
On the Graph Bisection Cut polytope

M. Armbruster, M. Fügenschuh, C. Helmberg,
A. Martin

Preprint 2006-20

Fakultät für Mathematik



Impressum:

Herausgeber:

Der Dekan der

Fakultät für Mathematik

an der Technischen Universität Chemnitz

Sitz:

Reichenhainer Straße 41

09126 Chemnitz

Postanschrift:

09107 Chemnitz

Telefon: (0371) 531-2662

Telefax: (0371) 531-4947

E-Mail: dekanat@mathematik.tu-chemnitz.de

Internet:

http://www.tu-chemnitz.de/mathematik/

ISSN 1614-8835 (Print)



On the Graph Bisection Cut polytope

Michael Armbruster∗, Marzena Fügenschuh†,
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Abstract

Given a graph G = (V, E) with node weights fv ∈ N0, v ∈ V , and some number
F ∈ N0, the convex hull of the incidence vectors of all cuts δ(S), S ⊆ V with f(S) ≤ F
and f(V \ S) ≤ F is called the bisection cut polytope. We study the facial structure of
this polytope which shows up in many graph partitioning problems with applications in
VLSI-design or frequency assignment. We give necessary and in some cases sufficient
conditions for the knapsack tree inequalities introduced in [9] to be facet-defining. We
extend these inequalities to a richer class by exploiting that each cut intersects each cycle
in an even number of edges. Finally, we present a new class of inequalities that are based
on non-connected substructures yielding non-linear right-hand sides. We show that the
supporting hyperplanes of the convex envelope of this non-linear function correspond to
the faces of the so-called cluster weight polytope, for which we give a complete description
under certain conditions.

Keywords: polyhedral combinatorics, minimum bisection problem, knapsack tree inequality,
bisection knapsack walk inequality, cluster weight polytope

MSC 2000: 90C57

1 Introduction

Let G = (V,E) be an undirected graph with V = {1, . . . , n} and E ⊆ {{i, j} : i, j ∈ V, i < j}.
For given vertex weights fv ∈ N0 for all v ∈ V and edge costs w{i,j} ∈ R for all {i, j} ∈ E, a
partition of the vertex set V into two disjoint clusters S and V \ S with sizes f(S) ≤ F and
f(V \ S) ≤ F , where F ∈ N0 ∩

[

1
2f(V ), f(V )

]

, is called a bisection. Finding a bisection such
that the total cost of edges in the cut δ(S) := {{i, j} ∈ E : i ∈ S ∧ j ∈ V \ S} is minimal is
the minimum bisection problem (MB). The problem is known to be NP-hard [11].

In this paper we will investigate the bisection cut polytope PB associated with MB. To define
PB note that a cut δ(S) can be described by its incidence vector χδ(S) with respect to the
edge set E. Then

PB := conv{ y ∈ R
|E| : y = χδ(S), S ⊆ V, f(S) ≤ F, f(V \ S) ≤ F }.
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MB as well as PB are related to other problems and polytopes in the literature. Obviously,
the bisection cut polytope is contained in the cut polytope [3, 7]

PC := conv
{

y ∈ R
|E| : y = χδ(S), S ⊆ V

}

. (1)

If F = f(V ) then MB is equivalent to the maximum cut problem (using the negative cost
function) and PB = PC. For F = ⌈1

2f(V )⌉ MB is equivalent to the equipartition problem [6]
and the bisection cut polytope equals the equipartition polytope [4, 5, 14]

PE := conv{ y ∈ R
|E| : y = χδ(S), S ⊆ V, f(S) = f(V \ S) }

Furthermore, MB is a special case of the minimum node capacitated graph partitioning
problem (MNCGP) [9] where K ≥ 2 clusters are available for the partition of the node set
and each cluster has a limited capacity. The objective in MNCGP is the same as in MB,
i.e., to minimize the total cost of edges having endpoints in distinct clusters. Finally, we
mention the knapsack polytope [18]

PK := conv

{

x ∈ {0, 1}|V | :
∑

v∈V

fvxv ≤ F

}

. (2)

PK plays a fundamental role in the inequalities which we are going to derive for the bisection
cut polytope.

Graph partitioning problems in general have numerous applications, for instance in numer-
ics [12], VLSI-design [16], compiler-design [15] and frequency assignment [8].

The main contributions of this paper are threefold. First, in [9] the so-called knapsack tree
inequalities have been introduced. These inequalities relate the knapsack conditions on the
nodes with the edge variables defining the cuts and turn out to be computationally very
effective. However, no theoretical justification has been found so far for this behavior. In this
paper, we give necessary conditions for the knapsack tree inequality to be facet-defining, which
turn out to be also sufficient in certain cases. Second, we can generalize the knapsack tree
inequalities in the case of bisections by exploiting the well-known fact that any cut intersects
a cycle an even number of times. This new class of inequalities, called bisection knapsack
walk inequalities, subsume the knapsack tree inequalities and yield computationally more
flexibility in finding strong inequalities. The third class of inequalities, called capacity reduced
bisection knapsack walk inequalities, extends both classes of inequalities to non-connected
substructures. The idea is to exploit the weights of the nodes that are not end-nodes of
walks to reduce the capacity of the corresponding knapsack inequality yielding this way
stronger right-hand sides for the knapsack tree and bisection knapsack walk inequalities.
These stronger conditions result in non-linear right-hand sides. We consider the convex
envelope of this non-linear function and show that the supporting hyperplanes are in one-
to-one correspondence to the faces of a certain polytope, called cluster weight polytope. For
the case of a star without capacity restriction we are able to give a complete description of
the cluster weight polytope yielding in this case the tightest strengthening possible for the
capacity reduced bisection knapsack walk inequalities.

The outline of the paper is as follows. In Section 2 we introduce an integer programming
formulation for MB building on the formulation of MNCGP given in [9]. Section 3 treats the
known knapsack tree inequalities valid for both MB and MNCGP while Section 5 introduces
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the new bisection knapsack walk inequalities which are only valid for MB and which subsume
the knapsack tree inequalities. Section 4 shows a strengthening only applicable to knapsack
tree inequalities. Furthermore, we state necessary and sufficient conditions for knapsack tree
inequalities to define facets of PB. In Section 6 we are going to describe the relation between
the bisection knapsack walk inequalities and the odd cycle inequalities for the cut polytope.
Finally, Section 7 introduces a strengthening of the bisection knapsack walk inequalities. For
this purpose we investigate the facial structure of the cluster weight polytope on stars.

We frequently denote an edge {i, j} by ij. Let A and B be discrete sets such that

A ⊆ B. The incidence vector of A with respect to B is a vector χA ∈ {0, 1}|B| with

χA
a =

{

1 if a ∈ A
0 if a ∈ B \ A

. For a vector x ∈ R
|B| we define x(A) =

∑

a∈A xa. 0|A| is

the zero vector of dimension |A| and ea is the unit vector of dimension |A|, which is indexed
by the elements of A and has entry 1 in coordinate a ∈ A. For a graph G = (V,E) the edge
set of the subgraph induced by V̄ ⊆ V will be denoted by E

(

V̄
)

and the node set of the
subgraph induced by Ē ⊆ E by V

(

Ē
)

. The convex hull of a set A ⊆ R
n will be denoted by

conv{A}.

2 An integer programming formulation of MB

The integer programming formulation for MB given below is based on the formulation for
MNCGP presented in [9]. We introduce variables zk

i for each node i ∈ V and each cluster
k = 1, 2 and edge variables yij for each edge ij ∈ E. zk

i is set to 1 if node i is in cluster k
and 0 otherwise. Variable yij is set to 1 if edge ij is in the cut, i.e., i and j are not in the
same cluster, and 0 otherwise. Then MB can be written as

(MB)

min
∑

e∈E

weye

s.t. z1
i + z2

i = 1 ∀i ∈ V
∑

i∈V

fiz
k
i ≤ F k = 1, 2

yij ≥ z1
i − z1

j ∀ij ∈ E

yij ≥ z1
j − z1

i ∀ij ∈ E

yij ∈ {0, 1} ∀ij ∈ E
zk
i ∈ {0, 1} ∀i ∈ V, k = 1, 2 .

The first constraints assure that each node i is packed into exactly one cluster k. The second
constraints enforce the capacity restriction on each cluster k. The third and fourth constraints
transmit for each edge ij ∈ E the values of variables z1

i and z1
j to the edge variable yij in

the sense that yij = 1 if and only if z1
i 6= z1

j . The fifth and sixth constraints are the binary
restrictions on the variables.
Noting that the variables zk

i do not appear in the objective function we can consider model

min
∑

e∈E

weye

s.t. y ∈ YMB,

where YMB ⊆ R
|E| is the projection onto the y-space of the feasible region of model (MB). It

can be worked out that PB = conv(YMB).
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3 Known valid inequalities for MNCGP and MB

A large variety of valid inequalities for the polytope associated to MNCGP is known and,
since MB is a special case of MNCGP, all those inequalities are also valid for PB: odd cycle
inequalities [3], tree inequalities [4], star inequalities [4], cycle inequalities [5], cycle with tails
inequalities [9], suspended tree inequalities [14], path block cycle inequalities [14], cycle with
ear inequalities [9], strengthened cycle with ear inequalities [9], knapsack tree inequalities [9]
and strengthened knapsack tree inequalities [9].

In the remainder of the paper we specialize and improve the knapsack tree inequality for MB.
First we recall its definition for MNCGP from [9].

Definition 1 (Knapsack tree inequality [9]). Let
∑

v∈V avxv ≤ a0 be a valid inequality for
the knapsack polytope PK with av ≥ 0 for all v ∈ V . For a fixed node r ∈ V and a subtree
(T,ET ) of G rooted at r we define the knapsack tree inequality

∑

v∈T

av

(

1 −
∑

e∈Prv

ye

)

≤ a0 (3)

where for each v ∈ T the edge set of the path joining node v to root r in (T,ET ) is denoted
by Prv.

If (T,ET ) is a star rooted at r, i.e., ET = {{r, t} : t ∈ T, t 6= r}, then we call the inequality (3)
knapsack star inequality.

In general, there is an exponential number of these knapsack tree inequalities, since for each
combination of a valid knapsack inequality with a choice of a rooted tree there is one knapsack
tree inequality.

Proposition 2. [9] The knapsack tree inequality (3) is valid for the polytope PB.

