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duality in real linear spaces
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Abstract. In this paper we give a new regularity condition for Fenchel
duality concerning convex optimization problems in real linear spaces. Then
we prove that this condition is implied by some regularity conditions given
so far in the literature for this general class of optimization problems. By
giving an appropriate example we show that the new regularity condition is
indeed weaker than the aforementioned ones.
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1 Introduction

Having an optimization problem, one can attach to it (for example, by using
the perturbation theory developed in [6]), a dual problem such that between
these two problems weak duality always holds. That is, the optimal objective
value of the dual problem is less than or equal to the optimal objective value
of the primal problem. In most cases there is a so-called duality gap between
the optimal objective values of these problems. The challenge is to give weak
regularity conditions in order to have strong duality, which means that the
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two optimal objective values are equal and the dual problem has an optimal
solution. From the beginning of this theory, many mathematicians tried to
give such conditions in finite dimensional spaces (see [13]), in Banach spaces
(see [1]), in Hilbert spaces (see [5]), in Fréchet spaces (see [15]), in locally
convex spaces (see [3], [4], [6], [12], [18]), or even in real linear spaces (see
[7], [10], [19]). An overview on these conditions was given in [9] and [17].

In this paper we consider a convex optimization problem in a real linear
space. By using a conjugacy notion for the functions involved, which extends
the similar notion in a locally convex space, we introduce a Fenchel dual
problem to it. Then we give a new weak regularity condition which ensures
strong duality between the primal problem and its Fenchel dual problem. To
this end, we employ some abstract convexity notions, the necessary theory
being developed in [2].

In contrast to other conditions given in the literature by Elster and Nehse
(see [7]) and Lassonde (see [10]), written in terms of the core, respectively, the
intrinsec core of the effective domains of the functions involved, the one pro-
posed by us is formulated by using the epigraphs of their conjugate functions.
We prove that our condition is weaker than the aforementioned regularity
conditions. Also, it is a generalization of the regularity condition introduced
by Boţ and Wanka in the framework of locally convex spaces (see [3]) and
turns out to be a sufficient condition for the subdifferential sum formula of
a convex function with the precomposition of another convex function with
a linear mapping.

The paper is organized as follows. In the next section we present some
definitions, notations and include some results concerning c-convexity of func-
tions and sets that will be used later in the paper. In Section 3 we deal with
the theory of conjugate functions in real linear spaces, giving some important
properties. In Section 4 we prove some Moreau-Rockafellar-type theorems in
real linear spaces, generalizing the one existing in locally convex spaces. In
Section 5 we give the announced regularity condition for Fenchel duality and
treat some particular cases of it. We establish also some results concerning
subdifferential calculus. Finally, a list of references closes the paper.

2 Preliminaries

Let us consider a real linear space X and X# its algebraic dual space. Let
f : X → R be a given function, where R = R ∪ {±∞}.
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We have

• the domain of f : dom(f) = {x ∈ X : f(x) < +∞},

• the epigraph of f : epi(f) = {(x, r) ∈ X × R : f(x) ≤ r},

• f is proper if f(x) > −∞ ∀x ∈ X and dom(f) 6= ∅,

• g : X → R is affine if ∃(x#, α) ∈ X# × R such that g(x) = x#(x) +
α,∀x ∈ X,

• g ≤ f ⇔ g(x) ≤ f(x),∀x ∈ X,

• 〈x#, x〉 := x#(x), for x# ∈ X# and x ∈ X,

• the subdifferential of f at x (f(x) ∈ R) is the set

∂f(x) = {x# ∈ X# : f(y) − f(x) ≥ 〈x#, y − x〉,∀y ∈ X},

• the indicator function of a subset A of X, defined by

δA(x) =

{

0, if x ∈ A,
+∞, otherwise.

Definition 1. Let fi : X → R, i = 1, ...,m, be given proper functions.
The function f1�...�fm : X → R defined by

f1�...�fm(x) = inf

{

m
∑

i=1

fi(xi) :
m

∑

i=1

xi = x

}

is called the infimal convolution function of f1, ..., fm. We say that the
infimal convolution function f1�...�fm is exact at x if there exist some

xi ∈ X, i = 1, ...,m,
m
∑

i=1

xi = x such that f1�...�fm(x) = f1(x1)+...+fm(xm).

Definition 2. Let X and Y be real linear spaces, A : X → Y be a linear
mapping and f : X → R be a given function.

(a) The function Af : Y → R defined by

Af(y) = inf{f(x) : Ax = y},

is called the marginal function of f through A.
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(b) The set A × idR(epi(f)) is the image of the set epi(f) through the
function A× idR : X ×R → Y ×R, that is A× idR(epi(f)) = {(Ax, r) :
f(x) ≤ r}, where idR : R → R is the identity mapping, idR(r) = r,∀r ∈
R.

(c) The adjoint operator of A is defined by A# : Y # → X#, 〈A#y#, x〉 =
〈y#, Ax〉,∀y# ∈ Y #,∀x ∈ X.

Now we recall some definitions and results given in [2].

