


A new constraint qualification for the formula of

the subdifferential of composed convex functions

in infinite dimensional spaces

Radu Ioan Boţ ∗ Sorin-Mihai Grad † Gert Wanka ‡

Abstract. We give equivalent statements for the formulae of the conjugate
function of the sum between a convex lower-semicontinuous function and the
precomposition of another convex lower-semicontinuous function which is also
K-increasing with a K-convex lower-semicontinuous function, where K is a non-
empty closed convex cone and we work in locally convex spaces. These statements
prove to be new and weak constraint qualifications under which the formulae for
the subdifferential of the mentioned sum of functions are valid. Then we deliver
some constraint qualifications inspired from them that guarantee some conjugate
duality assertions. Two interesting special cases taken from the literature con-
clude the paper.

Keywords. Conjugate functions, constraint qualifications, epigraphs, subd-
ifferentials

1 Introduction

Many convex optimization problems, including the most general one of minimiz-
ing a function when its variable lies in some given set, may be considered as
special cases of the so-called composed convex optimization problem which con-
sists in minimizing the sum between a convex function and the precomposition
of another convex function which is also K-increasing with a K-convex function,
where K is a non-empty closed convex cone. Because of this important prop-
erty the problem of minimizing the mentioned sum of functions has been studied
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quite intensively under various conditions. We cite here the works of Combari,
Laghdir and Thibault ([4], [5], [6]) and the book of Zălinescu ([13]), where various
prerequisites and conditions that assure the formulae of the conjugate and of the
subdifferential of the mentioned sum of functions are given. Older results regard-
ing these matters due to Gol’shtein, Levin, Lemaire, Kutateladze, Lescarret and
Rubinov are mentioned, some of them being generalized or extended within these
papers.

Other papers deal with a special case of the problem presenting results con-
cerning only the mentioned composition of functions, renouncing the first term
of the sum of functions, among which let us mention Lemaire’s [9] and our article
[2], where we say more about previous works containing optimization problems
in which such composed functions appeared. We work in locally convex spaces,
considering the functions involved lower-semicontinuous. The notion of K-lower-
semicontinuity introduced by Penot and Théra ([11]) and further used also in
[1], [6] and [10] is recalled, being necessary for functions having their ranges in
infinite dimensional spaces.

The main section of the paper follows after the necessary preliminaries. Af-
ter some auxiliary results we introduce the first constraint qualification and we
give the main statement of the paper which says that the known formula of
the conjugate of the mentioned sum of functions is equivalent to the constraint
qualification, which implies moreover the formula of the subdifferential of the
same sum of functions. Digging further, we give a second constraint qualifica-
tion, equivalent to a deeper formula of the conjugate of our sum of functions,
which guarantees a developed formula for the mentioned subdifferential. The
next section is dedicated to conjugate duality. We give some weak constraint
qualifications that guarantee the formulae of the conjugate of the sum between
a convex function and the precomposition of another convex function which is
also K-increasing with a K-convex function at 0, which are equivalent to the
so-called strong duality between the problem of minimizing the mentioned sum
of functions and its conjugate dual problem.

Before the conclusions we also have a section where we treat some important
special cases, the already mentioned one when the first term of the sum vanishes
and the situation when the post-composed function is linear. A previous work
of Boţ and Wanka ([3]) deals with this latter problem giving also solid and quite
complete references to the literature, so we will not mention them here once
more. We specialize the theorems given in the previous sections for the announced
choices of functions and we rediscover some results due to two of the authors from
[3], including the weakest constraint qualification known to us that guarantees the
classical Fenchel duality statement. A short conclusive section and the references
close the paper.
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2 Preliminaries

Some notions and previously known results are necessary in order to make this
paper self-contained. Consider two nontrivial locally convex vector spaces X
and Y and their continuous dual spaces X∗ and Y ∗, endowed with the weak∗

topologies w(X∗, X) and, respectively, w(Y ∗, Y ).
Take also the non-empty closed convex cone K ⊆ Y and its dual cone K∗ =

{

y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0 ∀y ∈ Y
}

, where we denote by 〈y∗, y〉 = y∗(y) the value
at y of the continuous linear functional y∗. We say that K ⊆ Y is a cone if
λy ∈ K ∀λ ≥ 0 and y ∈ K. Consider on Y the partial order induced by K,
”≤K”, defined by x ≤K y ⇔ y − x ∈ K ∀x, y ∈ Y , whereas x �K y means
that x ≤K y is not satisfied. Moreover, we attach to Y a greatest element with
respect to ”≤K” denoted ∞ which does not belong to Y and let Y • = Y ∪ {∞}.
Then for any y ∈ Y • y ≤K ∞ and we consider the following operations on Y •,
y + ∞ = ∞ + y = ∞ and t∞ = ∞ ∀t ≥ 0.

For a subset C of X we have the indicator function δC : X → R = R∪{±∞},
defined by

δC(x) =

{

0, if x ∈ C,
+∞, otherwise,

and we denote by cl(C) its closure in the corresponding topology, while its core
is core(C) =

{

c ∈ C : ∀x ∈ X ∃ε > 0 : c + [−ε, ε]x ⊆ C
}

. Consider also the
identity function on X defined as follows, idX : X → X, idX(x) = x ∀x ∈ X and
the notation R+ = [0, +∞).

Having a function f : X → R we denote its domain by dom(f) = {x ∈ X :
f(x) < +∞} and its epigraph by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r}. For
x ∈ X such that f(x) ∈ R we define the subdifferential of f at x by ∂f(x) =
{x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉}. We call f proper if f(x) > −∞ ∀x ∈ X
and dom(f) 6= ∅. The conjugate of the function f is f ∗ : X∗ → R introduced by

f ∗(y) = sup
{

〈y, x〉 − f(x) : x ∈ X
}

.

Between a function and its conjugate there is the relation known as Young-
Fenchel’s inequality

f ∗(y) + f(x) ≥ 〈y, x〉 ∀x ∈ X ∀y ∈ X∗.

Given two proper functions f, g : X → R, we have the infimal convolution of f
and g defined by

f�g : X → R,
(

f�g
)

(a) = inf{f(x) + g(a − x) : x ∈ X},

which is called exact at some a ∈ X when there is an x ∈ X such that
(

f�g
)

(a) =
f(x) + g(a − x). When f : X → U and g : Y → V , for U and V arbi-
trary linear spaces, we define also the function f × g : X × Y → U × V by
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f ×g(x, y) = (f(x), g(y)), (x, y) ∈ X×Y . Given a linear continuous mapping A :
X → Y , we have its adjoint A∗ : Y ∗ → X∗ given by 〈A∗y∗, x〉 = 〈y∗, Ax〉 for any
(x, y∗) ∈ X ×Y ∗. For the proper function f : X → R we define also the marginal
function of f through A as Af : Y → R, Af(y) = inf

{

f(x) : x ∈ X,Ax = y
}

,
y ∈ Y .

Some of the notions that exist for functions with extended real values may be
given for functions having their ranges in infinite dimensional spaces, too. We
call domain of the function h : X → Y • the set dom(h) =

{

x ∈ X : h(x) ∈ Y
}

and we say that h is proper when dom(h) 6= ∅. For any subset W ⊆ Y we denote
h−1(W ) =

{

x ∈ X : ∃y ∈ W s.t. h(x) = y
}

. According to [1], [6], [10] and [11]
we have also the following extensions of the notion of lower-semicontinuity.

Definition 1. ([1], [6]) A function h : X → Y • is said to be K-lower-
semicontinuous at x ∈ X if for any neighborhood V of zero and for any b ∈ Y
satisfying b ≤K h(x), there exists a neighborhood U of x in X such that h(U) ⊆
b + V + K ∪ {∞}.

Remark. ([6]) If, for some x ∈ X, h(x) ∈ Y the definition of K-lower-
semicontinuity of h at x amounts to asking for any neighborhood V ⊆ Y of zero
(in Y ) the existence of a neighborhood U of x such that h(U) ⊆ h(x) + V + K ∪
{∞}.

For this kind of functions there is also the notion of K-epigraph defined as
follows.

Definition 2. ([10]) We call the K-epigraph of the function h : X → Y • the
set

epiK(h) =
{

(x, y) ∈ X × Y : y ∈ h(x) + K
}

.

If such a function has a closed K-epigraph it is called K-epi-closed.

Proposition 1. ([1], [10]) Any K-lower-semicontinuous function h : X → Y •

is also K-epi-closed, but the reverse assertion is not always true.

Remark. It is known that when Y = R and K = R+ the notions of K-
lower-semicontinuity and K-epi-closedness coincide, both of them becoming the
classical lower-semicontinuity. The reader is referred to [11] for an example of a
function which is K-epi-closed, but not K-lower-semicontinuous.

There are some other notions meant to extend the lower-semicontinuity to vec-
tor spaces. Alongside the two we have just presented, let us mention the so-called
level-closed functions (cf. [10]) and the K-sequentially lower-semicontinuous
functions (cf. [1], [6]). When X and Y are metrizable the latter notion coin-
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cides to the one given in Definition 1, while level-closedness is implied by K-epi-
closedness and hence also by K-lower-semicontinuity, these notions coinciding
provided that some conditions are fulfilled. For more on lower-semicontinuity on
topological spaces we refer the reader to [1], [6], [10], [11] [12].