Proof. Let S1 ⊆ V and S2 = V \ S1 be a feasible bisection, then
∑

v∈V avz
k
v ≤ a0, k = 1, 2,

holds for the given valid inequality for the knapsack polytope (it is valid for both clusters
since on both of them the capacity constraint is F ). W.l.o.g. let r ∈ S1, i.e. z1

r = 1. So for
all v ∈ S1 we have z1

v = 1. Otherwise v ∈ S2 and z1
v = 0. Now let y = χδ(S1) ∈ PB. Note

that, 1 −
∑

e∈Prv
ye is equal to one if and only if all vertices of Prv are contained in S1 and

less or equal to zero otherwise. Therefore,

∑

v∈T

av

(

1 −
∑

e∈Prv

ye

)

≤
∑

v∈T∩S1

av · 1 ≤
∑

v∈V

avz
1
v ≤ a0

where the second inequality uses av ≥ 0 and z1 = χS1 . �

It will be useful to write the inequality (3) in the form

∑

e∈ET

(

∑

v:e∈Prv

av

)

ye ≥
∑

v∈T

av − a0 . (4)

The term on the right-hand side may be interpreted as the excess if all vertices v ∈ T are
packed into the cluster containing the root node r while we are only allowed to pack a total
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weight of a0. The left-hand side has to compensate for this, i.e., it has to force some edges
into the cut so that not all vertices are placed into the same cluster as the current root. We
will use this reformulation to apply a folklore approach to strengthen coefficients in general
binary programs.

Lemma 3. Let S ∈ {0, 1}|E|, P = conv(S) and
∑

e∈E αeye ≥ α0 an inequality valid for P .
Define

α̃e := min

{

αe,max

{

0, α0 −
∑

e∈E:αe<0

αe

}}

.

Then the strengthened inequality
∑

e∈E α̃eye ≥ α0 is valid for P , too.

Proof. Let ȳ ∈ P ∩ {0, 1}|E|. If ye = 0 for all e ∈ {e : α̃e 6= αe} then ȳ also satisfies
∑

e∈E α̃eye ≥ α0. Otherwise yē = 1 for at least one α̃ē 6= αē. Then

∑

e∈E

α̃eye − α0 =
∑

e∈E:α̃e≥0

α̃eye +
∑

e∈E:α̃e<0

α̃eye − α0 ≥ α̃ē −

(

α0 −
∑

e∈E:αe<0

αe

)

= max

{

0, α0 −
∑

e∈E:αe<0

αe

}

−

(

α0 −
∑

e∈E:αe<0

αe

)

≥ 0 . �

Remark 4. Lemma 3 applied to the reformulated knapsack tree inequality (4) for MB yields

∑

e∈ET

min

{

∑

v:e∈Prv

av,
∑

v∈T

av − a0

}

ye ≥
∑

v∈T

av − a0. . (5)

We call this inequality truncated knapsack tree inequality. Note that it is the same as the first
case proposed in Proposition 3.12 of [9] applied to the knapsack tree inequality for MNCGP.
For MNCGP those authors also proposed a second case of strengthening, namely (in our
notation) to reduce αe to a0. But for MB the second case never applies, since we always have
α0 =

∑

v∈T av − a0 ≤ a0 due to a0 ≥ 1
2

∑

v∈V av.

4 Minimum root strengthening of knapsack tree inequalities

Given a knapsack inequality
∑

v∈V avxv ≤ a0 with av ≥ 0, v ∈ V , let a corresponding
knapsack tree inequality be defined on a tree (T,ET ) rooted at r. If we replace r by another
node from T the paths change. The corresponding change of the coefficients of the inequality
will be exploited in the strengthening presented in this section. We are going to show that
the strongest or in some cases even facet-defining inequality is achieved if r corresponds
to a sort of equilibrium with respect to the cumulated node weights on the paths to r.
Since further improvements pay off only if a stronger inequality than the truncated knapsack
tree inequality (5) is achieved, we act on inequalities in this form. To emphasize that the
coefficients in (5) depend on the root node r we introduce the notation

α0 :=
∑

v∈T

av − a0, αr
e := min{

∑

v:e∈Prv

av, α0}, e ∈ ET , (6)
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and consider (5) in the form
∑

e∈ET

αr
eye ≥ α0. (7)

Note that if we change the root of (T,ET ) the right-hand side of (7) remains the same, since
by this operation we do not eliminate nodes of (T,ET ).

At first we derive some relations based on the definition of the coefficients αr
e, r ∈ T, e ∈ ET ,

which we will exploit in the proofs of the results presented in this section. In the next lemma
we investigate the change of coefficients if the root is moved from a node r to an adjacent
node s.

Lemma 5. Let (T,ET ) be a tree in G and r, s two adjacent nodes with ē = rs. We have

(a) αr
e = αs

e for all e 6= rs,

(b) αr
ē = min{as +

∑

e∈δ({s})\{ē} αs
e, α0},

(c)
∑

e∈ET
αr

e ≤
∑

e∈ET
αs

e if and only if αr
ē ≤ αs

ē, and the equality holds if and only if
αr

ē = αs
ē.

Proof. (a) For e 6= rs we have {v : e ∈ Prv} = {v : e ∈ Psv} and thus
∑

v:e∈Prv
av =

∑

v:e∈Psv
av.

(b) We have:
∑

v:ē∈Prv

av = as +
∑

e∈δ({s})\{ē}

(

∑

v:e∈Psv

av

)

.

(c) The claim follows directly from (a). �

Lemma 6. Let (T,ET ) be a tree in G rooted at node r and let e and f be two edges on a
path to r such that e is closer to r than f with respect to the number of edges. Then

αr
f ≤ αr

e. (8)

Proof. W.l.o.g. we assume that e and f are adjacent. Setting e := ij and f := jk we obtain

∑

v:e∈Prv

av =
∑

v:f∈Prv

av + aj +
∑

ē∈Ē

(

∑

v: ē∈Prv

av

)

≥
∑

v:f∈Prv

av,

where Ē contains edges incident to j except e and f . Hence if αr
f = α0 then also αr

e = α0,
otherwise αr

f ≤ min{
∑

v:e∈Prv
av, α0} = αr

e. �

In the following theorem we claim that the strength of truncated knapsack tree inequalities
depends on the position of the root r in the underlying tree. We show how to select r so that
the best possible reduction of the coefficients and thus the strongest truncated knapsack tree
inequality for a given tree can be achieved.

Theorem 7. Let (T,ET ) be a tree in G. The strongest truncated knapsack tree inequality,
with respect to the knapsack inequality

∑

v∈V avxv ≤ a0, av ≥ 0, v ∈ V , defined on (T,ET )
is obtained for a root r ∈ R := Argminv∈T

∑

e∈ET
αv

e, i.e., if r ∈ R then1

∑

e∈ET

αs
eye ≥

∑

e∈ET

αr
eye ≥ α0 (9)

1R is the set of all nodes minimizing the given sum.

6



holds for all s ∈ T and all y ∈ PB. In particular,
∑

e∈ET

αr
eye =

∑

e∈ET

αs
eye (10)

holds for all r, s ∈ R and all y ∈ PB.

Proof. Let Π = (VΠ, EΠ) be the path joining nodes r ∈ R and s ∈ T , r 6= s, with
VΠ = {v1, . . . , vp}, p ≥ 2, where v1 = r, vp = s and vk, vk+1, 1 ≤ k ≤ p − 1 are adjacent.
Applying recursively Lemma 5 (a) to nodes vi, vi+1, i = 1, . . . , p − 1 we obtain

αr
e = αs

e ∀ e ∈ ET \ EΠ. (11)

By Lemma 6 we have

αr
rv2

≥ αr
v2v3

≥ . . . ≥ αr
vp−2vp−1

≥ αr
vp−1s

αs
rv2

≤ αs
v2v3

≤ . . . ≤ αs
vp−2vp−1

≤ αs
vp−1s.

(12)

Since r is a minimal root
∑

e∈ET
αr

e ≤
∑

e∈ET
αv2

e holds. Applying Lemma 5 (c) to nodes r
and v2 and Lemma 5 (a) to nodes v2 and s we obtain

αr
rv2

≤ αv2

rv2
= αs

rv2
.

This together with (12) yields
∀ e ∈ EΠ αr

e ≤ αs
e. (13)

Hence for each e ∈ EΠ the inequality (αr
e −αs

e)ye ≤ 0 is trivially valid for PB and by (11) we
obtain

∑

e∈ET

αr
eye −

∑

e∈ET

αs
eye =

∑

e∈EΠ

(αr
e − αs

e)ye ≤ 0.

Thus (9) holds. The equation (10) follows directly from (9). �

The relation (13) in the above proof implies the following statement.

Remark 8. Let (T,ET ) be a tree in G and r, s ∈ T then the inequality
∑

e∈ET

min{αr
e, α

s
e} ye ≥ α0

is valid for PB.

In the sequel the elements of the set R will be called minimal roots of a given tree (T,ET ). In
Theorem 7 we showed that all minimal roots of (T,ET ) deliver the same truncated knapsack
tree inequality and thus to obtain the strongest one it is sufficient to identify any minimal
root. Assume we are given a tree (T,ET ) rooted at some node r. In order to find a minimal
root one can proceed iteratively as follows. Select a node s ∈ T adjacent to r such that
αr

rs = max{αr
rv : rv ∈ ET }. If αr

rs > αs
rs then also

∑

e∈ET
αr

e >
∑

e∈ET
αs

e, by Lemma 5 (c).
Hence r can be discarded and s is marked as root of (T,ET ). Otherwise

∑

e∈ET
αr

eye ≥ α0 is
the strongest truncated knapsack tree inequality with respect to all possible choices of roots
in (T,ET ). The following propositions show that our strengthening procedure delivers correct
results. Due to following Proposition 9 it is sufficient to search in the direct neighborhood
of the current root for a possible improvement. Proposition 10 assures that it is enough to
examine the node adjacent to r maximizing αr

rv, rv ∈ ET .
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Proposition 9. r is a minimal root if and only if αr
rv ≤ αv

rv holds for all v adjacent to r.

Proof. Let v be a node adjacent to r. We assume first that r ∈ R. Then
∑

e∈ET
αr

e ≤
∑

e∈ET
αv

e holds and thus αr
rv ≤ αv

rv due to Lemma 5 (c). Now assume that

∀ rv ∈ ET αr
rv ≤ αv

rv. (14)

We show that this implies
∑

e∈ET
αr

e ≤
∑

e∈ET
αs

e for any s ∈ T and thus r is a minimal root.
Using (14) and Lemma 5 (c) we obtain that

∑

e∈ET
αr

e ≤
∑

e∈ET
αv

e holds for all v adjacent
to r. Now let s be a node not adjacent to r. Similarly to the proof of Theorem 7 we consider
a path Π joining r and s and derive relations (11) and (12). We apply next (14) to (12) to
obtain (13). From (11) and (13) follows that

∑

e∈ET
αr

e ≤
∑

e∈ET
αs

e. �

Proposition 10. Suppose αs
rs < αr

rs, then
∑

e∈ET
αs

e <
∑

e∈ET
αv

e holds for all nodes v 6= s
adjacent to r. Furthermore, αr

rs = max{αr
rv : rv ∈ ET }.