Definition 3. We say that f : X → R is c-convex on X if

∀x ∈ X, f(x) = sup{g(x) : g is an affine minorant of f}.

The set of all c-convex functions defined on X will be denoted by Γ(X).

Definition 4. We define the c-convex hull of f as being the function

cc(f) : X → R, cc(f)(x) = sup{g(x) : g ∈ Γ(X), g ≤ f},∀x ∈ X.

We have the following characterization for the c-convex hull of a function.

Lemma 1. ([2]) For f : X → R we have

cc(f) = sup{g : g affine, g ≤ f}.

Definition 5. For M ⊆ X we define the c-convex hull of M by

cc(M) =
⋂

(x#,α)∈(X#\{0})×R

{

H≤(x#, α) : M ⊆ H≤(x#, α)
}

,

where H≤(x#, α) = {x ∈ X : x#(x) ≤ α} is a so-called c-half-space ([2]).
We say that M is c-convex if and only if M = cc(M).

Theorem 1. ([2]) Let f : X → R be such that {g : g affine, g ≤ f} 6= ∅.
Then

(a) epi(cc(f)) = cc
(

epi(f)
)

,

(b) f ∈ Γ(X) ⇔ epi(f) ⊆ X × R is c-convex.

Theorem 2. ([2]) Let A be a subset of X. Then

δA ∈ Γ(X), i.e. δA is c-convex, if and only if A is c-convex.
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3 Conjugate functions

This section is devoted to the theory of conjugate functions. We introduce
the conjugate of a function defined on a real linear space and also we estab-
lish the connection between this notion and the classical one, given in the
framework of locally convex spaces.

Definition 6. For f : X → R we call

(a) f# : X# → R, f#(x#) = sup
x∈X

[x#(x)−f(x)],∀x# ∈ X#, the conjugate

function of f,

(b) f## : X → R, f##(x) = sup
x#∈X#

[x#(x) − f#(x#)],∀x ∈ X, the bicon-

jugate function of f.

Remark 1. (a) For a function g : X# → R, the conjugate and the
biconjugate of g are analogously defined as follows

g# : X → R, g#(x) = sup
x#∈X#

[x#(x) − g(x#)],∀x ∈ X,

g## : X# → R, g##(x#) = sup
x∈X

[x#(x) − g#(x)],∀x# ∈ X#.

(b) For a function f : X → R defined on a locally convex space X, we
also have the classical Fenchel conjugate of f , defined by

f ∗ : X∗ → R, f ∗(x∗) = sup
x∈X

[x∗(x) − f(x)],

where X∗ is the topological dual of X. We have that X∗ ⊆ X# and f# |X∗ =
f ∗. One can see that f##(x) = sup

x#∈X#

[x#(x) − f#(x#)] ≥ sup
x∗∈X∗

[x∗(x) −

f ∗(x∗)] = f ∗∗(x),∀x ∈ X, so f## ≥ f ∗∗. In finite dimensional spaces, f#

and f ∗ are identical, as in this case X# = X∗.

Proposition 1. Let the function f : X → R be given. Then

(a) f#(x#) + f(x) ≥ x#(x),∀x ∈ X,∀x# ∈ X# (Young-Fenchel inequal-
ity);

(b) f# ∈ Γ(X#);
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(c) f ≤ g ⇒ g# ≤ f#;

(d) f# =
(

cc(f)
)#

.

Proof. We prove just (b) and (d) since (a) and (c) are trivial conse-
quences of Definition 6.

(b) If f is not proper, one can see that f# ≡ +∞ or f# ≡ −∞, and
these are c-convex functions (see Definition 3). If f is proper then f#(x#) =
supx∈dom(f)[x

#(x) − f(x)], ∀x# ∈ X#. We have to show that

f#(x#) = sup
{

g(x#) : g affine, g ≤ f#
}

.

Let be x#
0 ∈ X#. Obviously,

sup
{

g(x#
0 ) : g affine, g ≤ f#

}

≤ f#(x#
0 ).

If we suppose that in the relation above the inequality is strict, then one can
find a real number r such that

sup
{

g(x#
0 ) : g affine, g ≤ f#

}

< r < f#(x#
0 ).

This means that g(x#
0 ) < r,∀g affine, g ≤ f# and ∃x0 ∈ dom(f) such that

x#
0 (x0) − f(x0) > r.

If we define h : X# → R, h(x#) := x#(x0) − f(x0), then (by (a)), h(x#) ≤
f#(x#),∀x# ∈ X#, that is h is an affine minorant of f#, so

r < h(x#
0 ) < r,

which is a contradiction.
(d) Using (c), we get f# ≤

(

cc(f)
)#

, as cc(f) ≤ f (see Proposition 1(a) in
[2]). We prove now the opposite inequality. Let x# ∈ X#. If f#(x#) = +∞,

then
(

cc(f)
)#

(x#) = f#(x#) = +∞. If not, there exists α ∈ R such that
f#(x#) ≤ α. Then x#(x) − f(x) ≤ α,∀x ∈ X, that is x#(x) − α ≤
f(x),∀x ∈ X. We obtain by Lemma 1 that x#(x) − α ≤ cc(f)(x),∀x ∈ X,

so x#(x) − cc(f)(x) ≤ α,∀x ∈ X, implying that
(

cc(f)
)#

(x#) ≤ α. But
this is true for every α ≥ f#(x#). By allowing α converging to f#(x#), we

conclude that
(

cc(f)
)#

(x#) ≤ f#(x#). As x# was arbitrary, the equality
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follows. �

The following theorem is extending a well-known result in locally convex
spaces (see also [11]).