Other definitions generalizing some notions by using the cone K follow.

Definition 3. A function g : Y → R is called K-increasing if for x, y ∈ Y
such that y ≤K x, follows g(y) ≤ g(x).

Definition 4. A function h : X → Y • is called K-convex if for any x and y
∈ X and t ∈ [0, 1] one has

h
(

tx + (1 − t)y
)

≤K th(x) + (1 − t)h(y).

Let us introduce for any λ ∈ K∗ and h : X → Y • the function (λh) defined
on X as follows

(λh)(x) =

{

〈λ, h(x)〉, for x ∈ dom(h),
+∞, otherwise.

Lemma 1. When λ ∈ K∗ and h : X → Y • is proper, K-convex and K-lower-
semicontinuous, then (λh) is proper, convex and lower-semicontinuous.

Proof. The properness of (λh) follows immediately, as well as its convexity,
from the definition. The lower-semicontinuity of (λh) follows from Lemma 1.7 in
[11]. �

Lemma 2. Given a function h : X → Y • we have for any x ∈ X

δ{x∈X:h(x)≤K0}(x) = sup
λ∈K∗

(λh)(x).

Proof. Let x ∈ X. We distinguish two cases. First, if h(x) ≤K 0, we have
δ{x∈X:h(x)≤K0} (x) = 0 and h(x) ∈ −K. Further, for λ ∈ K∗ one has (λh)(x) =
〈λ, h(x)〉 ≤ 0, value attained for λ = 0, so sup

λ∈K∗

(λh)(x) = 0 = δ{x∈X:h(x)≤K0}(x).

When h(x) �K 0 we have δ{x∈X:h(x)≤K0}(x) = +∞. It follows that h(x) /∈
−K = −K∗∗, thus there is some λ̄ ∈ K∗ such that (λ̄h)(x) > 0 and, as
sup
λ∈K∗

(λh)(x) = +∞, the desired equality is valid. �

We give now two other important results concerning epigraphs of conjugate
functions.
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Lemma 3. ([3]) Let f , g : X → R ∪ {+∞} be proper, convex and lower-
semicontinuous functions such that dom(f) ∩ dom(g) 6= ∅. Then

epi
(

(f + g)∗
)

= cl
(

epi
(

f ∗
�g∗

))

= cl
(

epi
(

f ∗
)

+ epi
(

g∗
))

.

Lemma 4. ([3]) Let f , g : X → R ∪ {+∞} be proper functions such that
dom(f) ∩ dom(g) 6= ∅. Then the following statements are equivalent

(i) epi
(

(f + g)∗
)

= epi
(

f ∗
)

+ epi
(

g∗
)

,

(ii) (f + g)∗ = f ∗
�g∗ and f ∗

�g∗ is exact at every p ∈ X∗.

We recall also a well - known characterization of the subdifferential which
proves later to be useful.

Lemma 5. Given any proper function f : X → R, for some x ∈ dom(f) and
y ∈ X∗ one has y ∈ ∂f(x) if and only if f ∗(y) + f(x) = 〈y, x〉.

We conclude the preliminary section by introducing two new notions in order
to present easier the main results of the paper.

Definition 5. A set M ⊆ X is said to be closed regarding the subspace
Z ⊆ X if M ∩ Z = cl(M) ∩ Z.

Definition 6. A function f : X → R is said to be lower-semicontinuous
regarding the subspace Z ⊆ X if epi(f) ∩ (Z × R) = cl(epi(f)) ∩ (Z × R), i.e.
epi(f) is closed regarding the subspace Z × R.

3 Conjugate and subdifferential of composed

functions

Within this section we give a constraint qualification that is equivalent to the for-
mula of the conjugate of the sum between a proper convex lower-semicontinuous
function f : X → R and the precomposition of another proper convex lower-
semicontinuous function g : Y → R which is also K-increasing with a proper
K-convex K - lower - semicontinuous function h : X → Y •, provided that
(

h(dom(f)) + K
)

∩ dom(g) 6= ∅. We show that the formula of the subdifferential
of the function f + g ◦ h (cf. [6]) holds under this new constraint qualification.
Without altering the properties of the function g we define, because h may take
the value ∞, also g(∞) = +∞. In the following we write min (max) instead
of inf (sup) when the infimum (supremum) is attained, calling it moreover exact
when this occurs.
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Proposition 2. For any p ∈ X∗ we have

(

f + g ◦ h
)∗

(p) ≤ inf
λ∈K∗

{

g∗(λ) +
(

f + (λh)
)∗

(p)
}

.

Proof. Let p ∈ X∗. We have

(f + g ◦ h)∗(p) = sup
x∈X

{

〈p, x〉 − (f + g ◦ h)(x)
}

= − inf
x∈X

{

(f + g ◦ h)(x)

− 〈p, x〉
}

= − inf
x∈X,y∈Y,

h(x)−y∈−K

[

f(x) + g(y) − 〈p, x〉
]

= − inf
x∈X,
y∈Y

[

f(x) + g(y) − 〈p, x〉 + δ{(x,y)∈X×Y :h(x)−y∈−K}(x, y)
]

From Lemma 2 we know that for any λ ∈ K∗ one has δ{(x,y)∈X×Y :h(x)−y∈−K}(x, y)
≥ (λh)(x) − 〈λ, y〉, so we obtain for all λ ∈ K∗

(f + g ◦ h)∗(p) ≤ − inf
x∈X,
y∈Y

[

f(x) + g(y) − 〈p, x〉 − (λh)(x) + 〈λ, y〉
]

= − inf
x∈X

[

f(x) + (λh)(x) − 〈p, x〉
]

− inf
y∈Y

[

g(y) − 〈λ, y〉
]

= (f + (λh))∗(p) + g∗(λ).

Thus, for any p ∈ X∗ and λ ∈ K∗ it stands

(f + g ◦ h)∗(p) ≤ (f + (λh))∗(p) + g∗(λ).

The desired inequality arises when taking the infimum over λ ∈ K∗ in the right-
hand side. �

Proposition 3. Let the functions F,G : X×Y → R defined by F (x, y) = g(y)
and G(x, y) = f(x) + δ{(x,y)∈X×Y :h(x)−y∈−K}(x, y), for (x, y) ∈ X × Y .

(a) F and G are proper, convex and lower-semicontinuous functions and dom
(F ) ∩ dom(G) 6= ∅.

(b) For (p, r) ∈ X∗ × R: (p, r) ∈ epi
(

f + g ◦ h
)∗

⇔ (p, 0, r) ∈ epi
(

F + G
)∗

,

(c) epi(F ∗) = {0} × epi(g∗) and epi(G∗) = ∪
λ∈K∗

{

(a,−λ, r) : (f + (λh))∗(a) ≤

r
}

.

Proof. (a) As g is proper we know that it takes nowhere the value −∞, so
F (x, y) > −∞ ∀(x, y) ∈ X × Y . Moreover, dom(g) 6= ∅, thus dom(F ) 6= ∅ and F
turns out to be proper. Because epi(F ) =

{

(x, y, r) ∈ X × Y × R : g(y) ≤ r
}

=
X × epi(g), which is convex and closed, F is convex and lower-semicontinuous.
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As f is proper and the indicator function takes nowhere the value −∞ it is
clear that there is no pair (x, y) ∈ X × Y such that G(x, y) = −∞. Moreover,
from the initial assumption over the domains of the functions involved follows
the existence of some y ∈

(

h(dom(f)) + K
)

∩ dom(g), so there is also an x ∈ X
such that f(x) < +∞ and h(x) ≤K y. Thus δ{(x,y)∈X×Y :h(x)−y∈−K}(x, y) = 0 and
G is proper, too. The epigraph of G

epi(G) =
{

(x, y, r) ∈ X × Y × R : h(x) − y ∈ −K, f(x) ≤ r
}

=
{

(x, y, r) ∈ X × Y × R : y ∈ h(x) + K, f(x) ≤ r
}

,

is a closed convex set, thus G is convex and lower-semicontinuous.
Now let us prove the non-emptiness of the intersection of the domains of F

and G. We have dom(F ) = X × dom(g) and dom(G) =
{

(x, y) ∈ X × Y : x ∈
dom(f), h(x)− y ∈ −K}. We know that there is a pair (x, y) ∈ X × Y such that
y ∈ dom(g), h(x) − y ∈ −K and f(x) < +∞. It is clear that (x, y) ∈ dom(F )
and (x, y) ∈ dom(G), too.

(b) First we prove that for any p ∈ X∗ it holds

inf
x∈X

[

(f + g ◦ h)(x) − 〈p, x〉
]

= inf
x∈X,y∈Y,

h(x)−y∈−K

[

f(x) + g(y) − 〈p, x〉
]

. (1)

”≥” Take first x /∈ dom(f) ∩ h−1(dom(g) − K). If x /∈ dom(f) it follows f(x) =
+∞, so (f + g ◦ h)(x) = +∞, which is greater than or equal to any value may
take the term in the right-hand side of (1). If this is not the case, then we get
that h(x) /∈ dom(g), so g(h(x)) = +∞, thus (f + g ◦ h)(x) = +∞ and this is
greater than or equal to the infimum in the right-hand side of (1).

