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convex functions
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Abstract. We consider a convex optimization problem with a vector
valued function as objective function and finitely many inequalities involving
convex functions as constraints. We suppose that each entry of the objective
function is the composition of some convex functions. Our aim is to provide
necessary and sufficient conditions for the weakly efficient solutions of this
vector problem. Moreover, a multiobjective dual treatment is given and weak
and strong duality assertions are proved.
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1 Introduction

Many optimization problems which arise from various fields of applications
(like physics, economics, engineering) have not just one objective function,
but a finite or even an infinite number of objectives, this being a reason why
many mathematicians pay great attention to such kind of problems (see [5]
and [6] and the references therein). As the complexity of the optimization
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problems is increasing, the study of problems which encompass as special
cases the already treated ones is of large interest. Since many optimiza-
tion problems involve composed convex functions, the attention of many
researchers has turned to such kind of problems. From the large number
of papers that have appeared during the last decades and treat composed
convex optimization problems, we mention here [2], [8], [9], [11], [12], [13],
[14], [15] and [17].

Given an optimization problem with a single-valued objective function,
one can associate to it, by means of the very fruitful conjugate duality theory,
various dual problems, like for example the classical Lagrange and Fenchel
duals, but also the so-called Fenchel-Lagrange dual. The last one has been
introduced by Bot and Wanka and it is a ”combination” of the classical
ones (for more information see [1], [3], [4] and [7]). Regarding optimization
problems which involve composed convex functions, the Fenchel-Lagrange
duality has proved to be very useful in giving a compact formula for the
dual and in deriving necessary and sufficient optimality conditions (see, for
example, [1], [2]).

Let us consider a vector valued function whose entries are compositions of
some convex functions. Having a problem with an objective function of this
kind and with cone inequality constraints, our aim is to provide necessary
and sufficient conditions for its weakly efficient solutions, expressed by using
the conjugates of the functions involved. To this end we associate to our
initial problem a family of scalar optimization problems and to each scalar
problem we provide a Fenchel-Lagrange-type dual. Regarding the construc-
tion of the Fenchel-Lagrange-type dual of the scalar problem, we would like
to mention that the approach we use is similar to the one used in [1] and [2].
Namely, we consider a problem which is equivalent to the scalar one in the
sense that their optimal objective values are equal, but whose dual can be
easier established. For the new problem we consider first the Lagrange dual
problem. To the inner infimum of the Lagrange dual we attach the Fenchel
dual problem and it can be easily seen that the final dual we obtain is actu-
ally a Fenchel-Lagrange-type dual of the primal problem. The construction
of the dual is described here in detail and a constraint qualification ensuring
strong duality is introduced. Further, using only the weak and the strong
duality between the scalar problem and its dual, we derive the necessary
and sufficient conditions which characterize the weakly efficient solutions of
the primal vector problem. Moreover, a multiobjective dual to the initial
problem is given, for which weak and strong duality theorems are proved.



The paper is organized as follows. In Section 2 we give some notions and
results which are used later. The third section contains the main results of
the paper. The multiobjective optimization problem we work with is pre-
sented together with a family of scalar problems associated to it. Moreover,
to each of these scalar problems a dual problem is given and, using the weak
and strong duality, some necessary and sufficient conditions for the weakly
efficient solutions of the multiobjective problem are established. A multi-
objective dual of the initial problem is given and weak and strong duality
assertions are proved, too. In the last section of the paper some particular
cases are considered.

2 Preliminary notions and results

In this section we present the notations we use throughout the paper. Some
well-known notions and results which are used later are mentioned, too. All
the vectors considered are column vectors. In order to transpose a column
vector to a row vector we use an upper index 7. Considering two arbitrary
vectors x = (21, ...,2,)" and y = (y1,...,4,)T from the real space R™, by 2Ty
is denoted the usual inner product (i.e. we have 27y = >"" | z;y;). As usual,
by ”"<g” is denoted the partial order introduced by the convex cone K C R",
defined by
rSgyey—cekK, zyeR"

Let us mention that throughout this paper the cones are assumed to contain
the element 0.

If X C R™is given, its relative interior is denoted by ri(X). The indicator
function of the set X is defined in the following way

Oox :R" —=R=RU {:l:OO}, 5)((1’) = { 3_’00’ itﬁeii:fise.

