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Abstract. The paper is concerned with ill-posed operator equations Ax = y where A : X → Y
is an injective bounded linear operator with non-closed range R(A) and X and Y are Hilbert
spaces. The solution x = x† is assumed to be in the range R(G) of some selfadjoint strictly
positive bounded linear operator G : X → X. Under several assumptions on G, such as G =
ϕ(A∗A) or more generally R(G) ⊂ R(ϕ(A∗A)), inequalities of the form %2(G) ≤ A∗A, or range
inclusions R(%(G)) ⊂ R(|A|), convergence rates for the regularization error ‖xα−x†‖ of Tikhonov
regularization are established. We also show that part of our assumptions automatically imply
so-called source conditions. The paper contains a series of new results but also intends to uncover
cross-connections between the different kinds of smoothness conditions that have been discussed
in the literature on convergence rates for Tikhonov regularization.
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1 Introduction

Let A : X → Y be a bounded linear operator mapping between infinite-dimensional
Hilbert spaces X and Y with norms ‖ ·‖ and inner products ( · , · ). Throughout this paper
we assume that A is injective and that the range R(A) is not closed. The equation

Ax = y (1.1)

has a unique solution x = x† ∈ X for every y ∈ R(A) but is ill-posed. Consequently, a
regularization approach is required to find stable approximate solutions. In this Hilbert

1Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany, e-mail:
aboettch@mathematik.tu-chemnitz.de

2Department of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany, e-mail:
hofmannb@mathematik.tu-chemnitz.de

3Department of Mathematics, University of Applied Sciences Zittau/Görlitz, P.O. Box 1454, 02754
Zittau, Germany, e-mail: u.tautenhahn@hs-zigr.de

4Department of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro, Tokyo 153,
Japan, e-mail: myama@ms.u-tokyo.ac.jp

1



space setting Tikhonov regularization consists of choosing a parameter α > 0 and solving
the extremal problem

‖Ax− y‖2 + α‖x‖2 → min . (1.2)

The last problem has a unique solution x = xα ∈ X. This solution is given by

xα = (A∗A+ αI)−1A∗y (1.3)

and is called regularized solution. It is well known that ‖xα − x†‖ → 0 as α → 0. Notice
that, however, the convergence xα → x† may be spectacularly slow (see, for example, [6,
Proposition 3.11] and [29]). For treatises of several aspects of Tikhonov regularization
we refer to the seminal paper [33] and, for example, to the books [2], [3, chapter 6], [6,
Chapter 5], [7], [9], [16], [17], [18], [23], [34], [36].

This paper is mainly concerned with estimates of the form

‖xα − x†‖ ≤ K ϕ(α) for 0 < α ≤ α (1.4)

with a constant K < ∞ and a certain continuous and strictly increasing function ϕ
with ϕ(0) = 0. Such estimates (1.4) are obtained under different kinds of smoothness
conditions concerning the solution x†, the operator A, and their cross-relations. They
express convergence rates of regularized solutions in the case of noiseless data y.

To obtain the desired estimates (1.4) we employ certain a priori assumptions on x†.
To be specific, we assume throughout this paper the solution smoothness

x† = Gv with v ∈ X and ‖v‖ ≤ R , (1.5)

where G : X → X is a bounded linear and selfadjoint operator which is strictly positive in
the sense that (Gx, x) > 0 for all x 6= 0. The operator G is required to satisfy one of the
following assumptions. In accordance with [8] and [21] we call a function f : [0, t ] → R
an index function if it is continuous and strictly increasing with f(0) = 0.

Assumption A1. We have G = ϕ(A∗A) with some index function ϕ on [0, ‖A‖2].

Assumption A2. We have R(G) ⊂ R(ϕ(A∗A)) with some index function ϕ on
[0, ‖A‖2].

Assumption A3. We have ‖%(G)x‖ ≤ ‖Ax‖ for all x ∈ X with some index function
% on [0, ‖G‖].

Assumption A4. We have ‖%(G)x‖ ≤ C ‖Ax‖ for all x ∈ X with some index function
% on [0, ‖G‖] and some constant C <∞.

Assumption A5. We have R(%(G)) ⊂ R(|A|) for some index function % on [0, ‖G‖],
where |A| := (A∗A)1/2.

We note that R(|A|) = R(A∗) (which follows, for example, from the polar decomposi-
tion A = U |A|), so that the range inclusion in assumption A5 may be replaced with the
inclusion R(%(G)) ⊂ R(A∗).

We refer to the above assumptions as smoothness assumptions. Clearly, the equality
x† = Gv is a general smoothness condition on x†. Assumptions A1 to A5 characterize
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the relative severity of ill-posedness of equation (1.1) with respect to the operator G.
Assumptions A3 to A5 state that, in a sense, %(G) is not less smoothing than A. Using
that an operator B has closed range if and only if zero is an isolated point of the spectrum
of B∗B, it is not difficult to prove that under any of the assumptions A1 to A5 the operators
ϕ(A∗A), %(G), and G have non-closed ranges (recall that we always require that R(A) is
non-closed). If (following the terminology of [26]) the linear equation (1.1) is ill-posed of
type II (A compact), then G is necessarily compact whenever one of the assumptions A1
to A5 holds. On the other hand, the operator G in assumptions A2 to A5 can be compact
or not if (1.1) is ill-posed of type I (A non-compact with non-closed range R(A)). For
more details around this field we also refer, for example, to discussions in [11], [12] and
[13].

The paper is organized as follows. Section 2 is devoted to cross-connections between
the assumptions listed above. Roughly speaking, we show that

A1 ⇒ A3
⇐ ∗
⇒ A4 ⇔ A5

⇓ ⇓∗ ⇓∗ ⇓∗
A2 A2 A2 A2

where an arrow without asterisk means that the implication is true with the same index
function ϕ or %, respectively. On the other hand, an arrow with an asterisk indicates that
the implication is true under an additional condition or for a different index function. The
philosophy of Sections 3 to 7 is that each of the assumptions A1 to A5 can be accompanied
by an extra assumption to yield convergence rates for the regularization error ‖xα − x†‖.
In Section 3 we consider assumptions A1 and A2 together with some mild additional
hypotheses on the function ϕ, in Section 4 we combine assumption A3 with operator
monotonicity, and in Section 5 we take assumption A3 in conjunction with a concavity
condition. Assumptions A4 and A5 turn out to be equivalent, and their implications are
the subject of Sections 6 and 7. In Section 6, assumption A5 is paired with the requirement
that G be a compact operator, and in Section 7 we return to operator monotonicity or
concavity, but this time not in connection with assumption A3 but with assumptions
A4 and A5. In Section 8 we show that some saturation phenomenon occurring in the
general case disappears if the operators G and A∗A commute. Section 9 summarizes the
consequences of the error estimates obtained in Sections 3 to 8 for the error of regularized
solutions in the case of noisy data yδ ∈ Y with ‖y − yδ‖ ≤ δ. In this context, we focus
on a priori parameter choices for the regularization parameter α leading to order optimal
convergence rates. Section 10 illustrates the abstract theory by a couple of examples
related to inverse problems.

2 Connections between the smoothness conditions

Assumption A1 obviously implies assumption A2 with the same index function ϕ, and
assumption A3 trivially implies assumption A4 with the same index function % and C = 1.
If assumption A4 holds with an index function % and a constant C > 0, then assumption A3
is evidently satisfied with the index function %/C. It is also clear that assumption A1 yields
assumption A4 with % = ϕ−1 and C = ‖A∗‖. More relationships between assumptions A1
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to A5 will be deduced from the following result. This result is not terribly new, but we
have not found it explicitly in the literature. Our proof of part (b) mimics arguments of
[35, Section 8.6].

Proposition 2.1 Let S and T be selfadjoint bounded linear operators on X and suppose
T is injective.

(a) If R(S) ⊂ R(T ), then T−1S is a well-defined bounded linear operator on X and
‖Sx‖ ≤ C‖Tx‖ for all x ∈ X with C = ‖T−1S‖.