Now let us take an x ∈ dom(f) ∩ h−1(dom(g) − K). We have f(x) ∈ R, as f
is proper, and h(x) ∈ dom(g) − K. Assuming h(x) = ∞ leads to the existence
of some y ∈ dom(g) and k ∈ K such that ∞ = y − k, thus y = ∞+ k = ∞. But
g(∞) = +∞, so y /∈ dom(g) and we reach a contradiction. Whence h(x) ∈ Y .
As the value (f + g ◦ h)(x) − 〈p, x〉 is taken by the function to be minimized in
the right-hand side of this inequality for y = h(x) it follows

(f + g ◦ h)(x) − 〈p, x〉 ≥ inf
x∈X,y∈Y,

h(x)−y∈−K

[

f(x) + g(y) − 〈p, x〉
]

.

This being fulfilled for all x ∈ X it follows

inf
x∈X

[

(f + g ◦ h)(x) − 〈p, x〉
]

≥ inf
x∈X,y∈Y,

h(x)−y∈−K

[

f(x) + g(y) − 〈p, x〉
]

.

”≤” Let x ∈ X and y ∈ Y such that h(x) − y ≤K 0, i.e. h(x) ≤K y. Hence,
g(h(x)) ≤ g(y), so (f +g◦h)(x)−〈p, x〉 ≤ f(x)+g(y)−〈p, x〉. Further, taking the
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infimum over x ∈ X in the left-hand side of (1) we get inf
x∈X

[

(f+g◦h)(x)−〈p, x〉
]

≤

f(x) + g(y) − 〈p, x〉, followed by

inf
x∈X

[

(f + g ◦ h)(x) − 〈p, x〉
]

≤ inf
x∈X,y∈Y,

h(x)−y∈−K

[

f(x) + g(y) − 〈p, x〉
]

.

As the converse inequality holds, too, the validity of (1) is guaranteed. Using F
and G, relation (1) may be equivalently written for any p ∈ X∗

inf
x∈X

[

(f + g ◦ h)(x) − 〈p, x〉
]

= inf
x∈X,y∈Y,

h(x)−y∈−K

[

f(x) + g(y) − 〈p, x〉
]

= inf
x∈X,
y∈Y

[

f(x) + g(y) − 〈p, x〉 + δ{(x,y)∈X×Y :h(x)−y∈−K}

]

= inf
x∈X,
y∈Y

[

F (x, y) + G(x, y) − 〈p, x〉
]

= −(F + G)∗(p, 0).

If (p, r) ∈ epi(f +g◦h)∗ we have (f +g◦h)∗(p) = sup
x∈X

{

〈p, x〉−(f +g◦h)(x)
}

≤ r,

equivalent to −r ≤ inf
x∈X

[

(f + g ◦ h)(x)− 〈p, x〉
]

, so −r ≤ −(F + G)∗(p, 0), which

means (p, 0, r) ∈ epi(F + G)∗.
(c) Let us determine the conjugate functions of F and G. We have, for some

(a, b) ∈ X∗ × Y ∗,

F ∗(a, b) = sup
x∈X,y∈Y

{

〈a, x〉 + 〈b, y〉 − g(y)
}

= sup
x∈X

〈a, x〉 + sup
y∈Y

{

〈b, y〉 − g(y)
}

and

G∗(a, b) = sup
x∈X,
y∈Y

{

〈a, x〉 + 〈b, y〉 − f(x) − δ{(x,y)∈X×Y :h(x)−y∈−K}(x, y)
}

= sup
x∈X,y∈Y,

h(x)−y∈−K

{

〈a, x〉 + 〈b, y〉 − f(x)
}

.

Denoting z = h(x) − y, we have

G∗(a, b) = sup
x∈X,z∈−K

{

〈a, x〉 + 〈b, h(x) − z〉 − f(x)
}

= sup
x∈X

{

〈a, x〉 − 〈−b, h(x)〉 − f(x)
}

+ sup
z∈−K

〈−b, z〉.

Therefore, these conjugates are

F ∗(a, b) =

{

g∗(b), if a = 0,
+∞, otherwise,
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and

G∗(a, b) =

{ (

f + (−bh)
)∗

(a), if b ∈ −K∗,
+∞, otherwise.

Now we determine the epigraphs of these conjugate functions. For F ∗, (a, b, r)
∈ epi

(

F ∗
)

means F ∗(a, b) ≤ r, which is equivalent to a = 0 and g∗(b) ≤ r, i.e.
(a, b, r) ∈ {0}×epi

(

g∗
)

. Thus epi
(

F ∗
)

= {0}×epi(g∗). For G∗, (a, b, r) ∈ epi(G∗)

means −b ∈ K∗ and (f + (−bh)
)∗

(a) ≤ r, so, denoting λ = −b we have
epi(G∗) = ∪

λ∈K∗

{

(a,−λ, r) : (f + (λh))∗(a) ≤ r
}

. �

In order to prove the main result we introduce now the constraint qualification
(CQ) {0} × epi(g∗) + ∪

λ∈K∗

{

(a,−λ, r) : (a, r) ∈ epi
(

f + (λh))∗
}

is closed

regarding the subspace X∗ × {0} × R.

We give now the main result in this paper.

Theorem 1.

(a) (CQ) is fulfilled if and only if for any p ∈ X∗ one has

(

f + g ◦ h
)∗

(p) = min
λ∈K∗

{

g∗(λ) +
(

f + (λh)
)∗

(p)
}

.

(b) If (CQ) is fulfilled then for any x ∈ dom(f) ∩ h−1(dom(g)), one has

∂
(

f + g ◦ h
)

(x) = ∪
λ∈∂g(h(x))

∂
(

f + (λh)
)

(x).

Proof. (a) ”⇐” Take (p, 0, r) ∈ cl
(

{0} × epi(g∗) + ∪
λ∈K∗

{

(a,−λ, r) : (a, r) ∈

epi
(

f + λh)∗
})

∩ (X∗ ×{0}×R). From the formulae of the epigraphs of F ∗ and
G∗ it follows instantly (p, 0, r) ∈ cl(epi(F ∗) + epi(G∗)) ∩ (X∗ × {0} × R) and by
Lemma 3 we get (p, 0, r) ∈ epi

(

F + G
)∗

∩ (X∗ × {0} × R). This means actually,

by Proposition 3, (p, r) ∈ epi
((

f + g ◦ h
)∗)

, i.e.
(

f + g ◦ h
)∗

(p) ≤ r. By the
formula in the hypothesis it follows the existence of some λ̄ ∈ K∗ fulfilling

(

f + g ◦ h
)∗

(p) = min
λ∈K∗

{

g∗(λ) +
(

f + (λh)
)∗

(p)
}

= g∗(λ̄) +
(

f + (λ̄h)
)∗

(p).

We have then
g∗(λ̄) +

(

f + (λ̄h)
)∗

(p) ≤ r,

so
(

f + (λ̄h)
)∗

(p) ≤ r − g∗(λ̄).

It is not difficult to notice that (p, 0, r) = (0, λ̄, g∗(λ̄)) +
(

p,−λ̄, r− g∗(λ̄)
)

, where
the first term in the right-hand side sum belongs to {0} × epi(g∗) and the sec-
ond to ∪

λ∈K∗

{

(a,−λ, r) : (a, r) ∈ epi
(

f + λh)∗
}

, therefore cl
(

{0} × epi(g∗) +
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∪
λ∈K∗

{

(a,−λ, r) : (a, r) ∈ epi
(

f + λh)∗
})

∩ (X∗ × {0} × R) ⊆
(

{0} × epi(g∗) +

∪
λ∈K∗

{

(a,−λ, r) : (a, r) ∈ epi
(

f + λh)∗
})

∩ (X∗ × {0} × R), i.e. (CQ) stands.

”⇒” Let p ∈ X∗. If
(

f + g ◦ h
)∗

(p) = +∞ the conclusion arises trivially by

Proposition 2, so let us consider further
(

f + g ◦ h
)∗

(p) ∈ R. It is clear that
(

p,
(

f + g ◦ h
)∗

(p)
)

∈ epi
((

f + g ◦ h
)∗)

, which gives by Proposition 3 (b)

(

p, 0,
(

f + g ◦ h
)∗

(p)
)

∈ epi
(

F + G
)∗

∩
(

X∗ × {0} × R
)

.

By Lemma 3 and Proposition 3 it follows (p, 0,
(

f + g ◦ h
)∗

(p)) ∈ cl(epi(F ∗) +
epi(G∗))∩ (X∗×{0}×R) = cl

(

{0}× epi(g∗)+ ∪
λ∈K∗

{

(a,−λ, r) : (a, r) ∈ epi
(

f +

λh)∗
})

∩ (X∗×{0}×R), so (CQ) yields (p, 0,
(

f + g ◦h
)∗

(p)) ∈
(

{0}× epi(g∗)+
∪

λ∈K∗

{

(a,−λ, r) : (a, r) ∈ epi
(

f + λh)∗
}

. Therefore there is some λ̄ ∈ K∗ such

that

(

p, 0, (f + g ◦ h)∗(p)
)

=
(

0, λ̄, g∗(λ̄)
)

+
(

p,−λ̄,
(

f + g ◦ h
)∗

(p) − g∗(λ̄)
)

,

where
(

λ̄, g∗(λ̄)
)

∈ epi
(

g∗
)

and
(

f + (λ̄h)
)∗

(p) ≤
(

f + g ◦ h
)∗

(p) − g∗(λ̄), the
latter stating actually that

∃λ̄ :
(

f + g ◦ h
)∗

(p) ≥ g∗(λ̄) +
(

f + (λ̄h)
)∗

(p).

