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Field Inhomogeneity Correction based on Gridding
Reconstruction for Magnetic Resonance Imaging

H. Eggers, T. Knopp, and D. Potts

Abstract— Spatial variations of the main field give rise
to artifacts in magnetic resonance images if disregarded
in reconstruction. With non-Cartesian k-space sampling,
they often lead to unacceptable blurring. Data from such
acquisitions are commonly reconstructed with gridding
methods and optionally restored with various correction
methods. Both types of methods essentially face the same
basic problem of adequately approximating an exponen-
tial function to enable an efficient processing with Fast
Fourier Transforms. Nevertheless, they have addressed it
differently so far. In the present work, a unified approach
is proposed. An extension of the principle behind grid-
ding methods is shown to permit its application to field
inhomogeneity compensation. Based on this result, several
new correction algorithms are derived from a straightfor-
ward embedding of the data into a higher dimensional
space. They are evaluated in simulations and phantom
experiments with spiral k-space sampling. Compared with
existing algorithms, one of them promises to provide a
favorable compromise between fidelity and complexity.
Moreover, it allows a simple choice of key parameters
involved in approximating an exponential function and a
balance between reconstruction and correction accuracy.

Index Terms— Magnetic resonance imaging, image re-
construction, gridding, field inhomogeneity, off-resonance
correction, conjugate phase reconstruction, iterative recon-
struction, spiral imaging

I. INTRODUCTION

Magnetic resonance imaging (MRI) relies on a strong,
homogeneous main field. While the field strength deter-
mines the net magnetization available for signal genera-
tion, the field homogeneity ensures adequate coherence
between the precession of individual spins within one
voxel and thus sufficient signal lifetime for an efficient
detection. More subtle variations of the main field be-
tween different voxels distort the Fourier encoding used
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to spatially resolve the received signal and lead to arti-
facts in reconstructed images. These artifacts are mainly
limited to geometric distortions and intensity variations
for acquisitions with Cartesian k-space trajectories, i.e.
which sample the spatial frequency domain of the images
on a Cartesian grid. For acquisitions with non-Cartesian
k-space trajectories, however, more severe blurring and
other artifacts arise. While the inhomogeneity of the
main field of today’s clinical MRI systems mainly results
from susceptibility variations, especially at air-tissue
interfaces, the striving for higher field strengths and more
open system designs may well render the contribution of
the magnet itself once more significant in the future.

The compensation of field inhomogeneity effects in
non-Cartesian imaging is usually performed with either
a direct conjugate phase reconstruction (CPR) [1] or an
iterative algebraic reconstruction [2]. Both are closely
related, since one iteration of the latter typically involves
the application of the former. The individual methods
mainly differ in how they make the distortion of the
Fourier encoding, which the field inhomogeneity causes,
amenable to a processing with Fast Fourier Transforms
(FFTs). They all introduce a coarse segmentation, i.e.
discretization, in either k-space or image space and
require a separate transformation of each resulting seg-
ment. In the corresponding domain, they perform an
interpolation to improve accuracy. Among the proposed
methods are a Hanning interpolation [1], a linear com-
bination [3], and a least squares combination [4].

If field inhomogeneity effects are disregarded, non-
Cartesian acquisitions are commonly reconstructed with
gridding methods [5]. These methods have been es-
tablished as a rapid and robust means of producing
images from sets of non-equispaced k-space samples.
First, they perform a weighting of the samples to com-
pensate for variations in the sampling density. Then, they
convolve them with a window function of finite extent
and resample the result to an oversampled Cartesian
grid. Finally, they apply an FFT and a deapodization in
image space. In this way, gridding methods avoid the use
of slow Discrete Fourier Transforms (DFTs) and reach
a better compromise between accuracy and complexity
than simpler methods that rely on an interpolation in k-
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space only.
In fact, the same basic problem underlies both, the

compensation of field inhomogeneity effects and the re-
construction of non-Cartesian acquisitions. Nevertheless,
it has been addressed differently so far. We propose in
this work a unified approach. In the next section, we
describe the problem of reconstructing images from non-
Cartsian acquisitions in the presence of field inhomo-
geneity in mathematical terms. We then summarize the
non-uniform Fast Fourier Transform (NFFT) and show
how it can be adapted for use in field inhomogeneity
correction. Based on this result, we derive four new al-
gorithms, which we evaluate in simulations and phantom
experiments and compare against existing algorithms.
We finally discuss advantages and disadvantages of the
proposed approach.

