (see [9]) and proved for $k=1$.

Unfortunately, this is not true in general.
Let C_{q}^{p} denote the $p^{\text {th }}$ power of a cycle on q vertices. (In the $p^{\text {th }}$ power of a cycle on vertices v_{1}, \ldots, v_{q} the vertices v_{i} and v_{j} are connected iff $|i-j| \leq p$ or $|i-j| \geq q-p$.) Then take m disjoint copies of $C_{k^{2}+k-1}^{k-1}$ and denote these by H_{1}, \ldots, H_{m}. Moreover, take
a complete graph K_{x}, where x is the largest integer satisfying $x<m \frac{k^{2}+k-1}{k}$ and connect each vertex of K_{x} to each vertex of each H_{i}. The resulting graph is denoted by $G_{k, m}$. It is worth of mentioning that the smallest such construction for $k=2$ is obtained from a K_{7} by deleting the edges of a cycle of length 5 .

Theorem 8 Then $G_{k, m}$ is k-edge-tough but has no $2 k$-factor for all $m \geq 1$ and $k \geq 2$ integers.

Even a local version of Theorem 7 is not true.
Observation 3 Let G be a copy of K_{24} after deleting an edge. Let H be a set of 6 vertices of G not inducing K_{6}. Then H is 11-tough in G but G has no X-local 11-factor because G has no 33 internally disjoint H-paths.

However, the situation changes if we consider the topological toughness:
Theorem 9 Every topological k-tough graph has a $2 k$-factor.
This is a consequence of our main result:
Theorem 10 A set H^{*} of vertices of a graph G is topological k-tough in G if and only if for every $H \subseteq H^{*}$ with $|H| \geq 2$ the graph G has an H-local $2 k$-factor.

This theorem is a little surprising because it says that it is sufficient to have enough H-paths for each $H \subseteq H^{*},|H| \geq 2$, to be able to arrange them in a regular way for each such H.

To prove Theorem 10 we use the following theorem, which is equivalent to Theorem 2 in [13]:

Theorem 11 Let G be a graph, $H^{*} \subseteq V(G)$ be independent in G, and f be a function that maps H^{*} to the positive integers. Then the maximal size of a partial H^{*}-local f-Factor equals the minimum of perm $\operatorname{cif}(X, Y)$ taken over all f-separators (X, Y) of G.

Theorem 11 also has the following corollary, which provides a necessary and sufficient condition for the existence of H^{*}-local f-Factors:

Corollary 12 For G, H^{*} and f defined as in Theorem $11 G$ has an H^{*}-local f-factor if and only if for each f-separator (X, Y) we get:

$$
\operatorname{perm}_{G, f}(X, Y) \geq \frac{1}{2} \sum_{h \in H^{*}} f(h)
$$

Corollary 12 has the following special case $\left(f(h)=2 k\right.$ for each $\left.h \in H^{*}\right)$:
Corollary 13 Let G and H^{*} be defined as above. Then G has an H^{*}-local $2 k$-factor if and only if if for each (X, Y) such that $X \subseteq V(G), Y \subseteq V(G-X), \partial_{G-X} Y \subseteq V\left(G-H^{*}\right)$, and $G-X-Y$ has no H^{*}-path, we get:

$$
\left.\left.\left|X \backslash H^{*}\right|+2 k\left|H^{*} \cap X\right|+k\left|H^{*} \cap V([Y])\right|+\sum_{C \in \mathcal{C}([Y])}\left|\frac{1}{2}\right| \partial_{G-X} C \right\rvert\,\right\rfloor \geq k\left|H^{*}\right|
$$

2. Proofs

We only need to prove the Theorems $5,6,8$ and 10 . Because the equivalence of Theorem 11 and Theorem 2 in [13] is not easy to deduce, we will give a proof of Theorem 11, too.