For a given function h : R® — R, we denote by dom(h) = {z € R" :
h(z) < —l—oo} its effective domain. We say that the function is proper if its
effective domain is a nonempty set and h(z) > —oo for all x € R™.

When X is a nonempty subset of R” we define for the function A the
conjugate regarding to the set X by

Wy :R* =R, hi(p)=sup{p'z—h(z)}.

zeX



Regarding the conjugate, we would like to mention that the inequality
(Young-Fenchel)
h(z) + hi(z*) — 2Tz >0 (1)

is fulfilled for all z € X and z* € R". It is easy to see that for X = R" the
conjugate relative to the set X is actually the (Fenchel-Moreau) conjugate
function of h denoted by h*. Even more, it can be easily proved that h% =
(h+6dx)*.

The rules we adopt concerning the arithmetic calculation involving +oo
and —oo are those in [16]. In this context, as

0(400) = 0 and 0(—o0) = 0,
we can easily prove that

0, =0,
400, otherwise,

(0n)* (") = { @)

while
(ah)*(ax™) = ah™ (") (3)
holds independently from this conventions for all x* € R™ and a > 0.
Definition 2.1 Let K C R* be a convex cone.

(i) The function h : R¥ — R is called K -increasing if for all 2,y € R* such
that © <y y it holds h(z) < h(y).

(ii) The function H : R® — RF is called K -convez if for all z,y € R™ and
for all o € [0, 1] we have

H(az+ (1 - a)y) <k aH(z)+ (1 — a)H(y).

Definition 2.3 Let K C R" be a convex cone. By the dual cone of K
we denote the set

K*={z*eR": 2"z > 0,Vz € K}.

Lemma 2.1 Let K C R” be a convex cone and h : R* — R a proper and
K-increasing function. Then h*(z*) = +oo for all z* ¢ K*.



Proof. Take an arbitrary z* ¢ K*. By definition there exists T € K such
that 2*77 < 0. Since for some arbitrary 7 € dom(h) and for all & > 0 we
have h(Z — o) < h(Z), it is not hard to see that

h*(z*) = sup {z* & — h(z)} > sup{z*" (T — aF) — h(Z — o)}
zeR? a>0
> sup{z*’ (T — aT) — (@)} = 77 — h(Z) + sup{—az*TT} = +o0,
a>0 a>0

and the proof of the lemma is complete. O

Definition 2.4 We call infimal convolution of the proper functions h, ...,
hi : R* — R, the function

k
MmO Ohy, R =R, (hO...0h)(x mf{Zh ;) :E—Zx}

=1

The following statement closes this preliminary section.

Theorem 2.1 (cf. [16]) Let hy, ...,y : R® — R be proper convex func-
tions. If the set (), ri(dom(;)) is nonempty, then

(Zh) (hi0...0Ry) (p 1nf{Zh* i) : :gpi},

and for each p € R™ the infimum is attained.

3 The composite multiobjective problem

In the first subsection of this section we present the multiobjective problem
we treat within the paper. A family of scalar optimization problems is then
attached to it and a characterization of the weakly efficient solutions is given.
In the second subsection we provide a dual problem to the scalar problem
derived in the first subsection and a weak and a strong duality theorem are
proved. Moreover, necessary and sufficient optimality conditions for weak
efficiency are presented. In the last subsection a multiobjective dual of the
primal one is also introduced and weak and strong duality assertions for the
vector primal and dual problems are proved.
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3.1 The general framework

In the following let X C R” be a nonempty convex set, K C R™ a convex cone
containing 0 and g : R® — R™, g = (g1,...,gm)’, be a K-convex function.
For i = 1,...,k, let K; C R™ be a convex cone (0 € K;) and consider the
functions f; : R® — R and F; : R® — R™ such that f; is a proper, convex
and Kj-increasing function, while F; is a K;-convex one.

The primal vector optimization problem we treat within the present pa-
per is

(P) v-min (fi 0 Fy(2), .. fi o Fy(x))".
9(z)=K0

Moreover, we suppose that

Y(dom(f;),

||Dx

where A = {z € X : g(x) <k 0} # 0 is the feasible set of the problem (P)
and F; '(dom(f;)) = {x € R™ : Fi(z) € dom(f;)}.