As the reverse inequality holds for any λ ∈ K∗ (cf. Proposition 2), it follows that
we have obtained a λ̄ ∈ K∗ such that

(

f + g ◦ h
)∗

(p) = g∗(λ̄) +
(

f + (λ̄h)
)∗

(p) = min
λ∈K∗

{

g∗(λ) +
(

f + (λh)
)∗

(p)
}

. (2)

(b) Let x ∈ dom(f) ∩ h−1(dom(g)). To characterize the subdifferentials we
use the definition as well as Lemma 5.

”⊇” Take λ ∈ ∂g
(

h(x)
)

, i.e. ∀s ∈ Y one has 〈λ, s − h(x)〉 ≤ g(s) − g(h(x))
and z ∈ ∂

(

f +(λh)
)

(x), which means that for any t ∈ X we have 〈z, t−x〉 ≤
(

f +
(λh)

)

(t)−
(

f+(λh)
)

(x). If for some t ∈ X we have h(t) = ∞, then g(h(t)) = +∞,
thus (f + g ◦ h)(t) = +∞. Hence 〈z, t − x〉 ≤ (f + g ◦ h)(t) − (f + g ◦ h)(x).
If h(t) ∈ Y , by rewriting the term in the right-hand side and applying the first
inequality for s = h(t) we have

〈z, t − x〉 ≤ f(t) − f(x) + 〈λ, h(t) − h(x)〉 ≤ f(t) − f(x) + g(h(t)) − g(h(x))

=
(

f + g ◦ h
)

(t) −
(

f + g ◦ h
)

(x),

so 〈z, t − x〉 ≤
(

f + g ◦ h
)

(t) −
(

f + g ◦ h
)

(x) ∀t ∈ X, i.e. z ∈ ∂
(

f + g ◦ h
)

(x).
Let us remark that the inclusion proven here holds even without assuming (CQ)
fulfilled.
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”⊆” For some z ∈ ∂
(

f+g◦h
)

(x) we have
(

f+g◦h
)∗

(z)+
(

f+g◦h
)

(x) = 〈z, x〉.
As (CQ) is fulfilled there is a λ̄ ∈ K∗ fulfilling (2). We have, by applying Young’s
inequality twice,

〈z, x〉 =
(

f + g ◦ h
)

(x) + g∗(λ̄) +
(

f + (λ̄h)
)∗

(z) = f(x)

+
(

f + (λ̄h)
)∗

(z) + g(h(x)) + g∗(λ̄) ≥ f(x) +
(

f + (λ̄h)
)∗

(z)

+〈λ̄, h(x)〉 =
(

f + (λ̄h)
)

(x) +
(

f + (λ̄h)
)∗

(z) ≥ 〈z, x〉.

This means actually that all the inequalities above must be fulfilled as equalities,
i.e. we have equality in both places where we have used Young’s inequality, so

g(h(x)) + g∗(λ̄) = 〈λ̄, h(x)〉 and
(

f + (λ̄h)
)

(x) +
(

f + (λ̄h)
)∗

(z) = 〈z, x〉.
The latter relations mean actually λ̄ ∈ ∂g

(

h(x)
)

and z ∈ ∂
(

f +(λ̄h)
)

(x), exactly
what we needed. �

Remark. The constraint qualification we give is weaker than others given in
the literature. Proposition 4.11 in [6] states that the formulae for the conjugate
and subdifferential of (f + g ◦ h) in Theorem 1 hold under one of the following
constraint qualifications

(CQR) X and Y are Fréchet spaces, f and g are lower-semicontinuous, h is
K-sequentially lower-semicontinuous and 0 ∈ core[dom(g)−h(dom(f)∩dom(h))],

(CQAB) X and Y are Fréchet spaces, f and g are lower-semicontinuous,
h is K-sequentially lower-semicontinuous and R+[dom(g)−h(dom(f)∩dom(h))]
is a closed vector subspace of Y .

The first of them was inspired by Rockafellar’s works, while the second be-
longs to the class of so-called Attouch-Brézis-type constraint qualifications. It is
also known (cf. [6], for instance) that (CQR) implies (CQAB). As Theorem 1(a)
states the equivalence of the formula of (f + g ◦ h)∗ with (CQ), it follows that
(CQ) is satisfied, too, when (CQAB) or (CQR) is fulfilled.

An example to show that (CQ) is indeed weaker than (CQAB), i.e. it may
hold even without assuming (CQAB) true, follows.

Example 1. Let X = Y = R, K = {0}, f = δ(−∞,0], g = δ[0,+∞) and h = idR.
We have X∗ = Y ∗ = K∗ = R, dom(f) = (−∞, 0], dom(g) = [0, +∞) and
dom(h) = R, so dom(g) − h(dom(f) ∩ dom(h)) = R+ − h((−∞, 0]) = R+ −
(−∞, 0] = R+. Hence, R+[dom(g) − h(dom(f) ∩ dom(h))] = R+, which is not a
subspace. Therefore (CQAB) is not fulfilled, so neither is (CQR). On the other
hand, for any λ, p ∈ R,

g∗(p) =

{

0, if p ∈ (−∞, 0],
+∞, if p ∈ (0, +∞)

, (f + (λh))∗(p) =

{

0, if p ≥ λ,
+∞, if p < λ

,
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so epi(g∗) = (−∞, 0] × R+ and epi((f + (λh))∗) = [λ, +∞) × R+. We have
{0} × epi(g∗) +

⋃

λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

f + (λh)
)∗}

= {0} × (−∞, 0] ×
R++

⋃

λ∈R
[λ, +∞)×{−λ}×R+ =

⋃

λ∈R

[

[λ, +∞)×(−∞,−λ]×R+

]

= R×R×R+,
which is closed, so (CQ) is fulfilled.

Let us consider now another constraint qualification, namely that the set

{0}× epi(g∗)+
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗}

is closed regarding the subspace X∗ × {0} × R. We call it (CQ).

To compare the two constraint qualifications we have introduced within this
paper we need the following result.

Proposition 4. We have cl
(

{0}×epi(g∗)+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

f +

(λh)
)∗})

= cl
(

{0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) :

(p, r) ∈ epi
(

λh
)∗})

.

Proof. Let us introduce the functions u : X × Y → R, u(x, y) = f(x) and
v : X × Y → Y •, v(x, y) = h(x) − y, (x, y) ∈ X × Y . It can be shown that
u and (λv), λ ∈ K∗, are proper, convex and lower-semicontinuous. Moreover,
dom(u) ∩ dom(λv) 6= ∅ ∀λ ∈ K∗. One has, by Lemma 3,

epi
((

u + (λv)
)∗)

= cl
(

epi
(

u∗
)

+ epi
(

(λv)∗
))

⊇ epi(u∗) + epi((λv)∗) ∀λ ∈ K∗,

so ∪
λ∈K∗

(

epi(u∗) + epi((λv)∗)
)

⊆ ∪
λ∈K∗

epi
((

u + (λv)
)∗)

= ∪
λ∈K∗

cl
(

epi
(

u∗
)

+

epi
(

(λv)∗
))

⊆ cl
(

∪
λ∈K∗

(

epi
(

u∗
)

+ epi
(

(λv)∗
)))

. Taking the closures of these

sets we get

cl
(

∪
λ∈K∗

(

epi(u∗) + epi
(

(λv)∗
)))

= cl
(

∪
λ∈K∗

epi
((

u + (λv)
)∗))

. (3)

Simple calculations give

epi(u∗) =
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

,

epi
(

(λv)∗
)

=
{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗}

,

epi
((

u + (λv)
)∗)

=
{

(p,−λ, r) : (p, r) ∈ epi
(

f + (λh)
)∗}

,

so using these results in (3) we get, after adding in both sides {0} × epi(g∗),
{0} × epi(g∗) + cl

({

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈

epi
(

λh
)∗})

= {0} × epi(g∗) + cl
(

∪
λ∈K∗

epi
((

u + (λv)
)∗))

. The closures of these
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sets coincide, too, and they are further writable as cl
(

{0} × epi(g∗) +
{

(p, 0, r) :

(p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗})

= cl
(

{0} × epi(g∗) +

∪
λ∈K∗

epi
((

u + (λv)
)∗))

. �

Remark. The closures proven to coincide in the previous statement are also
equal to epi((F + G)∗). The reasons for this are to be found within the proof of
Theorem 1 and Lemma 3.

Using the functions u and v introduced within the previous proof we have
also

∪
λ∈K∗

epi
((

u + (λv)
)∗)

⊇ epi
(

u∗
)

+ ∪
λ∈K∗

epi
(

(λv)∗
)

,

which means actually

∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

f + (λh)
)∗}

⊇
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗}

,

so {0} × epi(g∗) + ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

f + (λh)
)∗}

⊇ {0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗}

. Using Propo-

sition 4 it is clear that the fulfillment of (CQ) implies the validity of (CQ).
Because (CQ) yields (CQ) it is supposed to guarantee some other results

somehow similar to the ones given in Theorem 1. Indeed, we show that it is
equivalent to a deeper formula for the conjugate of f + g ◦ h, where f ∗ and (λh)∗

are separated, and implies another formula for the subdifferential of f + g ◦ h,
where ∂f and ∂(λh) are no more together.