Theorem 3. For f : X → R we have f## = cc(f).

Proof. Let x ∈ X be arbitrary. It holds

f##(x) = sup
x#∈X#

{x#(x) − f#(x#)} = sup
x#∈dom(f#)

{x#(x) − f#(x#)}

= sup{x#(x) + α : x# ∈ dom(f#), α ∈ R, α ≤ −f#(x#)}

= sup
{

x#(x) + α : x# ∈ dom(f#), α ∈ R, α ≤ inf
y∈X

{f(y) − x#(y)}
}

= sup{x#(x) + α : x# ∈ dom(f#), α ∈ R, α + x#(y) ≤ f(y),∀y ∈ X}

= sup{x#(x) + α : x# ∈ X#, α ∈ R, α + x#(y) ≤ f(y),∀y ∈ X},

and this delivers the desired result, as the last term in this sequence of equal-
ities is exactly cc(f)(x) (see Lemma 1). �

By the above theorem and Proposition 1(a) in [2], we get f(x) ≥ f##(x),
∀x ∈ X. Moreover, if X is a locally convex space then we have the following
sequence of inequalities

f(x) ≥ f##(x) ≥ f ∗∗(x),∀x ∈ X.

If f is proper, convex and lower semi-continuous, then f = f ∗∗ (see [6]), so
in this case we obtain that f = f## = f ∗∗.

The following two results follow from Theorem 3.

Corollary 1. A function f : X → R is c-convex if and only if f## = f.

Proof. This is a direct consequence of the above theorem and Proposition
1(b) in [2].

f ∈ Γ(X) ⇔ f = cc(f) ⇔ f = f##.

�
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Corollary 2. For a function f : X → R we have f### = f#.

Proof. We apply Theorem 3 and Proposition 1(d) to obtain

f### = (f##)# =
(

cc(f)
)#

= f#.

�

Remark 2. It is easy to prove that if f is proper and c-convex, then f#

is also proper.
In a locally convex space X, a proper function f is convex and lower

semi-continuous if and only if f ∗∗ = f , where X∗ is endowed with the weak*
topology ω(X∗, X) (see [6]). In the following we give an example of a func-
tion f for which f ∗∗ 6= f but f## = f .

Example 1. ([2]) Consider X an infinite dimensional normed space and
let {ei : i ∈ I} be a vector basis of it. We may suppose that N ⊆ I. Obviously,
{
(

1/‖ei‖
)

ei : i ∈ I} is again a vector basis, so without lose of generality we
may suppose that ‖ei‖ = 1,∀i ∈ I. Define f0 : {ei : i ∈ I} → R,

f0(ei) =

{

i, if i ∈ N

0, otherwise.

It is well known from the linear algebra that f0 can be extended uniquely
to a linear function on X, let us call it x#

0 . We claim that x#
0 ∈ X# \ X∗.

Indeed, if we suppose that x#
0 is continuous, then ∃L ≥ 0 s.t. |x#

0 (x)| ≤
L‖x‖,∀x ∈ X. But this implies, for x = ei, i ∈ N, that i ≤ L,∀i ∈ N, which
is a contradiction. Now consider the following set

M := ker(x#
0 ) = {x ∈ X : x#

0 (x) = 0}.

Since
M = {x ∈ X : x#

0 (x) ≤ 0}
⋂

{x ∈ X : −x#
0 (x) ≤ 0},

M is c-convex (see Lemma 3 in [2])). Let be xn = e1 − (1/n)en,∀n ∈ N. It
is easy to see that xn ∈ M,∀n ∈ N. Because of ‖xn − e1‖ = 1/n,∀n ∈ N,
we get that the limit of the sequence {xn} is e1, but this element does not
belong to M , so M is a c-convex set which is not topologically closed.

Taking the indicator function of M , we have, by Theorem 2, that δM is
c-convex, so in view of Corollary 1, δ##

M = δM . Because M is not closed, δM
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is not lower semi-continuous, hence δ∗∗M 6= δM .

We close this section giving a result concerning the epigraph of the con-
jugate of the sum of two functions. The proof is similar to the one given in
[3] for locally convex spaces.

Proposition 2. Let f, g : X → R be proper functions which satisfy the
condition dom(f)

⋂

dom(g) 6= ∅. The following statements are equivalent

(i) epi
(

(f + g)#
)

= epi(f#) + epi(g#),

(ii) (f + g)# = f#
�g# and f#

�g# is exact at every x# ∈ X#.

