


Some formulas for the conjugate of convex risk
measures
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Abstract. The aim of this paper is to give formulas for the conjugate functions
of different convex risk measures. To this end we use, on the one hand, some
classical results from convex analysis and, on the other hand, some tools from
the conjugate duality theory. The characterizations of the so-called deviation
measures recently given in the literature (see [8]) follow immediately from our
results as natural consequences.
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1 Introduction
In many practical applications like those which appear in the portfolio optimiza-
tion, the notion of “risk” plays an important role. It reflects the uncertainty of
some processes and one challenge consists in quantifying it by an appropriate
measure. Until now in the literature different formulations for such a so-called
risk measure have been made. The classical application in financial mathematics
is the portfolio optimization problem treated by Markowitz (cf. [7]), where the
risk of a portfolio was measured by means of the standard deviation and variance,
respectively.
In 1998 Artzner et al. (cf. [1]) first gave an axiomatic definition of what they
called coherent risk measure. The properties in the definition of this class of
measures seem to be common in many practical problems. In 2002 Rockafellar et
al. (cf. [10]) introduced a new class of measures closely related to the coherent risk
measures, called deviation measures. An important representative of this class of
measures is the variance. It is remarkable that the coherent risk measures as well
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as the deviation measures fulfill some positive homogeneity and subadditivity
properties. As many risk measures used in practice do not fulfill these properties,
the class of coherent risk measures has been extended to the class of convex
risk measures (see for example the paper of Föllmer and Schied, [5]), in which
definition the sublinearity was replaced by convexity. Recent papers, where some
theoretical results concerning convex risk measures have been given, are the works
of Pflug (cf. [8]) and Ruszczynski and Shapiro (cf. [12]).
In [12] some necessary and sufficient conditions for the optimal solutions of op-
timization problems with convex risk measures as objective functions are given,
whereas in [8] the author gives some dual representations for a number of convex
risk and deviation measures with practical relevance.
In this paper we consider different convex risk and deviation measures, defined
in analogy to Pflug’s paper, and calculate their conjugate functions. To this end
we use the powerful theory of conjugate functions from convex analysis as well as
some duality results for convex optimization problems in locally convex spaces.
By using the Fenchel–Moreau theorem we succeed to give a dual representation
for all measures we deal with. In this way we extend and improve the results
obtained by Pflug ([8]).
The paper is organized as follows. In the next section we introduce some notations
and preliminary results coming from convex analysis as well as from the theory
of stochastics. Further, in Section 3, we introduce the notion of a convex risk
measure and, closely connected with it, that of a convex deviation measures. Then
we give some examples for these two classes of measures. Section 4 is devoted
to the calculation of the conjugates of some classical convex risk and deviation
measures. In Section 5 we deal with some elaborated convex risk and deviation
measures and we calculate their conjugates by using the general formula of the
conjugate of a composed convex function. Finally, in the last section, we derive
some dual representations for the convex risk and deviation measures considered
in the previous two sections and compare our results with the ones given by Pflug
in [8].

2 Notations and preliminary results
In this section we introduce some notations and preliminary results used later in
the paper.
Let Z be a nontrivial locally convex space and Z∗ its topological dual space
endowed with the weak∗ topology. We denote by 〈x∗, x〉 := x∗(x) the value of the
linear continuous functional x∗ ∈ Z∗ at x ∈ Z.
For a set D ⊆ Z we denote by cl(D) the closure of D, by int(D) its interior and
by core(D) = {d ∈ D : ∀x ∈ Z ∃ε > 0 : ∀λ ∈ [−ε, ε] d + λx ∈ D} its algebraic
interior. The indicator function δD : Z → R = R∪{±∞} of the set D is defined
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by

δD(x) =

{
0, x ∈ D,
+∞, otherwise.

By taking a function f : Z → R we consider the (Fenchel-Moreau) conjugate
function of f , f ∗ : Z∗ → R defined by

f ∗(x∗) = sup
x∈Z

{〈x∗, x〉 − f(x)}.

Similarly, the biconjugate function of f , f ∗∗ : Z → R is defined by

f ∗∗(x) = sup
x∗∈Z∗

{〈x∗, x〉 − f ∗(x∗)}.

Further, for the function f : Z → R we consider also its epigraph epi(f) =
{(x, r) : x ∈ Z, r ∈ R : f(x) ≤ r} and its effective domain dom(f) = {x ∈ Z :
f(x) < +∞}. We say that f is proper if dom(f) 6= ∅ and f(x) > −∞, ∀x ∈ Z.
We can state now a very important result coming from convex analysis:

Theorem 2.1. (Fenchel-Moreau) Let f : Z → R be a proper, convex and
lower semicontinuous function. Then it holds f = f ∗∗.

The following theorem gives a sufficient condition for the formula of the conjugate
of the precomposition of a convex function with a linear continuous mapping (see
[9]). In what follows U is another nontrivial locally convex space.
Let us mention that all around this paper we write min (max) instead of inf (sup)
when the infimum (supremum) is attained.

Theorem 2.2. Let f : Z → R be a proper and convex function and A : U → Z
a linear continuous mapping. Assume that there exists x′ ∈ A−1(dom(f)) such
that f is continuous at Ax′. Then

(f ◦ A)∗(u∗) = min{f ∗(z∗) : A∗z∗ = u∗}, ∀u∗ ∈ U∗.