Theorem 2.

(a) (CQ) is fulfilled if and only if for any p ∈ X∗ it holds

(

f + g ◦ h
)∗

(p) = min
λ∈K∗,
β∈X∗

{

g∗(λ) + f ∗(β) +
(

λh
)∗

(p − β)
}

.

(b) If (CQ) is fulfilled then for any x ∈ dom(f) ∩ h−1(dom(g)), one has

∂
(

f + g ◦ h
)

(x) = ∂f(x) + ∪
λ∈∂g(h(x))

∂(λh)(x).

Proof. (a) ”⇒” As for any q ∈ X∗ and λ ∈ K∗ we have (f + (λh))∗(p) ≤
f ∗(q) + (λh)∗(p − q), by Proposition 2 we get

(f + g ◦ h)∗(p) ≤ (λh)∗(p − q) + g∗(λ) + f ∗(q) ∀p, q ∈ X∗ ∀λ ∈ K∗. (4)
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Let p ∈ X∗. If (f + g ◦ h)∗(p) = +∞, the assertion follows by (4). Consider
further (f + g ◦ h)∗(p) ∈ R. We have (p, (f + g ◦ h)∗(p)) ∈ epi((f + g ◦ h)∗), so,
by Proposition 3(b) we have (p, 0, (f + g ◦ h)∗(p)) ∈ epi((F + G)∗). From the
remark after Proposition 4 we know that epi((F + G)∗) = cl

(

{0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗})

, so the

fulfillment of (CQ) yields (p, 0, (f + g ◦ h)∗(p)) ∈
(

{0} × epi(g∗) +
{

(a, 0, r) :

(a, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(a,−λ, r) : (a, r) ∈ epi
(

λh
)∗})

∩ (X∗ × {0} × R).

Thus there exist some λ̄ ∈ K∗ and β̄ ∈ X∗ such that (p, 0, (f + g ◦ h)∗(p)) =
(0, λ̄, g∗(λ̄)) + (β̄, 0, f ∗(β̄)) + (p − β̄,−λ̄, (f + g ◦ h)∗(p) − g∗(λ̄) − f ∗(β̄)), the
first term in the right-hand side being in {0} × epi(g∗), the second in

{

(a, 0, r) :

(a, r) ∈ epi(f ∗)
}

, while the third belongs to
{

(a,−λ̄, r) : (a, r) ∈ epi
(

λ̄h
)∗}

.
Hence, (λ̄h)∗(p − β̄) ≤ (f + g ◦ h)∗(p) − g∗(λ̄) − f ∗(β̄), so

(λ̄h)∗(p − β̄) + g∗(λ̄) + f ∗(β̄) ≤ (f + g ◦ h)∗(p).

By (4) we get the desired formula.
”⇐” Let (p, 0, r) ∈ cl

(

{0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,

−λ, r) : (p, r) ∈ epi
(

λh
)∗})

. By the remark that followed Proposition 4 we get
(p, 0, r) ∈ epi((F + G)∗), thus by Proposition 3 (b) (p, r) ∈ epi((f + g ◦ h)∗), i.e.
(f + g ◦ h)∗(p) ≤ r. From hypothesis we known that there are some λ̄ ∈ K∗ and
β̄ ∈ X∗ satisfying

(λ̄h)∗(p − β̄) + g∗(λ̄) + f ∗(β̄) = (f + g ◦ h)∗(p),

so we have (λ̄h)∗(p − β̄) + g∗(λ̄) + f ∗(β̄) ≤ r. This yields (λ̄h)∗(p − β̄) ≤ r −
g∗(λ̄) − f ∗(β̄). Writing

(p, 0, r) = (0, λ̄, g∗(λ̄)) + (β̄, 0, f ∗(β̄)) + (p − β̄,−λ̄, r − g∗(λ̄) − f ∗(β̄)),

it is not difficult to notice that the first term in the right-hand side belongs
to {0} × epi(g∗), the second to

{

(q, 0, r) : (q, r) ∈ epi(f ∗)
}

and the third is

in
{

(q,−λ̄, r) : (q, r) ∈ epi
(

λ̄h
)∗}

, so
(

cl
(

{0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈

epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗}))

∩ (X∗ × {0} × R) ⊆
(

{0} ×

epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗})

∩

(X∗×{0}×R) and, as the opposite inclusion is always true, (CQ) is surely valid.
(b) We skip this part of the proof as it is similar to the one of Theorem 1(b).

�

Remark. To the best of our knowledge this formula for the conjugate has not
been given elsewhere so far, while in Corollary 4.12 in [6] the formula for the sub-
differential given above is proven to hold provided that h is continuous at some
point in dom(f) and under the fulfillment of (CQAB) or (CQR). The validity
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of each of these two constraint qualifications assures the satisfaction of (CQ), so
the formula given in Theorem 1(a) for (f +g ◦h)∗ holds at any p ∈ X∗. Theorem
2.8.7(iii) in [13] yields that when h is continuous at some point in dom(f) then
for any λ ∈ K∗ and p ∈ X∗ one gets (f +(λh))∗(p) = min

β∈X∗

{f ∗(β)+(λh)∗(p−β)}.

Assembling the last two formulae we get that under the conditions imposed in
Corollary 4.12 in [6] the formula in Theorem 2(a) stands, and, as it is equivalent
to (CQ), the latter is also satisfied.

We conclude the section proving that (CQ) is not always implied by (CQ).

Example 2. Let X = R2, Y = R and K = R+. Therefore X∗ = R2, Y ∗ = R
and K∗ = R+. Consider the sets C =

{

(x1, x2)
T ∈ R2 : x1 ≥ 0

}

and D =
{

(x1, x2)
T ∈ R2 : 2x1 + x2

2 ≤ 0
}

. Take f = δC , g = idR and h = δD. As
dom(g) = R it follows R+[dom(g) − h(dom(f) ∩ dom(h))] = R+ · R = R, which
is clearly a closed subspace of itself. Thus (CQAB) stands, so (CQ) is valid,
too. Let us see whether is (CQ) satisfied or not in this situation. We have, for
(y1, y2) ∈ R2 and λ ∈ R,

f ∗(y1, y2) =

{

0, if y1 ≤ 0, y2 = 0,
+∞, otherwise,

g∗(λ) =

{

0, if λ = 1,
+∞, if λ 6= 1,

and

h∗(y1, y2) =







y2
2

y1
, if y1 > 0,

0, if y1 = y2 = 0.
+∞, otherwise,

For (p1, p2) ∈ R2 we have

(f + g ◦ h)∗(p1, p2) = sup
x1,x2∈R

{

p1x1 + p2x2 − f(x1, x2) − g(h(x1, x2))
}

= sup
x1,x2∈R

{

p1x1 + p2x2 − δC(x1, x2) − δD(x1, x2)
}

= sup
(x1,x2)∈C∩D={(0,0)}

{

p1x1 + p2x2

}

= 0,

while at (p1, p2) = (1, 1) we have inf
λ∈R+,

(β1,β2)∈R
2

{

g∗(λ) + f ∗((β1, β2)) +
(

λh
)∗

((1, 1) −

(β1, β2))
}

= inf
λ=1,
β1≤0,
β2=0

{

h∗((1, 1) − (β1, β2))
}

= inf
β1≤0

1
1−β1

= 0, but there is no β1 ≤ 0

where this value is attained. Therefore, even if in this case (f + g ◦ h)∗(1, 1) =
inf

λ∈R+,

(β1,β2)∈R
2

{

g∗(λ)+f ∗((β1, β2))+
(

λh
)∗

((1, 1)−(β1, β2))
}

, the infimum in the right-

hand side is not attained, hence the formula in Theorem 2(a) is not satisfied for
our choice of the functions and sets, thus (CQ) is violated. �
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4 Conjugate duality

Within this part of our paper we obtain weak constraint qualifications for conju-
gate duality from the constraint qualifications given earlier. We have proven that
(CQ) and, respectively, (CQ) are equivalent to some formulae for (f + g ◦ h)∗(p)
that are valid for any p ∈ X∗. It is known that infx∈X(f + g ◦ h)(x) = −(f +
g ◦h)∗(0), so we introduce some constraint qualifications derived from (CQ) and,
respectively, (CQ) that assure the validity of the mentioned formulae at 0, which
are actually the strong duality assertions between the mentioned minimization
problem and two of its dual problems. We use also the functions F and G defined
before.

Lemma 6. The constraint qualification (CQ) is equivalent to

epi((F + G)∗) ∩ (X∗ × {0} × R) =
(

epi(F ∗) + epi(G∗)
)

∩ (X∗ × {0} × R).

Proof. By Proposition 3 we see that (CQ) may be equivalently written

cl
(

epi(F ∗)+ epi(G∗)
)

∩ (X∗×{0}×R) =
(

epi(F ∗)+ epi(G∗)
)

∩ (X∗×{0}×R).