Proof of Theorem 5. Suppose H is not topological t-tough in G. Then there is a set $H^{\prime} \subseteq H$ with $\left|H^{\prime}\right| \geq 2$ such the maximum number of internally disjoint H^{\prime}-paths in G is smaller than $t\left|H^{\prime}\right|$. By Mader's Theorem (Theorem 1) there is a total separator $\left(X^{\prime}, Y^{\prime}\right)$ of H^{\prime} in $G-E\left(G\left[H^{\prime}\right]\right)$ satisfying $\operatorname{perm}_{G}\left(X^{\prime}, Y^{\prime}\right)+\left|E^{\prime}\left(H^{\prime}\right)\right|<t\left|H^{\prime}\right|$. Let α be the independence number of $G\left[H^{\prime}\right]$ and set $x=\frac{\left|H^{\prime}\right|}{\alpha}$. Let \bar{G} be the simple graph on H^{\prime} in which two vertices are adjacent only if they are not adjacent in G. Clearly \bar{G} is $K_{\alpha+1}$-free. By Turán's Theorem (cf. [2]) it has at most as many edges as a complete r-partite graph with nearly equal partition classes, such that the sizes of classes differ by at most one. Thus $G\left[H^{\prime}\right]$ has at least $\alpha \frac{x(x-1)}{2}$ edges. Therefore we have $\alpha \frac{x(x-1)}{2} \leq\left|H^{\prime}\right| t=\alpha x t$. This leads to $x \leq 2 t+1$.

Consider for the first case $\alpha \geq 2$. Let $H^{\prime \prime}$ be an independent subset of H^{\prime} in G with $\left|H^{\prime \prime}\right|=\alpha$. Then in $\left(X^{\prime}, Y^{\prime}\right)$, we can replace each component C of $\mathcal{C}\left(Y^{\prime}\right)$ by all but one vertices of $\partial_{G-X}(C)$, and replace the edges induced by H^{\prime} by the vertices of $H^{\prime} \backslash H^{\prime \prime}$. This operation leads to a total separator $\left(X^{\prime \prime}, \emptyset\right)$ of $H^{\prime \prime}$ with $\left|X^{\prime \prime}\right| \leq 2\left(\operatorname{perm}_{G}\left(X^{\prime}, Y^{\prime}\right)+\left|E\left(G\left[H^{\prime}\right]\right)\right|\right)$. For the Chvatal-toughness t_{c} of G we get:

$$
t_{c} \leq \frac{\left|X^{\prime \prime}\right|}{\left|H^{\prime \prime}\right|}=\frac{\left|X^{\prime \prime}\right|}{\alpha}=\frac{x\left|X^{\prime \prime}\right|}{\left|H^{\prime}\right|} \leq \frac{2\left(\operatorname{perm}_{G}\left(X^{\prime}, Y^{\prime}\right)+\left|E\left(G\left[H^{\prime}\right]\right)\right|\right) x}{\left|H^{\prime}\right|}<2 t x \leq 4 t^{2}+2 t
$$

Consider now the other case $\alpha=1$. If every vertex of $H \backslash H^{\prime}$ is contained in X^{\prime}, we get $t\left|H^{\prime}\right|>|H|-\left|H^{\prime}\right|+\binom{\left|H^{\prime}\right|}{2}$. This leads to:

$$
|H|<\frac{1}{2}\left(2 t+3-\left|H^{\prime}\right|\right)\left|H^{\prime}\right| \leq \frac{\left(t+\frac{3}{2}\right)^{2}}{2}
$$