4 Moreau-Rockafellar-type theorems

Using some results given in [2], we show in this section that in real linear
spaces we have some similar results with the one which exist in locally convex
spaces.

Theorem 4. (see Theorem 2.4 in [3]) Let X and Y be real linear spaces,
A : X → Y a linear mapping and g : Y → R a proper function. Then

cc
(

epi(A#g#)
)

= cc
(

A# × idR(epi(g#))
)

.

Proof. First, let be (x#, r) ∈ A# × idR(epi(g#)). Then there exists
y# ∈ Y # s.t. A#y# = x# and (y#, r) ∈ epi(g#). It follows

A#g#(x#) = inf{g#(y#) : A#y# = x#} ≤ r,

thus (x#, r) ∈ epi(A#g#). So the inclusion A# × idR(epi(g#)) ⊆ epi(A#g#)
is true. We show that epi(A#g#) ⊆ cc

(

A# × idR(epi(g#))
)

and this will
lead us to the desired result. Let (x#, r) ∈ epi(A#g#). Let H be a c-half-
space such that A# × idR(epi(g#)) ⊆ H. Take an arbitrary ε > 0. We have
A#g#(x#) ≤ r < r + ε ⇔ inf{g#(y#) : A#y# = x#} < r + ε ⇔ ∃y#

ε such
that A#y#

ε = x#, g#(y#
ε ) < r + ε ⇔ (x#, r + ε) ∈ A# × idR(epi(g#)) ⊆ H.

Thus
(x#, r + ε) ∈ H,∀ε > 0. (1)
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H cannot be a lower half-space (see the discussion on the half-spaces in X×R

in [2], Section 4). Thus H must be a vertical or an upper half-space. Using
(1) and Lemma 5 from [2] we get (x#, r) ∈ H. But H was arbitrary, so we
conclude that (x#, r) ∈ cc

(

A# × idR(epi(g#))
)

. �

Theorem 5. (see Theorem 2.7 in [8]) Let X and Y be real linear spaces,
A : X → Y a linear mapping and g ∈ Γ(Y ) a proper function such that g ◦A
is proper on X. Then

epi((g ◦ A)#) = cc
(

epi(A#g#)
)

.

Proof. We prove first the following equality

g ◦ A = (A#g#)#. (2)

We have A#g# : X# → R . Then

(A#g#)#(x) = sup
x#∈X#

[〈x#, x〉 − (A#g#)(x#)]

= sup
x#∈X#

[〈x#, x〉 − inf
A#y#=x#

g#(y#)]

= sup
(x#,y#)∈X#×Y #

A#y#=x#

[〈x#, x〉 − g#(y#)]

= sup
y#∈Y #

[〈A#y#, x〉 − g#(y#)]

= sup
y#∈Y #

[〈y#, Ax〉 − g#(y#)] = g##(Ax) = g(Ax),∀x ∈ X,

where the last equality is given by Corollary 1. Using (2) and Theorem 3 we
obtain (g ◦ A)# = (A#g#)## = cc(A#g#). This implies that

epi((g ◦ A)#) = epi(cc(A#g#)). (3)

Next we show that the function A#g# has at least one affine minorant.
Because g ◦ A is proper, there exists x0 ∈ X such that g(Ax0) ∈ R. Us-
ing the Young-Fenchel inequality, we get (A#g#)(x#) = inf

A#y#=x#
[g#(y#)] ≥

inf
A#y#=x#

[〈y#, Ax0〉 − g(Ax0)] = inf
A#y#=x#

[〈A#y#, x0〉 − g(Ax0)] = 〈x#, x0〉 −

g(Ax0),∀x# ∈ X#. If we define h : X# → R by

h(x#) = 〈x#, x0〉 − g(Ax0),
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then h is an affine minorant of A#g#. By Theorem 1(a) follows that

epi(cc(A#g#)) = cc(epi(A#g#))

and (3) leads to the desired conclusion. �

Combining the last two theorems we have the following result.

Theorem 6. Let X and Y be real linear spaces, A : X → Y a linear
mapping and g ∈ Γ(Y ) a proper function such that g ◦ A is proper on X.
Then

epi((g ◦ A)#) = cc
(

epi(A#g#)
)

= cc
(

A# × idR(epi(g#))
)

.

The next theorem is similar to the one established by Rockafellar and
Moreau in locally convex spaces (see [14], [16]). It gives a characterization
of the epigraph of the conjugate of the sum of two functions.

Theorem 7. (Moreau-Rockafellar) Let f, h ∈ Γ(X) be proper func-
tions such that dom(f)

⋂

dom(h) 6= ∅. Then

epi((f + h)#) = cc(epi(f#
�h#)) = cc(epi(f#) + epi(h#)).

Proof. We obtain this result applying Theorem 6 for the particular case
Y = X×X, g : X×X → R, g(x, y) = f(x)+h(y) and A : X → X×X,Ax =
(x, x). The adjoint operator of A is A# : X# ×X# → X#, A#(p, q) = p + q.
To show that g is also c-convex, we compute its biconjugate. We have

g#(p, q) = sup
(x,y)∈X×X

{p(x) + q(y) − f(x) − h(y)} =

sup
x∈X

{p(x) − f(x)} + sup
y∈X

{q(y) − h(y)} = f#(p) + h#(q).