Proof. Let v 6= s be a node adjacent to r. By Lemma 5 (a) αs
e = αv

e holds for all e ∈
ET \ {sr, rv}. Furthermore, we obtain the chain of inequalities

αs
rv ≤ αs

rs < αr
rs = αv

rs ≤ αv
rv,

where the first inequality follows from (8), the second from the assumption of this lemma,
the equality from Lemma 5 (a) applied to nodes r, v and the last inequality again from (8).
Thus

∑

e∈ET
αs

e <
∑

e∈ET
αv

e . From the relations

αr
rv = αs

rv ≤ αs
rs < αr

rs, v 6= s,

we obtain the second claim of the lemma, where the first equality follows from Lemma 5 (a)
applied to r and s. �

In the remainder of this section we show that the assumption on r to be a minimal root is
not only a necessary condition as it follows from Theorem 7 but in some cases also sufficient
for a truncated knapsack tree inequality to be facet-defining for the polytope PB.

For this purpose we assume that G = (T,ET ) is a tree and fv = 1 for all v ∈ T . Then
the knapsack polytope PK is defined by the inequality

∑

v∈T xv ≤ F and the corresponding
knapsack tree inequality (3) defined on (T,ET ) takes the form

∑

v∈T

(1 −
∑

e∈Prv

ye) ≤ F.

Applying the strengthening (5) and notation (6) we obtain α0 = |V | − F and αr
e =

min{|V r
e |, |V | − F} for all e ∈ E, where V r

e is the set of nodes, whose path to r ∈ T
contains the edge e, see e.g. Figure 3. To emphasize the special case that we treat in the
sequel we set κr

e := αr
e, F̄ := α0 and consider the inequality

∑

e∈ET
κr

eye ≥ F̄ or (κr)T y ≥ F̄
for short. For ease of exposition we call κr

e the knapsack weight of e ∈ E with respect to the
root r of (T,ET ). If κr

e = F̄ and F̄ < |V r
e | we say that e has the reduced knapsack weight.

Furthermore, we introduce the term branch-less path, which is a path in (T,ET ), whose inner
nodes are all of degree 2.
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Theorem 11. Assume that G = (T,ET ) is a tree, fv = 1 for all v ∈ T and that |T |
2 + 1 ≤

F < |T |. Furthermore, let (T,ET ) be rooted at r ∈ T and assume that all branch-less paths to
r in (T,ET ) contain only edges with reduced knapsack weights. (κr)T y ≥ F̄ is a facet-defining
inequality for PB if and only if r is a minimal root.

Remark 12. Given a graph G = (V,E), PB is full-dimensional under assumptions that

fv = 1 for all v ∈ V and F ≥ |V |
2 +1, see [9]. For sake of simplicity we will restrict ourselves

to this case and refer to [10] for the remaining case F = |V |
2 .

Furthermore, note that in case F = |V | the knapsack inequality
∑

v∈V xv ≤ F is redundant
for PK and thus the corresponding truncated knapsack tree inequalities are redundant for PB.
Therefore we assume that F < |V |, in particular, F̄ > 0.

Due to the complexity of the proof of Theorem 11 we complete it in several steps. First we
outline the general idea of the sufficiency part. Let F be a face of PB induced by (κr)T y ≥ F̄
and Fb be the facet of PB defined by the inequality bT y ≥ b0 such that F ⊆ Fb. To show
that (κr)T y ≥ F̄ is a facet-defining inequality for PB, we prove that F = Fb, i.e., there exists
γ ∈ R \ {0} such that

be = γκe, ∀ e ∈ E
b0 = γF̄ .

(15)

hold.

We introduce now further definitions and lemmas required to prove the above relations. Given
a partition of the node set T we denote by Vr the cluster containing r, see e.g. Figure 3. We
say that two edges e, f ∈ E are related, if there exists a path to the root containing both e
and f . An edge e is related to itself. For an edge e, the set Be = {f ∈ E : f is related to
e} is called branch (induced by e). If any two edges e and f are adjacent and related and
such that f is closer to the root than e (with respect to the number of edges), then f is the
father of e and e is a son of f . We call an edge a leaf if one of its endpoints is of degree 1. A
branch-less path Π = (VΠ, EΠ) of a subgraph G′ ⊆ (T,ET ) is called maximal in G′ if

|VΠ| = max{|Vp| : (Vp, Ep) ⊆ G′ and (Vp, Ep) is a branch-less path},

i.e., it is a branch-less path in G′ with the maximal number of nodes. We say that a bisection
cut δ(Vr) is tight for (κr)T y ≥ F̄ if (κr)T χδ(Vr) = F̄ is satisfied. As we will show soon,
|Vr| = F holds if δ(Vr) is tight for (κr)T y ≥ F̄ and all e ∈ δ(Vr) satisfy κr = |V r

e | ≤ F̄ , i.e.,
all edges in the cut do not have reduced knapsack weights. In this case we will call the cut
δ(Vr) double-tight for (κr)T y ≥ F̄ .

We derive next some properties of bisection cuts tight for (κr)T y ≥ F̄ .

Lemma 13. No two edges in a bisection cut tight for (κr)T y ≥ F̄ are related.

Proof. Let δ(Vr) be a bisection cut tight for (κr)T y ≥ F̄ such that |δ(Vr)| > 1. Let δ0 be
the subset of edges in δ(Vr) with an even distance to r , i.e.,

δ0 := {e ∈ δ(Vr) : |δ(Vr) ∩ P r
e | is even },

where P r
e is the set of edges of the path, which contains e and joins e with r. Let δ1 = δ(Vr)\δ0.

Since δ(Vr) is tight for (κr)T y ≥ F̄ we have
∑

e∈δ1

κr
e +

∑

e∈δ0

κr
e = F̄ .

9



On the other side, using the fact that if an edge belongs to a cut then its endpoints belong
to different clusters and that the total weight of T \ Vr cannot fall below F̄ we obtain

∑

e∈δ1

κr
e −

∑

e∈δ0

κr
e ≥ F̄ .

Both relations can be satisfied only if
∑

e∈δ0
κr

e vanishes. Hence δ0 = ∅ and its construction
indicates that each path to r can be cut only once. �

Lemma 14. Let (T,ET ) be rooted at r ∈ T . A bisection cut δ(Vr) is double-tight for (κr)T y ≥
F̄ if and only if |Vr| = F and (Vr, E(Vr)) is connected.

Proof. Assume first that δ(Vr) is double-tight for (κr)T y ≥ F̄ . By Lemma 13 any two edges
in δ(Vr) are not related. This implies that Vr induces a connected subgraph of (T,ET ). Hence
T \ Vr =

⋃

e∈δ(Vr) V r
e and V r

e ∩ V r
f = ∅ for any e, f ∈ δ(Vr). Furthermore, κr

e = |V r
e | holds for

each e ∈ δ(Vr) and we obtain |T \ Vr| =
∑

e∈δ(Vr) κr
e = F̄ , i.e., |Vr| = F .

Now consider a bisection (Vr, T \ Vr) such that (Vr, E(Vr)) is connected and |Vr| = F (i.e.,
|T \ Vr| = F̄ ). We show first that δ(Vr) contains only edges, whose knapsack weights are
not reduced. Assume for contradiction that δ(Vr) contains an edge f with reduced knapsack
weight. Since κr

f = F̄ , this is the only edge in δ(Vr), otherwise δ(Vr) is not tight for (κr)T y ≥

F̄ . Hence δ(Vr) = {f} and |T \ Vr| = |V r
f | > F̄ holds contradicting the assumption that

|Vr| = F . To show that δ(Vr) is tight for (κr)T y ≥ F̄ , we use the assumption that (Vr, E(Vr))
is connected. We have

∑

e∈δ(Vr)

κr
e =

∑

e∈δ(Vr)

|V r
e | = |

⋃

e∈δ(Vr)

V r
e | = F̄ .

Hence δ(Vr) is double-tight for (κr)T y ≥ F̄ . �

Next we provide some results following from the assumption that (T,ET ) is rooted at a
minimal root. As we will show in the following lemmas, this assures the existence of bisection
cuts tight for (κr)T y ≥ F̄ , which we will consider in the proof of further lemmas preceding
the proof of Theorem 11.

Lemma 15. Let B = (VΠ, EΠ) ⊆ (T,ET ) be a branch incident on a node r ∈ T . If r is a
minimal root of (T,ET ) then |VB \ {r}| ≤ F .

sr
f

VB

Figure 1: Node set VB .

r
f

s

V s
f V r

f

Figure 2: Node sets V r
f and V s

f .

Proof. Let B = (VB , EB) be a branch incident on r and assume that |VB \{r}| > F . We are
going to show that in this case there exists a node s ∈ T \{r} such that

∑

e∈ET
κs

e <
∑

e∈ET
κr

e,
i.e., r cannot be a minimal root. Let s be the node in VB adjacent to r, and let f = rs ∈ EB ,
see Figure 1 and 2. Note that V r

f ∪̇V s
f = V . Since |V r

f | = |VB \ {r}| > F > F̄ we have

κr
f = F̄ . On the other side κs

f = min{|V \ V r
f |, F̄} < F̄ . Hence κs

f < κr
f and Lemma 5 (c)

yields
∑

e∈ET
κs

e <
∑

e∈ET
κr

e. Thus r is not a minimal root. �

10



Lemma 16. Assume (T,ET ) is rooted at a minimal root and has an edge e ∈ ET such that
κr

e = F̄ . Then the cut δ(V r
e ) = {e} is a bisection cut tight for (κr)T y ≥ F̄ .

Proof. Note that in the considered case we have Vr = T \ V r
e . We show that the cut δ(Vr),

which is obviously tight for (κr)T y ≥ F̄ , is also a bisection cut. Assume that δ(Vr) is not
a bisection cut. Then either |Vr| < F̄ or |T \ Vr| < F̄ . In the first case, let s be a node
incident to e such that the path Πrs = (Vrs, Ers) joining r and s contains e, see Figure 3.
For all f ∈ ET \Ers holds κr

f = κs
f due to Lemma 5 (a). For f ∈ Ers we obtain by Lemma 6

that κr
f ≥ κr

e = F̄ > |Vr| ≥ |V s
f | = κs

f . Hence there exists a node s ∈ T \ {r} such that
∑

e∈ET
κs

e <
∑

e∈ET
κr

e contradicting the assumption that r is a minimal root. The case
|T \ Vr| < F̄ is also not possible due to the assumption κr

e = F̄ . �

V r
e V s

f

s r
fe

Vr

Figure 3: Node sets Vr, V r
e and V r

f .

V s
f

r
e

s
V1

V s
e

V2

f

Figure 4: Node sets V1, V2, V s
f and V s

e .

Lemma 17. Let (VB , EB) be a branch in (T,ET ) incident to the root r ∈ T . Let E1 ⊆ EB be
such that all edges in E1 are not related and

∑

e∈E1
κr

e ≤ F̄ . If r is a minimal root, then there

exists a bisection (Vr, T \ Vr) such that E1 ⊆ δ(Vr) and δ(Vr) is double-tight for (κr)T y ≥ F̄ .