Definition 3.1 A feasible element T € A is called weakly efficient solution
of the problem (P) if there exists no € A such that f; o Fj(z) < f; o F;(T)
foralli=1,... k.

The proof of the following proposition is omitted as it is trivial.

Proposition 3.1 Under the previous assumptions each function f; o F; :
R" — R, 7 =1,...,k, is a proper convex function.

To an arbitrary A = (A1,...., \,)T € RE we associate the set I = {i €
{1,...,k} : X; > 0}. One has X € R% \ {0} if and only if I, # 0.

By Proposition 3.1, (P) is a multiobjective convex optimization prob-
lem and, in order to characterize its weakly efficient solutions, to (P) we
associate a family of scalar optimization problems. Namely, for each A =
(A1y oo, Ap)T € RE\ {0} we consider the optimization problem



(P)) inf’ é)\i(fioﬂ‘)(x)-

zeX, =
9(z)SK0
or, equivalently,
(Py) inf > N(fioFp)(x).
ZEGX, iel)\
9(z)SK0

The following well-known result gives a characterization of the weakly
efficient solutions of a convex vector optimization problem via linear scalar-
ization (see, for instance, [10]).

Theorem 3.1 A feasible point T of the problem (P) is weakly efficient
if and only if there exists A € R \ {0} such that Z is an optimal solution of
the problem (Py).

3.2 Optimality conditions for weak efficiency

Let us consider an arbitrary A € ]Ri such that I # (. We construct a dual
problem to (Py) and from the strong duality assertion we derive the opti-
mality conditions which characterize a weakly efficient solution for (P). To
this end we associate to the problem (Py) the following convex optimization
problem

Y €R™, F(2)~y: Sk, 0,
i€ly
In what follows by v(P) we understand the optimal objective value of
an optimization problem (P). Regarding the optimal values of the problems

(Py) and (P5), the following result can be established.
Theorem 3.2 It holds v(Py) = v(Py).

Proof. For an arbitrary z feasible to (P)) take y; = F;(z) for all i € I,
and so the tuple formed by = and y;, i € I, is feasible to (P5). Thus

> el Aifi(Fi(z)) = > ier, Aifi(yi) > v(Py), and this implies v(Py) > v(F).



In order to prove the opposite inequality, let us consider some z and
yi, © € I, feasible to (P}). Since g(z) <k 0, it follows immediately that
x is feasible to (Py). By the hypothesis that f; is a Kj-increasing func-
tion the inequality F;(z) — y; Sk, 0 implies fi(Fi(z)) < fi(y:), Vi € I,. We
have v(Py) < Zieh Aifi (E($)) < Zieh Aifi(yi). Taking the infimum on the
right-side regarding x and y;, ¢ € I, feasible to (P5) we obtain v(Py) < v(F5).
(]

Our next step is to construct a dual problem to (P) (see also [1], [2])
and to give sufficient conditions in order to achieve strong duality, i.e. the
situation when the optimal objective value of the primal coincides with the
optimal objective value of the dual and the dual has an optimal solution.

First of all, we consider the Lagrange dual problem to (P5)

D) s {5 ) o)+ 5 ()~ f
qgeK™, xE_X‘, i€y £
w €K} iely Yi ER™i 1Ty

where ¢ € K* and u; € K}, v € I, are the dual variables. Regarding the
inner infimum, by the definition of the conjugate relative to X one obtains

inf { > Nifily) + ¢ g(x) + X ul (Fi(x) — Z/z)}
zeX, i€l icly
y; €ER™i i€l

_ —sup{ CTy) - % u?mx)} Sy sup {ufy— M)

z€X i€ly i€y Yy ER™
*

- (S urreds) ©- % 0w

1€y 1€l
Moreover, by Theorem 2.1 we get further

( > ul Fi+ ng)* (0) = ( SoulFi+(¢"g+ 5x))*(0)

i€y X i€l

SIRETE Do K RRUER oM (S o | SC)