Therefore, such H is not considered in the theorem we have to prove. Hence we may assume that H contains a vertex v not contained in $H^{\prime} \cup X^{\prime}$. Furthermore, we may assume that for every component C of $\left[Y^{\prime}\right]$ we have $\left\lfloor\frac{\left|\partial_{G-X^{\prime}}(C)\right|}{2}\right\rfloor \geq 1$, that is, every component has a nonzero contribution to the permeability of $\left(X^{\prime}, Y^{\prime}\right)$ in G. Let X^{*} contain all vertices of X^{\prime} and for each component C of $\left[Y^{\prime}\right]$ all but one element of $\partial_{G-X^{\prime}}(C)$, chosen such that X^{*} does not contain v. Such X^{*} exists because X^{\prime} does not contain v. Clearly, $G-X^{*}-E\left(G\left[H^{\prime}\right]\right)$ has no component containing two vertices of H^{\prime}, but it may have a component containing v and a vertex w of H^{\prime}, but no other vertex of H^{\prime}. If this is the case, set $X^{\prime \prime}=X^{*} \cup\{w\}$, otherwise set $X^{\prime \prime}=X^{*}$. In both cases let $H^{\prime \prime}$ consist of v and one element of $H^{\prime} \backslash X^{\prime \prime}$. Then $X^{\prime \prime}$ separates $H^{\prime \prime}$. We get $\left|X^{\prime \prime}\right| \leq 2 \operatorname{perm}_{G}\left(X^{\prime}, Y^{\prime}\right)+1<$ $2\left(t\left|H^{\prime}\right|-\left|E^{\prime}\left(G\left[H^{\prime}\right]\right)\right|\right)+1 \leq 2\left(t\left|H^{\prime}\right|-\binom{\left|H^{\prime}\right|}{2}\right)+1=\left(2 t+1-\left|H^{\prime}\right|\right)\left|H^{\prime}\right|+1<\left(t+\frac{1}{2}\right)^{2}+1$. Finally, the toughness of H^{\prime} in G is at most $\frac{\left|X^{\prime \prime}\right|}{2}<4 t^{2}+2 t$.

Proof of Theorem 6. It suffices to prove the following for all H : If $|H| \geq 3$ and there is a set H^{\prime} with $\left|H^{\prime}\right| \geq 2$ such that G has no $t\left|H^{\prime}\right|$ internally disjoint H^{\prime}-paths, then H has an independent subset $H^{\prime \prime}$ such that there is a set $X^{\prime \prime} \subseteq V\left(G-H^{\prime \prime}\right)$ being a total separator of $H^{\prime \prime}$ with $2 t\left|H^{\prime \prime}\right|>X^{\prime \prime}$.

If $G\left[H^{\prime}\right]$ is connected, then it has at least $\left|H^{\prime}\right|-1$ edges. Its edges are internally disjoint H^{\prime}-paths. Therefore it has at most $\left|H^{\prime}\right|-1$ edges. Thus it is a tree and $t>\frac{1}{2}$ holds. Furthermore, $G-E\left(G\left[H^{\prime}\right]\right)$ has no H^{\prime}-path.

If, furthermore, $\left|H^{\prime}\right|=2$, then there is a vertex $h \in H \backslash H^{\prime}$. In this case let $H^{\prime}=$ $\left\{h_{1}, h_{2}\right\}$. Clearly, either $G-h_{1}$ has no $\left\{h, h_{2}\right\}$-path or $G-h_{2}$ has no $\left\{h, h_{1}\right\}$-path. Suppose w.l.o.g. the latter is the case. Then with $H^{\prime \prime}=\left\{h, h_{1}\right\}$ and $X^{\prime \prime}=\left\{h_{2}\right\}$ we are done.

If, otherwise, $\left|H^{\prime}\right|>2$, then $G\left[H^{\prime}\right]$ has a cutvertex x. Let $H^{\prime \prime}$ consist of two vertices of different components of $G\left[H^{\prime}\right]-x$. We are done with $X^{\prime \prime}=\{x\}$.

So we may suppose that $G\left[H^{\prime}\right]$ contains at least 2 components. Choose for $H^{\prime \prime}$ one vertex of each of these components.