Proof. For ease of exposition we set V1 :=
⋃

e∈E1
V r

e . By the assumption F̄ ≥
∑

e∈E1
κr

e =
|V1|. Therefore |T \ V1| ≥ F and there exists a set V2 ⊆ T \ V1 such that (V2, E(V2)) is
connected and |V2| = F . Thus the partition (V2, T \ V2) is a bisection. For ease of exposition
we set V̄2 := T \ V2. We select V2 so that the corresponding bisection cut δ(V2) includes
E1. It suffices to show that r ∈ V2 to obtain by Lemma 14 that δ(V2) is double-tight for
(κr)T y ≥ F̄ . As it will turn out this holds if r is minimal. Assume that r /∈ V2. Note
that r /∈ V1 as well. Hence r ∈ V̄2 \ V1. Furthermore, r and V1 are in one cluster and thus
δ(V2) \ E1 6= ∅. Let e ∈ δ(V2) \ E1 and let s ∈ V2 be a node incident to e, such that the
path Πrs = (Vrs, Ers) joining r and s contains e, see Figure 4. Since V s

e ⊆ V̄2 \ V1, for all
f ∈ Ers we have F̄ < |V s

f | = κs
f . On the other side V1 ∪ V2 ⊆ V r

f and |V r
f | > F hold for all

f ∈ Ers as well as κr
f = min{|V r

f |, F̄} = F̄ > κs
f . For all f ∈ ET \ Ers we have κr

f = κs
f due

to Lemma 5 (a). Therefore
∑

f∈ET
κr

e >
∑

f∈ET
κs

e and r cannot be a minimal root. �

Remark 18. From Lemma 16 and 17 follows that for each e ∈ ET there exists a bisection
cut tight for (κr)T y ≥ F̄ and containing e if r is a minimal root of (T,ET ). It can be shown
(see [10]) that the condition on the root of (T,ET ) to be minimal is also necessary for the
existence of a bisection cut for each e ∈ ET .

The next lemma provides a tool, which we will use to obtain new bisection cuts tight for
(κr)T y ≥ F̄ from a given one.

Lemma 19. Let r be a root of (T,ET ). Let (Vr, T \Vr) be a bisection of T such that |Vr| = F .

(a) For each s ∈ V̄r adjacent to a node u ∈ Vr there exists a bisection (V ′, T \V ′) such that
V ′ = {s} ∪ Vr \ {v} for some v ∈ Vr, see Figure 5.
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(b) If v 6= r, then δ(V ′) is double-tight for (κr)T y ≥ F̄ .

rv
e

f
Vr

V ′

w

u s

Figure 5: Swapping v against s (F̄ = 6).

Proof. (a) Due to the definition of V ′ we have |V ′| = |Vr| and |T \ V ′| = |T \ Vr|. Hence
F̄ ≤ |V ′|, |T \ V ′| ≤ F holds and thus (V ′, T \ V ′) is also a bisection.
(b) If v 6= r then r ∈ V ′. By definition (V ′, E(V ′)) is connected and |V ′| = F . Hence δ(V ′)
is double-tight by Lemma 14. �

Note that if v 6= r then V ′ is obtained from Vr by swapping the nodes v and s and thus
preserving the weight F of the new cluster containing r, which is V ′.

Corollary 20. Let F ,Fb be faces of PB defined by (κr)T y ≥ F̄ and bT y ≥ b0, respectively,
such that F ⊆ Fb. In the setting of Lemma 19 (b) let w be the node in V ′ adjacent to v,
e = vw and f = us. Then

bf −
∑

ē∈Sf

bē = be −
∑

ē∈Se

bē (16)

where Se and Sf are the sets of sons of e and f , respectively.

Proof. r ∈ V ′, since we assume that v 6= r. We have δ(Vr) = {f} ∪ Se ∪ D and δ(V ′) =
{e} ∪ Sf ∪ D, where D is the set of the remaining edges (equal) in both cuts, see Figure 5.
δ(Vr) and δ(V ′) are tight for (κr)T y ≥ F̄ by Lemma 19. Hence their incidence vectors also
lie in Fb. Therefore b0 =

∑

e∈δ(Vr) be =
∑

e∈δ(V ′) be, i.e.,

bf +
∑

ē∈Se

bē +
∑

ē∈D

bē = be +
∑

ē∈Sf

bē +
∑

ē∈D

bē.

This yields directly the relation (16). �

Lemma 21. Let F ,Fb be faces of PB defined by (κr)T y ≥ F̄ and bT y ≥ b0, respectively,
such that F ⊆ Fb. Let B = (VB , EB) ⊂ (T,ET ) be a branch incident to r ∈ T and
Π = (VΠ, EΠ) ⊆ B be the maximal branch-less path to r in B. Assume that r is a minimal
root of (T,ET ), then there is a γb 6= 0 such that

(a) be = bf holds for any two edges e, f ∈ ET with κr
e = κr

f = F̄ ,

(b) be = bf := γB holds for any two leaves e, f ∈ B,

(c) be = γBκe holds for e ∈ EB \ EΠ,

(d) be = γBκe holds for e ∈ EΠ, if EΠ contains only edges with reduced knapsack weight.

12



Proof. (a) Let e and f be any two edges in ET with κr
e = κr

f = F̄ . By Lemma 16 both

δ(V r
e ) = {e} and δ(V r

f ) = {f} are bisection cuts tight for (κr)T y ≥ F̄ . Since χ{e} and χ{f}

are in Fb we obtain be = bf .

rv

s
e

V ′

f

Vr

Figure 6: Swapping s against v considered
in case (b) (F̄ = 6).

v

s

r
e

V ′

Vr

l

Figure 7: Swapping s against v considered
in case (c.1) (F̄ = 7).

(b) Let e and f be leaves in EB and s, v be their respective end-nodes of degree 1. By
Lemma 15 there exists a bisection (Vr, T \ Vr) such that VB \ {s} ⊆ Vr and |Vr| = F . Using
Lemma 19 we swap s against v and get a new bisection (V ′, T \V ′), see Figure 6. Since v 6= r
we apply Corollary 20 and by (16) obtain be = bf = γB.
(c) If B ⊆ Π there is nothing to prove, so assume that B 6= Π. Let e ∈ EB \EΠ. If e is a leaf,
be = γB = γBκr

e follows from (b). Hence we assume that e is not a leaf and consider further
two cases:
(c.1) κr

e is not reduced.
Since e 6∈ EΠ there exists a leaf l ∈ EB \ EΠ not related to e. By Lemma 6 all sons of e, say
Se, do not have reduced knapsack-weights. We have

∑

f∈Se

κr
f + κr

l =
∑

f∈Se

|V r
f | + |V r

l | = |V r
e | = κr

e ≤ F̄

and by Lemma 17 there exists a bisection (Vr, T \ Vr) such that the cut δ(Vr) = Se ∪ {l} ∪D
is double-tight for (κr)T y ≥ F̄ . D is the (possibly empty) set of edges neither related to e
nor l. Thus |Vr| = F by Lemma 14. Let s be the end-node of l of degree 1 and v be the node
adjacent to e and its sons, see Figure 7. We swap v against s and obtain a new bisection by
Lemma 19. Since v 6= r we use Corollary 20. By (16) and (b) it holds

be = bl +
∑

f∈Se

bf = γB +
∑

f∈Se

bf . (17)

We assume first that all edges in Se are leaves. By (17) and (b) we obtain

be = bl +
∑

f∈Se

bf = γB + γB |Se| = γBκr
e. (18)

If e has higher level we apply (17) and (18) recursively and also get be = γBκr
e.

(c.2) κr
e is reduced.

By Lemma 16 the cut δ(V r
e ) = {e} is a bisection cut tight for (κr)T y ≥ F̄ . Since κr

e is reduced
there exists a set, say Se, of edges that are not reduced and that are related to e but not
to each other with the total knapsack weight equal to F̄ , see Figure 8. Note that Se may

13



r
3

V ′

3

e
1

V e
r

1

2

Figure 8: Sets Vr and V ′ considered in case (c.2) (F̄ = 3).

contain not only sons but also further descendants of e. Both cuts δ(V r
e ) and δ(V ′) = Se are

tight for (κr)T y ≥ F̄ . Thus by case (c.1) we have

be =
∑

f∈Se

be =
∑

f̄∈Se

γBκr
f = γBF̄ = γBκr

e.

(d) Since all edges in EΠ have reduced knapsack weight, we apply the same method as in
case (c.2). �

Summing up the results presented so far we can turn to the proof of Theorem 11.

Proof of Theorem 11. Theorem 7 yields that the condition on r to be a minimal root in
(T,ET ) is necessary for (κr)T y ≥ F̄ to be a facet-defining inequality for PB. It remains to
show that it is also a sufficient condition. Let B1 = (V1, E1), . . . , Bk = (Vk, Ek), k = deg(r),
be all branches in (T,ET ) incident to root r. We have E =

⋃

1≤i≤k Ei. By Lemma 21 (c)
and (d) we have that for all 1 ≤ i ≤ k there exists γi such that

∀ e ∈ Ei be = γiκ
r
e.

By the assumption each branch in (T,ET ) contains at least one edge with reduced knapsack
weight. For any two i, j (1 ≤ i, j ≤ k) we consider an edge ei ∈ Ei and an edge ej ∈ Ej

with reduced knapsack weight and apply Lemma 21 (a). We have γBi
F̄ = bei

= bej
= γBj

F̄ .
Hence γi = γj := γ holds for all i, j, 1 ≤ i, j ≤ k and we obtain be = γκr

e for all e ∈ ET . Now,
let δ(Vr) be a bisection cut, whose incidence vector χδ(Vr) lies on the face F (⊆ Fb). We have

b0 =
∑

e∈ET

beχ
δ(Vr)
e =

∑

e∈δ(Vr)

be = γ
∑

e∈δ(Vr)

κr
e = γF̄ .

and thus (15) holds. �

The results in Theorem 11 can be generalized as we describe in the next theorem.

Theorem 22. Assume that G = (T,ET ) is a tree rooted at a node r ∈ T , fv = 1 for

all v ∈ T and |T |
2 + 1 ≤ F < |T |. The truncated knapsack tree inequality (κr)T y ≥ F̄ is

facet-defining for PB if and only if one of the following conditions is satisfied

(a) r is a minimal root and each branch-less path in (T,ET ) contains less than F nodes

(b) r is a minimal root and (T,ET ) contains a branch-less path with exactly F nodes and
one end-edge of this path is a leaf,

(c) F = |T | − 1.
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The proof of Theorem 22 requires a further distinction of cases depending on the existence
and the allocation of edges with reduced knapsack weight and the degree of the root r. They
are handled in a similar manner as in the proof of Theorem 11. Due to their length and
complexity we abandon their presentation here and refer to [10] for all details.

5 The bisection knapsack walk inequalities for MB

In this section we exploit the special structure of MB in order to derive an improved ver-
sion of the knapsack tree inequality. Note that in the MNCGP case with K > 2 a walk
{e1 = {v1, v2} , e2 = {v2, v3}} with ye1

= ye2
= 1 does not imply any relation between nodes

v1 and v3 while in the MB case where K = 2 it follows from ye1
= ye2

= 1 that v1 and v3

belong to the same cluster.