The next result we recall in this section deals with Lagrange duality for the
optimization problem with cone constraints

(P ) inf
x∈X,

g(x)∈−K

f(x),

where X ⊆ Z is a non-empty convex set, K ⊆ U is a closed, convex cone,
f : Z → R is a convex, continuous function and g : Z → U is a K-convex
(g(Z) + K is convex), continuous function. For having strong duality between
(P ) and the Lagrange dual problem

(DL) sup
λ∈K∗

inf
x∈X

{f(x) + 〈λ, g(x)〉},
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some weak closedness type constraint qualifications have been recently introduced
in the literature (cf. [3], [4], [6]). In the definition of (DL), by K∗ = {λ ∈ U∗ :
〈λ, u〉 ≥ 0, ∀u ∈ K} we denote the dual cone of K. Let further 〈λ, g〉 : Z → R
be the function defined by 〈λ, g〉(x) := 〈λ, g(x)〉, ∀x ∈ X.
In order to formulate the strong duality between (P ) and (DL) let us introduce
first the following so-called closed cone constraint qualification (see [4], [6]):

(CCCQ)
⋃

λ∈K∗

epi((〈λ, g〉+ δX)∗) is a weak∗ closed set.

For the optimization problem (P ) we denote by v(P ) its optimal objective value.

Theorem 2.3. ([4], [6]) Under the assumptions made above for (P ), if (CCCQ)
is fulfilled, then v(P ) = v(DL) and the Lagrange dual has an optimal solution.

Consider now the probability space (Ω, F, P), where Ω is a basic space, F a σ-
algebra on Ω and P a probability measure on the measureable space (Ω, F). For
a measurable random variable x : Ω → R the expectation value is defined with
respect to P by

E(x) =

∫
Ω

x(ω)dP(ω).

The essential supremum of x is

essup x = inf{a ∈ R : P(ω : x(ω) > a) = 0}.

Furthermore for p ∈ [1, +∞) let Lp be the following linear space of random
variables:

Lp := Lp(Ω, F, P, R) =

{
x : Ω → R, x measureable,

∫
Ω

|x(ω)|pdP(ω) < +∞
}

.

The space Lp equipped with the norm ||x||p = (E(|x|p))
1
p for x ∈ Lp is a Banach

space. It is well-known that the dual space of Lp is Lq := Lq(Ω, F, P, R), where
q ∈ (1, +∞] fulfills 1

p
+ 1

q
= 1. The space

L∞ := L∞(Ω, F, P, R) =

{
x : Ω → R, x measureable, essup |x| < +∞

}
is considered to be equipped with the essential supremum norm.
In order to make these spaces paired we consider on Lp the norm topology and
on Lq the weak∗ topology. If p ∈ (1, +∞) then Lp and Lq are reflexive Banach
spaces and they are paired spaces equipped with the norm topologies. The closed
unit ball in Lq is denoted by Bq(0, 1).

4



For x ∈ Lp, x∗ ∈ Lq and x∗x : Ω → R, defined by (x∗x)(ω) := x∗(ω) · x(ω), one
can define now

〈x∗, x〉 := E(x∗x) =

∫
Ω

x∗(ω)x(ω)dP(ω).

Equalities and inequalities between random variables are to be viewed in the sense
of holding almost surely (a.s.). Thus for x, y : Ω → R when we write “x = y” or
“x ≥ y” we mean “x = y a.s.” or “x ≥ y a.s.”, respectively. For p ∈ [1, +∞), the
cone (Lp)+ = {x ∈ Lp : x ≥ 0 a.s.} is inducing the partial ordering denoted by
“≥”. The dual cone of (Lp)+ is (Lq)+, where q ∈ (1, +∞] fulfills 1

p
+ 1

q
= 1. The

partial ordering induced by (Lq)+ is also denoted by “≥”. As these orderings are
given in different linear spaces, no confusion is possible.
Having a random variable x : Ω → R which takes the constant value c ∈ R, i.e.
x = c a.s., we identify it with the real number c ∈ R.
For an arbitrary random variable x : Ω → R we also define x−, x+ : Ω → R in
the following way:

x−(ω) := max(−x(ω), 0) ∀ω ∈ Ω

and x+(ω) := max(x(ω), 0) ∀ω ∈ Ω.

One can easily see that x = x+ − x−, x+ = (−x)− and x− = (−x)+.

3 Risk measures and deviation measures
In this section we give some formal definitions of convex risk and deviation mea-
sures. In 2002 Föllmer and Schied (cf. [5]) first introduced the convex risk
measures as an extension of the well-known coherent risk measures. The latter
have been introduced in [1], where for the first time an axiomatic way for defining
risk measures has been given. Rockafellar and his coauthors (see [10]) introduced
along the coherent risk measures the so-called deviation measures and studied
the relation between these concepts.
In this paper we deal with the broad class of convex risk measures as done by
Ruszczynski and Shapiro (cf. [12]) and Pflug (see [8]), respectively. We want to
notice that a large number of risk functions mentioned in the literatur do not
have the sublinearity properties asked by the axioms of a coherent risk measure,
however they fulfill the properties in the definition of a convex risk measure. In
the following definition we introduce the notion of a convex risk measure as done
in [8].

Definition 3.1. The function ρ : Lp → R is called a convex risk measure if the
following properties are fulfilled:

(R1) Translation equivariance: ρ(x + b) = ρ(x)− b, ∀x ∈ Lp, ∀b ∈ R;
(R2) Strictness: ρ(x) ≥ −E(x), ∀x ∈ Lp;
(R3) Convexity: ρ(λx+(1−λ)y) ≤ λρ(x)+(1−λ)ρ(y), ∀λ ∈ [0, 1],∀x, y ∈ Lp.
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For certain applications it can be usefull to postulate some monotonicity proper-
ties of the risk measure, like, for example, the monotonicity with respect to the
pointwise ordering:

x ≥ y ⇒ ρ(x) ≥ ρ(y), ∀x, y ∈ Lp.

Closely related to the risk measure we can define the so-called convex deviation
measure.

Definition 3.2. The function d : Lp → R is called a convex deviation measure
if the following properties are fulfilled:

(R1) Translation invariance: d(x + b) = d(x), ∀x ∈ Lp, ∀b ∈ R;
(R2) Strictness: d(x) ≥ 0, ∀x ∈ Lp;
(R3) Convexity: d(λx+(1−λ)y) ≤ λd(x)+(1−λ)d(y), ∀λ ∈ [0, 1],∀x, y ∈ Lp.