II. THEORY

In MRI, the demodulated signal s (t) received from
an object with a magnetization m (r) at a reference time
point t = 0 is ideally given by

s (t) =
∫

R3

m (r) eik(t)rdr . (II.1)

k(t) denotes the trajectory, along which samples are
acquired in the spatial frequency domain, the so-called
k-space. It is determined by the time variant gradient
field applied during the measurement.

Any inhomogeneity of the main field distorts the
Fourier encoding that (II.1) describes. Taking this imper-
fection into account, s (t) is more accurately modelled
by

s (t) =
∫

R3

m (r) eiω(r)teik(t)rdr . (II.2)

ω(r) denotes the angular off-resonance frequency, which
is proportional to the local deviation of the main field
from its nominal strength. Other imperfections, such as
relaxation, are not considered in this work.

From now on we restrict ourselves to 2D imaging. The
sampled area of k-space is then confined to k ∈ [−π, π]2,
and the covered field of view to r ∈ [−N1

2 ,
N1
2 ] ×

[−N2
2 ,

N2
2 ]. Discretizing the integral in (II.2) on N1N2

equispaced voxel positions rρ and the signal s (t) on M
time points tκ yields

sκ ≈ s̃κ :=
N1N2−1∑

ρ=0

mρeiωρtκeikκrρ , (II.3)

where sκ := s(tκ), s̃κ := s̃(tκ), mρ := m(rρ), ωρ :=
ω(rρ), and kκ := k(tκ). Using the vectors

s := (sκ)κ=0,...,M−1 ,

m := (mρ)ρ=0,...,N1N2−1 ,

and the matrix

H :=
(
eiωρtκeikκrρ

)
κ=0,...,M−1; ρ=0,...,N1N2−1

,

this may be rewritten as

s ≈ Hm .

We propose determining m by a weighted least squares
approach

‖s−Hm‖W =

√√√√M−1∑
κ=0

wκ|sκ − s̃κ|2
m→ min , (II.4)

with factors wκ > 0 that compensate for variations in the
local sampling density. It leads to the weighted normal
equation of first kind

H àWHm = H àWs , (II.5)

where W := diag(wκ)κ=0,...,M−1. Due to the size of
this linear system, we suggest to solve it iteratively with
a suitable variant of the conjugate gradient method, such
as the Conjugate Gradient Normal Equation Residual
(CGNR) method. In this way, (II.4) is in each iteration
minimized over a certain Krylov space. Moreover, by
choosing a zero vector as initial estimate of m, the
intermediate result after one iteration is identical to that
of the CPR, which is one reason for including W in
(II.5).

The computational complexity of determining m then
depends primarily on two factors, the required number of
iterations and the required effort per iteration. The first
factor is mostly linked to the employed initial estimate
of m and to the condition of H . We stick with a
zero vector as initial estimate and apply no additional
preconditioning in this work, yet the presence of W
in (II.5) is also motivated by its beneficial effect on
the condition of the system matrix. The second factor
is mainly influenced by the multiplication of a vector
with the matrix H or H à. Due to the distorted Fourier
encoding, this matrix-vector product may not simply be
implemented with a standard FFT. As we will show in
the next but one subsection, it may be realized with a
modified NFFT, however.

A. NFFT

The standard NFFT permits the fast, approximate
evaluation of the Fourier transform of a vector of equi-
spaced samples at a vector of non-equispaced positions.
We briefly summarize it in this subsection for the one
dimensional case. The reader is referred to [6] for a more
detailed description.
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Let a function ϕ ∈ L2(R) ∩ L1(R), the so-called
window function, be given. Its one periodization

ϕ̃(k) :=
∞∑

p=−∞
ϕ(k + p)

is assumed to have a uniformly convergent Fourier series.
Hence, it may be written as

ϕ̃(k) =
∞∑

x=−∞
cx(ϕ̃)e2πikx ,

with Fourier coefficients

cx(ϕ̃) :=

1/2∫
−1/2

ϕ̃(k)e−2πikx dk , (II.6)

where x ∈ Z. Substituting k by k − k′ in (II.6) yields

cx(ϕ̃) =

1/2∫
−1/2

ϕ̃(k − k′)e−2πi(k−k′)x dk′ , (II.7)

which may be approximated by

cx(ϕ̃) ≈ 1
αN

αN/2−1∑
l=−αN/2

ϕ̃(k − l

αN
)e−2πi(k− l

αN
)x (II.8)

for k ∈ [−1
2 ,

1
2 ] and x = −N

2 , . . . ,
N
2 . The factor α > 1

is commonly referred to as oversampling factor. For the
sake of simplicity, N and αN are assumed to be even.
Provided that all cx(ϕ̃) are unequal zero, (II.8) may be
rewritten as

e2πikx ≈ 1
αNcx(ϕ̃)