In a similar way, by Corollary 1 we have

g##(x, y) = f##(x) + h##(y) = f(x) + h(y) = g(x, y),∀(x, y) ∈ X × X.

So g## = g, hence g is c-convex, in view of Corollary 1. �
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5 Fenchel duality

Let be X and Y two real linear spaces, A : X → Y a linear mapping,
f ∈ Γ(X), g ∈ Γ(Y ) proper functions such that A(dom(f))

⋂

dom(g) 6= ∅.
We consider the following convex optimization problem

(PA) inf
x∈X

{f(x) + g(Ax)}.

In this section we give a regularity condition which ensures strong duality
between (PA) and its Fenchel dual problem and we show that it is weaker
than other conditions given so far in the literature. Also we give some results
related to subdifferential calculus.

Obviously, the function g ◦ A : X → R is also c-convex. Indeed, by the
proof of Theorem 5 we already know that g ◦ A = (A#g#)#, hence

(g ◦ A)## = (A#g#)###.

Now we use Corollary 2 to conclude that (g◦A)## = (A#g#)# = g◦A, thus,
by Corollary 1, g ◦ A is c-convex. So we have (cf. Theorem 5 and Theorem
7)

epi((f + g ◦ A)#) = cc
(

epi(f#) + epi((g ◦ A)#)
)

= cc
(

epi(f#) + cc
(

A# × idR(epi(g#))
)

)

,

which is nothing else than (because cc(E + cc(F )) = cc(E + F ), see Propo-
sition 2 in [2])

epi((f + g ◦ A)#) = cc(epi(f#) + A# × idR(epi(g#))).

We introduce the following regularity condition

(RCA) : epi(f#) + A# × idR(epi(g#)) is c-convex in X# × R.

It is easy to see that (RCA) is equivalent to

epi((f + g ◦ A)#) = epi(f#) + A# × idR(epi(g#)). (4)

Theorem 8. Let X and Y be real linear spaces, A : X → Y a linear map-
ping, f ∈ Γ(X), g ∈ Γ(Y ) proper functions such that A(dom(f))

⋂

dom(g) 6=
∅. Then (RCA) is fulfilled if and only if ∀x# ∈ X#,

(f + g ◦ A)#(x#) = inf{f#(x# − A#y#) + g#(y#) : y# ∈ Y #}

12



and the infimum is attained.

Proof. ” ⇒ ” Let x# ∈ X#. For all x ∈ X and y# ∈ Y # we have (by
the Young-Fenchel inequality)

f#(x# − A#y#) + g#(y#) ≥ 〈x# − A#y#, x〉 − f(x) + 〈y#, Ax〉 − g(Ax)

= 〈x#, x〉 − f(x) − g(Ax)

and therefore

inf{f#(x# − A#y#) + g#(y#) : y# ∈ Y #} ≥ (f + g ◦ A)#(x#) (5)

If (f +g ◦A)#(x#) = +∞, then the conclusion follows. If (f +g ◦A)#(x#) <
+∞, we have (x#, (f + g ◦ A)#(x#)) ∈ epi((f + g ◦ A)#). The regularity
condition (RCA) being fulfilled, there exist (u#, r) ∈ epi(f#) and (v#, s) ∈
A# × idR(epi(g#)) such that x# = u# + v# and (f + g ◦A)#(x#) = r + s. So
there exists y# ∈ Y # such that A#y# = v# and g#(y#) ≤ s, which implies

f#(x# − A#y#) + g#(y#) = f#(u#) + g#(y#)

≤ r + s = (f + g ◦ A)#(x#).

This delivers the desired result.
” ⇐ ” It is enough to prove that the equality in (4) is fulfilled. Let (u#, r) ∈
epi(f#) and (v#, s) ∈ A# × idR(epi(g#)). Hence there exists y# ∈ Y # such
that A#y# = v# and g#(y#) ≤ s. By (5) we have

(f + g ◦ A)#(u# + v#) ≤ f#(u#) + g#(y#) ≤ r + s,

so (u# + v#, r + s) ∈ epi((f + g ◦ A)#). Thus the inclusion

epi(f#) + A# × idR(epi(g#)) ⊆ epi((f + g ◦ A)#)

is always satisfied. For the opposite inclusion, let (x#, r) ∈ epi((f + g ◦A)#).
Then (f+g◦A)#(x#) ≤ r ⇒ ∃y# ∈ Y # such that f#(x#−A#y#)+g#(y#) ≤
r. The element (x#, r) can be written in the following way

(x#, r) = (x# − A#y#, f#(x# − A#y#)) + (A#y#, r − f#(x# − A#y#)),

which belongs to epi(f#)+A#×idR(epi(g#)) and so the conclusion follows.�
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In a similar way like for locally convex spaces (see [3]), by using Theorem
8, one can prove the following formula for the subdifferential of the sum of a
convex function with the precomposition of another convex function with a
linear mapping.