(b) If there is a constant C < ∞ such that ‖Sx‖ ≤ C‖Tx‖ for all x ∈ X, then
R(S) ⊂ R(T ) and ‖T−1S‖ ≤ C.

Proof. We first of all remark that the linear operator T−1 : R(T ) → X is well-defined
and that R(T ) is dense in X because the null space N (T ) is {0} and R(T ) = N (T ∗)⊥ =
N (T )⊥.

(a) The range inclusion implies that D := T−1S : X → X is a well-defined linear
operator. To prove that this operator is bounded, we use the closed graph theorem. Thus,
suppose xn → x and Dxn → y. We must show that Dx = y. But since Sxn → Sx
and Sxn = TT−1Sxn = TDxn → Ty, it follows that Sx = Ty, which gives the desired
equality T−1Sx = y. Since S = TD, we have S = S∗ = D∗T ∗ = D∗T and hence
‖Sx‖ ≤ ‖D∗‖ ‖Tx‖ for all x ∈ X. As ‖D∗‖ = ‖D‖, we arrive at the assertion.

(b) Let u = Sw ∈ R(S). We consider the functional F : x 7→ (T−1x, u) on R(T ). For
x ∈ R(T ),

|F (x)| = |(T−1x, u)| = |(T−1x, Sw)| = |(ST−1x,w)|
≤ ‖ST−1‖ ‖w‖ ≤ C‖TT−1x‖ ‖w‖ = C‖w‖ ‖x‖ .

Thus, F is bounded on R(T ). As R(T ) is dense in X, the functional F can be continued
to a bounded linear functional F̃ on all of X. By the Riesz representation theorem, there
is a y∗ ∈ X such that F̃ (x) = (x, y∗) for all x ∈ X. For x ∈ R(T ) we therefore have
(T−1x, u) = (x, y∗). Hence for every z ∈ X,

(z, u) = (T−1Tz, u) = (Tz, y∗) = (z, Ty∗) ,

which implies that u = Ty∗. This shows that u is in R(T ) and completes the proof of the
inclusion R(S) ⊂ R(T ).

Since ‖ST−1y‖ ≤ C‖TT−1y‖ = C‖y‖ for every y ∈ R(T ) and R(T ) is dense in X, the
operator ST−1 : R(T ) → X can be continued to a bounded linear operator B : X → X
satisfying ‖B‖ ≤ C. If x ∈ X and y ∈ R(T ), then

(x, ST−1y) = (Sx, T−1y) = (TT−1Sx, T−1y) = (T−1Sx, TT−1y) = (T−1Sx, y).

This equality can be extended to the equality (x,By) = (T−1Sx, y) for all x ∈ X and all
y ∈ Y . It follows that (T−1S)∗ = B, whence ‖T−1S‖ = ‖B‖ ≤ C. 2

Corollary 2.2 (a) Assumption A4 implies assumption A5.
(b) Assumption A5 implies assumption A4 with C = ‖ |A|−1%(G)‖.

4



Proof. (a) We apply Proposition 2.1 to S = %(G) and T = |A| just noticing that
‖ |A|x‖ = ‖Ax‖ for all x ∈ X. 2

As usual, we write S ≤ T for two selfadjoint bounded linear operators S and T if
(Sx, x) ≤ (Tx, x) for all x ∈ X. A function f : [0, t ] → R is said to be operator monotone
on [0, t ] if f(S) ≤ f(T ) whenever S and T are two selfadjoint bounded linear operators
with S ≤ T whose spectra are contained in [0, t ]. We remark that the use of operator
monotone functions in connection with the analysis of ill-posed problems is due to [20]
(see also some more results in [22]).

We denote by ψ−1 the inverse of a bijective function ψ and by ψ2 the square (and not
the second iterate) of ψ, that is, ψ2(t) = [ψ(t)]2.

In connection with the following corollary we note that assumption A1 implies the
equality ‖G‖ = ϕ(‖A‖2) and that in the case of assumption A3 we have the inequality
%(‖G‖) ≤ ‖A‖ and thus %2(‖G‖) ≤ ‖A‖2.

Corollary 2.3 (a) If assumption A1 holds, then assumption A3 is true in the equality
form ‖%(G)x‖ = ‖Ax‖ for all x ∈ X with % defined by %(s) =

√
ϕ−1(s) for s ∈ [0, ϕ(‖A‖2)].

(b) If assumption A3 holds and the function ϕ defined by ϕ(t) = %−1(
√
t) for t ∈

[0, %2(‖G‖)] has the property that ϕ2 can be continued to an operator monotone index
function on [0, ‖A‖2], then assumption A2 is valid with this ϕ. Furthermore, in that case
we have x† = ϕ(A∗A)u with u ∈ X and ‖u‖ ≤ R.

(c) If assumption A3 holds and the function %−1 defined on [0, %(‖G‖)] can be continued
to an operator monotone index function on [0, ‖A‖], then assumption A2 is valid with

ϕ(t) =
√
%−1(

√
t) for t ∈ [0, ‖A‖2].

Proof. (a) We have %2(ϕ(t)) = t for t ∈ [0, ‖A‖2] and hence %2(G) = %2(ϕ(A∗A)) = A∗A,
which implies that ‖%(G)x‖ = ‖Ax‖ for all x ∈ X.

(b) Since ‖%(G)x‖ ≤ ‖Ax‖ for all x ∈ X, we may conclude that %2(G) ≤ A∗A. The
function ϕ2 with ϕ(t) = %−1(

√
t) is operator monotone on [0, ‖A‖2] and the spectra of

%2(G) and A∗A are obviously contained in [0, ‖A‖2]. Consequently, ϕ2(%2(G)) ≤ ϕ2(A∗A).
Because ϕ2(%2(s)) = s2 for s ∈ [0, ‖G‖], it follows that G2 ≤ ϕ2(A∗A), which is equivalent
to the inequality ‖Gx‖ ≤ ‖ϕ(A∗A)x‖ for all x ∈ X. Proposition 2.1(b) now implies that
R(G) ⊂ R(ϕ(A∗A)) and ‖ϕ(A∗A)−1G‖ ≤ 1. Thus, x† = ϕ(A∗A)u with u := ϕ(A∗A)−1Gv
satisfying ‖u‖ ≤ ‖ϕ(A∗A)−1G‖ ‖v‖ ≤ R.

(c) Again we have %2(G) ≤ A∗A. The function
√
t is known to be operator monotone

on [0,∞) (see, e.g., [4, Theorem V.1.8]). This implies that %(G) ≤ |A|, and the operator
monotonicity of %−1 yields G ≤ %−1((A∗A)1/2). Thus, from Proposition 2.1(b) we obtain
R(G1/2) ⊂ R((%−1((A∗A)1/2))1/2), and since ‖Gx‖ ≤ ‖G1/2‖ ‖G1/2x‖ for all x ∈ X, we
arrive at the inclusions

R(G) ⊂ R(G1/2) ⊂ R((%−1((A∗A)1/2))1/2).

So we have assumption A2 with ϕ(t) =
√
%−1(

√
t). 2
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3 Source conditions

A condition
x† = ϕ(A∗A)u with u ∈ X (3.1)

and with an index function ϕ defined on [0, ‖A‖2] is called a source condition. Throughout
this paper, we assume that (1.5) characterizes the solution smoothness. Then a source
condition (3.1) can hold purely accidental with some accidental ϕ und some accidental u.
Note that for fixed x† condition (3.1) can hold for very different pairs (ϕ, u). Here we focus
on source conditions (3.1) which are implied systematically by one of the assumptions A1
to A5. The following simple proposition reveals that under assumptions A1 and A2 a
source condition (3.1) is automatically satisfied.

Proposition 3.1 Let one of the assumptions A1 or A2 hold. Then we have a source
condition (3.1) as a consequence of the smoothness condition (1.5).

Proof. If the operators G and A∗A are related by a function ϕ as in Assumption A1, then
in view of (1.5) the source condition (3.1) holds trivially with u = v. Under assumption A2,
it follows from (1.5) that x† ∈ R(ϕ(A∗A)), which is (3.1). 2

Now we formulate consequences of source conditions (3.1) for the error of Tikhonov
regularization. The following result is from [21].