Vi €RM €I | jeT, il
S {zwm)*wi)ﬂq%);(—z%)}.
vi€RMEDN | e, i€l

Taking into consideration the previous relations, the dual (D)) can be
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equivalently rewritten as

(D) sup  sup {— S L) ()= 3 () (o) —(q79) (— 5 ) }
qgeEK™, wv;eR", iely i€l iely
uiEK;",iEI,\ ief)\

Introducing the new variables (; := (/\i)ul and p; == (T>Ui, 1 € Iy, the

dual problem can be written as (we use relation (3))

00 s {2 g6 £ AR 00~ @ak (- £ ) |
qeK™, i€l i€ly i€l
BiEK} ,pi€R™,
i€l
It is well-known that the optimal objective value of the problem (P5) is
always greater than or equal to the optimal objective value of its Lagrange
dual, i.e. v(P§) > v(D,). Because of Theorem 3.2 the problem (D,) is a

dual problem to (P,), too, and thus the following assertion arises easily.

Theorem 3.3 Between the primal problem (Py) and the dual problem
(D,) weak duality always holds, i.e. v(Py) > v(D,).

In order to ensure the equality of the optimal objective values of the
two problems we have to impose a constraint qualification. The idea we fol-
low is similar to the one presented in [1] and to this aim some preliminary
work is necessary. Let us consider that Iy = {iy,...,4;} (I < k) and take
Y = dom(f;,) x ... x dom(f;,) € RY, where N = n;, + ... + n;,. It is not
hard to see that the optimization problem (P5) can be equivalently written as

P inf A
(Py) e (z,y),
B(z,y)<q0

where Q = K x K;; X ... X Kjj, y = (Yiy, -, ¥iy) € R™1 x .. x R = RV,
AR xRY =R, Az, y) = N, fi, (yi,) + . + X fiy (i)
and
B:R"xRY - R™ x RY, B(z,y) = (g(x),Fil(x) — Yiys ooy Iy () — yz‘l)T'

Let us notice that @) is a convex cone containing 0 and that (Py) is a convex
optimization problem. Using the results and considerations in [1] (cf. the

9



proof of Proposition 1 the closedness assumption for @) is there superfluous)
it follows that between (PY) and its Fenchel-Lagrange dual problem

(DY) sup  {—=A*(2%,y") — (V' B)x .y (—2", —y")}
(I*,y*)ERnXRN,
vEQ™

strong duality holds if the following condition is fulfilled
0 € B(1i(X x Y)) +1i(Q). (5)
Since
ri(Q) = ri(K) xri (K;,) x ... x 1i (K3,),

relation (5) requires the existence of some z’ € 1i(X) and y' = (y;,,...,¥;,) €
ri(Y') such that

0€ (g(a), Fy(a) = o, iy (2) — ) +1i(K) xxi (K;,) % .. x (Ky,).
The last relation is equivalent with

g9(2') € —1i(K) and F;(2') € y;, — i (K;,),j=1,..,1,

]
and from here the condition

F;(2") € ri(dom(f;)) —ri(K;), i€ Iy,

(CQ,) 3Tz’ €ri(X) such that { g(2') € —ri(K).

can be easily derived.

In the following we prove that the dual problems (D,) and (DY) are
identical. To this aim let us take some arbitrary (z*,3*) € R" x RY and
v € Q. This is equivalent with the existence of some vectors y;, € R"1, ..
y; € R" and g € K*, 3, € K}, ..., B;, € K} such that y* = (y;,,...,y;) and

v =(q, B, -, 3i), respectively.

10



Using the definition of the conjugate function we obtain

while

sup {27z +y7Ty — A(z,y)}
zeR™,

yERN
l l
T 2 : x T E
sup {:U T+ sz yij - )\ijfij (ylj)}
n
gt j=1 j=1
ylje 7,
j=1,...1