More generally, whenever there is a walk between two nodes of the graph with an even number
of edges in the cut we know in the case of MB that the two end nodes of the walk have to be
in the same cluster. We may therefore replace the indicator term 1 −

∑

e∈Prv
ye of (3) by

1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye) (19)

where Hv ⊆ Prv with even cardinality. So if y ∈ {0, 1}|E| is a valid solution of MB and Prv

is a walk from r to v in G with Hv = {e ∈ Prv : ye = 1} and |Hv| even, then expression (19)
is equal to one, indicating that r and v belong to the same cluster. If, however, Hv 6=
{e ∈ Prv : ye = 1} the value of (19) is less than or equal to zero.

Lemma 23. Let a specified root node r ∈ V , walks Prv ⊆ E and even subsets Hv ⊆ Prv for
all v ∈ V be given. Let S1, S2 be a partition of V with r ∈ S1. Then for y = χδ(S1) (and
therefore for all y ∈ PB) and for all v ∈ V

1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye) ≤ z1
v . (20)

Proof. (20) is true if v ∈ S1, because ye ≥ 0 and 1 − ye ≥ 0 for all e ∈ E and z1
v = 1. If

v /∈ S1 the set C = {e ∈ Prv : ye = 1} must be of odd cardinality (otherwise r and v would
be together in S1). Since Hv is of even cardinality and both C and Hv are subsets of Prv

there exists an e ∈ Prv with e ∈ C \ Hv or e ∈ Hv \ C. If e ∈ C \ Hv then ye = 1 and the
left-hand side of (20) is smaller or equal to 1 − ye = 0 = z1

v . If e ∈ Hv \ C then ye = 0 and
the left-hand side of (20) is smaller or equal to 1 − (1 − ye) = 0 = z1

v . �

Now we are ready to sum up all the evaluation terms.

Definition 24 (Bisection knapsack walk inequality). Let
∑

v∈V avxv ≤ a0 be a valid inequal-
ity for the knapsack polytope PK with av ≥ 0 for all v ∈ V . For a subset V ′ ⊆ V , a fixed root
node r ∈ V ′, walks Prv ⊆ E, and sets Hv ⊆ Prv with |Hv| even, the bisection knapsack walk
inequality reads

∑

v∈V ′

av



1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye)



 ≤ a0 . (21)
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Then Lemma 23 directly implies

Proposition 25. The bisection knapsack walk inequality (21) is valid for the polytope PB.

Note that knapsack tree inequalities are a special case of the bisection knapsack walk inequal-
ities where the walks Prv form a tree, all nodes on these walks are contained in V ′ and all
Hv = ∅. Again, we may rewrite the bisection knapsack walk inequality so as to pronounce
its strength in forcing cut variables to increase:

∑

e∈E





∑

v∈V ′:e∈Prv

av −
∑

v∈V ′:e∈Hv

2av



 ye ≥
∑

v∈V ′

av − a0 −
∑

v∈V ′

av|Hv| .

Lemma 3 can be applied to strengthen bisection knapsack walk inequalities in this form to
yield the so-called truncated bisection knapsack walk inequalities.

Remark 26. Note that one can also show
∑

e∈Prv\Uv
ye +

∑

e∈Uv
(1 − ye) ≥ z1

v for all v ∈
V \ {r} if |Uv | odd and r ∈ S1. Furthermore, a valid knapsack inequality

∑

v∈V avxv ≤ a0

implies in case of (MB) validity of
∑

v∈V ′ avz
1
v ≥ a(V ′)−a0 for all V ′ ⊆ V . Thus the so-called

odd bisection knapsack walk inequality

ar +
∑

v∈V ′\{r}

av





∑

e∈Prv\Uv

ye +
∑

e∈Uv

(1 − ye)



 ≥ a(V ′) − a0

is valid for PB, too. Due to their close relation to the (even) bisection knapsack walk in-
equalities (21) we will not treat these inequalities further in this paper but refer the interested
reader to [1].

6 Relation between odd cycle inequalities and bisection knap-

sack walk inequalities

Another class of valid inequalities for PB, which are closely connected to bisection knapsack
walk inequalities, are the odd cycle inequalities [3] which completely describe the cut polytope
on graphs not contractible to the complete graph on five nodes [2].

Definition 27 (Odd cycle inequality [3]). For a cycle C = (VC , EC) in G and a subset
U ⊆ EC with |U | odd we define the odd cycle inequality

∑

e∈EC\U

ye −
∑

e∈U

ye ≥ 1 − |U | .

If |EC | = 3 the odd cycle inequality is called triangle inequality.

Proposition 28. [9] The odd cycle inequalities are valid for the polytope PB.

Proof. Since PB is contained in the cut polytope and the odd cycle inequalities are valid for
the cut polytope they are also valid for PB. �
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In order to exhibit the tight relation of odd cycle inequalities to the bisection knapsack
walk inequalities, consider the key relation (20) of Lemma 23 which we used in the proof of
Proposition 25. If {r, v} ∈ E, r ∈ S1, and y = χδ(S1) then z1

v = z1
r − yrv = 1 − yrv. In this

case (20) reads

1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye) ≤ 1 − yrv = z1
v . (22)

If Prv is a path then this is the odd cycle inequality with edge set EC = Prv ∪ {rv} and odd
set U = Hv ∪ {rv} which is valid for all y ∈ PB. Thus an alternative way to show that (20)
holds for paths Prv is to use the odd cycle inequality to bound z1

v as in (22) from below and
to insert this relation into the valid knapsack inequality

∑

v∈V avz
1
v ≤ a0. Note that this

shows directly that (20) is valid for paths Prv in case rv ∈ E. Since the variable yrv is not
contained in (20) it is also valid for paths Prv if we project out the edge rv thus taking care
of the case rv /∈ E.

The observations above lead us to an assertion on the strength of bisection knapsack walk
inequalities on a subgraph induced by the node set of a star if all odd cycle inequalities are
fulfilled.

Proposition 29. Suppose (V ′, EV ′) is a star contained in G with center r ∈ V ′ and let
∑

v∈V avxv ≤ a0 be a valid inequality for the knapsack polytope PK with av ≥ 0. Let y ∈

{0, 1}|E| satisfy all odd cycle inequalities on the subgraph (V ′, E(V ′)) of G induced by V ′.
Then the strongest bisection knapsack walk inequality on V ′ rooted at r is the knapsack star
inequality

ar +
∑

v∈V ′\{r}

av (1 − yrv) ≤ a0 .

Proof. Let an arbitrary bisection knapsack walk inequality rooted at r first be given only
via paths Prv and sets Hv. Then use (22) to see that

ar +
∑

v∈V ′\{r}

av



1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye)



 ≤ ar +
∑

v∈V ′\{r}

av (1 − yrv) ≤ a0 (23)

holds. Using walks instead of paths Prv does not increase the left-hand side of the above
relation: Let a cycle contained in Prv be denoted by C and its set of complemented edges by
HC . If |HC | is odd the fulfilled odd cycle inequality

∑

e∈C\HC
ye +

∑

e∈HC
(1− ye) ≥ 1 shows

that the walk Prv contributes at most zero to the left-hand side of (23), i.e., removing v from
V ′ may increase the left-hand side of (23). If |HC | is even, the cycle can be left out of the
walk while increasing the left-hand side of (23) by

∑

e∈C\HC
ye +

∑

e∈HC
(1 − ye). Thus the

latter walks can be reduced to paths with no smaller left-hand side of (23). �

Influenced by Proposition 29 one might now be tempted to expect that in the presence of
all odd cycle inequalities the strongest bisection knapsack walk inequalities are obtained by
taking Prv as the shortest path (with respect to number of edges) in G connecting r to v.
This is not true, as the following example shows.

Example 30. Let G be the cycle on five nodes of Figure 9. The solution y =
(y12, y23, y34, y45, y15)

T = (0.5, 0.5, 0, 0, 0)T fulfills all odd cycle inequalities because it is a
convex combination of the two cuts (0, 0, 0, 0, 0)T and (1, 1, 0, 0, 0)T . Now look at the bisec-
tion knapsack walk inequalities with V ′ = {1, 3} and r = 1. The shorter path P s

13 from root
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node 1 to node 3 uses the edge set {{1, 2} , {2, 3}} with Hs
3 = ∅ or Hs

3 = {{1, 2} , {2, 3}}, the
longer path P l

13 uses the edge set {{3, 4} , {4, 5} , {1, 5}} with H l
3 = ∅, H l

3 = {{3, 4} , {4, 5}},
H l

3 = {{3, 4} , {1, 5}} or H l
3 = {{4, 5} , {1, 5}}. For the shorter path of the two possible bi-

section knapsack walk inequalities the left-hand side value is a3 · 0 whereas the best possible
bisection knapsack walk inequality on the longer path uses H l

3 = ∅ and yields left-hand side
value a3 · 1.

1

0.00.0 0.0

0.50.5

45

3

2

Figure 9: Graph for the counter example of Ex. 30

7 Capacity improved bisection knapsack walk inequalities and

the lower envelope for stars

To motivate another strengthening for bisection knapsack walk inequalities consider the case
of a disconnected graph with two components, one of them being a single edge {u, v}, the
other connected one being V ′ = V \ {u, v}. Even though one cannot include the edge {u, v}
directly in a bisection knapsack walk inequality rooted at some r ∈ V ′, one can at least
improve the inequality if yuv = 1. In this case u and v belong to different clusters and
therefore the capacity F of both clusters can be reduced by min {fu, fv}. Since F is the
right-hand side of the inequality

∑

v∈V fvxv ≤ F used to define the knapsack polytope PK,
this reduction may help to derive stronger bisection knapsack walk inequalities. For instance,
one can look at a given valid inequality

∑

v∈V avxv ≤ a0 for the original knapsack polytope
with capacity F and in case yuv = 1 we are allowed to reduce the right-hand side a0 by
min {au, av}, thus also improving the bisection knapsack walk inequality.

To generalize this idea we define for Ḡ ⊆ G with V̄ ⊆ V , Ē ⊆ E(V̄ ) and a ∈ R
|V̄ |
+ a function

βḠ : {0, 1}|Ē| → R with

βḠ(y) = inf
{

a(S), a(V̄ \ S) : S ⊆ V̄ ,max
{

a(S), a(V̄ \ S)
}

≤ a0, y = χδḠ(S)
}

.