Proposition 3.2 Suppose (3.1) holds and put t = ‖A‖2. If there is a constant k < ∞
such that

sup
t∈[0,t]

α

t+ α
ϕ(t) ≤ kϕ(α) for all α ∈ (0, t ] , (3.2)

then
‖xα − x†‖ ≤ kRϕ(α) for all α ∈ (0, t ] . (3.3)

Proof. From (1.3) it is readily seen that x†−xα = α(A∗A+αI)−1x†. Since x† = ϕ(A∗A)u
with ‖u‖ ≤ R, it follows that

‖xα − x†‖ = ‖α(A∗A+ αI)−1ϕ(A∗A)u‖

≤ ‖α(A∗A+ αI)−1ϕ(A∗A)‖ ‖u‖ ≤ sup
t∈[0,t]

α

t+ α
ϕ(t)R ,

and hence (3.2) yields (3.3). 2

The following result provides us with sufficient conditions for the validity of (3.2).

Proposition 3.3 Let ϕ : [0, t ] → R be an index function with t = ‖A‖2. If (a) t/ϕ(t)
is monotonically increasing on [0, t ] or (b) ϕ(t) is concave on [0, t ] then (3.2) holds with
k = 1. If (c) ϕ(t) is operator monotone on [0, t ], then (3.2) is valid with some k ≥ 1. If
there exists a t̂ ∈ (0, t ) such that (d) t/ϕ(t) is monotonically increasing on [0, t̂ ] or (e)
ϕ(t) is concave on [0, t̂ ], then (3.2) is true with k = ϕ(t)/ϕ(t̂).
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Proof. Part (a) may be found in [21]. To prove (b), let ϕ be concave on [0, t]. Since
ϕ(0) = 0, for arbitrary 0 < s < t ≤ t we have ϕ(t)/t ≤ ϕ(s)/s, or equivalently, s/ϕ(s) ≤
t/ϕ(t). Hence, t/ϕ(t) is monotonically increasing on (0, t ] and (b) follows from (a). Part
(c) is established in [22]. It is based on the fact that an operator monotone index function
on [0, t] can be decomposed into a sum ϕ = ϕ0 + ϕ1 of a concave index function ϕ0 and a
Lipschitz continuous index function ϕ1 with Lipschitz constant L1 (see [20]). The constant
k ≥ 1 in (c) then has the form k = 1 + L1 t/ϕ0(t) ([22, Lemma 3 and Proposition 2]) and
attains in accordance with (b) the value k = 1 if we have L1 = 0, i.e., if the operator
monotone function ϕ is concave. To prove (d), we distinguish three cases. In the first case
α ≥ t we use the monotonicity of ϕ to obtain that

αϕ(t)
t+ α

≤ ϕ(t) ≤ ϕ(α) .

In the second case α ≤ t and t ≤ t̂ we take into account that the function t/ϕ(t) is
monotonically increasing to get

αϕ(t)
t+ α

≤ αϕ(t)
t

≤ ϕ(α) .

In the third case α ≤ t and t ∈ [t̂, t] we employ the monotonicity of both ϕ(t) and t/ϕ(t)
to conclude that

αϕ(t)
t+ α

≤ αϕ(t)
t

≤ αϕ(t)
t̂

≤ αϕ(t)
t̂

= k
αϕ(t̂)
t̂

≤ k ϕ(α) .

This completes the proof of part (d). The proof of (e) is similar to the proof of (d). 2

From Propositions 3.1, 3.2, and 3.3 we immediately obtain the following.

Corollary 3.4 Let one of the assumptions A1 or A2 hold with an index function ϕ that
satisfies at least one of the conditions (a) to (e) of Proposition 3.3. Then we have the
error estimate (3.3).

We now introduce two families of index functions ϕ in (3.1) or in assumptions A1 and
A2, respectively, that are frequently used in the literature. These families will also be
discussed in subsequent sections.

Example 3.5 (Hölder rates) Let 0 < µ ≤ 1. Then ϕ(t) = tµ is a concave index func-
tion on [0,∞) and by Proposition 3.3(b) it satisfies the hypothesis (3.2) of Proposition 3.2.
Thus, under (3.1) we get from (3.3) the estimate ‖xα − x†‖ = O(αµ) as α → 0, i.e., we
have Hölder convergence rates in that case. The best possible rate of the error is O(α) for
µ = 1.

So-called converse results allow us to conclude that if an estimate ‖xα−x†‖ = O(ψ(α))
with some index function ψ holds, then (3.1) is valid with some index function ϕ. For
example, in [28] we find a converse result for Hölder rates. It says that if ‖xα−x†‖ = O(α)
as α→ 0, then x† = A∗Au1 with some u1 ∈ X, and if ‖xα − x†‖ = O(αµ) as α→ 0 with
some 0 < µ < 1, then for each 0 < ν < µ there is a uν ∈ X such that x† = (A∗A)ν uν .
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Using for nonnegative arguments t the relation %(t) =
√
ϕ−1(t) already exploited in

Corollary 2.3(a) we obtain for power functions ϕ(t) = tµ with exponents 0 < µ ≤ 1/2
the power functions %(t) = t

1
2µ with exponents in the interval [1,∞). Then the well-

known Heinz-Kato inequality (see, e.g., the corollary of Theorem 2.3.3 in [30, p. 45] and
[6, Proposition 8.21]) yields the implication

R(G
1
2µ ) ⊂ R(|A|) =⇒ R(G) ⊂ R(|A|2µ) = R((A∗A)µ) , (3.4)

and hence for that specific % our assumption A5 implies assumption A2. Consequently,
error estimates (3.3) can be obtained along the lines of Corollary 3.4 provided that a range
inclusion R(G

1
2µ ) ⊂ R(|A|) is valid for 0 < µ ≤ 1/2. The examples 1 and 2 in [14] fit here

with %1(t) = %(t) and %2(t) = t and illustrate the Hölder rate situation: assumption A5
and hence assumption A2 are fulfilled in those examples, but assumption A1 is not valid.
Note that the implication (3.4) fails to hold for µ > 1/2 and general operators G and A.
However, in Section 8 we will point out that the implication is true for all µ > 0 if G and
A∗A commute. 2

Example 3.6 (logarithmic rates) Let p > 0 and K > 0. Then the function given by
ϕ(t) = K(− ln t)−p for 0 < t ≤ t < 1 and ϕ(0) = 0 is an index function on [0, t ]. This
function is concave for 0 ≤ t ≤ t̂ = e−p−1 and hence Propositions 3.3(e) and 3.2 show
that if (3.1) is satisfied with this index function, then we have the logarithmic convergence
rates ‖xα − x†‖ = O ((− lnα)−p) as α→ 0.

For such logarithmic rates, converse results were established in [15]: if ‖xα − x†‖ =
O ((− lnα)−p) as α → 0, then for each 0 < q < p there exists a uq ∈ X such that
x† = (− ln (A∗A))−q uq. 2

4 Operator monotonicity

In contrast to assumption A2 and its special case A1, assumptions A3, A4, A5 do not
provide us directly with a source condition (3.1) which implies an estimate (3.3) for the
regularization error under weak requirements on ϕ. Nevertheless, such estimates can be
derived indirectly from assumptions A3 to A5 by imposing stronger conditions on the
index function %. We start with assumption A3 and our objective is to deduce a source
condition (3.1) and the hypothesis of Proposition 3.2 from it. The price we have to pay
for this is a quite strong requirement concerning the index function %.

Proposition 4.1 (a) Let assumption A3 hold, define ϕ on [0, %2(‖G‖)] by ϕ(t) = %−1(
√
t),

and suppose ϕ2 can be continued to an operator monotone index function on [0, ‖A‖2].
Then

‖xα − x†‖ ≤ kRϕ(α) for all α ∈ [0, ‖A‖2] , (4.1)

where k ≥ 1 is the constant from Proposition 3.3(c).
(b) Let assumption A3 hold and suppose %−1 can be continued to an operator monotone

index function on [0, ‖A‖]. Then we have inequality (4.1) with some constant k ≥ 1 and

with ϕ(t) =
√
%−1(

√
t) for t ∈ [0, ‖A‖2].