αN/2−1∑
l=−αN/2

ψ̃(k − l

αN
)e2πi lx

αN , (II.9)

where ϕ̃ has been replaced by ψ̃. The latter is the one
periodization of a truncation of ϕ defined by

ψ(k) :=
{
ϕ(k) k ∈ [− m

αN ,
m

αN ] ,
0 k 6∈ [− m

αN ,
m

αN ] .

The support of ψ is determined by 2m, the so-called
kernel size. Typically, m ∈ N is chosen such that m�
N .

The standard NFFT evaluates the trigonometric poly-
nomial

f(k) :=
N/2−1∑

x=−N/2

f̂xe2πikx (II.10)

for N given equispaced samples f̂x at M given non-
equispaced positions kj ∈ [−1

2 ,
1
2 ]. It uses the approxi-

mation (II.9), which yields

fj ≈
αN/2−1∑
l=−αN/2

ψ̃(kj −
l

αN
)

N/2−1∑
x=−N/2

f̂x

αNcx(ϕ̃)

×e2πi lx

αN , (II.11)

where fj := f(kj). In matrix-vector notation, (II.10)
then reads

f = Af̂ , (II.12)

with
f := (fj)j=0,...,M−1 ,

f̂ :=
(
f̂x

)
x=−N/2,...,N/2−1

,

A :=
(
e2πikjx

)
j=0,...,M−1; x=−N/2,...,N/2−1

.

According to (II.11), A may be approximated by BFD,
where D is a diagonal matrix with entries dx,x =
1/cx(ϕ̃), F an oversampled Fourier matrix, which in-
cludes the factor 1/(αN), and B a sparse matrix with
entries bj,l = ψ̃(kj − l/(αN)). Similarly, the evaluation
of the adjoint to (II.10), i.e. of the sum

M−1∑
j=0

fje−2πikjx

for M given non-equispaced samples fj at N given equi-
spaced positions x = −N

2 , . . . ,
N
2 −1, may be performed

by a matrix-vector multiplication with Aà ≈ DàF àB à.
As pointed out in [6], [7], gridding reconstruction is
simply a fast algorithm for the application of DàF àB à

to a vector of non-equispaced samples. Including a
sampling density compensation, it involves [5]

1) a weighting of the data, i.e. a multiplication with
W ,

2) a convolution with a window function and a re-
sampling to an oversampled Cartesian grid, i.e. a
multiplication with B à,

3) an inverse FFT, i.e. a multiplication with F à,
4) a deapodization, i.e. a multiplication with Dà.
Unified approaches to the efficient computation of

(II.10) or (II.12) with the NFFT were suggested in [6],
[8]. We follow in this work the former, which permits a
simple change of the window function. Among the vari-
ous functions proposed for ϕ, the Kaiser-Bessel window,
or its Fourier transform, turned out to be a particularly
good choice. More sophisticated approaches based on
scaling vectors [9], a minimization of the Frobenius norm
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of certain error matrices [10], or a min-max interpolation
[11] did not prove significantly superior.

Obviously, the NFFT and gridding reconstruction not
only involve closely related processing, but also exploit
the same approximation. To address field inhomogeneity
correction similarly, we conclude this subsection with the
derivation of an approximation that lifts the restriction
on x to be an integer in (II.9). Starting from

ϕ̂(x) :=

∞∫
−∞

ϕ(k)e−2πikx dk

instead of (II.6) leads to

ϕ̂(x) =

1/2∫
−1/2

∞∑
p=−∞

ϕ(k + p)e−2πi(k+p)x dk

and, with the same steps as from (II.7) to (II.9), to

e2πikx ≈ 1
αNϕ̂(x)

αN/2−1∑
l=−αN/2

∞∑
p=−∞

ψ(k − l

αN
+ p)

×e2πi( l

αN
+p)x

for k ∈ [−1
2 ,

1
2 ] and x ∈ [−N

2 ,
N
2 ]. Like (II.9), this

approximation may be reduced to

e2πikx ≈ 1
αNϕ̂(x)

αN/2−1∑
l=−αN/2

ψ(k − l

αN
)e2πi lx

αN (II.13)

for k ∈ [−1
2 + m

αN ,
1
2 −

m
αN ], since the support of ψ is

[− m
αN ,

m
αN ]. Consequently, (II.13) is a good approxima-

tion if kx ∈ [−N
4 + m

2α ,
N
4 −

m
2α ]. It is worth noting that

the further restriction of k may in principle be avoided by
explicitly taking the periodization into account. We will
not explore this alternative in the present work, however.