The following theorem states the connection between convex risk and convex
deviation measures (see [8],[10], [11]).

Theorem 3.1. The function ρ : Lp → R is a convex risk measure if and only if
d : Lp → R, d(x) = ρ(x) + E(x), ∀x ∈ Lp, is a convex deviation measure.

Next we give some examples for convex risk measures and for the corresponding
deviation measures.

Example 3.1.
First we consider, for p = 2, ρ : L2 → R defined by

ρ(x) = ||x− E(x)||22 − E(x), x ∈ L2.

This is a convex risk measure and it is closely related to the classical variance
σ2(x) which is the corresponding deviation measure:

d(x) = σ2(x) = ||x− E(x)||22, x ∈ L2.

Example 3.2.
Let be again p = 2 and ρ : L2 → R defined by

ρ(x) = ||x− E(x)||2 − E(x), x ∈ L2.

The related convex deviation measure is the standard deviation σ(x)

d(x) = σ(x) = ||x− E(x)||2, x ∈ L2.

The convex risk and deviation measures in the previous examples are special
cases of some general classes of risk and deviation measures, respectively, which
are described in the following.
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Example 3.3.
For p ∈ [1, +∞) and a ≥ 1 we define the convex risk measure ρ : Lp → R,

ρ(x) = ||x− E(x)||ap − E(x), x ∈ Lp.

The corresponding convex deviation measure is d : Lp → R,

d(x) = ||x− E(x)||ap, x ∈ Lp.

In case p = a = 1, d is called mean absolute deviation.

Example 3.4.
Similar to Example 3.3, for p ∈ [1, +∞) and a ≥ 1 we consider the following
pairs of convex risk and deviation measures, ρ : Lp → R and d : Lp → R defined
by

ρ(x) = ||(x− E(x))−||ap − E(x), d(x) = ||(x− E(x))−||ap
and

ρ(x) = ||(x− E(x))+||ap − E(x), d(x) = ||(x− E(x))+||ap,

respectively.
The deviation measures we get by taking a = p = 1 are the so-called lower and
upper semideviation, respectively. For p = 2 and a = 1 we get the standard lower
and upper semideviation, respectively.

4 Conjugates of convex deviation measures: the
case a=1

In this section we deal with the formulas of the conjugate functions of some convex
deviation measures, including those in Example 3.3 and 3.4, for p ∈ [1, +∞) and
a = 1. Having these formulas we can easily calculate the formulas of the conjugate
functions of the corresponding risk measures. The following relation proves this,
as for x∗ ∈ Lq it holds

ρ∗(x∗) = sup
x∈Lp

{〈x∗, x〉 − ρ(x)} = sup
x∈Lp

{〈x∗, x〉 − d(x) + E(x)}

= sup
x∈Lp

{〈x∗, x〉 − d(x) + 〈1, x〉} = sup
x∈Lp

{〈x∗ + 1, x〉 − d(x)} = d∗(x∗ + 1).

(1)

In order to derive the formulas for the conjugates of the convex deviation measures
we need the following preliminary results.

Example 4.1.
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Let be f1 : Lp → R, f1(x) = ||x||p. It is well-known that the conjugate function
of f1 is f ∗1 : Lq → R,

f ∗1 (x∗) =

{
0, ||x∗||q ≤ 1,
+∞, otherwise.

Example 4.2.
We consider now f2 : Lp → R, f2(x) = ||x−||p. For x∗ ∈ Lq one obtains the
following formula for the conjugate function of f2, f ∗2 : Lq → R:

−f ∗2 (x∗) = inf
x∈Lp

{||x−||p − 〈x∗, x〉}

= inf
x∈Lp

{||max(−x, 0)||p − 〈x∗, x〉}.

Having for an arbitrary z ∈ Lp with the property z ≥ max(−x, 0) ≥ 0 that
||z||p ≥ ||max(−x, 0)||p, one gets further

−f ∗2 (x∗) = inf
x∈Lp,z∈Lp,

z≥max(−x,0)

{||z||p − 〈x∗, x〉} = inf
(x,z)∈Lp×Lp,
−x−z≤0,
−z≤0

{||z||p − 〈x∗, x〉}.

Let (P ) be the following convex optimization problem:

(P ) inf
(x,z)∈Lp×Lp,
−x−z≤0,
−z≤0

{||z||p − 〈x∗, x〉}.

The Lagrange dual problem of (P ) looks like

(DL) sup
λ1,λ2∈(Lq)+

inf
(x,z)∈Lp×Lp

{||z||p − 〈x∗, x〉 − 〈λ1, z〉 − 〈λ2, x + z〉}

= sup
λ1,λ2∈(Lq)+

{
inf

x∈Lp

{−〈x∗, x〉 − 〈λ2, x〉}+ inf
z∈Lp

{||z||p − 〈λ1, z〉 − 〈λ2, z〉}
}

= sup
λ1,λ2∈(Lq)+

{
inf

x∈Lp

{−〈x∗ + λ2, x〉}+ inf
z∈Lp

{||z||p − 〈λ1 + λ2, z〉}
}

= sup
λ1,λ2∈(Lq)+

{
−δ∗Lp

(x∗ + λ2)− (|| · ||p)∗(λ1 + λ2)
}

.

Since

δ∗Lp
(x∗ + λ2) =

{
0, x∗ = −λ2,
+∞, otherwise,

and

(|| · ||p)∗(λ1 + λ2) =

{
0, ||λ1 + λ2||q ≤ 1,
+∞, otherwise,
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the optimal objective value of the Lagrange dual (DL) can be written as

v(DL) =

{
0, ∃λ1 ∈ (Lq)+ : ||λ1 − x∗||q ≤ 1 and x∗ ∈ −(Lq)+,
−∞, otherwise,

=

 0, x∗ ∈
(

Bq(0, 1) + (Lq)+

)
∩ −(Lq)+,

−∞, otherwise,

=

{
0, x∗ ∈ Bq(0, 1) ∩ −(Lq)+,
−∞, otherwise.