8



Proof. (a) By virtue of Corollary 2.3(b), assumption A2 is satisfied with ϕ(t) = %−1(
√
t)

continued to [0, ‖A‖2] whenever assumption A3 holds with index function %. Since ϕ2 is
assumed to be operator monotone and the function

√
t is known to be operator monotone

on [0,∞), we have operator monotonicity of ϕ. From Proposition 3.3(c) we now infer that
(3.2) is true with some k ≥ 1. Proposition 3.2 therefore yields (4.1).

(b) As a consequence of Corollary 2.3(c), assumption A2 is satisfied with the function

ϕ(t) =
√
%−1(

√
t) continued to [0, ‖A‖2] whenever assumption A3 holds with the index

function %. Taking into account Proposition 3.3(c) we can therefore argue as in the proof of
part (a). The operator monotonicity of ϕ now follows from the fact that the composition
of operator monotone functions remains operator monotone. 2

Note that the requirement concerning operator monotonicity in Proposition 4.1(a) is
stronger than that in Proposition 4.1(b). However, the convergence rate (4.1) gained from
Proposition 4.1(b) is only the square root of the rate obtained from Proposition 4.1(a).

Example 4.2 We come back to the Hölder rates of Example 3.5 and consider the func-
tion %(t) = t

1
2µ with 0 < µ ≤ 1 in assumption A3. In this case we deduce from Proposi-

tion 4.1(a) that assumption A2 is true with ϕ(t) = %−1(
√
t) = tµ whenever 0 < µ ≤ 1/2,

since ϕ2 is operator monotone on [0,∞) for 0 < µ ≤ 1/2 ([4, Theorem V.1.9]). This yields
the convergence rates (4.1) in the form ‖xα − x†‖ = O(αµ) as α → 0. The best possible
rate to be expected is O(

√
α) in the case µ = 1/2. Higher order Hölder rates O(αµ) with

1/2 < µ ≤ 1 as in Example 3.5 cannot be derived from Proposition 4.1(a) if the operator
monotone function ϕ2 appears as a companion of assumption A3 (see also Remark 7.2 and
Section 8). Note that Proposition 4.1(b) can also be used for 1/2 < µ ≤ 1, but that then
the resulting convergence rate is only

‖xα − x†‖ = O

(√
%−1(

√
α)
)

= O
(
αµ/2

)
,

with the best possible case O(
√
α) for µ = 1. 2

Example 4.3 Now we return to the logarithmic rates of Example 3.6 and consider the
function fp(t) = (− ln t)−p with some exponent p > 0 and fp(0) = 0. This function is
operator monotone on [0, t ] for 0 < t < 1 whenever 0 < p ≤ 1 (see [20, Examples 2 and
3]). Let assumption A3 hold with %(t) = exp

(
−K/t1/p

)
. Then

%−1(t) = Kpfp(t) =⇒ %−1(
√
t) = (2K)pfp(t) =⇒ (%−1(

√
t))2 = (2K)2pf2p(t)

and hence
√
%−1(

√
t) = (2K)

p
2 f p

2
(t). For ‖A‖ < 1, Proposition 4.1(a) yields the conver-

gence rates
‖xα − x†‖ = O(fp(α)) as α→ 0 (4.2)

whenever 0 < p ≤ 1/2, but Proposition 4.1(a) is not applicable for p > 1/2. Namely,
as noted in [20, p. 630], for p > 1/2 the function (%−1(

√
t))2 = (2T )2pf2p(t) fails to be

operator monotone on any interval [0, ε] with ε > 0. On the other hand, Proposition 4.1(b)
also applies for 1/2 < p ≤ 1 and gives the convergence rates ‖xα − x†‖ = O(f p

2
(α)). The

best rate is O((− lnα)−1/2) in both cases. 2
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5 Concavity

Operator monotonicity is an extremely involved property and difficult to check in con-
crete cases. Contrary to this, concavity is easy to comprehend and to verify, and in
this section we will establish a result on convergence rates based on that property for
ϕ2(t) = (%−1(

√
t))2 in addition to assumption A3. As already mentioned, any operator

monotone index function on an interval [0, t ] is a sum of a concave index function and
a Lipschitz continuous index function, but neither such a sum nor a concave index func-
tion alone are necessarily operator monotone. In particular, for p > 1/2 the function
f2

p (t) = f2p(t) and its multiples ocurring in Example 4.3 fail to be operator monotone on
any interval [0, ε], although this function is concave on the interval [0, e−2p−1].

Under assumption A3 with %(t) = exp
(
−1/(2 t1/p)

)
and with the additional restriction

%2(‖G‖) ≤ e−2p−1, which is equivalent to ‖G‖ ≤ (2p+ 1)−p, the following theorem allows
us to derive logarithmic convergence rates (4.2) for all p > 0. Based on Proposition 4.1(a)
such rates can only be derived for 0 < p ≤ 1/2.

Theorem 5.1 Let assumption A3 hold and define the index function ϕ by ϕ(t) = %−1(
√
t)

for t ∈ [0, %2(‖G‖)]. If ϕ2 is concave on [0, %2(‖G‖)], then there exists a number α > 0
such that

‖xα − x†‖ ≤ Rϕ(α) for 0 < α ≤ α . (5.1)

Proof. Let us introduce the abbreviation zα = x†−xα. We already observed in Section 3
that (1.3) implies the identity zα = x† − xα = Bαx

† with Bα = α(A∗A + αI)−1. Taking
into account that ‖Bα‖ ≤ 1, we obtain from (1.5) the estimate

‖zα‖2 ≤ ‖B1/2
α x†‖2 = (zα, x†) = (Gzα, v) ≤ R ‖Gzα‖ . (5.2)

Since ‖(A∗A)1/2B
1/2
α ‖ ≤

√
α, we therefore get

‖Azα‖2 = ‖(A∗A)1/2Bαx
†‖2 ≤ α‖B1/2

α x†‖2 ≤ αR ‖Gzα‖ . (5.3)

Our next objective is to derive a third estimate that relates the three quantities ‖zα‖,
‖Azα‖ and ‖Gzα‖. This estimate will be derived by appropriate interpolation. We define
the index function ξ on the interval [0, %2(‖G‖)] by ξ(t) = (ϕ2)−1(t) = %2(

√
t). This

function is convex because ϕ2 is concave. We may therefore employ Jensen’s inequality
and have

ξ

(
‖Gzα‖2

‖zα‖2

)
= ξ

(∫
λ2 d‖Eλzα‖2∫
d‖Eλzα‖2

)

≤
∫
ξ(λ2) d‖Eλzα‖2∫

d‖Eλzα‖2
(by Jensen’s inequality)

=
∫
%2(λ) d‖Eλzα‖2

‖zα‖2
=
‖%(G) zα‖2

‖zα‖2

≤ ‖Azα‖2

‖zα‖2
(by assumption A3) . (5.4)

10



Now we derive the desired estimate (5.1) by combining the estimates (5.2), (5.3) and
(5.4). We introduce the function f(t) = ξ

(
t2
)
/t2. Since ξ is a convex index function we

conclude that f is monotonically increasing. Hence by (5.2), which may be rewritten as
‖Gzα‖1/2/R1/2 ≤ ‖Gzα‖/‖zα‖, the monotonicity of f , and (5.4),

f

(
‖Gzα‖1/2

R1/2

)
≤ f

(‖Gzα‖
‖zα‖

)
=

‖zα‖2

‖Gzα‖2
· ξ
(
‖Gzα‖2

‖zα‖2

)
≤ ‖Azα‖2

‖Gzα‖2
.

Multiplying by ‖Gzα‖/R and exploiting (5.3) we get

ξ

(‖Gzα‖
R

)
≤ ‖Azα‖2

R‖Gzα‖
≤ α for all sufficiently small α .