B. Matrix-vector product

To efficiently multiply a vector with the matrix H or
H à, we start off by embedding the data in both domains
in a higher dimensional space [12]. For this purpose, we
set k′κ = ((kκ)>, tκ)> and r′ρ = ((rρ)>, ωρ)>, i.e. we
add a time dimension to the frequency domain and an
off-resonance frequency dimension to the spatial domain.
(II.3) may then be rewritten as

sκ ≈
N1N2−1∑

ρ=0

mρeik′
κr′

ρ . (II.14)

A straightforward evaluation of this sum with the stan-
dard NFFT is not possible, since the samples in neither
domain are equispaced. However, a so-called NNFFT
was first suggested in [13] and later studied in more

depth in [14], which permits the fast calculation of the
Fourier transform of a vector of non-equispaced samples
at a vector of non-equispaced positions. It constitutes
a combination of the standard NFFT and its adjoint.
Applying it to the computation of (II.14), an approach
we will call 3D NNFFT, entails a 3D FFT and in both
domains a 3D convolution with a window function.
Additionally, it demands two multiplicative oversam-
pling factors, which increase the length of the Fourier
transform in all three dimensions. The evaluation of the
adjoint, i.e. of the sum

M−1∑
κ=0

sκe−ik′
κr′

ρ ,

involves the same effort.
To employ the standard NFFT instead, we have to

resample the data in one domain to a Cartesian grid. We
achieve this by using the approximation (II.13). Since
this step is unnecessary for r, preferably the spatial
domain is resampled. We first choose an integer constant
N3 such that

ωρtκ
2π

∈ [−N3

4
+
m

2α
,
N3

4
− m

2α
]

for all ρ and κ. As the complexity of the matrix-vector
product grows with N3, it should be kept as small as
possible. Centering both ωρ and tκ, which involves a
multiplication of the input and output data with a phase,
is, therefore, advantageous. We further define a scaling
factor W such that

ωρ

W
∈ [−1

2
+

m

αN3
,
1
2
− m

αN3
]

for all ρ. With the approximation (II.13), we then obtain

eiωρtκ = e2πi ωρ

W

W tκ
2π

≈ 1
αN3ϕ̂

(
Wtκ

2π

) αN3/2−1∑
l=−αN3/2

ψ

(
ωρ

W
− l

αN3

)
×ei W tκl

αN3 .

Insertion into (II.3) yields

sκ ≈ 1
αN3ϕ̂

(
Wtκ

2π

) αN3/2−1∑
l=−αN3/2

N1N2−1∑
ρ=0

mρψ

(
ωρ

W
− l

αN3

)
×eikκrρei W tκl

αN3 . (II.15)

With k′′κ := (k>κ ,Wtκ/(αN3))> and r′′(ρ,l) :=
((rρ)>, l)>, we finally get

sκ ≈ 1
αN3ϕ̂

(
Wtκ

2π

) αN3/2−1∑
l=−αN3/2

N1N2−1∑
ρ=0

mρψ

(
ωρ

W
− l

αN3

)
×eik′′

κr′′
(ρ,l) .
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The matrix-vector product may thus be realized by a 3D
NFFT. Hence, we will call this approach 3D NFFT. It
requires a 3D FFT and a 3D convolution with a window
function in the frequency domain, and it introduces two
multiplicative oversampling factors only for the added
third dimension. The adjoint reads
αN3/2−1∑
l=−αN3/2

ψ

(
ωρ

W
− l

αN3

) M−1∑
κ=0

sκ

αN3ϕ̂
(
−Wtκ

2π

)e−ik′′
κr′′

(ρ,l)

and may also be computed with a 3D NFFT, but addi-
tionally with a sparse summation over l.