The equivalence of the last two formulas comes from the equality of the sets(
Bq(0, 1) + (Lq)+

)
∩−(Lq)+ and Bq(0, 1)∩−(Lq)+. As the inclusion Bq(0, 1)∩

−(Lq)+ ⊆
(

Bq(0, 1) + (Lq)+

)
∩ −(Lq)+ is trivial, we prove the opposite one.

Let be x∗ ∈
(

Bq(0, 1) + (Lq)+

)
∩ −(Lq)+. Then x∗ = t∗ + z∗ ≤ 0, where

t∗ ∈ Bq(0, 1) and z∗ ∈ (Lq)+. Since −x∗ ≥ 0 and −z∗ ≤ 0 we have 0 ≤ −x∗ =
−t∗ − z∗ ≤ −t∗ and so ||x∗||q = || − x∗||q ≤ || − t∗||q = ||t∗||q ≤ 1. Thus
x∗ ∈ Bq(0, 1) ∩ −(Lq)+.

In order to identify −f ∗2 (x∗) with the optimal objective value of (DL) we have
to prove that between (P ) and (DL) strong duality holds. As (P ) is a convex
optimization problem one needs a constraint qualification for closing the gap
between these duals. Let us notice that, since int((Lp)+) = core((Lp)+) = ∅,
one cannot use the generalized interior-point constraint qualifications given in
the literature for convex optimization problems with cone inequality constraints.
But, what we prove now is that (CCCQ) is fulfilled. Let be g : Lp × Lp → Z,
g(x, z) = (−x− z,−z) and λ = (λ1, λ2) ∈ (Lq)+ × (Lq)+. One has

(x∗, z∗, r) ∈ epi((〈λ, g〉+ δLp×Lp)
∗) = epi(〈λ, g〉∗)

⇔ 〈λ, g〉∗(x∗, z∗) ≤ r

⇔ sup
x∈Lp,z∈Lp

{〈x∗, x〉+ 〈z∗, z〉 − 〈λ1,−x− z〉 − 〈λ2,−z〉} ≤ r

⇔ sup
x∈Lp

{〈x∗, x〉 − 〈λ1,−x〉}+ sup
z∈Lp

{〈z∗, z〉 − 〈λ1 + λ2,−z〉} ≤ r

⇔ sup
x∈Lp

{〈x∗ + λ1, x〉}+ sup
z∈Lp

{〈z∗ + λ1 + λ2, z〉} ≤ r

⇔ x∗ = −λ1, z∗ = −λ1 − λ2, r ∈ [0, +∞).

In order to prove that (CCCQ) is fulfilled we have to show that

M :=
⋃

λ1,λ2∈(Lq)+

{−λ1} × {−λ1 − λ2} × [0, +∞)
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is closed in Lq×Lq×R with respect to the product topology induced by the norm
topology on Lq and the Euclidean topology on R. One can notice that since M
is convex this is the same with M is weak∗ closed.
Take (x∗, z∗, r) ∈ cl(M) and (x∗n, z

∗
n, rn) ∈ M such that (x∗n, z

∗
n, rn) →

(x∗, z∗, r) (n → +∞). Then there exists ∀n ∈ N, (λn
1 ), (λn

2 ) ∈ (Lq)+

and rn ≥ 0 such that x∗n = −λn
1 and z∗n = −λn

1 − λn
2 . It follows −x∗ ∈

(Lq)+, x∗ − z∗ = lim
n→∞

(−λn
1 − z∗n) = lim

n→∞
(λn

2 ) ∈ (Lq)+ and r ≥ 0. Thus
(x∗, z∗, r) = (−(−x∗),−(−x∗) − (x∗ − z∗), r) ∈ M and the set M turns out
to be closed.
By Theorem 2.3 it follows that

f ∗2 (x∗) = −v(P ) = −v(DL) =

{
0, ||x∗||q ≤ 1, x∗ ≤ 0,
+∞, otherwise. (2)

Finally we give an equivalent formulation since the domain of the conjugate f ∗2 can
be restricted to the set of those x∗ ∈ Lq which fulfill x∗ ≤ 0 and −1 ≤ E(x∗) ≤ 0.
(Note that x∗ ≤ 0 implies E(x∗) ≤ 0 and that ||x∗||q ≤ 1 implies |E(x∗)| ≤ 1.)
This leads to the following formula for the conjugate of f2 (see also [8]):

f ∗2 (x∗) =

{
0, x∗ ≤ 0, ||x∗||q ≤ 1, −1 ≤ E(x∗) ≤ 0,
+∞, otherwise. (3)

In the next example we deal with the conjugate function of the deviation measure
d1(x) = ||x− E(x)||p, which will be derived from a more general formula.

Example 4.3.
Consider d1 : Lp → R, d1(x) = ||x− E(x)||p and A : Lp → Lp, Ax = x− E(x).
Here we have to interpret E(x) ∈ R as a (constant) element of Lp. Denoting for
C ∈ F by 1C : Ω → R the random indicator function

1C(ω) =

{
1, ω ∈ C,
0, otherwise,

the linear continuous mapping A can be written as Ax = x− E(x)1Ω.
Having now d1(x) = ||Ax||p, ∀x ∈ Lp, in order to calculate d∗1, we can use
Theorem 2.2. Since || · ||p is continuous on Lp, the regularity condition is fulfilled
and we have ∀x∗ ∈ Lq:

d∗1(x
∗) = min{(|| · ||p)∗(y∗) : A∗y∗ = x∗}

=

{
0, ∃y∗ ∈ Lq : A∗y∗ = x∗ and ||y∗||q ≤ 1,
+∞, otherwise.