Theorem 9. Let X and Y be real linear spaces, A : X → Y a linear map-
ping, f ∈ Γ(X), g ∈ Γ(Y ) proper functions such that A(dom(f))

⋂

dom(g) 6=
∅. If (RCA) is fulfilled, then ∀x ∈ dom(f) ∩ A−1(dom(g)),

∂(f + g ◦ A)(x) = ∂f(x) + A#∂g(Ax).

Consider now the Fenchel dual problem to (PA)

(DA) sup
y#∈Y #

{

− f#(−A#y#) − g#(y#)
}

.

Let us denote by v(PA) and v(DA) the optimal objective values of (PA) and
(DA), respectively. It is easy to show, using the properties of the conjugate
functions, that weak duality holds, that is v(DA) ≤ v(PA). Because v(PA) =
−(f + g ◦ A)#(0), then, in view of Theorem 8 (taking x# = 0), it can
be proved that if (RCA) is fulfilled then we have strong duality, that is
v(PA) = v(DA) and (DA) has an optimal solution. Now we give a weaker
constraint qualification under which strong duality holds. Let this be defined
by

(FRCA) : f#
�A#g# ∈ Γ(X#) and epi(f#

�A#g#)
⋂

({0} × R)

= (epi(f#) + A# × idR(epi(g#)))
⋂

({0} × R).

Theorem 10. If (FRCA) is fulfilled, then v(PA) = v(DA) and (DA) has
an optimal solution.

Proof. Taking in (5) x# = 0, we have

v(PA) = −(f + g ◦ A)#(0) ≥ v(DA) ≥ −f#(−A#y#) − g#(y#),∀y# ∈ Y #.

If v(PA) = −∞, then the conclusion follows. Assume that v(PA) > −∞.
Using Theorems 5 and 7, as well as Proposition 2 in [2], we obtain

epi((f + g ◦ A)#) = cc
(

epi(f#) + epi((g ◦ A)#)
)
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= cc
(

epi(f#) + cc(epi(A#g#))
)

= cc(epi(f#) + epi(A#g#))

= cc(epi(f#
�A#g#)),

which is nothing else than (see Theorem 1(a)) (f + g ◦A)# = cc(f#
�A#g#)

(we can use the same argument as in the proof of Theorem 5 to show that
the function f#

�A#g# has at least one affine minorant). The regularity
condition (FRCA) being fulfilled, we have actually that (f + g ◦ A)# =
f#

�A#g# and, because of −v(PA) = (f + g ◦ A)#(0), we get

(0,−v(PA)) ∈ (epi(f#) + A# × idR(epi(g#)))
⋂

({0} × R).

Hence, there exist (u#, r) ∈ epi(f#) and (v#, s) ∈ A# × idR(epi(g#)) such
that u# + v# = 0 and r + s = −v(PA). Further there exists y# ∈ Y # such
that A#y# = v# and g#(y#) ≤ s. Thus u# = −A#y# and

v(PA) = −r − s ≤ −f#(u#) − g#(y#) = −f#(−A#y#) − g#(y#) ≤ v(DA),

which delivers the desired conclusion. �

Remark 3. We prove that (RCA) implies (FRCA). Indeed, if (RCA) is
fulfilled, then epi((f + g ◦ A)#) = epi(f#) + A# × idR(epi(g#)) (cf. (4)). As
we have seen in the proof of Theorem 10, the following relations hold (see
also the proof of Theorem 4)

epi((f + g ◦ A)#) = cc(epi(f#
�A#g#)) ⊇ epi(f#

�A#g#)

⊇ epi(f#) + epi(A#g#) ⊇ epi(f#) + A# × idR(epi(g#)).

Because of (RCA), for all these inclusions equality holds. Thus the set
epi(f#

�A#g#) is c-convex and now use Theorem 1(b) to conclude that
(FRCA) is true. Boţ and Wanka gave in [3] an example of an optimiza-
tion problem in R

2 for which (FRCA) is fulfilled, but (RCA) not. Obviously,
this example applies also for the regularity conditions introduced in this pa-
per.

We treat now some particular cases of the above results. In case X = Y
and A = idX , the identity mapping of X, the problems (PA) and (DA) become

(P ) inf
x∈X

{f(x) + g(x)}
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and
(D) sup

x#∈X#

{

− f#(−x#) − g#(x#)
}

,

respectively. The functions A#g# and A# × idR will be nothing else than g#

and the identity mapping of X# × R, respectively. The relation (4) and the
regularity conditions (RCA) and (FRCA) turn out to be

epi
(

(f + g)#
)

= epi(f#) + epi(g#), (6)

(RC) : epi(f#) + epi(g#) is c-convex in X# × R

and, respectively,

(FRC) : f#
�g# ∈ Γ(X#) and epi(f#

�g#)
⋂

({0} × R)

= (epi(f#) + epi(g#))
⋂

({0} × R).