!
sup z* x—i-z sup {y yij—)\ijfij(yij)}

zeR? j=1 Yi; ER ij

sup {7z} + Z Aij fi) (Y7,

l
<ng + Z HZFZJ) + Z 5dom fl ﬁz] y;;)
j=1

Since it is binding to have z* = 0 (otherwise sup, g {7* 7} = +00) we

i) yly}

rER?
(V' B)xuy (=2" —y") = sup { — ™'z —y™'y — 7" Bla,y)}
ey’
! l
sup { —aTe = "y Ty = q"g(x) =) BH(F, (2) - yz-j)}
TEX, . i
yi; €dom(fi;), =1 =1
j=1,...,1
I
sup{ e Tr—q gz E ;gT F; (x } Z sup {—yZ Yi, +
zeX j=1 Yiy edom(fz )

get
o(DY) = sup  { =A@ y) = (VT B) ey (@, —y") }
(z*,y*)ER™ xRN
VEQR®
l *
= sup {Z{ )\ZJ f’LJ yz ) dom f,b (ﬂlj yzj }_ (ng +§ ﬁZE]) (O)}

gEK™, -1 =1 X
Bi, €KL, J J
ui €R,

j=1,...k
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As by Theorem 2.1

sup { - ()\,L]fzj>*(y;k) 5dom fl (/613 y:])} = _<)\ijfij)*<ﬁij)’

yijRnij
7=1,..,1,and
* l l
(o im0 =t {S00R 6+ W (- 300 ) |
X i =1 =1
7=1,...,0
we obtain
I I !
(D” = sup { Z )‘z]fzj 61] Z(ﬁgﬂj)*(xjj)_(ng)} (_ijj)}
geK”, = = j=1
r]ER
Bij €K,
]:1 ..... k
Introducing the new variables § = g, Bi]- = ()0, and T = (,\1.)@';7

J
j =1,...,1, the previous relation can be rewritten as (we use relation (3))

v(DY)= sup { Z N, f7(B Xl: N, (Bi, By ) ()~ ( ZM )}

$~,€R" j=1

and it can be easily seen that the dual problems (DY) and (D,) coincide.

We consider now the following constraint qualification for (P)

Fi(2") € ri(dom(f;)) —ri(K;), i=1,...,k,

(CQ) J2’ €ri(X) such that{ o(2) € —1i(K).

The following assertion displays the strong duality between the optimiza-
tion problems (Py) and (D).

Theorem 3.4 Suppose that the constraint qualification (CQ) is fulfilled.
Then strong duality holds between (Py) and (D)), i.e. v(Py) = v(D,) and

12



the dual problem (D)) has an optimal solution.

Proof. Since (CQ) is fulfilled strong duality holds between the problems
(PY) and (DY), i.e. v(Py) = v(DY) and the dual has an optimal solution.
Since this implies v(Py) = v(Py) = v(Py) = v(D}) = v(D,) and the exis-
tence of a solution for the problem (D)), the proof is complete. O

Remark. Although for the proof of the previous theorem we need just
the weaker assumption (C'Q,), we decided to consider (C'Q) since this con-
straint qualification is independent from the set I.

Based on the just proved strong duality property we are able to point out
necessary and sufficient optimality conditions for the solutions of problem
(P). Theorem 3.5 is devoted to that matter.

Theorem 3.5

(a) Suppose that the condition (CQ) is fulfilled and let T be a weakly effi-
cient solution of the problem (P). Then there exist A = (A, ..., \p)T €
REN{0}, ge K*,p; e R"and B € Kf,ie [y={i € {1,...,k} : \; >
0}, such that

(i) fio Fi(x)+ f7(6;) — BIFi(T) =0, i € I;
(it) BT F(@) + (BT F)*(p) —piT =0, i € I;
i) oa(e) + a5~ T i) + T T =0
1€l icly
(iv) q"g(x) =0.
(b) If there exists 7 feasible to (P) such that for some A € R¥\ {0}, ¢ € K*,

pi € R"and f; € K7, i € I, the conditions (i) — (iv) are satisfied, then
T is a weakly efficient solution of (P).