Since ξ is the inverse function of ϕ2, this estimate is equivalent to the inequality

‖Gzα‖ ≤ Rϕ2(α) .

From the last inequality and (5.2) we obtain (5.1). 2

The above proof is based on spectral calculus, which is frequently used in regularization
theory (see, e.g., [6], [18], [19], [28], [32]). Hence, Theorem 5.1 is applicable to compact
and non-compact operators G in like manner. On the other hand, the approach of the
following section is focused on compact G only, because it makes explicit use of the discrete
spectrum of this operator and the corresponding eigenvalue expansion.

6 Compactness

Assumption A5 seems to be the one that may be verified in the easiest way. This can be
seen by considering the examples in [14] concerning inverse problems in partial differential
equations. We are able to derive convergence rates from assumption A5 provided the
operator G is compact.

Theorem 6.1 Let assumption A5 hold and suppose G is compact. In addition, assume
that the function t/%(t) is strictly monotonically decreasing in some interval (0, ε] (ε > 0)
and t/%(t) →∞ as t→ 0. Then, with some constant κ <∞,

‖xα − x†‖ ≤ κϕ(α) for 0 < α ≤ α , (6.1)

where ϕ(t) = %−1(
√
t) for t ∈ [0, ‖G‖].

Proof. The hypotheses of the theorem ensure that the standing assumptions of [14] are
satisfied with %1(t) = %(t) and %2(t) = t. Formula (3.7) of [14] says that there is a constant
K <∞ such that

‖xα − x†‖ ≤ K
(
f−1(M) +

√
αM

)
for all sufficiently large M , (6.2)

where f(t) = t/%(t). Put M(α) = %−1(
√
α)/

√
α = ϕ(α)/

√
α. Since t/%(t) →∞ as t→ 0,

we see that M(α) →∞ as α→ 0. We have %(
√
αM(α)) = %(%−1(

√
α)) =

√
α and hence

M(α) =
√
αM(α)

%(
√
αM(α))

= f(
√
αM(α)) ,
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which gives f−1(M(α)) =
√
αM(α). Consequently, we have for sufficiently small α > 0

K
(
f−1(M(α)) +

√
αM(α)

)
= 2K

√
αM(α) = 2Kϕ(α) .

Setting κ = 2K this yields (6.1). 2

Note that the rates ϕ(α) delivered by Theorem 6.1 are by construction always slower
than O(

√
α).

Obviously, the above is nothing but an adaption of the main result of [14] to the present
context. We remark that the last requirement formulated in condition (2.3) of [14], in our
notation maxε≤t≤‖G‖ t/%(t) ≤ C1ε/%(ε) for some constant 1 ≤ C1 < ∞, is automatically
satisfied due to the continuity and positivity of the index function %(t) for 0 < t ≤ ‖G‖.
Moreover, note that an essential ingredient of the proof in [14] is the error estimate

‖xα − x†‖ ≤ d(M) +
√
αM for all sufficiently large M (6.3)

with the distance function

d(M) = inf {‖x† −A∗ v‖ : v ∈ Y, ‖v‖ ≤M} . (6.4)

In order to deduce (6.2) from (6.3), the hypotheses of Theorem 6.1 are essential. They
are sufficient to estimate d(M) ≤ K f−1(M) with some K < ∞ for sufficiently large M .
On the other hand, estimate (6.3) follows, for example, from Theorem 6.8 of [3]. For some
more studies of this subject see also [10].

Even though the compactness of G is a severe constraint, the requirements of Theo-
rem 6.1 concerning ϕ are essentially weaker than the corresponding conditions in Proposi-
tion 4.1(a) and Theorem 5.1. So, under assumption A5 with %(t) = exp

(
−1/(2 t1/p)

)
the

logarithmic convergence rates (4.2) can be established for all p > 0 whenever ‖A‖ < 1,
since t/%(t) is decreasing for sufficiently small t > 0 and goes to infinity as t → 0. With
slightly modified constants, such a situation occurs in the cases p = 1 and p = 2 in some
inverse problems for the heat equation (see [14, Examples 3 and 4]).

7 Scaling

We finally embark on assumption A5 without the additional requirement that G be com-
pact, which was essential in Section 6. From Corollary 2.2 we know that assumption A5
is equivalent to assumption A4, the only problem being that sole knowledge of the range
inclusion A5 does not tell us anything about the constant C in assumption A4.

Theorem 7.1 Let assumption A5 be satisfied or, equivalently, let us assume that assump-
tion A4 is given. Define the index function ϕ by ϕ(t) = %−1(

√
t) for t ∈ [0, %2(‖G‖)] and

suppose that either (a) ϕ2 is concave on [0, %2(‖G‖)] or (b) ϕ2 can be continued to an
index function on [0, C2‖A‖2] that is operator monotone, where C is the constant from
assumption A4. Then there exists an α > 0 such that

‖xα − x†‖ ≤ K ϕ(α) for all 0 < α ≤ α , (7.1)

where K = R max(C, 1) in the case (a) and K = k2R max(C2, 1) with the constant k ≥ 1
of Proposition 3.3(c) in the case (b).
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Proof. Assumption A4 says that ‖%(G)x‖ ≤ C‖Ax‖ for all x ∈ X. We use a scaling idea
and replace the equation Ax = y by the equivalent equation CAx = Cy. Let us denote
by x̃β the solution of the extremal problem ‖CAx − Cy‖2 + β‖x‖2 → min. Then for the
equation CAx = Cy, assumption A3 is valid. Hence, Theorem 5.1 in the case (a) and
Proposition 4.1(a) in the case (b) apply and provide us with inequalities of the form

‖x̃β − x†‖ ≤ k Rϕ(β) (7.2)

for all sufficiently small β. From (1.3) we infer that

x̃β = (C2A∗A+ βI)−1CA∗Cy

and that the solution of the problem ‖Ax− y‖2 + α‖x‖2 → min equals

xα = (A∗A+ αI)−1A∗y .

Consequently, x̃C2α = xα. From (7.2) we therefore obtain

‖xα − x†‖ ≤ k Rϕ(C2α) (7.3)

for all sufficiently small α. Notice that k = 1 in the case (a). If C ≤ 1, then (7.1)
follows from the monotonicity of ϕ and the observation that 1 ≤ k ≤ k2 in the case
(b). Now let C > 1. If ϕ2 is concave, we have ϕ2(C2α) ≤ C2ϕ2(α) (recall the proof of
Proposition 3.3(b)). It follows that ϕ(C2α) ≤ Cϕ(α) and hence (7.3) yields (7.1). Now
suppose ϕ2 is operator monotone on [0, C2‖A‖2]. Then ϕ itself is operator monotone on
the same interval (see the proof of Proposition 4.1)(a). In that case we use the inequality
ϕ(t)/t ≤ k ϕ(s)/s for 0 < s < t ≤ C2‖A‖2 of Lemma 3 in [22] (recall the proof of
Proposition 3.3(c)). This gives the estimate ϕ(C2α) ≤ k C2ϕ(α) for all sufficiently small
α > 0, and hence (7.3) implies the desired estimate (7.1). 2

We remark that a convergence rate of type (7.1) can also be derived from assump-
tion A5 if %−1 is operator monotone (see Corollary 2.3(c) and Proposition 4.1(b)). Then,
however, we only get the reduced rate O(

√
%−1(

√
α)).