The conclusion arises by Lemma 3. �

Remark. It may be proven also that (CQ) is equivalent to the fact that
F ∗

�G∗ is lower-semicontinuous regarding the subspace X∗ ×{0} and is exact at
any (p, 0) ∈ X∗ × {0}. By Lemma 3 we have

epi((F + G)∗) = cl(epi(F ∗
�G∗)) ⊇ epi(F ∗

�G∗) ⊇ epi(F ∗) + epi(G∗). (5)

Lemma 6 says that (CQ) means actually that both inclusions in (5) must be
fulfilled as equalities when intersecting them in both sides with the subspace
X∗×{0}×R. The first of them, cl(epi(F ∗

�G∗))∩(X∗×{0}×R) = (epi(F ∗
�G∗))∩

(X∗×{0}×R) means actually that F ∗
�G∗ is lower-semicontinuous regarding the

subspace X∗×{0}, while the other one, namely (epi (F ∗
�G∗))∩(X∗×{0}×R) =

(epi(F ∗)+epi(G∗))∩ (X∗×{0}×R) is nothing but the fact that F ∗
�G∗ is exact

at any point (p, 0) ∈ X∗ × {0}.

The formula given in Theorem 1(a) for (f +g◦h) is valid for any p ∈ X ∗ if and
only if (CQ) holds, i.e. if and only if F ∗

�G∗ is lower-semicontinuous regarding
the subspace X∗ ×{0} and it is exact at any (p, 0) ∈ X∗ ×{0}. Being interested
to find a sufficient condition for the fulfilling of the mentioned formula only at
0, we introduce another constraint qualification. Let us calculate first F ∗

�G∗.
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Taking some pair (p, q) ∈ X∗ × Y ∗ we have by the definition

F ∗
�G∗(p, q) = inf

α∈X∗,
β∈Y ∗

{

F ∗(α, β) + G∗(p − α, q − β)
}

= inf
α=0,

q−β∈−K∗

{

g∗(β) + (f + (−(q − β)h))∗(p − α)
}

= inf
β∈K∗+q

{

g∗(β) + (f + ((β − q)h))∗(p)
}

.

Now let us introduce the constraint qualification

(CQD) the function (p, q) 7→ inf
β∈K∗+q

{

g∗(β)+(f +((β−q)h))∗(p)
}

is lower-

semicontinuous regarding the subspace X∗ × {0} and the infimum is attained at
(0, 0).

Using the Remark after Lemma 6 it is noticeable that (CQD) is implied by
(CQ). Both these constraint qualifications ask F ∗

�G∗ to be lower - semicontinu-
ous regarding the subspace X∗×{0}, but (CQ) means moreover that this infimal
convolution is exact at any (p, 0) ∈ X∗ × {0}, whence also at (0, 0) as (CQD)
wants.

The next statement proves that (CQD) is sufficient to assure the formula
given in Theorem 1(a) for (f + g ◦ h)∗ at 0.

Theorem 3. Assume (CQD) valid. Then

inf
x∈X

[

f(x) + g ◦ h(x)
]

= max
λ∈K∗

{

− g∗(λ) − (f + (λh))∗(0)
}

.

Proof. If (f +g ◦h)∗(0) = +∞, which means infx∈X

[

f(x)+g ◦h(x)
]

= −∞,
Proposition 2 yields infλ∈K∗

{

g∗(λ) + (f + λh)∗(0)
}

= +∞, thus supλ∈K∗

{

−
g∗(λ)− (f + λh)∗(0)

}

= −∞. Therefore in this case the required equality holds.
Assume further (f +g◦h)∗(0) < +∞. As (0, (f +g◦h)∗(0)) ∈ epi((f +g◦h)∗), by
Proposition 3 we have (0, 0, (f +g◦h)∗(0)) ∈ epi(F +G)∗. By (CQD) and Lemma
3 we have epi((F + G)∗) ∩ (X∗ × {0} × R) = (epi(F ∗

�G∗)) ∩ (X∗ × {0} × R)
and F ∗

�G∗ must be exact at (0, 0), i.e. there exists some λ̄ ∈ K∗ such that
(F ∗

�G∗)(0, 0) = g∗(λ̄)+(f +(λ̄h))∗(0). Thus (0, 0, (f +g◦h)∗(0)) ∈ epi(F ∗
�G∗),

i.e.
g∗(λ̄) + (f + (λ̄h))∗(0) = (F ∗

�G∗)(0, 0) ≤ (f + g ◦ h)∗(0).

By Proposition 2 it follows

(f + g ◦ h)∗(0) = min
λ∈K∗

{

g∗(λ) + (f + (λh))∗(0)
}

and by the definition of the conjugate one has

inf
x∈X

[

f(x) + g ◦ h(x)
]

= −(f + g ◦ h)∗(0).
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The assertion arises by combining the latter two relations. �

Remark. As supλ∈K∗

{

− g∗(λ)− (f +(λh))∗(0)
}

is a dual problem to infx∈X

[

f(x)+g◦h(x)
]

, called primal problem, with the weak duality arising from Propo-
sition 2, the latter statement may be seen also as a strong duality assertion, i.e.
the case when the optimal objective values of the primal and dual coincide and
the dual has an optimal solution.

Remark. Within the next section we shall prove that (CQD) fulfilled does
not always guarantee the satisfaction of (CQ) through Example 3.

Similar results are determinable also from (CQ) concerning the formula given
in Theorem 2(a) at 0.

Lemma 7. The constraint qualification (CQ) is equivalent to epi((F +G)∗)∩
(X∗×{0}×R) =

(

{0}× epi(g∗)+
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) :

(p, r) ∈ epi
(

λh
)∗})

∩ (X∗ × {0} × R).

Proof. The conclusion arises by the remark after Proposition 4. �

The new constraint qualification we introduce is

(CQD) the function (p, q) 7→ inf
β∈K∗+q

{

g∗(β)+(f +((β−q)h))∗(p)
}

is lower-

semicontinuous regarding the subspace X∗×{0} and epi(F ∗
�G∗)∩ ({0}×{0}×

R) =
(

{0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈

epi
(

λh
)∗})

∩ ({0} × {0} × R).

Theorem 4. Assume (CQD) valid. Then

inf
x∈X

[

f(x) + g ◦ h(x)
]

= max
λ∈K∗,
β∈X∗

{

− g∗(λ) − f ∗(β) − (λh)∗(−β)
}

.

Proof. We have epi((F + G)∗) ⊇ epi(F ∗
�G∗) ⊇ epi(F ∗) + epi(G∗) ⊇ {0} ×

epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗}

.

If (f + g ◦ h)∗(0) = +∞ the assertion follows by (4). Assume further (f +
g ◦ h)∗(0) < +∞. As (0, (f + g ◦ h)∗(0)) ∈ epi((f + g ◦ h)∗), by Proposition
3 we have (0, 0, (f + g ◦ h)∗(0)) ∈ epi(F + G)∗. Further, by (CQD) we get
(0, 0, (f + g ◦ h)∗(0)) ∈ epi(F ∗

�G∗) and, moreover, (0, 0, (f + g ◦ h)∗(0)) ∈ {0}×
epi(g∗) +

{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈ epi
(

λh
)∗}

.

Thus there are some λ ∈ K∗ and β ∈ X∗ such that (0, 0, (f + g ◦ h)∗(0)) =
(0, λ, g∗(λ)) + (β, 0, f ∗(β)) + (−β,−λ, (f + g ◦ h)∗(0) − g∗(λ) − f ∗(β)), the first
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term of the sum in the right-hand side belonging to {0} × epi(g∗), the second
to

{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

and the last one to ∪
λ∈K∗

{

(p,−λ, r) : (p, r) ∈

epi
(

λh
)∗}

. Thus (λh)∗(−β) ≤ (f + g ◦ h)∗(0) − g∗(λ) − f ∗(β), so

g∗(λ) + f ∗(β) + (λh)∗(−β) ≤ (f + g ◦ h)∗(0).

By (4) we get

inf
x∈X

[

f(x) + g ◦ h(x)
]

= −(f + g ◦ h)∗(0) = − min
λ∈K∗,
β∈X∗

{

g∗(λ) + f ∗(β)

+(λh)∗(−β)
}

= max
λ∈K∗,
β∈X∗

{

− g∗(λ) − f ∗(β) − (λh)∗(−β)
}

.�

Remark. This statement may also be considered as a strong duality assertion
between the primal problem infx∈X

[

f(x) + g ◦ h(x)
]

and another of its duals,
namely sup

λ∈K∗,β∈X∗

{

− g∗(λ) − f ∗(β) − (λh)∗(−β)
}

.

Remark. The fulfillment of (CQD) guarantees the satisfaction of (CQD).
This comes quickly from the beginning of the proof of Theorem 4 and the way
these constraint qualifications are formulated.

Remark. When h = idX and X = Y we obtain the classical Fenchel du-
ality assertion as special case of the, then equivalent, Theorems 3 and 4. The
corresponding statement will be given in Section 5.2.

5 Special cases

5.1 The case f = 0

When f(x) = 0 ∀x ∈ X and (h(X) + K) ∩ dom(g) 6= ∅, then the constraint
qualifications (CQ) and (CQ) become both

(CQ1) {0} × epi(g∗) + ∪
λ∈K∗

{

(a,−λ, r) : (a, r) ∈ epi((λh)∗)
}

is closed re-

garding the subspace X∗ × {0} × R.

We have the following assertion.

Theorem 5.