Proof. (a) Since 7 is a weakly efficient solution of (P), by Theorem 3.1
there exists A = (A1, ..., \p)? € R% \ {0} such that Z is an optimal solution
of the problem (Py). As (CQ) is fulfilled, Theorem 3.4 ensures the strong
duality between (Py) and (D,). Thus there exist ¢ € K*, p; € R™ and
B; € K}, i € I, such that

S Mo R)@) = = S Mfr (80— S AT EY () ( Zm)

i€y ISV BN 1€y 1€y
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The last equality is nothing else than

0 = > N/ )+ ) Nf7(B)+ ) (BT F) (p)+ ( ZM%)

- zjjx { +If (6 - @; FI@] b
! [ﬁ?w) TR () - of7]
+ [ng(f) + (ng)}( - ; Aipz-) — ( — ; Aipff)]
—q"g(T). - h

As g(T) <k 0 (T is a feasible solution to (P)) and ¢ € K* we have —q” g(T) >
0. Moreover, all the other terms within the brackets of the previous sum are
non-negative (see relation (1)). Thus each term must be equal to 0 and the
relations (i) — (iv) follows.

(b) Following the same steps as in (a), but in the reverse order, the desired
conclusion can be easily reached. U

Remark. For the assertion (b) of Theorem 3.5, i.e. the sufficiency of the
conditions (i), ..., (iv) for the weak efficiency of T the fulfillment of (C'Q) is
not necessary.

3.3 The vector dual of (P)

For an arbitrary A = (Ay, ..., \p)T € RE \ {0} let be |A| = 325, \i. We intro-
duce the following multiobjective dual problem to (P)

D _ i (O ¢ A
(D) (A,Z,;,%%?CGB( TN, Byt oo b\ g, p, B, 1)

where

O 510) = = F78) = TR () = () +

i€l

14



for all i = 1,...,k, and the dual variables are A = (\y,...,\,)T € R¥, ¢

(QIv"’7Qm)T € ij b= (plv"‘apk) € R" x ... x Rn7 ﬁ = (617 7/8k> € R™ x
. X R™ and t = (ty,...,tx)7 € R*. The feasible set of the problem (D) is
described by

k
i=1

As for the primal problem (P) we consider for the dual problem weakly
efficient solutions, too.

Definition 3.2 A feasible element (X, q,p, 3,1) € B is called weakly ef-
ficient solution of the problem (D) if there exists no (A, ¢,p, 3,t) € B such
that h;(\,q,p, 5,t) > h;(\,q, D, 5,¢) for all i = 1,..., k.

Theorem 3.6 (weak vector duality) There isno x € A and no (A, ¢, p, 3,1)
€ B such that f; o Fi(x) < hi(\,q,p,5,t) for alli =1,... k.

Proof. In order to prove the theorem we suppose that there exist z € A

and (A, q,p, 8,t) € Bsuch that f;oF;(z) < h;i(\, q,p, 3,t). Since \ € Rﬁ\{O},
the inequality

k k
D Aifio Fi(x) < ) Nihi(Mq,p, 8, 1) (6)
=1 =1

follows immediately. But

k
Z )\zhz()\a q,D, 67t) = Z )\zhz()\a Q7p7ﬁ7t)
i=1

i€l
= T 50 - GTEy 0) - 5 (Zm)m],
i€l €l
and, since |A| = Zle Ai =D e, Avand Yo A Zle Ait; = 0, we get
SN 0,0, B 1) == S NS (B3 N5 F) (o) ( sz)
1€y 1€y AT N 1€y

The inequalities

=D N B) <D Nifio Fi(w) = Y il Filw) (8)

i€y i€y i€y
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and

=Y N(BIE) (i) <Y N Fi(w) =Y Aipl (9)

ST N i€y i€l

are easy consequences of the Young-Fenchel inequality as well as
Tg)}( - Z )\ipi) < Z Aipj e+ (¢ g) (@)
ST N 1€y
Since ¢7g(z) <0 (¢ € K* and g(z) € —K) there follows the inequality
(=) < X f (10)
iEI)\ iEI/\

Adding up relations (8), (9) and (10) we get

ZAh (\ ¢, B, t)
= = SONFB) - SONBIR) () < ZM%)
i€l i€l 1€y
< Y Aifio Fy(x)
i€ly

This leads us to a contradiction to (6). Thus the initial assumption is false
and the proof of the theorem is complete. O

Theorem 3.7 (strong vector duality) Assume that (CQ) is fulfilled. If
T is a weakly efficient solution of the primal problem (P), then there exists
(A, 4, P, B,1) € B that is a weakly efficient solution to the dual problem (D)
and for all i = 1, ..., k applies

fio Fy(T) = hi(\. 4, D, B,1).