By Theorem 1 there is a set $X^{\prime} \subseteq V\left(G-H^{\prime}\right)$ and a set $Y^{\prime} \subseteq V\left(G-H^{\prime}-X^{\prime}\right)$ such that $\operatorname{perm}_{G}\left(X^{\prime}, Y^{\prime}\right)+\left|E^{\prime}\left(G\left[H^{\prime}\right]\right)\right|<t\left|H^{\prime}\right|$ and $G-X^{\prime}-Y^{\prime}-E^{\prime}\left(G\left[H^{\prime}\right]\right)$ has no H^{\prime}-paths. Therefore, by the construction of $H^{\prime \prime}$, the graph $G-X^{\prime}-Y^{\prime}$ has no $H^{\prime \prime}$-paths. Furthermore, we get $\operatorname{perm}_{G}\left(X^{\prime}, Y^{\prime}\right)<t\left|H^{\prime}\right|-\left|E^{\prime}\left(G\left[H^{\prime}\right]\right)\right|<t\left|H^{\prime \prime}\right|$. Let $X^{\prime \prime}$ consist of all vertices of X^{\prime} and all but one vertices of $\partial_{G-X^{\prime}}(C)$ for all $C \in \mathcal{C}([Y])$. Then $\left|X^{\prime \prime}\right| \leq \operatorname{perm}_{G}\left(X^{\prime}, Y^{\prime}\right)<t\left|H^{\prime \prime}\right|$ but $G-X^{\prime \prime}$ has no $H^{\prime \prime}$-path.

Proof of Theorem 8. First we prove that $G_{k, m}$ has no $2 k$-factor. Since each H_{i} is $2 k-2$ regular, and they are disjoint from each other, each vertex of each H_{i} in a $2 k$-factor must send at least 2 edges to K_{x}, so there must be at least $2 m\left(k^{2}+k-1\right)$ edges ending in K_{x}. However, x is given such that this is not possible, because in a $2 k$-factor each vertex of K_{x} is incident to at most $2 k$ of these edges.

Now we prove that $G_{k, m}$ is k-edge-tough. By Lemma 3 it is enough to prove that for any independent vertex set $H \subset V\left(G_{k, m}\right)$ there are at least $k|H|$ internally disjoint H paths. It is clear that H cannot contain any vertex of K_{x}. Let $h_{i}=\left|H \cap V\left(B_{i}\right)\right|$. Since all B_{i} are copies of $C_{k^{2}+k-1}^{k-1}$, there are at most k independent vertices in it, so $h_{i} \leq k$. One can easily see that if $i \leq j-k$, then there are $k-1$ disjoint paths from v_{i} to v_{j} using only vertices $v_{i^{\prime}}$ with $i<i^{\prime}<j$. This implies that in each B_{i} there are at least $(k-1) h_{i}$ internally disjoint H-paths. Thus there we have $d:=x+\sum_{i=1}^{m}(k-1) h_{i}$ internally disjoint H-paths in $G_{k, m}$. Since $x>m \frac{k^{2}+k-1}{k}-1$ and $\sum_{i=1}^{m} h_{i} \leq k m$ straightforward calculation gives that $d \geq k \sum_{i=1}^{m} h_{i}$ holds if $m \geq 2$, which proves our claim in this case. If $m=1$, then $x=k$ and similar argument shows that our claim holds, so the proof is complete. \square

Before we start to prove Theorem 11, we add some notation and provide some lemmas.
The neighborhood of a vertex v in a graph G is the set of v and all vertices adjacent to v in G and we denote it by $N_{G}(v)$. Let (X, Y) be an optimal H^{*}-separator, if (X, Y) is an H^{*}-separator and $\operatorname{perm}_{G}(X, Y)=p_{G}\left(H^{*}\right)$. Since H^{*} is independent in G, an optimal H^{*}-separator exists by Theorem 1. In a first lemma we refine this Observation.
Lemma 14 Let G^{\prime} be a graph and H^{*} be an independent subset of $V\left(G^{\prime}\right)$. Then G^{\prime} has an optimal H^{*}-separator (X, Y) satisfying the following conditions:

1. If $u, v, w \in V(G-H-X), w \in N_{G}(v)=N_{G}(w)$, and $\{u, v\} \in Y$, then $\{u, w\} \in Y$.
2. If $u, v \in V(G-H), N_{G}(u) \subseteq N_{G}(v)$, and $u \in X$, then $v \in X$.
3. For each component C of $[Y]$ the graph G^{\prime} obtained from G by deleting all elements of $X \cup Y \backslash E(C)$ and contracting C to a vertex c has no pair $G_{1}^{\prime}, G_{2}^{\prime}$ of subgraphs such that $H^{*} \cap V\left(G_{2}^{\prime}\right)=\emptyset,\left|V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)\right|=1$, and $G_{1}^{\prime} \cup G_{2}^{\prime}=G^{\prime}\left(G^{\prime}\right.$ has no endblock disjoint from $\left.H^{*}\right)$.