We now consider separating the 3D domains into
2D⊗1D domains. In this way, the Fourier transform of
the added third dimension can be replaced by an explicit
sum, which appears beneficial in view of the sparseness
of the data in the 3D spaces. By merely rearranging
(II.15), we obtain

sκ ≈
αN3/2−1∑
l=−αN3/2

ei W tκl

αN3

αN3ϕ̂
(

Wtκ

2π

) N1N2−1∑
ρ=0

mρψ

(
ωρ

W
− l

αN3

)
×eikκrρ .

With this approximation, the matrix-vector product may
be calculated by N3 2D NFFTs and a summation over l,
an approach we will call 2D⊗1D NFFT-F. It involves a
2D FFT and a 2D convolution with a window function
in the frequency domain for each NFFT, and it demands
only one oversampling factor in each dimension. The
adjoint is given by
αN3/2−1∑
l=−αN3/2

ψ

(
ωρ

W
− l

αN3

) M−1∑
κ=0

sκe−i W tκl

αN3

αN3ϕ̂
(
−Wtκ

2π

)e−ikκrρ ,

where the summation over l is sparse.
We derive a variant of this approach by defining

another scaling factor T such that
tκ
T
∈ [−1

2
+

m

αN3
,
1
2
− m

αN3
]

for all κ. Using the approximation (II.13), we get

eiωρtκ = e2πi tκ
T

ωρT

2π

≈ 1

αN3ϕ̂
(

ωρT
2π

) αN3/2−1∑
l=−αN3/2

ψ

(
tκ
T
− l

αN3

)

×ei ωρT l

αN3 .

Insertion into (II.3) yields

sκ ≈
αN3/2−1∑
l=−αN3/2

ψ

(
tκ
T
− l

αN3

) N1N2−1∑
ρ=0

mρe
i ωρT l

αN3

αN3ϕ̂
(

ωρT
2π

)
×eikκrρ .

In this way, the matrix-vector product may again be com-
puted by N3 2D NFFTs, followed by a sparse summation
over l, an approach we will call 2D⊗1D NFFT-T. The
effort for the NFFTs is substantially reduced if they are
evaluated only at those k-space positions that actually
contribute to the sparse summation. For the adjoint

αN3/2−1∑
l=−αN3/2

e−i ωρT l

αN3

αN3ϕ̂
(
−ωρT

2π

) M−1∑
κ=0

sκψ

(
tκ
T
− l

αN3

)
e−ikκrρ ,

the summation over l is no longer sparse, but the effort
for the NFFTs may be decreased similarly.

With respect to computational complexity, we con-
clude that the 2D⊗1D NFFT-T approach is the most
efficient, followed by the 2D⊗1D NFFT-F and the 3D
NFFT approach. This ranking will, together with an
experimental comparison of accuracy, guide the selection
of the best of these gridding-based field inhomogeneity
correction algorithms.

III. METHODS

We assessed the four proposed algorithms in simu-
lations and phantom experiments using spiral k-space
sampling.

A. Simulations

The simulations were based on a Shepp-Logan phan-
tom with a resolution of 256 x 256, to which a slightly
smoothed circular shutter with a radius of 7

8π was
applied in k-space. In this way, we took into account
that spiral acquisitions sample only a circular area in k-
space and that field inhomogeneity leads to an additional
signal modulation, which seemingly spreads the spatial
frequency spectrum of an image over time. The radius
of this shutter was chosen such that most of the energy
remained within the covered circular area in k-space
throughout the acquisition window. In addition, the two
field maps displayed in Fig. V.1 were used. One reflects a
continuous, parabolic variation of the main field strength,
the other a discrete, linear one. Both span the same range
of off-resonance frequencies.

k-space data were calculated by a direct evaluation
of (II.3). The acquisition was segmented into 12 spiral
interleaves with 13332 samples each, including a twofold
oversampling. Two images obtained with a standard
gridding reconstruction of these data, i.e. without field
inhomogeneity correction, are presented in Fig. V.1. An
analytical function described in [15] served the sampling
density compensation in this case. Obviously, both field
distributions give rise to blurring, but discontinuities
cause additional, major artifacts.
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Next to the proposed gridding-based ones, a number
of existing field inhomogeneity correction algorithms
were implemented as reference. These included a nearest
neighbor interpolation with frequency segmentation [16],
a Hanning interpolation with time segmentation [1], and
the more sophisticated Man [3], [17] and least squares
[3], [4] interpolations, both with time and frequency
segmentation. For the Man interpolation with time seg-
mentation, a manual variation of the oversampling factor
was performed, since no explicit rule for its choice was
known. For the least squares interpolation, a Householder
transformation was employed to solve the occurring
minimization problems. All of these algorithms fit in
the same, general framework outlined in [17], which
approximates (II.3) by a linear combination of differently
weighted, transformed and resampled images.