The latter is nothing else than

(FRC) : f#
�g# is a c-convex function and is exact at 0.

From Theorems 8, 9 and 10 we get the following corollaries.

Corollary 3. Let X and Y be real linear spaces, f ∈ Γ(X), g ∈ Γ(Y )
proper functions such that dom(f)

⋂

dom(g) 6= ∅. Then

(i) (RC) is fulfilled if and only if ∀x# ∈ X#,

(f + g)#(x#) = inf{f#(x# − y#) + g#(y#) : y# ∈ Y #}

and the infimum is attained.

(ii) If (RC) is fulfilled, then ∀x ∈ dom(f) ∩ dom(g),

∂(f + g)(x) = ∂f(x) + ∂g(x).

Corollary 4. If (FRC) is fulfilled, then v(P ) = v(D) and (D) has an
optimal solution.

Next we show that (RC), and in particular (FRC) too, is implied by
some other conditions given in the past in the literature (in the framework of
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real linear spaces), for having strong duality between the problems (P ) and
(D).

Let us recall some well-known notions (see, for example, [18]). For a
subset D ⊆ X the core (or the algebraic interior) of D is defined by

core(D) = {d ∈ D : ∀x ∈ X,∃ε > 0 s.t. ∀λ ∈ [−ε, ε], d + λx ∈ D}.

The core of D relative to aff(D − D) is called the intrinsec core (or the
relative algebraic interior) of D and is denoted by icr(D)

icr(D) = {d ∈ D : ∀x ∈ aff(D − D),∃ε > 0 s.t. ∀λ ∈ [−ε, ε], d + λx ∈ D}.

The following facts are well known: core(D) ⊆ icr(D) ⊆ D and if D is convex
then

x ∈ core(D) ⇔
⋃

λ>0

λ(D − x) = X.

Consider the following two constraint qualifications

(i) icr(dom(f))
⋂

icr(dom(g)) 6= ∅,

(ii) 0 ∈ core(dom(f) − dom(g)).

Let us suppose that one of the above conditions is satisfied. As each of the
above conditions ensures strong duality between the problems (P ) and (D)
(for (i) see [7] and for (ii), [10]), one has

(f + g)#(0) = sup
x∈X

{−f(x) − g(x)} = − inf
x∈X

{f(x) + g(x)}

= − sup
y#∈X#

{−f#(−y#) − g#(y#)} = inf
y#∈X#

{f#(−y#) + g#(y#)}

and this infimum is attained. Define the function h : X → R by h := g−x#,
where x# is an arbitrary element from X#. Because dom(h) = dom(g), the
above result holds for the functions f and h too, that is

(f + h)#(0) = inf
y#∈X#

{f#(−y#) + h#(y#)}

and this infimum is attained. One can easy see that (f + h)#(0) = (f +
g)#(x#) and h#(y#) = g#(x# + y#). So we get

(f + g)#(x#) = inf{f#(−y#) + g#(x# + y#) : y# ∈ X#}

= inf{f#(x# − y#) + g#(y#) : y# ∈ Y #}
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and the infimum is attained. By Corollary 3(i), this is nothing else than
(RC) must be fulfilled. Therefore, both the conditions (i) and (ii) imply
(RC).

In the following, we prove that (RC) is indeed weaker than (i) and (ii).
Let us consider the following two functions f := δ

H≤(x#
0 ,0), g := δ

H≥(x#
0 ,0),

where H≤(x#
0 , 0) = {x ∈ X : x#

0 (x) ≤ 0} , H≥(x#
0 , 0) = {x ∈ X : x#

0 (x) ≥ 0}
and x#

0 belongs to X# \{0}. The sets H≤(x#
0 , 0) and H≥(x#

0 , 0) are c-convex
(see Lemma 3 in [2]), so in view of Theorem 2, the functions f and g are
c-convex. We show that (RC) is fulfilled. Let us compute the conjugates of
these functions. To this end, we need the following result from linear algebra.

Lemma 2. Let X be a real linear space and x#
1 , x#

2 ∈ X#. Then

ker(x#
1 ) ⊆ ker(x#

2 ) if and only if ∃α ∈ R such that x#
2 = αx#

1 ,

where by ker(x#) = {x ∈ X : x#(x) = 0} we denote the kernel of x# ∈ X#.

We have f + g = δ
H(x#

0 ,0), where H(x#
0 , 0) = {x ∈ X : x#

0 (x) = 0} =

ker(x#
0 ). So (f + g)#(x#) = sup

x
#
0 (x)=0

x#(x). We show that (f + g)# = δ
Rx

#
0
.

If x# = αx#
0 , with α ∈ R, then (f + g)#(x#) = 0. Let x# ∈ X# \ (Rx#

0 ).
We claim that

∃x0 ∈ ker(x#
0 ) such that x#(x0) 6= 0. (7)

If not, then ∀x ∈ ker(x#
0 ), x#(x) = 0 that is ker(x#

0 ) ⊆ ker(x#) implying by
Lemma 2 that x# ∈ Rx#

0 , which is a contradiction. Hence (7) is true. We may
suppose that x#(x0) > 0. Then (f +g)#(x#) ≥ x#(nx0) = nx#(x0),∀n ∈ N,
thus (f + g)#(x#) = +∞.