Proof of Lemma 14. We give a constructive proof of the conditions, starting with an arbitrary optimal separator (X, Y). In each step of the construction we apply a transformation, which changes X and Y while perm ${ }_{G}(X, Y)$ is nonincreasing and (X, Y) remains an H^{*}-separator of G. Hence, $\operatorname{perm}_{G}(X, Y)$ is constant, and (X, Y) remains an optimal H^{*}-separator of G.

This is the general step with its three cases:

Case 1)

If (X, Y) infringes condition 1 we proceed as follows: Since having the same neighborhood in $G-H^{*}-X$ is an equivalence relation, it induces a partition of $V\left(G-H^{*}-X\right)$ into a finite set \mathcal{A} of classes. All $A \in \mathcal{A}$ for which there are vertices $v, w \in A$ and a vertex $u \in N_{G}(v)=N_{G}(w)$, such that $\{u, v\} \in Y$, and $\{u, w\} \notin Y$ we call asymmetric classes. The vertices u we call the asymmetric neighbors of A, the elements of $N_{G}(v) \backslash v$ we call the neighbors of A.

Infringement of condition 1 yields at least one asymmetric class A. If there is a neighbor of A, which is not contained in $V([Y])$, we delete all edges from Y, which connect an asymmetric neighbor of A with an element of A. Otherwise we add all edges incident with vertices in A to Y.

In the first situation, some components of $[Y]$ may split, but ∂Y may only loose vertices. Hence $\operatorname{perm}_{G}(X, Y)$ will not increase. Furthermore, the ends of the deleted edges where before this step connected in $G-X-Y$. Hence, an H^{*}-path of $G-X-Y$ after this step yields an H^{*}-path of $G-X-Y$ befor this step. Thus, if before this step (X, Y) was an optimal H^{*}-separator of G, in this step it remains an optimal H^{*}-separator

In the second situation, all at most $|A|$ components of $[Y]$ containing vertices of A glue together; but if there are more than one such components, then $\partial_{G-X} Y$ looses at least $|A|$ vertices.

Hence, $\operatorname{perm}_{G}(X, Y)$ will not increase, too. Thus, clearly, (X, Y) remains an optimal H^{*}-separator of G, too.

Both variants of our transformation cannot produce asymmetric neighbors of another class $A^{\prime} \in \mathcal{A}$.

Hence, this step decreases the number of asymmetric classes.

Case 2)

If, otherwise, (X, Y) infringes condition 2 , then there are vertices $u, v \in V(G-H)$ such that $N_{G}(u) \subseteq N_{G}(v), u \in X$, and $v \notin X$. In this case, we delete u from X and add all edges to Y that connect u to a neighbor of v in Y.

In $G-X-Y$ this transformation adds u to the component which contains v, but all components remain separated. Hence (X, Y) stays an H^{*}-separator of G.

In $\operatorname{perm}_{G}(X, Y)$ the term $|X|$ decreases by one, while u is added $\partial_{G-X} C$ with C being the component of $[Y]$ containing v (which must exist, because otherwise we have a contradiction to the optimality of (X, Y) before this step). Since nothing else changes in $\operatorname{perm}_{G}(X, Y)$, the H^{*}-separator (X, Y) stays optimal.

In this case, condition 1 obviously remains satisfied, whereas $|X|$ increases.