Now we look at the convex envelope β̌Ḡ : R|Ē| → R of βḠ(y), i.e.,

β̌Ḡ(y) = sup
{

β̆(y) : β̆ : R
|Ē| → R, β̆(y) ≤ βḠ(y), β̆ convex

}

. (24)

Notice that β̌Ḡ is a piecewise linear function on its domain. We will see that given a bisection
knapsack walk inequality (21) on some V ′ ⊆ V and V̄ ⊆ V \ V ′ subtracting any linear
minorant

∑

e∈Ē ceye of β̌Ḡ, i.e.,
∑

e∈Ē

ceye ≤ β̌Ḡ(y), (25)

on the right-hand side of (21) yields again a valid inequality for PB. It yields an improvement
with respect to a given y if the minorant is positive for this y. For convenience, the next
proposition states this for several disjoint subsets V̄ .
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Proposition 31. Let
∑

v∈V avxv ≤ a0 with av ≥ 0 for all v ∈ V be a valid inequality for the
knapsack polytope PK. Choose a non-empty V ′ ⊆ V and subgraphs

(

V̄l, Ēl

)

= Ḡl ⊂ G with
V̄l ∩V ′ = ∅, Ēl ⊆ E(V̄l) for l = 1, . . . , L and pairwise disjoint sets V̄l. Find for each l a linear
minorant

∑

e∈Ēl
ceye for the convex envelope β̌Ḡl

so that (25) holds for all y in PB. Then the
capacity reduced bisection knapsack walk inequality

∑

v∈V ′

av



1 −
∑

e∈Prv\Hv

ye −
∑

e∈Prv∩Hv

(1 − ye)



 ≤ a0 −
L
∑

l=1

∑

e∈Ēl

ceye (26)

is valid for PB.

Proof. Let y ∈ PB such that y = χδ(S1) with S1 ⊆ V , S2 = V \ S1, i.e., f(S1) ≤ F and
f(S2) ≤ F . W.l.o.g. let r ∈ S1. Recall z1

v = 1 for all v ∈ S1. Then for all l = 1, . . . , L

∑

e∈Ēl

ceye ≤ β̌Ḡl
(y) = min







∑

v∈V̄l∩S1

av,
∑

v∈V̄l∩S2

av







≤
∑

V̄l∩S1

avz
1
v .

Furthermore, by Lemma 23 we have 1 −
∑

e∈Prv\Hv
ye −

∑

e∈Hv
(1 − ye) ≤ z1

v . for v ∈ V ′.
Thus

∑

v∈V ′

av



1 −
∑

e∈Prv\Hv

ye −
∑

e∈Hv

(1 − ye)



+

L
∑

l=1

∑

e∈Ēl

ceye

≤
∑

v∈V ′

avz
1
v +

L
∑

l=1

∑

v∈V̄l

avz
1
v ≤

∑

v∈V

avz
1
v ≤ a0 . �

Remark 32. Note that it is possible that inequality (26) can be further strengthened using
the strengthening of Lemma 3.

Example 33. For the graph G displayed in Figure 10 with fv = 1 for all v ∈ V the polytope
PB has 74 facets. Among these are 14 trivial facets, only 2 pure bisection knapsack walk
facets, 19 truncated bisection knapsack walk facets, 16 capacity reduced bisection knapsack
walk facets (some truncated), 4 capacity reduced odd bisection knapsack walk facets and 19
facets for which we are not yet able to recognize a construction rule. Here we want to give
a first simple example for a capacity reduced bisection knapsack walk inequality. Two more
involved examples will follow at the end of this section. We use the knapsack inequality
∑

v∈V zv ≤ 4 in all three examples, thus av = 1 for all v ∈ V :

(1) For V ′ = {1, 3, 4, 5}, root node r = 3 and Hv = ∅ for all v ∈ V ′ the bisection knapsack
walk inequality is 1 + (1 − y13) + (1 − y34) + (1 − y34 − y45) ≤ 4. We choose Ḡ =
(

V̄ , Ē
)

with V̄ = {6, 7} and Ē = {67}. We will see that the unique best minorizing

function for β̌Ḡ is y67, thus the bisection knapsack walk inequality can be strengthened
to 1 + (1 − y13) + (1 − y34) + (1 − y34 − y45) ≤ 4 − y67. Now rewrite this inequality to
y13 + 2y34 + y45 − y67 ≥ 0 to see that we can use Lemma 3 to reduce the coefficient of
y34 to 1 in order to find the facet y13 + y34 + y45 − y67 ≥ 0 of PB.

To find inequalities (25) to apply in Proposition 31 we take a closer look at the lower envelope
defined in (24). In certain cases, e.g., for the case of Ḡ =

(

V̄ , Ē
)

being a star with a
(

V̄
)

≤ a0,

we are able to give a full description of β̌Ḡ by giving a complete description of the cluster
weight polytope defined below. This will provide the tightest improvement possible in (26).
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F = 4, fi = 1 ∀i ∈ V

∑

i∈V zi ≤ 4

6

7

V̄13

1

4 5

V ′y13 y67
y34 y45

8
y68

y56

y232

Figure 10: Graphs for Ex. 33

Definition 34. Let a graph G = (V,E) with non-negative node weights av ∈ R for all v ∈ V
be given. For a set S ⊆ V we define the following point in R

|E|+1

h(S) =

(

a(S)

χδ(S)

)

.

With respect to a given non-negative a0 ∈ R we define

PCW = conv{h(S) : S ⊆ V, a(S) ≤ a0, a(V \ S) ≤ a0 }

and call this set the cluster weight polytope.

Proposition 35. Let Ḡ be a subgraph of G. Then valid inequalities for PCW

(

Ḡ
)

of the

form y0 +
∑

e∈Ē γeye ≥ γ0 minorize β̌Ḡ and the facets of PCW

(

Ḡ
)

of this form correspond to

supporting minorants of β̌Ḡ.

Proof. Let S ⊆ V̄ be the smaller cluster, i.e., a(S) ≤ a
(

V̄ \ S
)

and let y = χδḠ(S). Then

β̌Ḡ(y) = a(S) and y is an extreme point of the domain of β̌Ḡ. Therefore
(

β̌Ḡ(y), yT
)T

= h(S)
and any such point is in one to one correspondence to the “lower” facets of the polytope
PCW

(

Ḡ
)

. �

For a star Ḡ =
(

V̄ , Ē
)

we are able to exhibit facets of PCW

(

Ḡ
)

, which in certain problems en-
able us to strengthen bisection knapsack walk inequalities of PB to facet-defining inequalities
of PB (see Example 49 at the end of this section).

Let us first look at a symmetry of PCW for general graphs G = (V,E), a property which we
will later use frequently to cut down our efforts in the proofs.

Proposition 36. PCW is symmetric to the hyperplane { y ∈ R
|E| : 2y0 = a(V ) }.

Proof. Observe that for any point h(S) used in the definition of PCW the point h(V \ S) is
contained in PCW, too. Since χδ(S) = χδ(V \S) we have for all those pairs (h(S), h(V \ S))

( 1
2a(V )

χδ(S)

)

−h(S) = h(V \S)−

( 1
2a(V )

χδ(S)

)

. �

Another useful result for a star G = (V,E) is the following

Lemma 37. Let G = (V,E) be a star with center r ∈ V , av ≥ 0 for all v ∈ V and
av′ = a(V \ {v′}) for at least one v′ ∈ V \ {r}. Then a(S) = a(V \ S) for all S ⊆ V with
v′ ∈ S and r ∈ V \ S if and only if av′ = ar and av = 0 for all v ∈ V \ {v′, r}.

Proof. The sufficiency is obvious. We will show necessity: Suppose a(S) = a(V \ S) for all
S ⊆ V with v′ ∈ S and r ∈ V \ S. Then, in particular, this is true for V \ S = {r}, i.e.,
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ar = a(V \ {r}) = av′ + a(V \ {v′, r}) = a(V \ {v′}) + a(V \ {v′, r}) = ar + 2a(V \ {v′, r}).
Thus, av = 0 for all v ∈ V \ {v′, r} and av′ = ar. �

In the remaining part of the section we will look into PCW for stars G = (V,E) with center
node r ∈ V and the constraint

∑

v∈V avxv ≤ a0. At first we determine the dimension of the
polytope.

Proposition 38. For a star G = (V,E) with center r ∈ V and a(V ) ≤ a0 the polytope PCW

has full dimension |E| + 1 for a 6= 0|E| and dimension |E| = |V | for a = 0|E|.

Proof. Since G is a star and by assumption a(V ) ≤ a0, the 1 + |E| points h(∅) and h({v})
for all v ∈ V \ {r} are contained in PCW and affinely independent. Thus the dimension
of PCW is at least |E|. If a 6= 0|E| then h(V ) is affinely independent from all points listed
previously, thus PCW is full-dimensional with dimension |E| + 1. For a = 0|E| all points lie
on the hyperplane y0 = 0. �

For G = (V,E) a star with center r ∈ V , weights av = 0 for all v ∈ V and a0 ≥ 0 it can easily
be worked out that PCW is completely described by the equality y0 = 0 and the inequalities
0 ≤ yrv ≤ 1 for all v ∈ V \ {r}. So from now on we assume av > 0 for at least one v ∈ V .
Let us first state trivial valid inequalities and facets of PCW.

Proposition 39. For a star G = (V,E) with center r ∈ V , a 6= 0|E| and a(V ) ≤ a0 the
trivial inequalities

0 ≤ yrv ≤ 1, ∀ v ∈ V \ {r} (27)

are facet-inducing except for one particular case: if there is exactly one v′ ∈ V \ {r} with
av′ = ar = 1

2a(V ) then yrv′ ≤ 1 does not induce a facet.

Proof. The validity of the inequalities yrv′ ≥ 0 and yrv′ ≤ 1 for all v′ ∈ V \ {r} follows from
the definition of PCW. In general, to prove that a valid inequality defines a facet of PCW

we have to find dim(PCW) affinely independent points of PCW which fulfill it with equality.
From Proposition 38 we know that dim(PCW) = |V | if a 6= 0|E| . For yrv′ ≥ 0 we choose the
|V | points h(∅), h(V ) and h({v}) for all v ∈ V \ {r, v′}. For yrv′ ≤ 1 the accumulation of
affinely independent points on the inequality is a bit more involved: If av′ 6= a(V \ {v′}) we
can choose the |V | points h({v′}), h(V \ {v′}) and h({v′, v}) for all v ∈ V \ {r} with v 6= v′.
If av′ = a(V \ {v′}) we look at two cases:

1. ar 6= av′ : Then there is a ṽ ∈ V \ {r, v′} with aṽ > 0. Furthermore, since av′ =
a(V \ {v′}), we have av′ = 1

2a(V ). Together with aṽ > 0 this implies a({v′, ṽ}) 6=
a(V \ {v′, ṽ}), i.e., h({v′, ṽ}) 6= h(V \ {v′, ṽ}). Thus we can choose the |V | points
h({v′}), h({v′, v}) for all v ∈ V \ {r, v′} and h(V \ {v′, ṽ}).