From the calculation above one can see that we need the adjoint operator of A.
In the following we show that A is self-adjoint, i.e. A = A∗. For x ∈ Lp and
x∗ ∈ Lq it holds:

〈x∗, Ax〉 = 〈x∗, x− E(x)〉 = 〈x∗, x〉 − 〈x∗, E(x)1Ω〉.
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The second term can be written as follows (we apply here the Theorem of Fubini):

〈x∗,E(x)1Ω〉 =

∫
Ω

x∗(ω)E(x)dP(ω) =

∫
Ω

x∗(ω)

∫
Ω

x(τ)dP(τ)

 dP(ω)

=

∫
Ω

x(τ)

∫
Ω

x∗(ω)dP(ω)

 dP(τ) =

∫
Ω

x(τ)E(x∗)dP(τ) = 〈E(x∗)1Ω, x〉.

So we have 〈x∗, Ax〉 = 〈x∗ − E(x∗)1Ω, x〉, ∀x∗ ∈ Lq, x ∈ Lp and, in conclusion,
A∗x∗ = x∗ − E(x∗)1Ω = x∗ − E(x∗).
Thus the conjugate function of d1 becomes ∀x∗ ∈ Lq,

d∗1(x
∗) =

{
0, ∃y∗ ∈ Lq : y∗ − E(y∗) = x∗ and ||y∗||q ≤ 1,
+∞, otherwise.

We prove now that ∃y∗ ∈ Lq such that y∗ − E(y∗) = x∗ and ||y∗||q ≤ 1 if and
only if E(x∗) = 0 and ∃c ∈ R such that ||x∗ − c||q ≤ 1. Let be an y∗ ∈ Lq

fulfilling y∗−E(y∗) = x∗ and ||y∗||q ≤ 1. Then E(x∗) = E(y∗−E(y∗)) = 0 and for
c := −E(y∗) one has ||x∗ − c||q ≤ 1. On the other hand, assume that E(x∗) = 0
and that ∃c ∈ R with the property ||x∗ − c||q ≤ 1. Defining y∗ := x∗ − c ∈ Lq

one has ||y∗||q ≤ 1 and y∗ − E(y∗) = x∗.
So the conjugate of d1 turns out to be ∀x∗ ∈ Lq,

d∗1(x
∗) =

{
0, E(x∗) = 0 and ∃c ∈ R : ||x∗ − c||q ≤ 1,
+∞, otherwise,

=

{
0, E(x∗) = 0 and min

c∈R
||x∗ − c||q ≤ 1,

+∞, otherwise.

Considering the convex risk measure ρ1 : Lp → R, ρ1(x) = d1(x) − E(x) =
||x− E(x)||p − E(x), by (1), one can easily deduce the formula for the conjugate
of ρ1 : Lp → R. This looks like

ρ∗1(x
∗) = d∗1(x

∗ + 1) =

{
0, E(x∗) = −1 and min

c∈R
||x∗ − c||q ≤ 1,

+∞, otherwise.
(4)

In the last example we consider in this section, we calculate the conjugate function
of the convex deviation measure know also as lower semideviation. After that, we
derive the formula for the conjugate of the corresponding convex risk measure.

Example 4.4.
Let be d2 : Lp → R, d2(x) = ||(x−E(x))−||p. Denoting again by A : Lp → Lp the
linear continuous mapping defined by Ax = x− E(x), we have that d2 = f2 ◦ A.
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Since f2 is a convex continuous function with real values, by Theorem 2.2, one
has for all x∗ ∈ Lq

d∗2(x
∗) = min{f ∗2 (y∗) : A∗y∗ = x∗},

which can be further written as (see (3))

d∗2(x
∗)

=

{
0, ∃y∗ ∈ Lq : A∗y∗ = x∗, y∗ ≤ 0, ||y∗||q ≤ 1, −1 ≤ E(y∗) ≤ 0,
+∞, otherwise.

Since A∗y∗ = y∗ − E(y∗) (see Example 4.3) we obtain ∀x∗ ∈ Lq

d∗2(x
∗)

=

{
0, ∃y∗ ∈ Lq : y∗ − E(y∗) = x∗, y∗ ≤ 0, ||y∗||q ≤ 1,−1 ≤ E(y∗) ≤ 0,
+∞, otherwise.

Like in Example 4.3 one can show that there exists y∗ ∈ Lq such that y∗−E(y∗) =
x∗, y∗ ≤ 0, ||y∗||q ≤ 1 and −1 ≤ E(y∗) ≤ 0 if and only if E(x∗) = 0 and there
exists c ∈ R fulfilling 0 ≤ c ≤ 1, ||x∗ − c||q ≤ 1 and x∗ ≤ c. Thus

d∗2(x
∗) =

{
0, E(x∗) = 0 and ∃c ∈ R : 0 ≤ c ≤ 1, ||x∗ − c||q ≤ 1, x∗ ≤ c,
+∞, otherwise.

Let us prove now that for x∗ ∈ Lq the relations

E(x∗) = 0 and ∃c ∈ R : 0 ≤ c ≤ 1, ||x∗ − c||q ≤ 1, x∗ ≤ c (5)

and

E(x∗) = 0, x∗ ≤ 1, || essup x∗ − x∗||q ≤ 1 (6)

are equivalent. Assuming that (5) holds, one has x∗ ≤ c ≤ 1. Further we
have essup x∗ ≤ c and this means that c − x∗ ≥ essup x∗ − x∗ ≥ 0, implying
1 ≥ ||c− x∗||q ≥ || essup x∗ − x∗||q. Relation (6) is so proved.
On the other hand, if (6) holds, one can take c = essup x∗. That c ≤ 1 and
x∗ ≤ c is obvious. Assuming now that c < 0, this would mean that E(x∗) < 0.
In conclusion, relation (5) must also hold.
This lead us to the following formula for d∗2 ∀x∗ ∈ Lq,

d∗2(x
∗) =

{
0, E(x∗) = 0, x∗ ≤ 1, || essup x∗ − x∗||q ≤ 1,
+∞, otherwise. (7)

As in the previous example, the formula of the conjugate function of the corres-
ponding convex risk measure ρ2 : Lp → R, ρ2(x) = ||(x − E(x))−||p − E(x) can
be also calculated. By (1) we have ∀x∗ ∈ Lq,

ρ∗2(x
∗) = d∗2(x

∗ + 1) =

{
0, E(x∗) = −1, x∗ ≤ 0, || essup x∗ − x∗||q ≤ 1,
+∞, otherwise.