Case 3)

If, finally, (X, Y) only infringes condition 3 , the graph G^{\prime} obtained from G by deleting all elements of $X \cup Y \backslash E(C)$ and contracting C to a vertex c has a pair $G_{1}^{\prime}, G_{2}^{\prime}$ of subgraphs such that $H^{*} \cap V\left(G_{2}^{\prime}\right)=\emptyset,\left|V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)\right|=1$, and $G_{1}^{\prime} \cup G_{2}^{\prime}=G^{\prime}$.

This may glue some components $C_{1}, \ldots C_{k}$ of $[Y]$ together resulting in a component C^{\prime}. Hence, in $\operatorname{perm}_{G}(X, Y)$ the only change is, that the part $\sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left|\partial_{G-X} C_{i}\right|\right\rfloor$ of the sum-term will be replaced by $\left\lfloor\frac{1}{2}\left|\partial_{G-X} C^{\prime}\right|\right\rfloor$. Furthermore, $\partial_{G-X} C^{\prime} \subseteq \bigcup_{i=1}^{k} \partial_{G-X} C_{i}$. If $C_{i} \neq C$ we get
additionally $\left|\partial_{G-X} C_{i} \backslash \partial_{G-X} C^{\prime}\right| \geq 1$. Hence,

$$
\begin{aligned}
\left\lfloor\frac{1}{2}\left|\partial_{G-X} C^{\prime}\right|\right\rfloor & \leq\left\lfloor\frac{1}{2} 1-k+\sum_{i=1}^{k}\left|\partial_{G-X} C_{i}\right|\right\rfloor \\
& \leq \sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left|\partial_{G-X} C_{i}\right|\right\rfloor
\end{aligned}
$$

Consequently, (X, Y) stays an optimal H^{*}-separator of G. In this last case, condition 1 remains satisfied, while $|X|$ stays constant and $|Y|$ increases.

This algorithm will stop after a finite number of steps, because G is finite. The resulting optimal H^{*}-separator (X, Y) of G obviously proves the lemma.

The next lemma is a consequence of Lemma 14.
Lemma 15 Let G be a graph and H be an independent subset of $V(G)$. Then, G has an optimal H-separator (X, Y) such that for each h with the property, that the neighborhoods of the neighbors of h are identical, one of the following conditions holds

1. The neighborhood of h is disjoint to X and no edge of Y is incident to a vertex of it.
2. Each vertex adjacent to h is contained in X.
3. Each edge incident with a neighbor of h but not incident with h is in Y.

Proof of Lemma 15. Let (X, Y) be an optimal H-separator of G satisfying the conditions of Lemma 15 and let h be an arbitrary vertex with the property, that the neighborhoods of the neighbors of h are identical.

Suppose there is a vertex of X in the neighborhood of an h. By condition 2 of Lemma 15 condition 2 of Theorem 15 holds.

If, otherwise, conditions 1 of Lemma 15 are violated, Y contains an edge connecting a neighbor v of h with a vertex $w \neq h$.

By condition 1 of Lemma 14, each neighbor of h is connected with w in $[Y]$. If, furthermore, condition 3 of Lemma 15 is violated, too, $G-X-Y$ contains an edge e connecting v with a vertex $u \neq h$.

Let C be the component of $[Y]$ containing w and D be the component of $G-X-Y$ containing e. We have $V(D) \cap H=\{h\}$. After contracting C in D to a vertex c, this vertex becomes a cutvertex of D. This contradicts condition 3 of Lemma 14, and the proof is done.

The following lemma is a big step toward the proof of Theorem 11.
Lemma 16 Let G be a graph, H^{*} be an independent subset of $V(G)$, and f be a function mapping H^{*} into the positive integers. Let G^{*} be obtained from G by deleting each edge incident (in G) with a vertex of H^{*} and, for each $h \in H^{*}$, adding $f(h)$ new vertices connected to h and all neighbors (in G) of h.

Then the maximal size of a partial f-Factor of G is $p_{G^{*}}\left(H^{*}\right)$.
Proof of Lemma 16. If we have a partial f-factor of G of size s, it is obvious, that G^{\prime} has s internally disjoint H-paths. For the other direction, consider a set S of $p_{G^{*}}\left(H^{*}\right)$ internally disjoint paths. By construction of G^{*}, S is a partial f-factor of G^{\prime}.