(a) (CQ1) is fulfilled if and only if for any p ∈ X∗ one has

(

g ◦ h
)∗

(p) = min
λ∈K∗

{

g∗(λ) +
(

λh
)∗

(p)
}

.
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(b) If (CQ1) is fulfilled then for any x ∈ h−1(dom(g)) one has

∂
(

g ◦ h
)

(x) = ∪
λ∈∂g(h(x))

∂(λh)(x).

Remark. The formula in Theorem 3(b) is given also in [9], but there g is
required to be continuous.

We deliver also the strong duality assertion for the problem infx∈X

[

g ◦ h(x)
]

and its dual supλ∈K∗

{

− g∗(λ)− (λh)∗(0)
}

. The constraint qualifications (CQD)

and (CQD) turn both into

(CQD1) the function (p, q) 7→ inf
β∈K∗+q

{

g∗(β) + ((β − q)h)∗(p)
}

is lower-

semicontinuous regarding the subspace X∗ × {0} and the infimum is attained at
(0, 0),

and we have the following statement.

Theorem 6. Assume (CQD1) valid. Then

inf
x∈X

[

g ◦ h(x)
]

= max
λ∈K∗

{

− g∗(λ) − (λh)∗(0)
}

.

5.2 The case h linear

Let A : X → Y be a linear continuous mapping and take h(x) = Ax for all
x ∈ X. Moreover let K = {0}, so h is K-convex as required and K∗ = Y ∗.
The condition regarding the domains of the functions involved is in this case
A(dom(f))∩ dom(g) 6= ∅. The constraint qualification derived from (CQ) would
be in this case

(CQ2) {0} × epi(g∗) + ∪
λ∈Y ∗

{

(a,−λ, r) : (a, r) ∈ epi((f + (λA))∗)
}

is closed

regarding the subspace X∗ × {0} × R,

while (CQ) turns into

(CQ2) {0}× epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈Y ∗

{

(p,−λ, r) :

(p, r) ∈ epi((λA)∗)
}

is closed regarding the subspace X∗ × {0} × R.

We prove the equivalence of these constraint qualifications by using the con-
jugate functions

(λA)∗(p) =

{

0, if A∗λ = p,
+∞, otherwise,
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and

(

f + (λA)
)∗

(p) = sup
x∈X

{

〈p, x〉 − f(x) − 〈λ,Ax〉
}

= sup
x∈X

{

〈p, x〉 − f(x)

− 〈A∗λ, x〉
}

= sup
x∈X

{

〈p − A∗λ, x〉 − f(x)
}

= f ∗
(

p − A∗λ
)

,

for any λ ∈ Y ∗ and any p ∈ X∗. One has ∪
λ∈Y ∗

{

(a,−λ, r) : (a, r) ∈ epi((f +

(λA))∗)
}

= ∪
λ∈Y ∗

{

(a,−λ, r) : (a − A∗λ, r) ∈ epi(f ∗)
}

= ∪
λ∈Y ∗

{

(p + A∗λ,−λ, r) :

(p, r) ∈ epi(f ∗)
}

=
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+
{

(A∗λ,−λ, 0) : λ ∈ Y ∗
}

. On
the other hand, ∪

λ∈Y ∗

{

(p,−λ, r) : (p, r) ∈ epi((λA)∗)
}

= ∪
λ∈Y ∗

{

(A∗λ,−λ, r) : 0 ≤

r
}

=
{

(A∗λ,−λ, 0) : λ ∈ Y ∗
}

+{(0, 0)}×R+ and {0}× epi(g∗)+{(0, 0)}×R+ =
{0} × epi(g∗). Therefore, {0} × epi(g∗) + ∪

λ∈Y ∗

{

(a,−λ, r) : (a, r) ∈ epi((f +

(λA))∗)
}

= {0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+
{

(A∗λ,−λ, 0) : λ ∈
Y ∗

}

= {0} × epi(g∗) +
{

(p, 0, r) : (p, r) ∈ epi(f ∗)
}

+ ∪
λ∈Y ∗

{

(p,−λ, r) : (p, r) ∈

epi((λA)∗)
}

.
We show that the results delivered by the main statement of the paper in this

case are actually the ones given by Boţ and Wanka in Theorem 3.1 in [3], under
some other constraint qualification, namely

(RCA) epi(f ∗) + A∗ × idR

(

epi(g∗)
)

is closed in the product topology of
(

X∗, w(x∗, X)) × R.

Let us show the equivalence of (CQ2) and (RCA). First, by Lemma 3 we
know that epi(f + g ◦ A)∗ = cl(epi(f ∗) + epi(g ◦ A)∗). As epi(g ◦ A)∗) = cl(A∗ ×
idR(epi(g∗))) (see for instance [3]), we get epi(f + g ◦ A)∗ = cl(epi(f ∗) + cl(A∗ ×
idR(epi(g∗)))), further writable as

epi(f + g ◦ A)∗ = cl(epi(f ∗) + (A∗ × idR(epi(g∗)))). (6)

We have that (CQ2) is equivalent to the fact that for any (p, 0, r) ∈ epi(F + G)∗

it follows (p, 0, r) ∈ epi(F ∗) + epi(G∗), and, by Proposition 3 and using the
calculation of the conjugate of f + (λA), to the implication [∀(p, r) ∈ epi(f +
g ◦ A)∗ ⇒ (p, 0, r) ∈ {0} × epi(g∗) + ∪

λ∈Y ∗

{

(a,−λ, t) : (a − A∗λ, t) ∈ epi f ∗
}

].

This is further equivalent to saying that ∀(p, r) ∈ epi(f + g ◦ A)∗ there is some
λ ∈ Y ∗ such that f ∗(p − A∗λ) ≤ r − g∗(λ), which means, denoting q = p − A∗λ
and s = r − g∗(λ), that for any (p, r) ∈ epi(f + g ◦ A)∗ there is some λ ∈ Y ∗

such that (p, r) = (q, s) + (A∗λ, g∗(λ)), where (q, s) ∈ epi(f ∗). Noticing that
(A∗λ, g∗(λ)) ∈ A∗ × idR

(

epi(g∗)
)

, we conclude that (CQ2) is equivalent to the
fact that any (p, r) ∈ epi(f + g ◦A)∗ belongs also to epi(f ∗) +A∗× idR

(

epi(g∗)
)

.
By (6) we know that epi(f ∗) + A∗ × idR

(

epi(g∗)
)

is a subset of epi(f + g ◦A)∗ =
cl(epi(f ∗)+(A∗×idR(epi(g∗)))), so we get that (CQ2) is equivalent to the relation
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cl(epi(f ∗) + (A∗ × idR(epi(g∗)))) = epi(f ∗) + A∗ × idR

(

epi(g∗)
)

, i.e. (CQ2) is
equivalent to (RCA).

Regarding the subdifferentials, Theorem 1 says that under (CQ2) one has for
any x ∈ dom(f) ∩ A−1(dom(g))

∂
(

f + g ◦ A
)

(x) = ∪
λ∈∂g(Ax)

∂
(

f + (λA)
)

(x),

while Theorem 3.1 in [3] asserts that (RCA), which is equivalent to (CQ2), yields

∂
(

f + g ◦ A
)

(x) = ∂f(x) + A∗∂g(Ax).

Taking p ∈ ∪
λ∈∂g(Ax)

∂(f + (λA))(x) is the same as asserting that there is some

λ ∈ ∂g(Ax) and we also have p ∈ ∂
(

f + (λA)
)

(x). This is equivalent to say-
ing that there is some λ ∈ ∂g(Ax) such that 〈p, x〉 =

(

f + (λA)
)

(x) +
(

f +

(λA)
)∗

(p) = f(x) + 〈λ,Ax〉 + f ∗(p − A∗λ). The last relation may be rewritten
f ∗(p−A∗λ)+f(x) = 〈p−A∗λ, x〉, which is actually p−A∗λ ∈ ∂f(x). Therefore we
have proved that p ∈ ∪

λ∈∂g(Ax)
∂(f +(λA))(x) is equivalent to the existence of some

λ ∈ ∂g(Ax) such that p−A∗λ ∈ ∂f(x), i.e. ∂(f +(λA))(x) = ∂f(x)+A∗∂g(Ax).
Thus we obtain Theorem 3.1 in [3] as a special case of our Theorem 1, as follows.

Theorem 7. We have

(a) (RCA) is fulfilled if and only if for any p ∈ X∗

(f + g ◦ A)∗(p) = min
λ∈Y ∗

[

g∗(λ) + f ∗(p − A∗λ)
]

.

(b) If (RCA) is fulfilled, then for any x ∈ dom(f) ∩ A−1(dom(g))

∂(f + g ◦ A)(x) = ∂f(x) + A∗∂g(Ax).

Remark. The constraint qualification (RCA) is weaker than some well-known
generalized interior-point regularity conditions given in the literature. We do not
mention all of them here, though we refer the reader to [8] and [13] (Theorem
2.8.3), to see how they look and how they imply one another, and to [3], where
(RCA) is proved to be weaker than the weakest of them.