12



Remark 4.1.
One can notice that the formulas for the conjugates of f2 and d2 allow us to
calculate the formulas for the conjugates of the functions x 7→ ||x+||p and x 7→
||(x − E(x))+||p, as these are nothing but f2(−x) and d2(−x), respectively. In
general, having h : Z → R, h(x) = f(−x) it holds ∀x∗ ∈ Z∗

h∗(x∗) = sup
x∈Z

{〈x∗, x〉 − h(x)} = sup
x∈Z

{〈x∗, x〉 − f(−x)}

= sup
x∈Z

{〈−x∗, x〉 − f(x)} = f ∗(−x∗).

5 Conjugates of convex deviation measures: the
case a>1

In this section we extend our investigations to the conjugate functions of convex
deviation measures given in Example 3.3 and Example 3.4, but in the case a > 1
(like before, p ∈ [1, +∞)). We use relation (1) in order to calculate the conjugate
functions of the corresponding convex risk measures.
In our approach we use the very well-developed calculus existing in the theory
of conjugate functions. The functions considered in this section will be viewed
as compositions of a convex increasing function with a convex function. The
conjugates will be obtained by using a formula existing in the literature for the
conjugate of a composed convex function (see [2] for more on this subject). Let
us state now the main theorem used in this section:

Theorem 5.1. Let Z be a nontrivial locally convex space and f : Z → R, g :
R → R be convex functions such that g is increasing on f(Z) + [0, +∞). We
assume that there exists x′ ∈ Z such that f(x′) ∈ dom(g) and g is continuous at
f(x′). Then for all x∗ ∈ Z∗ one has

(g ◦ f)∗(x∗) = min
β∈R+

{g∗(β) + (βf)∗(x∗)}. (8)

We apply Theorem 5.1, by taking for f the convex deviation measures considered
in the previous section and for g : R → R the function defined for a > 1 by

g(x) =

{
xa, x ≥ 0,
+∞, otherwise.

The set f(Lp) + [0, +∞) is equal [0, +∞) and one can see that both f and g are
convex functions and that g is increasing on [0, +∞). The regularity condition is
also fulfilled, so formula (8) will hold.
The following lemma provides the formula for the conjugate of the function g.
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Lemma 5.1. The conjugate function of g, g∗ : R → R is

g∗(β) =

{
(a− 1)

(
β
a

) a
a−1 , β ≥ 0,

0, otherwise.

Proof. By definition it holds

g∗(β) = sup
x∈R

(xβ − g(x)) = sup
x≥0

(xβ − xa) .

In the case β ≤ 0, one gets g∗(β) = 0. In case β > 0, we consider h : [0, +∞) → R,

h(x) = xβ − xa. One has h′(x) = 0 ⇔ x =
(

β
a

) 1
a−1 > 0. Since h is concave it

attains its maximum at x =
(

β
a

) 1
a−1 > 0 and so

g∗(β) = β

(
β

a

) 1
a−1

−

((
β

a

) 1
a−1

)a

= β

(
β

a

) 1
a−1
[
1− 1

a

]
= (a− 1)

(
β

a

) a
a−1

.

In conclusion, we get

g∗(β) =

{
(a− 1)

(
β
a

) a
a−1 , β ≥ 0,

0, otherwise.

In order to calculate the formulas for the conjugate functions of the convex devia-
tion measures in Example 3.3 and Example 3.4 we need the following intermediate
formulas.

Example 5.1.
Let be f3(x) = ||x||ap. For x ∈ Lp we have f3(x) = (g ◦ f1)(x). Let us for β ∈ R+

first calculate the formula for (βf1)
∗(x∗).

Since for β > 0 and x∗ ∈ Lq it holds (see Example 4.1)

(βf1)
∗(x∗) = βf ∗1

(
1

β
x∗
)

= β(|| · ||p)∗
(

1

β
x∗
)

=

{
0, ||x∗

β
||q ≤ 1,

+∞, otherwise,
=

{
0, ||x∗||q ≤ β,
+∞, otherwise,

and for β = 0 and x∗ ∈ Lq one has

(βf1)
∗(x∗) =

{
0, x∗ = 0,
+∞, otherwise,
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we finally get ∀β ≥ 0, ∀x∗ ∈ Lq,

(βf1)
∗(x∗) =

{
0, ||x∗||q ≤ β,
+∞, otherwise.

Thus with Theorem 5.1 the conjugate of f3 becomes ∀x∗ ∈ Lq,

f ∗3 (x∗) = min
β≥0,

||x∗||q≤β

g∗(β) = min
β≥0,

||x∗||q≤β

(a− 1)

(
β

a

) a
a−1

= (a− 1)

∣∣∣∣∣∣∣∣1ax∗
∣∣∣∣∣∣∣∣ a

a−1

q

.

Example 5.2.
Let be f4 : Lp → R, f4(x) = ||x−||ap, x ∈ Lp. One can see that in this case
f4 = g ◦ f2. In order to use the relation in (8), we have to calculate (βf2)

∗ for
β ≥ 0. If β = 0 one has again

(βf2)
∗(x∗) =

{
0, x∗ = 0,
+∞, otherwise,

while if β > 0, by (2), it holds

(βf2)
∗(x∗) = βf ∗2

(
1

β
x∗
)

=

{
0,

∣∣∣∣ 1
β
x∗
∣∣∣∣

q
≤ 1, 1

β
x∗ ≤ 0,

+∞, otherwise,
=

{
0, ||x∗||q ≤ β, x∗ ≤ 0,
+∞, otherwise.