Reconstruction results were assessed both visually and
quantitatively. As measure, we used the sum of squares
of the differences between reconstructed and original
image pixels, divided by the sum of squares of the
original image pixels.

All algorithms were implemented both in Matlab and
in C. They were tested on a conventional workstation
equipped with an Intel Xeon processor running at 2 GHz
and with 256 MB of memory. The software configuration
used was Linux 2.4.21, FFTW 3.0.1, and NFFT 2.0. The
latter is available from [18] and essentially differs from
a standard gridding reconstruction in two respects only:
Instead of a Kaiser-Bessel window, its Fourier transform
is employed as window function, and its shape parameter
is well defined.

B. Experiments

The experiments were performed on a 1.5 T Achieva
whole-body scanner (Philips Medical Systems, Best,
The Netherlands). Transversal cross sections of standard
imaging phantoms were acquired with a resolution of
256 x 256 pixels using a segmented spiral gradient echo
sequence. A field of view of 250 mm, a slice thickness
of 10 mm, a flip angle of 90◦, a TE of 2 ms, and a TR of
1 s were chosen. The readout duration, i.e. the length of
time that data are acquired after each excitation, varied
between 10 ms and 60 ms, and the number of spiral
interleaves changed accordingly.

Field maps were obtained from two separate measure-
ments, which usually differed in TE by 1 ms. Two images
were reconstructed from them and thresholded based on
signal intensity. Their phases were then subtracted and
the differences scaled and slightly filtered. To reduce
edge effects, the resulting field maps were additionally
extrapolated to areas masked out before.

IV. RESULTS

A. Simulations

The four proposed gridding-based field inhomogeneity
correction algorithms are analyzed regarding their ac-
curacy in Tab. V.1. These simulations were performed
with the continuous field map and the settings α =
1.25, m = 2, and αN3 = 14. After one iteration, all
four algorithms yield similar errors, i.e. they achieve
a comparable accuracy when being applied in a CPR.
After three iterations, the 3D NNFFT approach produces
an about 100% and the 2D⊗1D NFFT-F approach an
about 20% higher error than the two others. Beyond three
iterations, errors did not decrease significantly anymore.
In view of the discussed differences in computational
complexity, the 2D⊗1D NFFT-T approach seems to be
the preferred of the four proposed algorithms.

The performance of the 2D⊗1D NFFT-T approach is
demonstrated with two examples in Fig. V.2. For the
continuous field map, already the first iteration yields
a visually good result. Mainly the second iteration pro-
vides further improvements, primarily at edges. For the
discrete field map, the first iteration produces a visually
unacceptable result due to strong artifacts arising from
discontinuities. These artifacts are dramatically reduced
after a second iteration, but it takes about ten iterations,
before the shape of the field map is no longer discernible
in the resulting image. This difference in convergence is
in good agreement with earlier work, which showed that
for spiral k-space sampling the CPR works reasonably
well only if the field map is smooth [17], [19].

The accuracy of the 2D⊗1D NFFT-T approach is
compared to that of established field inhomogeneity
correction algorithms in Fig. V.3. The simulations were
agained performed with the continuous field map, and
the settings for the NFFT applied to the two standard
dimensions were α = 1.25 and m = 2. Shown are
results for one iteration, i.e. the CPR, and three iterations.
Those for the least squares algorithm were obtained with
a time segmentation. Using a frequency segmentation
instead, errors increased for low number of segments
and remained comparable for high number of segments.
For the gridding-based approach, α and m were matched
to the respective αN3. As for the Man interpolation,
the approximation becomes senseless below a certain
minimum number of segments, which is 8 in this case.
Although slightly lower errors were achieved with a time
segmentation, the presented results for the Man inter-
polation were obtained with a frequency segmentation,
since it required no manual tuning of the oversampling
factor. The nearest neighbor interpolation with frequency
segmentation was not included in the graphs, since it
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basically failed to yield acceptable results for more
than one iteration. While the least squares algorithm
obviously achieves the lowest error of all, the gridding-
based approach reaches comparable levels very rapidly
for a sufficiently large kernel size and oversampling
factor. Using, for instance, the same settings as for the
NFFT applied to the two standard dimensions, αN3 is
14. The least squares and the gridding-based algorithms
provide similar accuracy in this case. Moreover, the
overall accuracy is limited by the NFFT applied to the
two standard dimensions beyond this point, since errors
no longer decrease significantly for higher number of
segments. The Man interpolation achieves reasonably
good results for one iteration, but takes a high number
of segments to reach an adequate accuracy for three
iterations. The Hanning interpolation performs poorest,
except for very low number of segments, where both the
Man interpolation and the gridding-based approach fail
to provide a useful approximation.