Proof. Since T is a weakly efficient solution of (P) and the condition (C'Q)
is fulfilled, by Theorem 3.5 there exist A € R’i \ {0}, ¢ € K*, p; € R" and
B; € K, i € I, such that the conditions (i) — (iv) of the above mentioned
theorem are fulfilled. Take an arbitrary ¢ € {1,...,k} \ I. Since the function
fi is proper and convex, the function f is proper and convex, too (for more
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details see [16]). Therefore there exists 3; € K} (see Lemma 2.1) such that
fr (ﬁl) € R. Moreover, smce ﬁTF is proper and convex, we can find at least

one p; € R™ such that (ﬁi F)*(p;) € R. Choose

N . - - Pi, (S I)n a . @7 (&S I>\7

A=A\, 7:=q, pi.—{ﬁi’ i ¢ I, 6%_{5@, PN and
PiT+ %(QTQ);<_'Z Aipz‘), 1 € I,

z' — i€y

i - - T
o Bi@)+ £ )+ 'Ry () + (a0~ S ) i ¢ 1

ST N

It is clear that #; € R since all terms occuring in the definition of ¢; are
finite, Vi = 1, ..., k, and that (see Theorem 3.5 (¢i7) and (iv))

k
DRUED DU BN Tg>;((_z&p@.) 0
j el i€l

It remains to prove that f; o Fi(T) = h; (X, 7,7, 5, f) for all i € I5 (for
i ¢ Iy this is trivial as a consequence of the definition of ¢). We have

W ER 5D =~ G) - LRy G) - k@ oi( 5 3m) +7

(8~ (BT R () - a9 (Z)\Zp>—l—plw+|)\|(q 9% ( ZM?;

SN i€l

= —f7(8i) — (6] E)*(pi) + 0 T = —f7(8:) + Bl Fi(T) = fi o Fi(7).

For the last equalities we used Theorem 3.5 (i) and (7). The fact that
(/\,G, ﬁ,ﬁ,f) is a weakly efficient solution of the dual problem (D) is a
straightforward consequence of Theorem 3.6. U

4 Special cases

Within this section two special cases are treated. In the first case we consider
the functions F; being linear, while in the second case we show how the
ordinary convex optimization problem can be derived as a special case of our
general result.
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4.1 Composition with a linear operator

In the following let f; : R — R be proper convex functions and F; be linear
functions, ¢ = 1, ..., k. More precisely, we consider the functions

F,:R" - R"  Fi(z)= Az,

where A; is an n; X n real matrix for each ¢ = 1, ..., k. Our initial problem
becomes in this special case

. T
(P4) v-min (fi(Arz), ..., fu(Agz)) "
9(2) 0
Let us consider K; = {0} C R™ for all t = 1, ..., k. It is not hard to prove
that the functions f; are K;-increasing, while F; are K;-convex. Moreover,
since ri(K;) = {0}, i = 1,..., k, the condition (C'Q) becomes in this special
case

Az’ €ri(dom(f;)), i=1,..,k,
g(z') € —ri(K).

Since for all i =1, ...,k and for all 5; € R’ we have

(cQ™) dz’ € ri(X) such that {

0 ATB, = p;
TV (p).) — ’ L "
(61 Fz) (pl) { 400, otherWiSG,

the next results arise as easy consequences of the ones presented within the
previous section.

Theorem 4.1

(a) Suppose that the condition (CQ4) is fulfilled and let T be a weakly effi-
cient solution of the problem (P4). Then there exists A = (Aq,..., \p)T €
R% \ {0}, ¢ € K* and 3; € R™, i € I, such that

(i) fi(AT) + f7(6:) — BT (AT) = 0, i € I,
(i) ¢"9(T) + (¢" 9)k < -2 AiAf@-) > N (Aw) = 0,

(ii") q"g(z) = 0.
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(b) If there exists T feasible to (P) such that for some A € R \ {0}, ¢ € K*
and (3; € R™, i € I, the conditions (i) — (i4i!) are satisfied, then T
is a weakly efficient solution of (P4).