Like in the general case we give also a constraint qualification inspired from
(CQ2) that guarantees the validity of the formula given in Theorem 7(a) holds
at 0. We are interested to investigate the connections between what does (CQD)
mean in the present configuration and the condition (FRCA) in [3],

(FRCA) f ∗
�A∗g∗ is lower-semicontinuous and epi(f ∗

�A∗g∗)∩({0}×R) =
(epi(f ∗) + A∗ × idR(epi(g∗))) ∩ ({0} × R).
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We have, for (p, q) ∈ X∗ × Y ∗, (F ∗
�G∗)(p, q) = inf

β∈Y ∗+q

{

g∗(β) + (f + ((β −

q)A))∗(p)
}

= inf
β∈Y ∗+q

[

g∗(β) + f ∗(p − A∗(β − q))
]

.

Thus (CQD) is in this case

(CQD2) (p, q) 7→ inf
β∈Y ∗+q

[

g∗(β)+f ∗(p−A∗(β−q))
]

is lower-semicontinuous

regarding the subspace X∗ × {0} and the infimum is attained at (0, 0).

Let us start by proving that f ∗
�A∗g∗ is lower-semicontinuous if and only if

F ∗
�G∗ is lower-semicontinuous regarding the subspace X∗ × {0}.
For any p ∈ X∗ we have (f ∗

�A∗g∗)(p) = inf
w∈X∗

[

f ∗(p − w) + A∗g∗(w)
]

=

inf
w∈X∗

[

f ∗(p−w)+ inf
A∗λ=w

g∗(λ)
]

= inf
w∈X∗,
A∗λ=w

[

f ∗(p−w)+g∗(λ)
]

= inf
λ∈Y ∗

[

f ∗(p−A∗λ)+

g∗(λ)
]

= (F ∗
�G∗)(p, 0).

The lower-semicontinuity of F ∗
�G∗ regarding the subspace X∗ ×{0} means,

by Lemma 3, epi(F ∗
�G∗)∩(X∗×{0}×R) = epi((F +G)∗)∩(X∗×{0}×R). This

is the same as (p, 0, r) ∈ epi(F ∗
�G∗) is equivalent to (p, 0, r) ∈ epi((F +G)∗) and

further, by Proposition 3, to (p, r) ∈ epi(f + g ◦ A)∗. As (p, 0, r) ∈ epi(F ∗
�G∗)

means inf
λ∈Y ∗

[

g∗(λ)+f ∗(p−A∗λ)
]

≤ r, which is exactly (p, r) ∈ epi((f ∗
�A∗g∗)), it

follows that the lower-semicontinuity of F ∗
�G∗ regarding the subspace X∗×{0}

is equivalent to epi(f + g ◦ A)∗ ⊆ epi(f ∗
�A∗g∗).

Using Lemma 3, we have cl(epi(f ∗
�A∗g∗)) = cl(epi(f ∗) + epi(A∗g∗)) = cl

(epi(f ∗) + cl(epi(A∗g∗))). By Theorem 2.3 in [3] we get cl(epi(f ∗
�A∗g∗)) =

cl(epi(f ∗) + epi((g ◦ A)∗)) = epi(f + g ◦ A)∗.
Therefore, F ∗

�G∗ is lower-semicontinuous regarding the subspace X∗ × {0}
if and only if epi(f ∗

�A∗g∗) is closed, i.e. f ∗
�A∗g∗ is lower-semicontinuous.

By Theorem 2.3 in [3] and Lemma 3, epi(f ∗
�A∗g∗) ⊆ cl(epi(f ∗

�A∗g∗)) =
cl(epi(f ∗)+epi(A∗g∗)) = cl(epi(f ∗)+cl(epi(A∗g∗))) = cl(epi(f ∗)+epi((g◦A)∗)) =
epi(f + g ◦ A)∗.

The exactness of F ∗
�G∗ at (0, 0) means that there is some λ̄ ∈ Y ∗ such that

inf
λ∈Y ∗

[

g∗(λ) + f ∗(−A∗(λ))
]

= g∗(λ̄) + f ∗(−A∗(λ̄)).

Assume (FRCA) valid. This means that epi(f ∗
�A∗g∗) is closed and epi(f ∗

�A∗g∗) ∩ ({0} × R) = (epi(f ∗) + A∗ × idR(epi(g∗))) ∩ ({0} × R). The closedness
yields epi(f ∗

�A∗g∗) ∩ ({0} × R) = epi(f + g ◦ A)∗ ∩ ({0} × R), so the second
condition is equivalent to

(epi(f ∗) + A∗ × idR(epi(g∗))) ∩ ({0} × R) = epi(f + g ◦ A)∗ ∩ ({0} × R),

i.e. for any (0, (f + g ◦ A)∗(0)) ∈ epi(f + g ◦ A)∗ there is some λ ∈ Y ∗ such that
f ∗(−A∗λ) ≤ (f + g ◦ A)∗(0) − g∗(λ). As (f + g ◦ A)∗(0) ≤ f ∗(−A∗λ) + g∗(λ)
for any λ ∈ Y ∗, the latter inequality means actually the exactness of F ∗

�G∗ at
(0, 0). Thus (CQD2) stands if and only if (FRCA) is valid. Using the facts and
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observations from above we give the following statement, derived from Theorem 3.

Theorem 8. If (FRCA) is fulfilled, then

inf
x∈X

[

f(x) + g(Ax)
]

= max
λ∈Y ∗

{

− f ∗(−A∗λ) − g∗(λ)
}

.

Remark. As proved in [3], but also according to our general case, we have
that the satisfaction of (RCA) implies the validity of (FRCA). The reverse is not
always true and Example 3 provides a counter-example.

When A is the identity mapping of X, i.e. A = idX , the constraint qualifica-
tion (CQ2), equivalent to (RCA) becomes, as in [3],

(CQ3) epi(f ∗)+epi(g∗) is closed in the product topology of (X∗, w(X∗, X))×R.

The conditions regarding domains becomes dom(f)∩dom(g) 6= ∅ and we have
the following statement.

Theorem 9.

(a) (CQ3) is fulfilled if and only if for any p ∈ X∗

(f + g)∗(p) = min
λ∈Y ∗

[

g∗(λ) + f ∗(p − λ)
]

.

(b) If (CQ3) is fulfilled, then for any x ∈ dom(f) ∩ dom(g)

∂(f + g)(x) = ∂f(x) + ∂g(x).

The constraint qualification (CQD2) becomes in this case, as in [3],

(CQD3) f ∗
�g∗ is a lower-semicontinuous function and is exact at 0

and we give the following result, which is actually the classical Fenchel duality
statement, but under weaker assumptions.

Theorem 10. If (CQD3) is valid, then

inf
x∈X

[

f(x) + g(x)
]

= max
λ∈Y ∗

{

− f ∗(−λ) − g∗(λ)
}

.

Remark. The satisfaction of (CQ3) guarantees the validity of (CQD3), while
the reverse implication does not always hold, as proved by the following example.
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Example 3. Consider in R2 the unit ball B. Let f, g : R2 → R, f = δB and
g = δ[1,+∞)×R. Then, for y1, y2 ∈ R, f ∗(y1, y2) = ‖(y1, y2)‖ and

g∗(y1, y2) =

{

y1, if y1 ≤ 0, y2 = 0,
+∞, otherwise.

For any (y1, y2) ∈ R2 we have

(f ∗
�g∗)(y1, y2) = inf

(a1,a2)∈R2

[

f ∗(a1, a2) + g∗(y1 − a1, y2 − a2)
]

= inf
(a1,a2)∈R

2,
a1≥y1,a2=y2

[

‖(a1, a2)‖ + y1 − a1

]

= y1 + inf
a1≥y1

[

√

a2
1 + y2

2 − a1

]

= y1.

It is clear that f ∗
�g∗ is lower-semicontinuous and, moreover, the infimum within

is attained only when y2 = 0. Thus (CQD3) is valid for this choice of func-
tions, while (CQ3) is violated, as it is equivalent to saying that f ∗

�g∗ is lower-
semicontinuous and exact everywhere. At (0, 1), for instance, f ∗

�g∗ is not exact
as the infimum from its formula is not attained.

Remark. To the best of our knowledge (CQD3) is the weakest constraint
qualification considered so far in the literature that guarantees Fenchel duality.

6 Conclusions

The framework we worked within consists of the non-trivial locally convex spaces
X and Y , the non-empty closed convex cone K ⊆ Y and the functions f : X → R,
g : Y → R and h : X → Y such that f and g are proper, convex and lower-
semicontinuous, g moreover K-increasing and h proper, K-convex and K-lower-
semicontinuous. For the conjugate of f +g ◦h we found two formulae, one known
from [6], the other being a further development of it. We give two equivalent
statements to these formulae which act as constraint qualifications for the formu-
lae of the subdifferential of f + g ◦ h. We prove that the constraint qualifications
we give for this are weaker than the ones considered in [6] to guarantee the men-
tioned formulae. Further we give constraint qualifications for conjugate duality
and then we take first f the constant zero function and later h linear and we re-
discover some results from [3], including the weakest constraint qualification that
guarantees the classical Fenchel duality theorem. Some examples were inserted
in order to sustain our statements.
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[11] Penot, J.P., Théra, M. (1982): Semi-continuous mappings in general topol-
ogy, Archiv der Mathematik 38, pp. 158–166.

[12] Tanaka, T. (1997): Generalized semicontinuity and existence theorems for
cone saddle points, Applied Mathematics and Optimization 36, pp. 313-322.
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