By (8) we obtain that for all x∗ ∈ Lq such that x∗ ∈ −(Lq)+,

f ∗4 (x∗) = min
β≥0

{g∗(β) + (βf2)
∗(x∗)} = min

β≥0,
||x∗||q≤β

{
(a− 1)

(
β

a

) a
a−1

}

= (a− 1)

∣∣∣∣∣∣∣∣1ax∗
∣∣∣∣∣∣∣∣ a

a−1

q

.

If x∗ 6∈ −(Lq)+, f ∗4 (x∗) = +∞, so one has ∀x∗ ∈ Lq,

f ∗4 (x∗) =

{
(a− 1)

∣∣∣∣ 1
a
x∗
∣∣∣∣ a

a−1

q
, x∗ ∈ −(Lq)+,

+∞, otherwise.

In the next example, we come to the convex deviation measure considered in
Example 3.3, d3(x) = ||x− E(x)||ap, x ∈ Lp.
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Example 5.3.
The convex deviation measure d3 : Lp → R, d3(x) = ||x− E(x)||ap can be written
as d3 = g ◦ d1. Let be x∗ ∈ Lq. For β = 0 one has

(βd1)
∗(x∗) =

{
0, x∗ = 0,
+∞, otherwise,

while if β > 0 it holds,

(βd1)
∗(x∗) = βd∗1

(
1

β
x∗
)

=

{
0, E

(
1
β
x∗
)

= 0 and min
c∈R

∣∣∣∣ 1
β
x∗ − c

∣∣∣∣
q
≤ 1,

+∞, otherwise,

=

{
0, E(x∗) = 0 and min

c∈R
||x∗ − c||q ≤ β,

+∞, otherwise.

Then by (8), we have ∀x∗ ∈ Lq such that E(x∗) = 0,

d∗3(x
∗) = min

β≥0,
β≥min

c∈R
||x∗−c||q

{g∗(β)} = min
c∈R

{
(a− 1)

∣∣∣∣∣∣∣∣1a(x∗ − c)

∣∣∣∣∣∣∣∣ a
a−1

q

}

and d∗3(x
∗) = +∞, if E(x∗) 6= 0. We conclude that

d∗3(x
∗) =

{
min
c∈R

{
(a− 1)

∣∣∣∣ 1
a
(x∗ − c)

∣∣∣∣ a
a−1

q

}
, E(x∗) = 0,

+∞, otherwise.

The conjugate function of the corresponding convex risk measure ρ3 : Lp → R,
ρ3(x) = d3(x)− E(x) = ||x− E(x)||ap − E(x), turns out to be ∀x∗ ∈ Lp (cf. (1)),

ρ∗3(x
∗) = d∗3(x

∗ + 1) =

{
min
c∈R

{
(a− 1)

∣∣∣∣ 1
a
(x∗ − c)

∣∣∣∣ a
a−1

q

}
, E(x∗) = −1,

+∞, otherwise.

The last conjugate function we derive now is that of the convex deviation measure
given in Example 3.4.

Example 5.4.
Considering d4 : Lp → R, d4(x) = ||(x − E(x))−||ap, x ∈ Lp, one can see that
d4 = g ◦ d2. Let us calculate now for all β ≥ 0, (βd2)

∗.
We fix an x∗ ∈ Lq. If β = 0, then

(βd2)
∗(x∗) =

{
0, x∗ = 0,
+∞, otherwise,
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while for β > 0 one has (see (7))

(βd2)
∗(x∗) = βd∗2

(
1

β
x∗
)

=

 0, E
(

1
β
x∗
)

= 0, 1
β
x∗ ≤ 1,

∣∣∣∣∣∣∣∣ essup
(

1
β
x∗
)
− 1

β
x∗
∣∣∣∣∣∣∣∣

q

≤ 1,

+∞, otherwise,

=

{
0, E(x∗) = 0, x∗ ≤ β, || essup x∗ − x∗||q ≤ β,
+∞, otherwise.

Let us notice that for E(x∗) = 0 if β ≥ || essup x∗ − x∗||q, then β ≥ E(essup x∗ −
x∗) = essup x∗, which implies that (βd2)

∗(x∗) is nothing else than

(βd2)
∗(x∗) =

{
0, E(x∗) = 0, || essup x∗ − x∗||q ≤ β,
+∞, otherwise.

By (8) we get ∀x∗ ∈ Lq such that E(x∗) = 0,

d∗4(x
∗) = inf

β≥0,
β≥|| essup x∗−x∗||q

{
(a− 1)

(
β

a

) a
a−1

}
= (a− 1)

∣∣∣∣∣∣∣∣1a(essup x∗ − x∗)

∣∣∣∣∣∣∣∣ a
a−1

q

,

while if E(x∗) 6= 0, d∗4(x
∗) = +∞. Thus

d∗4(x
∗) =

{
(a− 1)

∣∣∣∣ 1
a
(essup x∗ − x∗)

∣∣∣∣ a
a−1

q
, E(x∗) = 0,

+∞, otherwise.

The conjugate function of the corresponding convex risk measure ρ4 : Lp → R,
ρ4(x) = d4(x)− E(x) = ||(x− E(x))−||ap − E(x) follows ∀x∗ ∈ Lq(cf. (1)),

ρ∗4(x
∗) = d∗4(x

∗ + 1) =

{
(a− 1)

∣∣∣∣ 1
a
(essup x∗ − x∗)

∣∣∣∣ a
a−1

q
, E(x∗) = −1,

+∞, otherwise.