Beyond all possibilities choose S with a minimal number of edges in the union of its paths. This additional condition yields, that a path P containing a neighbor of a vertex $h \in H^{*}$ also contains the edge connecting it to h. Hence, by if we contract all edges
incident with an element of H^{*}, G^{*} becomes G and S becomes a partial f-factor of G of the same size $|S|$. This completes the proof.

Proof of Lemma 11. Let G^{*} be the graph obtained from G as described in Lemma 16.

First, let $\left(X^{*}, Y^{*}\right)$ be an optimal H^{*}-separator of G^{*} satisfying the conditions of Lemma 14 and set $X=\left(V(G) \cap X^{*}\right) \cup\left\{h \in H^{*} \mid N_{G^{*}}(h) \subseteq X\right\}$ and $Y=\left(E(G) \cap Y^{*}\right) \cup\{\{h, x\} \in$ $\left.E(G) \mid N_{\left[Y^{*}\right]}(x)=N_{G^{*}}(h)\right\}$. Then, by Lemma $15,(X, Y)$ is an f-separator of G with $\operatorname{perm}_{G, f}(X, Y)=\operatorname{perm}_{G^{*}}\left(X^{*}, Y^{*}\right)$.

Second, let (X, Y) be an f-separator of G and set $X^{*}=(X \backslash H) \cup \bigcup_{x \in X \cap H} N_{G^{*}}(x)$ and $Y^{*}=E([Y]-H) \cup\left\{\{v, w\} \in E\left(G^{*}\right) \mid \exists h \in H^{*}: v \in N_{G^{*}}(h) \wedge w \neq h\right\}$. Then $\left(X^{*}, Y^{*}\right)$ is an H^{*}-separator of G^{*} with $\operatorname{perm}_{G^{*}}\left(X^{*}, Y^{*}\right)=\operatorname{perm}_{G, f}(X, Y)$. Thus, the maximum number of internally disjoint H^{*}-paths equals the minimum of $\operatorname{perm}_{G, f}(X, Y)$ taken over all f-separators of G. With Lemma 16, the proof is complete.

Proof of Theorem 10. If all the local $2 k$-factors exist, the assertion is trivial. Hence we only have to prove the other direction. Therefore H^{*} is assumed to be topological k-tough in G. Consequently, every subset of H^{*} is topological k-tough in G and thus it suffices to prove that there is an H^{*}-local $2 k$-factor.

We'll do this indirectly, i.e. in the sequel we assume, that there is no H^{*}-local $2 k$-factor, and we have to show, that there is an $H \subseteq H^{*}$, such that $p_{G}(H)<k|H|$ (i.e. G has no $k|H|$ internally disjoint H-paths).

Because intersecting edges by additional vertices will neither destroy H^{*}-local $2 k$ factors, nor change the maximum number of internally disjoint H^{*}-paths, we may and will assume in the sequel, that H^{*} is independent in G.

By Corollary 13 (with $f(h)=2 k$ for all $h \in H^{*}$) there is a pair (X, Y) such that

1. $X \subseteq V(G)$,
2. $Y \subseteq E(G-X)$,
3. $\partial_{G-X}[Y] \subseteq V\left(G-H^{*}\right)$
4. $G-X-Y$ has no H^{*}-path, and
5. $\left|X \backslash H^{*}\right|+2 k\left|X \cap H^{*}\right|+k\left|V([Y]) \cap H^{*}\right|+\sum_{C \in \mathcal{C}([Y])}\left\lfloor\frac{1}{2}\left|\partial_{G-X} C\right|\right\rfloor<k\left|H^{*}\right|$.

From property 5 , we deduce $\left|H^{*} \backslash(X \cup V([Y]))\right| \geq 1$.
In a first case we study equality. In this case let H be the set of the unique vertex $h \in H^{*} \backslash(X \cup V([Y]))$, and an arbitrary other vertex h^{\prime} from H^{*}. Note, that here Y must (and will) not be contained in $G-X-H$.