To the problem (P#) we attach as a special case of (D) (cf. 3.3) the

vector dual problem

T
(D) ymax (RN, B,t), s it (N0, B, 1))

where for each i = 1, ..., k we have
WQ%@ﬂz—ﬁ@)|ng (X)A%Q ti
i€ly

and the dual variables are A = (Ay,..., \p)T € R, ¢ = (q1, ..., )T € R™,
B=(Bi,....0r) € R" x ... x R™ and t = (ti,...,t;)7 € R¥. The feasible set
turns out to be

k
5= {(A’q’ﬁ’ﬂ A ERIN {0} g€ K*,Z&tizo}.
=1

Now we get from Theorem 3.6 and Theorem 3.7 the corresponding weak
and strong vector duality results.

Theorem 4.2 There is no x € A and no (\,q,3,t) € B* such that
fi(Az) < hit(\,q,B,t) foralli =1, ..., k.

Theorem 4.3 Assume that (CQ*) is fulfilled. If Z is a weakly efficient
solution of the problem (P4), then there exists (>\ q,3,t) € B” that is a
weakly efficient solution to (D#) and for all i = 1, ..., k one has

f{(AT) = (X3, B.7).

4.2 The ordinary multiobjective optimization prob-
lem

Let us consider now n; = ... = n; = n and let
F,:R"—=R" Fjz)=u,
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forall i =1, ..., k. For f; : R — R proper and convex functions, i = 1, ..., k,
our initial problem becomes

T

(PB) v-min (fl(x),,fk(m)) )

zeX,
9(z)=K0
Obviously, the previous problem is a particular case of (P4) with A; = I
(the identical operator), i = 1, ..., k. The constraint qualification (CQ*) be-
comes

S

(CQP) 32’ € ri(X) (N ri (dom(f;)) such that g(z') € —ri(K).

i=1

Theorem 4.4

(a) Suppose that the condition (CQP) is fulfilled and let T be a weakly
efficient solution of the problem (P?). Then there exists A € RY \ {0},
q € R, and p; € R", i € I, such that

(P) fi@)+ frp) —piT =0, 1€ I,

m%qwm+w%m(—zxﬁ)+zxﬁﬁza

1€y 1€l
(i) ¢"g(x) =0
(b) If there exists T feasible to (P?) such that for some A € Rk \ {0},

g € R and p; € R", i € I, the conditions (:7) — (iz77?) are satisfied,
then T is a weakly efficient solution of (P5).

As before to (PB ) we associate a vector dual problem, namely
DB max_ (hB(\, ¢, p,1), ... kBN, q,p, )",
o e (PO pt), b (a.p.0)
where 1
i€l
for all i = 1,...,k, and the dual variables are A = (Aq,...,\x)T € R* ¢ =

(q1, s gm)T €ER™, p= (p1,...,pr) ER" x ... x R" and t = (ty,...,t;)T € R*.
Let

k
B = {()‘7(17]),25) = ]Ri\{(]},q c K*)Z)\iti :0}.

i=1
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Theorem 4.5 There is no 2 € A and no (\,q,p,t) € BP such that
filx) < hB(\ q,p,t) for alli = 1,... k.

Theorem 4.6 Assume that (CQ") is fulfilled. If 7 is a weakly efficient
solution of the problem (P?), then there exists (\,q,p,f) € B? that is a
weakly efficient solution to (D®) and for all i = 1, ..., k applies

Remark. We would like to mention that for K = R’ the results pre-
sented in this paper are true if instead of g(z') € —ri(R7}) = —int(R7}) we
impose the weaker assumption (see [16])

g]<x/) S 07 j € L7
gj(z') <0. j€&N,

where L := {j € {1,...,m} : g; is an affine function} and N := {1,....m}\ L.

5 Conclusions

In this paper we consider a multiobjective optimization problem the objec-
tive function of which has as entries compositions of some convex functions,
while the constraints are given by cone inequality constraints. To the problem
we treat we associate a family of scalar optimization problems and to each
member of this family a Fenchel-Lagrange-type dual is formulated. Using
the weak and strong duality statements for the scalar problems optimality
conditions for weakly efficient solutions of the original problem are presented,
where only the involved functions and their conjugates are used. A vectorial
dual of the general problem we treat is given and weak and strong duality
assertions are proved. Moreover, some special cases are considered.
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