Remark 7.2 If we focus on the Hölder rates considered in Examples 3.3 and 4.2, then it
becomes clear that all of Sections 4 to 7 based on assumptions A3 to A5 yield convergence
rates up to O(

√
α). It is only source conditions of higher order in assumption A1 or A2

that can provide us with convergence rates up to O(α) along the lines of Section 3. This
phenomenon reflects the problem that we have found no universal way to go from one of
assumptions A3 to A5 or from an estimate of the form (1.4) to assumption A2 with ϕ(t) =
tµ for 1/2 < µ ≤ 1. Although the converse result mentioned in Example 3.3 could provide
us with such source conditions for µ > 1/2, the estimates (1.4) obtained in Sections 4 to
7 lead to rate functions ϕ that are never of higher order than O(

√
α). Corollaries 2.3(b)

and 2.3(c), which imply assumption A2 directly from assumption A3, lead to O(
√
α) as

highest order of convergence. In this sense, the smoothness conditions of assumptions A3
to A5 show a saturation behavior for the method of Tikhonov regularization. This seems
to correspond with the exponent limitation of the Heinz-Kato inequality

‖G
1
2µ x‖ ≤ ‖|A|x‖ for all x ∈ X

=⇒ ‖Gx‖ ≤ ‖|A|2µ x‖ = ‖(A∗A)µ x‖ for all x ∈ X , (7.4)
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which, as well as its version (3.4), in this general form is only true for 0 < µ ≤ 1/2. On
the other hand, the proofs of Corollaries 2.3(b) and 2.3(c) show that under the extended
operator monotonicity hypotheses on ϕ2 with ϕ(t) = %−1(

√
t) and on %−1 with ϕ(t) =√

%−1(
√
t) of this corollary we have the implication

‖%(G)x‖ ≤ ‖|A|x‖ = ‖Ax‖ for all x ∈ X =⇒ R(G) ⊂ R(ϕ(A∗A)) . (7.5)

For non-power-type functions ϕ this implication is, in some sense, a generalization of the
Heinz-Kato result. 2

8 Commuting operators break up saturation

In this section we show that the implication (7.5) is true for all index functions % whenever
the operators G and A∗A commute. Thus, in the case of commuting operators assump-
tion A2 is a consequence of assumption A4.

Proposition 8.1 Let S and T be strictly positive selfadjoint bounded linear operators on
X with ST = TS and spectrum in the interval [0, t̃ ]. Then for every index function ψ on
[0, t̃ ] the implication

‖Sx‖ ≤ ‖Tx‖ for all x ∈ X =⇒ ‖ψ(S)x‖ ≤ ‖ψ(T )x‖ for all x ∈ X (8.1)

is valid.

Proof. Let L(X) be the C∗-algebra of all bounded linear operators on X and let A denote
the smallest closed subalgebra of L(X) that contains S, T , and the identity operator. Since
S and T are commuting selfadjoint operators, A is a unital commutative C∗-algebra. We
denote byM the maximal ideal space of A. By the Gelfand-Naimark theorem (see, e.g., [5,
Theorem I.3.1]), the Gelfand transform Γ : A → C(M) is an isometric star-isomorphism
that preserves positivity. Put σ = ΓS and τ = ΓT . Then σ and τ are real-valued
continuous functions on M with values in [0, t̃ ].

Now suppose that ‖Sx‖ ≤ ‖Tx‖ for all x ∈ X. This means that S2 ≤ T 2, and hence
σ2(ν) ≤ τ2(ν) for all ν ∈ M. Since σ and τ are nonnegative, it follows that 0 ≤ σ(ν) ≤
τ(ν) ≤ t̃ for all ν ∈M. Taking into account that ψ2 is monotonically increasing on [0, t̃ ],
we obtain that that ψ2(σ(ν)) ≤ ψ2(τ(ν)) for all ν ∈ M. As Γ−1(ψ2 ◦ σ) = ψ2(S) and
Γ−1(ψ2 ◦ τ) = ψ2(T ), we arrive at the inequality ψ2(S) ≤ ψ2(T ), which, by virtue of the
selfadjointness of ψ(S) and ψ(T ), implies that ‖ψ(S)x‖ ≤ ‖ψ(T )x‖ for all x ∈ X. 2

Theorem 8.2 Let G and A∗A be commuting operators and let assumption A4 hold. Then
the function ψ defined by ψ(t) =

( %
C

)−1 (t) for t ∈ [0, %(‖G‖)/C] can be continued to an
index function on [0, ‖A‖], the function ϕ defined by ϕ(t) = ψ(

√
t) is an index function

on [0, ‖A‖2], and assumption A2 is valid with this function ϕ.

Proof. Since the %(t) in assumption A4 is assumed to be an index function for t ∈ [0, ‖G‖],
the function ψ(t) =

( %
C

)−1 (t) is well-defined and an index function for t ∈ [0, %(‖G‖)/C].
It is always possible to continue ψ so that the resulting function is continuous and strictly
increasing and hence an index function on [0, ‖A‖]. If G and A∗A commute, then %(G)/C
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and |A| = (A∗A)1/2 also commute. Indeed, as in the proof of Proposition 8.1, let A be the
smallest closed subalgebra of L(X) that contains G, A∗A, and the identity operator. Then
A is a unital commutative C∗-algebra that is isometrically star-isomorphic to C(M) for
some compact Hausdorff space M , the operators G and A∗A correspond to σ ∈ C(M) and
τ ∈ C(M), and since % ◦ σ/C and τ1/2 are also in C(M), the operators %(G)/C and |A|
belong to the commutative algebra A. Consequently, we may combine assumption A4 and
Proposition 8.1 with S = %(G)/C, T = |A|, t̃ = ‖A‖ and ψ as introduced in the present
theorem to obtain the inequality ‖Gx‖ ≤ ‖ϕ(A∗A)x‖ for all x ∈ X with ϕ as defined in
the present theorem. From this inequality and Proposition 2.1(b) we deduce the range
inclusion R(G) ⊂ R(ϕ(A∗A)) and thus arrive at assumption A2. 2

Let % be the power function defined by %(t) = t
1
2µ for some 0 < µ ≤ 1. From

Theorem 8.2 and the results of Section 3 we conclude that if the operators G and A∗A
commute and one of the assumptions A3 to A5 is fulfilled for this %, then ‖xα−x†‖ = O(αµ)
as α → 0. Moreover, we see that for commuting G and A∗A the implications (3.4) and
(7.4) even hold for all µ > 0. Such a specific property of commuting operators was already
observed in the context of regularization in [25, Remark 4] and [31, p. 2125].

Example 8.3 In this example we show that assumption A2 does not necessarily imply
assumption A1 even if the operators G and A∗A commute. Let A and G be the multi-
plication operators on X = L2(0, 1) given by (Ax)(t) = t x(t) and (Gx)(t) = m(t)x(t)
with m(t) = t (1 − sin(1/t)). Obviously, G and A∗A are strictly positive bounded (but
non-compact) linear operators, they have non-closed ranges, and they commute. Trivially,
R(G) ⊂ R(|A|), so that assumption A2 holds with ϕ(t) =

√
t. If assumption A1 would

be satisfied with some continuous function ϕ (possibly different from the ϕ of assump-
tion A2), we would have m(t) = ϕ(t2) for all t ∈ (0, 1). But since m fails to be monotone
in any right neighborhood of zero, ϕ fails to be an index function on [0, ε] for any ε > 0.
Hence assumption A1 cannot hold, not even with a function ϕ that is only required to be
an index function in some small right neighborhood of zero. 2

9 Parameter choice and order optimality

If instead of the exact right-hand y we have noisy data yδ with ‖y − yδ‖ ≤ δ, we consider
the extremal problem

‖Ax− yδ‖2 + α‖x‖2 → min,

whose unique solution x = xδ
α ∈ X is

xδ
α = (A∗A+ αI)−1A∗yδ . (9.1)

It is well known (and easily seen from (1.3) and (9.1)) that ‖xδ
α − xα‖ ≤ δ/(2

√
α). In

summary, we have

‖xδ
α − x†‖ ≤ ‖xα − x†‖+

δ

2
√
α
.

Hence, from the estimates (1.4) derived in Sections 3 to 7 for index functions ϕ under very
different conditions we find inequalities of the form

‖xδ
α − x†‖ ≤ Kϕ(α) +

δ

2
√
α
, (9.2)
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which estimate above the total error of regularization in the case of noisy data.