The running times per iteration of the same four
correction algorithms are summarized in V.2. In all cases,
the number of segments was 14, and the oversampling
factor was 1.25. Not included in the running times is
the initialization. The differences are, therefore, due to
varying amounts of data that are to be regridded per
iteration. These amounts are determined by the number
of non-zero linear combination coefficients. The least
squares and the Man interpolation show the longest
running times, since all coefficients are non-zero. By
contrast, only a maximum of 2m + 1 out of each
αN3 coefficients are non-zero using the gridding-based
approach, and only a maximum of 3 using the Hanning
interpolation. Consequently, both exhibit significantly
shorter running times.

B. Experiments

Representative results of the phantom experiments are
summarized in Fig. V.4. The off-resonance frequencies
covered a range of 210 Hz in this example. Using 12
spiral interleaves and an acquisition window length of
28.5 ms, the gridding-based field inhomogeneity correc-
tion yields an almost perfect image after three iterations.
The number of segments was 12 in this case, corre-
sponding to α = 1.33. Using 6 spiral interleaves and
an acquisition window length of 56.5 ms, the proposed
algorithm still provides an image of good overall quality,
although residual artifacts remain visible, in particular
near the circumference and the resolution rods of the
phantom. The number of segments was 19 in this case,
corresponding to α = 1.26.

V. DISCUSSION

The efficient reconstruction of non-Cartesian acqui-
sitions faces the problem of a non-equispaced sam-
pling in k-space. It is adequately solved by the basic
approximation underlying the gridding methods (II.9).
Field inhomogeneity, however, introduces an exponen-
tial function into the forward model that is irregularly
sampled in both the frequency and the time domain. We
showed that (II.9) can be adapted to this case, leading
to the similar approximation (II.13). In this way, the
reconstruction and the field inhomogeneity correction
of non-Cartesian acquisitions may be founded on the
same basic approximation. This allows to achieve more
simply a balance between reconstruction and correction
accuracy. From this result, we have derived four new
algorithms for the compensation of field inhomogeneity
effects.

Among the proposed algorithms, the 3D NNFFT
approach shows the highest error. We attribute this to
the unnecessary regridding of all spatial dimensions,
which involves an approximation. Explicitly using the
knowledge that the image is discretized on a Cartesian
grid obviously pays off. The slight preference for a
time segmentation over a frequency segmentation, both
visually and quantitatively, was also found for the other,
existing algorithms. Performing the interpolation in the
transformed domain of the final result, i.e. in the spatial
frequency domain of the image to be reconstructed,
generally seems to reduce the perceived artifact level.
We selected the 2D⊗1D NFFT-T approach for further
investigations mainly due to its lower computational
complexity. However, the 3D NFFT approach achieves
a similar accuracy and is conceptually far simpler.

The comparison in Fig. V.3 shows that the combina-
tion of a local convolution and a convolution correction
in the transformed domain, as used by the gridding-based
approach, clearly outperforms a mere interpolation in
one domain. The Hanning and the Man interpolation
achieve only a substantially lower accuracy beyond a
certain number of segments. The proposed gridding-
based approach permits an explicit calculation of this
bound, above which it reaches an accuracy comparable
to that of the least squares approach.

The comparison of the running times highlighted the
relevance of the amount of data to be regridded. There-
fore, the use of a local neighborhood in the interpolation
is again advantageous, similar as in standard gridding.
Previously, it has been proposed to essentially eliminate
most of the regridding from both the conjugate phase
[17] and the algebraic [20] reconstruction. While a
detailed comparison remains to be done, the apparent
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advantage is often offset by either a restriction on the
supported k-space trajectories or the requirement of
higher oversampling factors to avoid excessive backfold-
ing, as demonstrated for a related problem in parallel
imaging [21].

Another crucial factor is the effort involved in the ini-
tialization, which is mainly determined by the calculation
of the weights for the linear combination from a given
field map. Among the compared correction algorithms,
those that require little such effort are clearly preferable
for small number of iterations. The additional initial
effort involved in, for instance, least squares interpolation
usually pays off for large number of iterations only.