Property 5 in this case yields $\left|X \cap H^{*}\right|=0$. Hence $[Y]$ has a component C_{h} containing h^{\prime}. By property 3 we get that $X \cup \partial_{G-X} C_{h}$ in G separates h from h^{\prime}. Finally, property 5 yields $|X|+\left\lfloor\frac{\left|\partial_{G-X} C\right|}{2}\right\rfloor \leq k-1$, and hence $\left|X \cup \partial_{G-X} C_{h}\right| \leq 2 k-1$, which by Theorem 2 completes the proof in this case.

In the remaining case we set $H=H^{*} \backslash(X \cup V([Y]))$. Here $X \subseteq V(G-H)$ and $Y \subseteq E(G-H-X)$ hold, and $G-X-Y$ has no H-path. Finally, Theorem 1 together
with property 5 yield

$$
\begin{aligned}
p_{G}(H) \leq & |X|+\sum_{C \in \mathcal{C}([Y])}\left\lfloor\frac{1}{2}\left|\partial_{G-X} C\right|\right\rfloor \\
\leq & \left|X \backslash H^{*}\right|+2 k\left|X \cap H^{*}\right|+k\left|V([Y]) \cap H^{*}\right|-k\left|H^{*} \cap(X \cup V([Y]))\right|+ \\
& +\sum_{C \in \mathcal{C}([Y])}\left\lfloor\frac{1}{2}\left|\partial_{G-X} C\right|\right] \\
< & k\left(\left|H^{*}\right|-\left|H^{*} \cap(X \cup V([Y]))\right|\right)=k\left|H^{*} \backslash(X \cup V([Y]))\right|=k|H|
\end{aligned}
$$

References

1. V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Mathematics 5, (1973) 215-228.
2. R. Diestel, Graph Theory (Springer, 2000) Graduate Texts in Mathematics 173(2000).
3. G. A. Dirac, 4-chromatische Graphen und vollständige 4-Graphen, Mathematische Nachrichten 22, (1960) 51-60.
4. H. Enomoto, B. Jackson, P. Katerinis, and A. Saito, Toughness and the existence of k factors, Journal of Graph Theory 9, (1985) 87-95.
5. T. Gerlach, F. Göring, J. Harant, M. Tkáč, On cycles through specified vertices, Discrete Mathematics 306, (2006) 831-835.
6. F. Göring, J. Harant, E. Hexel, Zs. Tuza, On short cycles through prescribed vertices of a graph, Discrete Mathematics 286, (2004) 67-74.
7. J. Harant, On paths and cycles through specified vertices, Discrete Mathematics 286, (2004) 95-98.
8. G. Y. Katona, Toughness and edge-toughness, Discrete Mathematics 164(1-3), (1997) 187196.
9. G. Y. Katona, Properties of edge-tough graphs, Graphs and Combinatorics 15 (3), (1999) 205-212.
10. A. K. Kelmans and M. V. Lomonosov, When m vertices in a k-connected graph cannot be walked round along a simple cycle, Discrete Mathematics 38, (1982) 53-62.
11. M. V. Lomonosov, Cycles through prescribed elements in a graph in Paths, flows, and VLSIlayout (Bonn, 1988) 215-234; Algorithms and Combinatorica 9, Springer (Berlin 1990).
12. W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Arch. Math. 31, (1978) 387-402.
13. W. Mader, Über ein graphentheoretisches Problem von T.Gallai, Arch. Math. 33, (1979) 239-257.
14. K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10, (1927) 96-115.

[^0]: * Research supported by the "Mathematics in Information Society" project carried out by Alfréd Rényi Institute of Mathematics - Hungarian Academy of Sciences, in the framework of the European Community's "Confirming the International Role of Community Research" programme. e-mail: frank.goering@mathematik.tu-chemnitz.de
 ${ }^{\dagger}$ Research supported by the Ministry of Education OTKA grant OTKA T 043520. e-mail: kiskat@cs.bme.hu