In this section, we are going to answer the question concerning the best possible worst
case error for identifying x† from noisy data yδ ∈ Y . Let V : Y → X be an arbitrary
operator and think of V yδ as an approximation to the solution x†. Then, the quantity

∆(δ, V ) = sup
{
‖V yδ − x†‖ : x† = Gv , ‖v‖ ≤ R , yδ ∈ Y , ‖y − yδ‖ ≤ δ

}
is called the worst case error for identifying x† under the smoothness assumption (1.5).
An optimal method Vopt is characterized by ∆(δ, Vopt) = infV ∆(δ, V ), and this quantity
is called the best possible worst case error. If assumption A4 is true as equality, then we
know that the best possible worst case error can be estimated from below by

inf
V

∆(δ, V ) ≥ Rϕ

(
Θ−1

(
Cδ

R

))
(9.3)

provided Cδ/R is an element of the spectrum of the operator G%(G) (see [24]) and we
set Θ(t) :=

√
t ϕ(t) for all t ≥ 0 under consideration. The error bound on the right-hand

side of (9.3) cannot be beaten by any regularization method. Due to this fact, under
assumption A4 we call a regularized solution xδ

α order optimal if

‖xδ
α − x†‖ ≤ cRϕ

(
Θ−1

(
Cδ

R

))
with some c ≥ 1 .

Let us show that the method of Tikhonov regularization provides order optimal error
bounds for the a priori parameter choice

α(δ) =
1
c22

Θ−1
(
c2δ

c1

)
, (9.4)

where c1 and c2 are positive constants guessing R and C, respectively.

Theorem 9.1 Let assumption A4 be satisfied and define the index function ϕ by ϕ(t) =
%−1(

√
t) for t ∈ [0, %2(‖G‖)]. If ϕ2(t) is concave on [0, %2(‖G‖)]] and α(δ) is chosen a

priori by (9.4), then the regularized solution xδ
α(δ) from (9.1) is order optimal. In fact,

there is a δ > 0 such that

‖xδ
α(δ) − x†‖ ≤ cRϕ

(
Θ−1

(
Cδ

R

))
for all 0 < δ ≤ δ (9.5)

with

c =

(
C2

c22
+

c1
2R

)
max

{
1,
c2R

c1C

}
. (9.6)

Proof. The parameter choice (9.4) can be rewritten in the equivalent form

δ√
α

= c1ϕ
(
c22α

)
.
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Put α = %2(‖G‖)/C2. Since ϕ2(t) is concave on (0, %2(‖G‖)], we have ϕ2(C2α)/(C2α) ≤
ϕ2(α)/α for 0 < α ≤ α or equivalently, ϕ(C2α) ≤ Cϕ(α) for 0 < α ≤ α. This inequality
together with (9.2), (9.4), and estimate (7.3) (which holds here with k = 1) gives

‖xδ
α(δ) − x†‖ ≤ Rϕ

(
C2α(δ)

)
+

δ

2
√
α(δ)

= Rϕ

(
C2

c22
Θ−1

(
c2δ

c1

))
+
c1
2
ϕ

(
Θ−1

(
c2δ

c1

))

≤
[
C2

c22
+

c1
2R

]
Rϕ

(
Θ−1

(
c2δ

c1

))
. (9.7)

Since ϕ is strictly increasing, we have for arbitrary constants κ > 0

ϕ
(
Θ−1(κ δ)

)
≤ max(1, κ) ϕ

(
Θ−1(δ)

)
(9.8)

for sufficiently small δ > 0 (see [24] and [14, Proof of Theorem 3]). Estimates (9.7) and
(9.8) lead us to (9.5) and (9.6). 2

Note that for c1 = R and c2 = C the constant c in (9.6) is c = 3
2 .

A result analogous to Theorem 9.1 can be established with C = 1 if assumption A4
and the concavity of ϕ2 is substituted either by assumption A3 and the operator mono-
tonicity of a continuation of ϕ2 or by assumption A3 and the requirement that G and A∗A
commute.

Example 9.2 We consider the Hölder rate situation with ϕ(t) = tµ discussed in Exam-
ples 3.5 and 4.2 in the case of noisy data. The a priori parameter choice (9.4) now amounts
to

α(δ) = K̂ δ
1

2µ+1 with some constant K̂ <∞ ,

and the order optimal convergence rate of Theorem 9.1 becomes

‖xδ
α(δ) − x†‖ = O

(
δ

2µ
1+2µ

)
as δ → 0 . (9.9)

However, we have to restrict the value of µ to the interval 0 < µ ≤ 1/2 in Theorem 9.1
in order to obtain concave functions ϕ2. Consequently, the best rate for noisy data that
can be derived from Theorem 9.1 is O(

√
δ) for µ = 1/2. This specific saturation melts in

the case of commuting operators G and A∗A, where O(δ2/3) for µ = 1 is the best rate as
a consequence of Theorem 8.2 whenever one of the asssumptions A3 to A5 holds with the
index function %(t) = t

1
2µ and 1/2 < µ ≤ 1.

In the non-commuting case, this specific saturation can be prevented if the stabilization
term α ‖x‖2 in the Tikhonov functional (1.2) is replaced by the stronger stabilization term
α ‖G−1x‖2 (or more generally, by α ‖G−sx‖2 with s ≥ 1), see [6], [25], [31] for the Hölder
case and [24] for the general case. The remaining restriction comes from the qualification
of the method of Tikhonov regularization which tells us that the best possible rate for
‖G−1(xδ

α − x†)‖ is O(δ2/3). This second type of saturation can be prevented by using
regularization methods with higher qualification. 2
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Example 9.3 The logarithmic rates (4.2) of Example 4.3 for 0 < p ≤ 1/2, which were
also briefly mentioned in Sections 5 and 6 for the more general case p > 0, can be combined
with Theorem 9.1 to lead to the order optimal convergence rate

‖xδ
α(δ) − x†‖ = O

(
(− ln δ)−p) as δ → 0 (9.10)

for the a priori parameter choice (9.4) and even for the more simple choice α ∼ δθ with
exponents 0 < θ < 2 (see [21, p. 208], [14, Section 5]). This convergence rate seems to
be rather slow, but for severely (exponentially) ill-posed problems (1.1) (see [15] and the
references therein) source conditions x† = (A∗A)µ leading to Hölder rates are not realistic,
whereas assumptions A3 to A5 with exponential functions %(t) = K1 exp

(
−K2 t

−1/p
)

with some positive constants K1 and K2 are well-interpretable in a couple of situations.
2

10 Applications

Example 10.1 (Heat conduction backward in time) Let us illustrate our general
theory by the following heat conduction problem backward in time, which has been stud-
ied, e.g., in [1]. This inverse problem consists in identifying a two-dimensional tempera-
ture profile x† = u(κ1, κ2, 0) ∈ L2(R2) at time t = 0 from given noisy temperature data
yδ ∈ L2(R2) which correspond with exact data y = u(κ1, κ2, 1) at time t = 1 such that
‖yδ− y‖L2(R2) ≤ δ. The associated linear forward operator A maps in L2(R2) and assigns
the function u(κ1, κ2, 1) to the function u(κ1, κ2, 0), where u satisfies the heat equation

ut −∆u = 0 for (κ1, κ2, t) ∈ R2 × (0,∞) .

Let us transform the operator equation (1.1) with X = Y = L2(R2) into the frequency
domain by means of the unitary Fourier transform. Let x̂(ξ1, ξ2) = F (x(κ1, κ2)) be the
Fourier transform of x, that is,

x̂ = F(x) =
1
2π

∫
R2
x(κ1, κ2)e−i(κ1ξ1+κ2ξ2)dκ1dκ2 .

It results that in the frequency domain we have the equivalent operator equation Â x̂ = ŷ
of the form

e−(ξ2
1+ξ2

2)x̂ = ŷ . (10.1)

From this representation we realize that the operator Â is a multiplication operator with
spectrum in the segment [0, 1] and that hence both Â and A = F−1ÂF are non-compact
bounded linear strictly positive selfadjoint injective operators with non-closed ranges and
with ‖A‖ = ‖Â‖ = 1. Consequently, the operator equation (1.1) of this example is ill-posed
of type I.