6 Dual representation of convex risk measures
In this section we give for the convex risk and deviation measures considered in
this paper some dual representations which will follow by applying the Fenchel-
Moreau theorem (Theorem 2.1). For p ∈ [1, +∞) and f : Lp → R a proper,
convex and lower-semicontinuous function we have ∀x ∈ Lp,

f(x) = f ∗∗(x) = sup
x∗∈Lq

{〈x∗, x〉 − f ∗(x∗)} = sup
x∗∈Lq

{E(x∗x)− f ∗(x)}. (9)

As all convex risk and deviation measures fulfill the hypotheses of Theorem 2.1,
by using the formulas of the conjugates derived in the previous sections, we obtain
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in a very natural way the desired dual representations. Our representations turn
out to be generalizations of the recently published results by Pflug (cf. [8]). More
than that, we show the usefulness of the powerful theory of conjugate functions
from the convex analysis in this field as well.

Example 6.1.
The first convex deviation measure we treat is d1 : Lp → R, d1(x) = ||x−E(x)||p.
We proved that ∀x∗ ∈ Lq,

d∗1(x
∗) =

{
0, E(x∗) = 0 and min

c∈R
||x∗ − c||q ≤ 1,

+∞, otherwise,

and so, by (9), ∀x ∈ Lp,

d1(x) = sup{E(x∗x) : x∗ ∈ Lq, E(x∗) = 0 and min
c∈R

||x∗ − c||q ≤ 1}.

Analogously, by (4), we obtain ∀x ∈ Lp,

ρ1(x) = sup

{
E(x∗x) : x∗ ∈ Lq, E(x∗) = −1 and min

c∈R
||x∗ − c||q ≤ 1

}
.

Pflug (cf. [8, Proposition 3]) also gives for p ∈ (1, +∞) representations for these
convex risk and deviation measures, which are actually generalizations of the
standard deviation. The formulas given by Pflug are not quite accurate, as he
considers inf instead of min. But, as we have seen in the previous chapters, the
existence of a c ∈ R, such that ||x∗− c||q ≤ 1, is indispensable. Let us also notice
that Pflug uses instead of convex risk measures so-called acceptability functionals
(we denote them like in [8] by A). They are linked to the convex risk measures
in our paper by the relation A(x) = −ρ(x), x ∈ Lp.

Example 6.2.
Take now d2 : Lp → R, d2(x) = ||(x − E(x))−||p, as in Example 4.4. For the
conjugate function d∗2 it holds ∀x∗ ∈ Lq (see (7)),

d∗2(x
∗) =

{
0, E(x∗) = 0, x∗ ≤ 1, || essup x∗ − x∗||q ≤ 1,
+∞, otherwise,

and so one gets the following dual representation ∀x ∈ Lp,

d2(x) = sup{E(x∗x) : x∗ ∈ Lq, E(x∗) = 0, x∗ ≤ 1, || essup x∗ − x∗||q ≤ 1}.

Similary, we get ∀x ∈ Lp,

ρ2(x) = sup{E(x∗x) : x∗ ∈ Lq, E(x∗) = −1, x∗ ≤ 0, || essup x∗ − x∗||q ≤ 1}.

The last two equalities are actually the formulas proved in Proposition 5 in [8].
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Example 6.3.
Let be d3(x) = ||x − E(x)||ap, x ∈ Lp, the convex risk measure considered in
Example 5.3 for a > 1. The conjugate funtion d∗3 : Lq → R is ∀x∗ ∈ Lq,

d∗3(x
∗) =

{
min
c∈R

{
(a− 1)

∣∣∣∣ 1
a
(x∗ − c)

∣∣∣∣ a
a−1

q

}
, E(x∗) = 0,

+∞, otherwise.

By (9) we get the following dual representation ∀x ∈ Lp,

d3(x) = sup

{
E(x∗x)−min

c∈R

{
(a− 1)

∣∣∣∣∣∣∣∣1a(x∗ − c)

∣∣∣∣∣∣∣∣ a
a−1

q

}
: x∗ ∈ Lq, E(x∗) = 0

}
.

Similarly, we get the representation of the convex risk measure ∀x ∈ Lp,

ρ3(x) = sup

{
E(x∗x)−min

c∈R

{
(a− 1)

∣∣∣∣∣∣∣∣1a(x∗ − c)

∣∣∣∣∣∣∣∣ a
a−1

q

}
: x∗ ∈ Lq, E(x∗) = −1

}
.

Pflug gives in Proposition 2 in [8] the formula just for the special case when a = p
and p ∈ (1, +∞). More than that, his formula may be improved by mentioning
that the inner infimum is attained.

Example 6.4.
Finally let be d4 : Lp → R, d4(x) = ||(x− E(x))−||ap, x ∈ Lp, where a > 1. From
Example 5.4, one has ∀x∗ ∈ Lq,

d∗4(x
∗) =

{
(a− 1)

∣∣∣∣ 1
a
(essup x∗ − x∗)

∣∣∣∣ a
a−1

q
, E(x∗) = 0,

+∞, otherwise,

and so, ∀x ∈ Lp, d4 can be represented as

d4(x) = sup

{
E(x∗x)− (a− 1)

∣∣∣∣∣∣∣∣1a(essup x∗ − x∗)

∣∣∣∣∣∣∣∣ a
a−1

q

: x∗ ∈ Lq, E(x∗) = 0

}
.

Again, for the convex risk measure ρ4(x) = ||(x−E(x))−||ap−E(x) we get ∀x ∈ Lp,

ρ4(x) = sup

{
E(x∗x)− (a− 1)

∣∣∣∣∣∣∣∣1a(essup x∗ − x∗)

∣∣∣∣∣∣∣∣ a
a−1

q

: x∗ ∈ Lq, E(x∗) = −1

}
.

These assertions generalize Proposition 4 in [8] where the formulas have been
given just in the case a = p and p ∈ (1, +∞).
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