TABLE AND FIGURE CAPTIONS

Tab. IV.1. Comparison of the accuracy of different
gridding-based correction algorithms. Listed is the nor-
malized root mean square (RMS) error after 1, 2, and 3
iterations.

Tab. IV.2. Comparison of the running times of differ-
ent correction algorithms. Listed is the measured com-
putation time per iteration, using comparable parameter
settings.

Fig. III.1. Image and field maps used in simulations.
Shown are a filtered Shepp-Logan phantom on the left,
a continuous, parabolic and a discrete, linear field map
with off-resonance frequencies in the range of -125 Hz to
+125 Hz in the middle, and results of a standard gridding
reconstruction on the right. The latter were obtained from
simulations of spiral k-space sampling and a readout
duration of 32 ms. The dashed line superimposed on
the phantom indicates the position where cross sections
were taken for comparison.

Fig. IV.1. Results of simulations. Shown are intermedi-
ate images after 1, 2, and 3 iterations for the continuous
field map at the top and after 1, 2, and 10 iterations
for the discrete field map at the bottom. Below them,
the differences to the original phantom are plotted for
one cross section. The scaling varies by one order of
magnitude between those at the top and those at the
bottom.

Fig. IV.2. Comparison of the accuracy of different
correction algorithms. Plotted is the normalized root
mean square (RMS) error as function of the number of
segments in the interpolation after 1 and 3 iterations on
the left and on the right, respectively.

Fig. IV.3. Results of phantom experiments. Shown are
a reference image and a field map obtained with Carte-
sian k-space sampling on the left, and two corresponding

uncorrected and corrected images obtained with spiral k-
space sampling. Those in the middle were measured with
a readout duration of 28.5 ms, and those on the right with
a readout duration of 56.5 ms.
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Iteration 1 2 3

3D NNFFT 5.41 · 10−2 1.15 · 10−2 1.13 · 10−2

3D NFFT 5.31 · 10−2 5.83 · 10−3 5.42 · 10−3

2D⊗1D NFFT-F 5.39 · 10−2 6.99 · 10−3 6.39 · 10−3

2D⊗1D NFFT-T 5.32 · 10−2 5.50 · 10−3 5.21 · 10−3

TABLE V.1
COMPARISON OF THE ACCURACY OF DIFFERENT

GRIDDING-BASED CORRECTION ALGORITHMS. LISTED IS THE

NORMALIZED ROOT MEAN SQUARE (RMS) ERROR AFTER 1, 2,
AND 3 ITERATIONS.

Algorithm Running Time

Least squares 1530 ms

Gridding-based (2D⊗1D NFFT-T) 840 ms

Man 1530 ms

Hanning 710 ms

TABLE V.2
COMPARISON OF THE RUNNING TIMES OF DIFFERENT

CORRECTION ALGORITHMS. LISTED IS THE MEASURED

COMPUTATION TIME PER ITERATION, USING COMPARABLE

PARAMETER SETTINGS.
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Fig. V.1. Image and field maps used in simulations. Shown are a filtered Shepp-Logan phantom on the left, a continuous, parabolic and
a discrete, linear field map with off-resonance frequencies in the range of -125 Hz to +125 Hz in the middle, and results of a standard
gridding reconstruction on the right. The latter were obtained from simulations of spiral k-space sampling and a readout duration of 32 ms.
The dashed line superimposed on the phantom indicates the position where cross sections were taken for comparison.
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Fig. V.2. Results of simulations. Shown are intermediate images after 1, 2, and 3 iterations for the continuous field map at the top and
after 1, 2, and 10 iterations for the discrete field map at the bottom. Below them, the differences to the original phantom are plotted for one
cross section. The scaling varies by one order of magnitude between those at the top and those at the bottom.
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Fig. V.3. Comparison of the accuracy of different correction algorithms. Plotted is the normalized root mean square (RMS) error as function
of the number of segments in the interpolation after 1 and 3 iterations on the left and on the right, respectively.

Fig. V.4. Results of phantom experiments. Shown are a reference image and a field map obtained with Cartesian k-space sampling on the
left, and two corresponding uncorrected and corrected images obtained with spiral k-space sampling. Those in the middle were measured
with a readout duration of 28.5 ms, and those on the right with a readout duration of 56.5 ms.