For the conjugate of f we have f#(x#) = sup
x
#
0 (x)≤0

x#(x). We prove that

f# = δ
R+x

#
0
. For x# ∈ R+x#

0 we have f#(x#) = 0. If x# ∈ R−x#
0 , then

it is easy to see that f#(x#) = +∞ (use the fact that x#
0 6= 0) and if

x# ∈ X# \ (Rx#
0 ), we have f#(x#) ≥ sup

x
#
0 (x)=0

x#(x) = +∞. In a similar way

one can prove that g# = δ
R−x

#
0
. We have

epi(f#) + epi(g#) = R+x#
0 × [0,∞) + R−x#

0 × [0,∞)

= Rx#
0 × [0,∞) = epi(f + g)#,
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implying by Theorem 7 that epi(f#) + epi(g#) is c-convex, that is (RC) is
fulfilled.

Next we show that the conditions (i) and (ii) fail for these two functions.
For (i), we assume that

∃x0 ∈ icr(dom(f)) ∩ icr(dom(g))

= icr
(

H≤(x#
0 , 0)

)

∩ icr
(

H≥(x#
0 , 0)

)

⊆ H≤(x#
0 , 0) ∩ H≥(x#

0 , 0) ⊆ H(x#
0 , 0),

hence x#
0 (x0) = 0. As x#

0 6= 0, there exists x1 ∈ X such that x#
0 (x1) 6= 0.

We may suppose that x#
0 (x1) < 0. We have x1 = x1 − 0 ∈ H≤(x#

0 , 0) −
H≤(x#

0 , 0) ⊆ aff(H≤(x#
0 , 0) − H≤(x#

0 , 0)). But x0 ∈ icr(H≤(x#
0 , 0)), so

∃ε1 > 0 such that ∀λ ∈ [−ε1, ε1], x0 + λx1 ∈ H≤(x#
0 , 0), that is λx#

0 (x1) ≤ 0.
The same x1 can be written as x1 = 0 − (−x1) ∈ H≥(x#

0 , 0) − H≥(x#
0 , 0) ⊆

aff(H≥(x#
0 , 0) − H≥(x#

0 , 0)). We obtain that ∃ε2 > 0 such that ∀λ ∈
[−ε2, ε2], x0 + λx1 ∈ H≥(x#

0 , 0), thus λx#
0 (x1) ≥ 0. Taking ε := min{ε1, ε2}

and λ := ε/2 we get x#
0 (x1) ≤ 0 and x#

0 (x1) ≥ 0, hence x#
0 (x1) = 0, which is

a contradiction.
Suppose now that (ii) is fulfilled. One can see that

dom(f) − dom(g) = H≤(x#
0 , 0) − H≥(x#

0 , 0) = H≤(x#
0 , 0),

so condition (ii) is equivalent to 0 ∈ core
(

H≤(x#
0 , 0)

)

, which is nothing else

than
⋃

λ>0

λ(H≤(x#
0 , 0)) = X. As x#

0 6= 0, there exists x2 ∈ X such that

x#
0 (x2) > 0. For this x2 we can find λ1 > 0 and x′ ∈ H≤(x#

0 , 0) fulfilling
x2 = λ1x

′. Then 0 < x#
0 (x2) = λ1x

#
0 (x′) ≤ 0, which is a contradiction.

We close the paper by considering the following optimization problem

(P0) inf
x∈G

f(x) = inf
x∈X

[f(x) + δG(x)],

where G is a non-empty c-convex subset of X. The Fenchel dual problem of
(P0) becomes

(D0) sup
x#∈X#

{

− f#(x#) − δ#
G (−x#)

}

or, equivalently

(D0) sup
x#∈X#

{

− f#(x#) + inf
x∈G

〈x#, x〉
}

.
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We can give the following strong duality result.

Corollary 5. (see Theorem 4.4 in [4]) Assume that f ∈ Γ(X) is proper
such that dom(f) ∩ G 6= ∅. If

f#
�δ#

G ∈ Γ(X#) and is exact at 0,

then v(P0) = v(D0) and (D0) has an optimal solution.

Proof. By Theorem 2, the function δG is c-convex. By Corollary 4 the
result follows. �

Remark 4. If we consider gi : X → R, i ∈ I, a family of c-convex func-
tions (in particular gi can be affine functions, see Lemma 1 in [2]), then the set
G in the above Corollary can be taken as G = {x ∈ X : gi(x) ≤ ai,∀i ∈ I},
where ai, i ∈ I are real numbers. This is a c-convex set, see Lemma 7 in [2].
The results given in this paper can be extended to optimization problems
with inequality constraints. This can be the issue of future research.
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[17] Zălinescu, C. (1999): A comparison of constraint qualifications in
infinite-dimensional convex programming revisited, Journal of Aus-
tralian Mathematical Society, Series B 40, 353-378.
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