2. ar = av′ : The set of points contained in the definition of PCW which fulfill yrv′ =
1 is {h(S), h(V \ S) : S ⊆ V, v′ ∈ S, r ∈ V \ S}. Lemma 37 implies for every pair
(h(S), h(V \ S)) in this set that a(S) = a(V \ S). Since a(S) + a(V \ S) = a(V )
we get a(S) = 1

2a(V ) for all S with y = χδ(S) and yrv = 1. Thus all vertices of PCW

fulfilling yrv = 1 live in the hyperplane {y ∈ R
|E|+1 : y0 = 1

2a(V )}. Therefore, yrv ≤ 1
cannot induce a facet of PCW. �

In the following two propositions we look into non-trivial facets of PCW. Proposition 40 deals
with the case a(V \ {r}) > ar and Proposition 41 with the case a(V \ {r}) ≤ ar.
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Proposition 40. Let G = (V,E) be a star with center r ∈ V , a 6= 0|E|, a(V ) ≤ a0 and
a(V \ {r}) > ar. We call a triple (Vp, v̄, Vn) feasible if it fulfills V = {r, v̄} ∪̇ Vp ∪̇ Vn and
a(Vp) ≤

1
2a(V ) < a(Vp) + av̄. For all feasible triples (Vp, v̄, Vn) the inequalities

y0 +
∑

v∈Vp

avyrv + (a(V ) − 2a(Vp) − av̄) yrv̄ −
∑

v∈Vn

avyrv ≤ a(V ) (28)

y0 −
∑

v∈Vp

avyrv − (a(V ) − 2a(Vp) − av̄) yrv̄ +
∑

v∈Vn

avyrv ≥ 0 (29)

are facet-inducing for PCW.

Note, that it is possible that either Vp or Vn of feasible triples (Vp, v̄, Vn) might be empty, but
for a(V \ {r}) > ar there always is the special element v̄.

Proof of Proposition 40. To cut down our efforts in this proof and the ones to follow
observe that for each feasible triple (Vp, v̄, Vn) the corresponding pair of inequalities (28)
and (29) is symmetric to the hyperplane { y ∈ R

|E| : 2y0 = a(V ) }. To see this, subtract the
equation 2y0 = a(V ) from (28) to yield (29). Thus it suffices to show that (28) is valid and
facet-defining. Furthermore, to show the validity of (28) it is sufficient to only look at the
“upper” points defining PCW, i.e., if w.l.o.g. S ⊆ V such that a(S) ≥ a(V \ S) then we only
need to check validity of (28) for h(S) = (a(S), χδ(S))T .
Consider an arbitrary S ⊆ V such that a(S) ≥ a(V \ S). Let V 1 = {v ∈ V : rv ∈ δ(S)}.
Recall that a(S) + a(V \ S) = a(V ). We discern the following four cases:

1. v̄ ∈ V 1 = S: For

(

a(S)

χδ(S)

)

the left-hand side of (28) equals

a(V 1) + a(Vp ∩ V 1) + a(V ) − 2a(Vp) − av̄ − a(Vn ∩ V 1) =
2a(Vp ∩ V 1) + a(V ) − 2a(Vp) =

a(V ) − 2a(Vp \ V 1) ≤ a(V )

where the first equality uses a(V 1) = a(Vp ∩ V 1) + av̄ + a(Vn ∩ V 1) and the inequality
is due to a(Vp \ V 1) ≥ 0.

2. v̄ /∈ V 1 = S: For

(

a(S)

χδ(S)

)

the left-hand side of (28) equals

a(V 1) + a(Vp ∩ V 1) − a(Vn ∩ V 1) = 2a(Vp ∩ V 1) ≤ 2a(Vp) ≤ a(V )

where the equality uses a(V 1) = a(Vp ∩ V 1) + a(Vn ∩ V 1) and the last inequality is due
to a(Vp) ≤

1
2a(V ) by the definition of Vp.

3. v̄ ∈ V 1 = V \ S: For

(

a(S)

χδ(S)

)

the left-hand side of (28) equals

a(V ) − a(V 1) + a(Vp ∩ V 1) + a(V ) − 2a(Vp) − av̄ − a(Vn ∩ V 1) =
2a(V ) − 2a(Vp) − 2av̄ − 2a(Vn ∩ V 1) <

2a(V ) − a(V ) − 2a(Vn ∩ V 1) ≤ a(V )

where the first equality uses a(V 1) = a(Vp ∩V 1)+av̄ +a(Vn ∩V 1), the strict inequality
is due to a(Vp) + av̄ > 1

2a(V ) by the definition of Vp and v̄ and the inequality holds
since a(Vn ∩ V 1) ≥ 0.
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4. v̄ /∈ V 1 = V \ S: For

(

a(S)

χδ(S)

)

the left-hand side of (28) equals

a(V ) − a(V 1) + a(Vp ∩ V 1) − a(Vn ∩ V 1) = a(V ) − 2a(Vn ∩ V 1) ≤ a(V )

where the first equality uses a(V 1) = a(Vp ∩V 1) + a(Vn ∩V 1) and the inequality is due
a(Vn ∩ V 1) ≥ 0.

In order to show that (28) is also facet-defining, let Vp = {vp
1 , . . . , vp

|Vp|
} and Vn =

{vn
1 , . . . , vn

|Vn|
}. Then the |V | points

h(V )
h(V \ {vp

1})
. . .
h(V \ {vp

1 , . . . , vp

|Vp|
})

h({vp
1 , . . . , vp

|Vp|
, v̄})

h({vp
1 , . . . , vp

|Vp|
, v̄, vn

1 })

. . .
h({vp

1 , . . . , vp

|Vp|
, v̄, vn

1 , . . . , vn
|Vn|

})

fulfill the inequality (28) with equality and are affinely independent, thus (28) is a facet-
inducing inequality. �

In the case of a(V \ {r}) ≤ ar the set Vn is empty, there is no v̄ and the inequalities (28)
and (29) take the following form.

Proposition 41. For a star G = (V,E) with root r ∈ V , a 6= 0|E| , a(V ) ≤ a0 and
a(V \ {r}) ≤ ar the inequalities

y0 +
∑

v∈V \{r}

avyev ≤ a(V ) (30)

y0 −
∑

v∈V \{r}

avyev ≥ 0 (31)

are facet-inducing for PCW.

Proof. We start again by observing the symmetry of the inequalities (30) and (31) to the
hyperplane { y ∈ R

|E| : 2y0 = a(V ) }. To see this, subtract the equation 2y0 = a(V ) from
inequality (30) to yield inequality (31). Thus we only have to prove the validity and facet-
induction of the inequality (30) or (31). We choose (30). Take an S ⊆ V with a(S) ≥

a(V \ S). Then h(S) =

(

a(S)

χδ(S)

)

is one of the points defining PCW. We see that V \ S =

{v ∈ V : rv ∈ δ(S)}. Now plug h(S) into the left-hand side of (30) to get

a(S) + a(V \ S) = a(V ) . (32)

The point h(V \S) =

(

a(V \ S)

χδ(V \S)

)

can also not violate (30) since a(V \S) ≤ a(S), thus (30)

is valid for PCW.
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In order to show that (30) is facet-inducing let v1, . . . , v|V |−1 be an arbitrary ordering of the
nodes in V \ {r}. Then by (32) the dim(PCW) = |V | points

h(V ), h(V \ {v1}), . . . , h
(

V \ {v1, . . . , v|V |−1}
)

fulfill the inequality (30) with equality and are affinely independent. �

All possible facets of PCW fall into one of the following three classes:

y0 +
∑

v∈V \{r}

γvyrv ≤ γ0 (33)

∑

v∈V \{r}

γvyrv ≤ γ0 (34)

−y0 +
∑

v∈V \{r}

γvyrv ≤ γ0 (35)

In the next two lemmas we will look closer into coefficients of facets of the form (33). The
following three propositions state that we have found all facets of PCW of the forms (33),
(34) and (35), respectively. Finally, Theorem 47 summarizes the results. The section is
accompanied by two small examples on how to apply the inequalities to derive capacity
reduced bisection knapsack walk inequalities.

Lemma 42. For an arbitrary facet of PCW of the form (33) we have for all v ∈ V \ {r}

−av ≤ γv ≤ av .

Proof. Let γṽ > 0. The facet has a root
(

ŷ0, ŷ
T
)T

with ŷrṽ = 0, because otherwise all roots

ŷ would lie on the equation ŷrṽ = 1, thus (33) could not induce a facet. Let ŷ = χδ(S) for an
S ⊆ V with a(S) ≥ a(V \ S), i.e., ŷ0 = a(S). To bound γṽ we look at ȳ = ŷ + erṽ, i.e., the
cut δ(S)∪ {rṽ}. We discern three cases concerning the location of node ṽ and the size of the
bigger cluster:

1. ṽ ∈ V \ S: By assumption a(S) ≥ a(V \ S), thus a(S ∪ {ṽ}) ≥ a(V \ (S ∪ {ṽ})). Set

ȳ0 = a(S ∪ {ṽ}), i.e.,
(

ȳ0, ȳ
T
)T

= h(S ∪ {ṽ}) ∈ PCW. In order for (33) to be feasible

for
(

ȳ0, ȳ
T
)T

we need γ0 ≥ ȳ0 +
∑

v∈V \{r} γvȳrv. Since
(

ŷ0, ŷ
T
)T

is a root of (33) we
have γ0 = ŷ0 +

∑

v∈V \{r} γvŷrv. Thus, ŷ0 +
∑

v∈V \{r} γvŷrv ≥ ȳ0 +
∑

v∈V \{r} γvȳrv, i.e.,
ŷ0 ≥ ȳ0 + γṽ. Therefore, γṽ ≤ ŷ0 − ȳ0 = −aṽ. This contradicts our assumption γṽ > 0,
thus the case ṽ ∈ V \ S is not possible.

2. ṽ ∈ S and a(S\{ṽ}) ≥ a((V \S)∪{ṽ}): Set ȳ0 = a(S\{ṽ}), i.e.,
(

ȳ0, ȳ
T
)T

= h(S\{ṽ}) ∈

PCW. As
(

ȳ0, ȳ
T
)T

is feasible for (33) we derive, as in the previous case, ŷ0 ≥ ȳ0 + γṽ,
hence γṽ ≤ ŷ0 − ȳ0 = a(S) − a(S \ {ṽ}) = aṽ.

3. ṽ ∈ S and a(S \ {ṽ}) < a((V \ S) ∪ {ṽ}): This implies a(S \ {ṽ}) < 1
2a(V ). Set

ȳ0 = a((V \ S) ∪ {ṽ}), i.e.,
(

ȳ0, ȳ
T
)T

= h((V \ S) ∪ {ṽ}) ∈ PCW. From the feasibility
of (33) we conclude ŷ0 ≥ ȳ0 + γṽ. Therefore, γṽ ≤ ŷ0 − ȳ0 = a(S) − a((V \ S) ∪ {ṽ}) =
aṽ + 2a(S \ {ṽ}) − a(V ) < aṽ, where the last inequality uses 2a(S \ {ṽ}) − 1

2a(V ) < 0.
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An analogous argumentation yields −aṽ ≤ γṽ in case γṽ < 0 if we choose ŷ as a root of (33)
with ŷrv = 1 and construct ȳ = ŷ − erv. �

Lemma 43. For an arbitrary facet of PCW of the form (33) we have γ0 = a(V ) and
∑

v∈V \{r} γv ≤ ar.

Proof. In order for (33) to be valid for h(V ) =
(

a(V ), (χδ(V ))T
)T

∈ PCW we get γ0 ≥ a(V ).
We discern two cases regarding the weight of the root node r.

1. ar < a(V \{r}): (33) has to be valid for
(

a(V \ {r}), (χδ(V \{r}))T
)T

= h(V \{r}) ∈ PCW,
thus

∑

v∈V \{r} γv ≤ γ0 − a(V \ {r}).

2. ar ≥ a(V \ {r}): (33) has to be valid for
(

ar, (χ
δ({r}))T

)T
= h({r}) ∈ PCW, thus

∑

v∈V \{r} γv ≤ γ0 − ar ≤ γ0 − a(V \ {r}).

Thus in any case we have
∑

v∈V \{r}

(av + γv) ≤ γ0 . (36)

We can now use av + γv ≥ 0 (by Lemma 42) and yrv ∈ [0, 1] for all
(

y0, y
T
)T

∈ PCW to
conclude that

∑

v∈V \{r}

(av + γv)yrv ≤ γ0 (37)

is a valid inequality for PCW. Additionally, ar = a(V )−a(V \{r}), thus it is sufficient to show
that γ0 = a(V ) if (33) induces a facet of PCW, because then (36) implies

∑

v∈V \{r} γv ≤ ar.
To show that (33) cannot define a facet if γ0 > a(V ), we study which points h(S) ∈ PCW

could fulfill (33) with equality if γ0 > a(V ). For this purpose let S ⊆ V such that ỹ0 = a(S) ≥
a(V \ S) and let ỹ = χδ(S). First we prove that no points h(S) with r ∈ S can lie on such an
inequality. Indeed, if r ∈ S then ỹ0+

∑

v∈V \{r} γvỹrv = a(S)+
∑

v∈V \S γv ≤ a(V ) < γ0, where

the ≤-inequality is due to γv ≤ av by Lemma 42. Therefore,
(

ỹ0, ỹ
T
)T

cannot lie on the facet.
For points h(S) with r ∈ V \ S lying on the inequality we show that they also satisfy (37)

with equality. Indeed, let
(

ỹ0, ỹ
T
)T

as defined above satisfy ỹ0 +
∑

v∈V \{r} γvỹrv = γ0. Since
ỹ0 =

∑

v∈V \{r} avỹrv we obtain γ0 =
∑

v∈V \{r}(av + γv)ỹrv. Thus, we have proved that all
points of PCW which lie on (33) also fulfill another valid inequality, which is not a scalar
multiple of (33), with equality. Therefore, (33) cannot be a facet of PCW. �

Proposition 44. For a star G = (V,E) with root r ∈ V , a 6= 0|E| and a(V ) ≤ a0 all facets
of the form (33) for PCW are defined by (28) if a(V \ {r}) > ar and (30) if a(V \ {r}) ≤ ar.

Proof. We have shown in Lemma 42 that each coefficient γv for all v ∈ V \ {r} in all facets
of PCW of the form (33) fulfills

−av ≤ γv ≤ av . (38)

Lemma 43 tells us that for each individual facet of PCW of the form (33) the coefficients fulfill

∑

v∈V \{r}

γv ≤ ar (39)
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and
γ0 = a(V ) . (40)

For any given y ∈ [0, 1]|E| we will now determine the best γ0 and γ subject to the con-
straints (38), (39) and (40) so that y0 ≤ γ0 −

∑

v∈V \{r} γvyrv is as small as possible. If we
can always exhibit an optimal solution γ∗

0 , γ∗ that corresponds to the coefficients of (28) if
a(V \ {r}) > ar or (30) if a(V \ {r}) ≤ ar then the proof is complete. At first note that (40)
directly fixes γ0 to a(V ) which corresponds to the right-hand sides of (28) and (30). Now
look at the problem

min a(V ) −
∑

v∈V \{r}

yrvγv

s.t.
∑

v∈V \{r}

γv ≤ ar

−av ≤ γv ≤ av ∀v ∈ V \ {r} .

(41)

Noting that a maximal y0 will always equal γ0 −
∑

v∈V \{r} γvyrv and using the variable
transformation γ̃v = γv + av we see that problem (41) is equivalent to

max
∑

v∈V \{r}

yrvγ̃v −
∑

v∈V \{r}

yrvav

s.t.
∑

v∈V \{r}

γ̃v ≤ a(V )

0 ≤ γ̃v ≤ 2av ∀v ∈ V \ {r} .

(42)

We recognize (42) as the continuous bounded knapsack problem (see Sections 3.2 and 3.3.1
in [13]) with continuous variables γv, profits yrv, weights 1 and upper bound 2av for all items
v ∈ V \ {r} and knapsack capacity a(V ). An optimal solution can be found by sorting the
items v with respect to non-increasing profit-to-weight ratios yrv/1, w.l.o.g. let this ordering
be 1, 2, . . . , |V |−1, and using this ordering to pack the knapsack in the following way: γ̃v = 2av

for all v = 1, . . . , v̄ − 1 with 2a({1, . . . , v̄ − 1}) ≤ a(V ) and 2a({1, . . . , v̄ − 1}) + 2av̄ > a(V ),
γ̃v̄ = a(V )− 2a({1, . . . , v̄ − 1}), and γ̃v = 0 for all v = v̄ + 1, . . . , |V | − 1. The item v̄ is called
the critical item. Note that if one v̄ can be chosen as the critical item then so can all v 6= v̄
with yrv = yrv̄.
Now we can substitute again γ̃v = γv + av and obtain the optimal solution of problem (41):
γv = av for all v = 1, . . . , v̄ − 1 with a({1, . . . , v̄ − 1}) ≤ 1

2a(V ) and a({1, . . . , v̄ − 1}) + av̄ >
1
2a(V ), γv̄ = a(V ) − 2a({1, . . . , v̄ − 1}) − av̄, and γv = −av for all v = v̄ + 1, . . . , |V | − 1.
Finally we observe that we have determined a feasible triple (Vp = {1, . . . , v̄ − 1}, v̄, Vn =
{v̄ + 1, . . . , |V | − 1}), i.e., we have found an inequality of (28) if a(V \ {r}) > ar, because in
this case the capacity restriction

∑

v∈V \{r} γv ≤ ar of (41) is a bottleneck, i.e., there must be
a critical item v̄ ∈ V \ {r}. In case a(V \ {r}) ≤ ar there is no critical item v̄ ∈ V \ {r}, i.e.,
all items can be packed with their full availability of av into the knapsack (41), thus γv = av

for all v ∈ V \ {r} and we have determined inequality (30). �

Proposition 45. For a star G = (V,E) with root r ∈ V , a 6= 0|E| and a(V ) ≤ a0 all facets
of the form (35) for PCW are defined by (29) if a(V \ {r}) > ar and (31) if a(V \ {r}) ≤ ar.

Proof. Use the symmetry of PCW, of pairs (33) and (35) with the same γv and γ0, of
pairs (28) and (29) and of pairs (30) and (31) to the hyperplane { y ∈ R

|E| : 2y0 = a(V ) }
and apply Proposition 44. �
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Proposition 46. For a star G = (V,E) with root r ∈ V , a 6= 0|E| and a(V ) ≤ a0 all facets
of the form (34) for PCW are defined by (27).

Proof. It is trivial to show that facets of a polytope with coefficient zero for a fixed variable
are also facets of the projection of this polytope if one projects out this variable. Since
the hyperplanes defined by inequalities of the form (34) have coefficient zero for variable
y0 we have to look at the projection of PCW onto the space R

|E| and have to show that

this projection only has facets of the form (27). A point
(

a(S), (χδ(S))T
)T

∈ R
|E|+1 used to

define PCW is projected to χδ(S) ∈ R
|E|, and since a(V ) ≤ a0 the polytope PCW contains

the points
(

a(S), (χδ(S))T
)T

∈ R
|E|+1 for all S ⊆ V , thus its projection contains all possible

points {0, 1}|E|. Furthermore, the projection of any other point of PCW can be written as
the convex combination of points {0, 1}|E|. Thus the projection of PCW is exactly the |E|-
dimensional hypercube. To finish the proof we note that the |E|-dimensional hypercube is
completely described by the projection of the inequalities (27). �

Theorem 47. For a star G = (V,E) with root r ∈ V , a 6= 0|E| and a(V ) ≤ a0 we have

PCW = { y ∈ R
|E|+1 : y fulfills (27), (28) and (29) } =: Y, if a(V \ {r}) > ar, and

PCW = { y ∈ R
|E|+1 : y fulfills (27), (30) and (31) } =: Y r, if a(V \ {r}) ≤ ar.

Proof. If a(V \ {r}) > ar Propositions 39 and 40 show that Y ⊇ PCW, and to show Y ⊆ PCW

we can use Propositions 44, 45 and 46. If a(V \ {r}) ≤ ar Propositions 39 and 41 show that
Y r ⊇ PCW and to prove Y r ⊆ PCW we can use again Propositions 44, 45 and 46. �

Remark 48. Note that in all assertions of this section we have assumed a(V ) ≤ a0. This
assumption guarantees that every S ⊆ V contributes its point h(S) to PCW. If we reduce a0

below a(V ) the facial structure of PCW becomes much more complicated, because suddenly the
whole complexity of the knapsack polytope PK comes into play. So far a complete description
of PCW with a(V ) > a0 seems out of reach, even if we assume av = 1 for all v ∈ V .

Example 49. We continue Example 33. For the choice of the subgraphs Ḡl compare
Figure 11.

(2) The bisection knapsack walk inequality on V ′ = {1, 2, 3} with root node r = 3 and
Hv = ∅ for all v ∈ V ′ is 1 + (1 − y13) + (1 − y23) ≤ 4. With Ḡ1 and Ḡ2 such that
V̄1 = {4, 5}, V̄2 = {6, 7}, Ē1 = {45} and Ē2 = {67} the capacity reduced bisection
knapsack walk inequality reads 1 + (1 − y13) + (1 − y23) ≤ 4 − y45 − y67 and is a facet
of PB.

(3) For V ′ = {1, 2, 3, 4}, r = 3 and Hv = ∅ for all v ∈ V ′ the bisection knapsack walk
inequality is 1 + (1 − y13) + (1 − y23) + (1 − y34) ≤ 4. Proposition 40 establishes that
for Ḡ with V̄ = {5, 6, 7, 8} and Ē = {56, 67, 68} one of the best minorizing functions
for β̌Ḡ is y56 + y67 − y68. Thus the resulting capacity reduced bisection knapsack walk
inequality reads 1 + (1 − y13) + (1 − y23) + (1 − y34) ≤ 4 − y56 − y67 + y68. It is a facet
of PB.

27



F = 4, fi = 1 ∀i ∈ V
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Figure 11: Graphs for Ex. 49
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