In order to formulate our solution smoothness (1.5) we introduce the classical Sobolev
scale (Hr)r∈[0,∞) by H0 = X = L2(R2) and Hr = {x(κ1, κ2) ∈ H0 : ‖x‖r <∞} where

‖x‖r =
(∫

R2
(1 + ξ21 + ξ22)

r |x̂(ξ1, ξ2)|2dξ1dξ2
)1/2

.
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We pick some p > 0, define the operator Ĝ by

Ĝ v̂(ξ1, ξ2) = (1 + ξ21 + ξ22)
−p/2v̂(ξ1, ξ2) , (10.2)

and put G = F−1ĜF . With this G, condition (1.5) is equivalent to the condition x̂† = Ĝv̂
with ‖v̂‖ = ‖v‖ ≤ R and thus to the condition x† ∈ Hp and ‖x†‖p ≤ R, which is clearly a
smoothness condition. Note that the operator Ĝ is a multiplication operator with spectrum
in the segment [0, 1] and that both G and Ĝ are non-compact bounded linear strictly
positive selfadjoint injective operators with non-closed ranges and with ‖G‖ = ‖Ĝ‖ = 1.

Let us consider the method of Tikhonov regularization in the frequency domain.
By (9.1), the regularized solution x̂δ

α is given by

x̂δ
α(ξ1, ξ2) =

e−(ξ2
1+ξ2

2) ŷδ(ξ1, ξ2)
e−2(ξ2

1+ξ2
2) + α

.

Using the inverse Fourier transform we construct the regularized solution xδ
α of our back-

ward heat conduction problem according to xδ
α = F−1

(
x̂δ

α

)
. Now we are ready for the

illustration of our general theory.

Due to formulas (10.1) and (10.2) we see that assumption A1 is satisfied with the
function

ϕ(t) =
[
ln

e√
t

]−p/2

for 0 < t ≤ 1 and ϕ(0) = 0.

Thus ϕ maps [0, ||A||2] = [0, 1] into [0, 1]. Moreover, the operators Â∗Â and Ĝ and hence
A∗A and G are commuting operators. In order to apply Corollary 3.4 we have to check
conditions (a) to (e) of Proposition 3.3.

(a) From
(

t
ϕ(t)

)′
= 1

2

[
1− 1

2 ln t
]p/2−1

(2− p/2− ln t) we conclude that t
ϕ(t) is strictly

increasing on [0, e2−p/2]. Therefore, t
ϕ(t) is strictly increasing on [0, ‖A‖2] = [0, 1] for

p ∈ (0, 4].

(b) From ϕ′′(t) = − p
8t2

[
1− 1

2 ln t
]−p/2−2

(1 − p/2 − ln t) we conclude that ϕ(t) is

concave on [0, e1−p/2]. Thus, ϕ(t) is concave on [0, ‖A‖2] = [0, 1] for p ∈ (0, 2].
(c) ϕ is operator monotone on [0, 1] for p ∈ (0, 2] (see [20]).
(d) Due to part (a), t

ϕ(t) is increasing on (0, t̂ ] with t̂ = e2−p/2. We conclude that (3.2)

holds with k = 1 for p ∈ (0, 4] and k = ϕ(‖A‖2)/ϕ(t̂) = 1/ϕ
(
e2−p/2

)
= (p/4)p/2 for p > 4.

(e) By part (b), ϕ(t) is concave on (0, t̂ ] with t̂ = e1−p/2. Hence we conclude that (3.2)
is valid with k = 1 for p ∈ (0, 2] and k = ϕ(‖A‖2)/ϕ(t̂) = 1/ϕ

(
e1−p/2

)
= [(2 + p)/4]p/2

for p > 2.

Consequently, we may have recourse to Corollary 3.4 for arbitrary p ∈ (0,∞). Com-
bining Proposition 3.2 and Proposition 3.3(d) we get the error estimate

‖x̂α − x̂†‖ ≤ kRϕ(α) = kR

[
ln

e√
α

]−p/2

with k = 1 for p ∈ (0, 4] and k = (p/4)p/2 for p ≥ 4. For the a priori parameter choice

δ√
α

= c1

[
ln

e√
α

]−p/2

(10.3)
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we obtain for the total error ‖xδ
α − x†‖ = ‖x̂δ

α − x̂†‖ the order optimal error estimate

‖xδ
α − x†‖ ≤ cR

[
ln
eR

δ

]−p/2

(1 + o(1)) as δ → 0 (10.4)

whenever ‖x†‖p ≤ R with p ∈ (0,∞).

By Corollary 2.3(a) we know that our example with assumption A1 also satisfies as-
sumption A3 with

%(t) =
√
ϕ−1(t) = exp

(
1− t−2/p

)
for 0 < t ≤ 1 and %(0) = 0 ,

so that % : [0, ||G||] = [0, 1] → [0, 1]. However, the results of Sections 4 and 5 impose

constraints. Namely, ϕ2(t) = 2p
[
ln
(

e2

t

)]−p
with ϕ2(0) = 0 is only operator monotone if

0 < p ≤ 1, so that Proposition 4.1(a) is applicable only for that interval of the exponent
p. In the same manner, Theorem 5.1 applies only if ϕ2 is concave on [0, %2(‖G‖)] = [0, 1].
Now ϕ2 is concave just on the interval [0, e1−p]. This interval is a subset of [0, 1] if and
only if 0 < p ≤ 1. 2

Example 10.2 (Interplay of compact and non-compact operators) Here we consi-
der the linear operator equation (1.1) in the case where X = Y = L2(0, 1) and A is a
multiplication operator, (Ax)(t) = m(t)x(t). We suppose that m ∈ L∞(0, 1) and that
m(t) > 0 for almost all t ∈ (0, 1). If essinft∈[0,1]m(t) = 0, then A has non-closed range.
Clearly, A is a non-compact strictly positive selfadjoint bounded linear operator.

In [11] it was proved (even for the more general case of increasing rearrangements of
m) that a single essential zero of m at t = 0 with a limited decay rate for m(t) → 0 as
t→ 0 of the form

m(t) ≥ c tκ a.e. on [0, 1] with an exponent κ > 1/4 (10.5)

and a constant c > 0 provides an order optimal estimate

‖xα − x†‖ = O
(
α

1
4κ

)
as α→ 0 (10.6)

for the Tikhonov regularization whenever

x† ∈ L∞(0, 1) . (10.7)

Hence, the order optimal convergence rate does not depend on the smoothing properties of
the linear operator A as in the case of compact Fredholm integral operators, but basically
on the behavior of the multiplier function m(t) in a neighborhood of zero (see also [10]).

Now we consider the family of multiplier functions

m(t) = tκ for κ > 1/4 (10.8)

and a Hilbert scale (Hr)r∈R such that Hr = W r,2(0, 1) for all 0 ≤ r ≤ n and some fixed
but arbitrarily large integer n. This means that the scale elements Hr and the usual
Hilbertian Sobolev spaces W r,2(0, 1) of order r on the unit interval coincide for r ∈ [0, n].
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In [27] it is shown that a Hilbert scale with this property exists. Due to the compactness of
the embedding operator from W 1,2(0, 1) into L2(0, 1) the selfadjoint and strictly positive
linear operator G with R(Gr) = Hr for all 0 ≤ r ≤ n that generates the Hilbert scale is
compact. With this G, condition (1.5) takes the form x† ∈W 1,2(0, 1).

Certainly, our assumption A1 can never be satisfied if one of the operators A∗A and
G is compact and the other is non-compact. Hence assumption A1 cannot hold. So let
us analyze whether assumptions A5 and A2 are satisfied for the operators A generated
by the multipliers (10.8). In this context, we set µ0 = 1/(2n) and consider two cases: (a)
1/4 < κ < 1/2 and (b) κ ≥ 1/2.

Case (a). If x(t) is a function in L∞(0, 1) and 0 < κ < 1/2, then x(t)/tκ is a function in
L2(0, 1). This implies that

L∞(0, 1) ⊂ R(|A|) .

We have R(G
1
2µ ) = W

1
2µ

,2(0, 1) ⊂ L∞(0, 1) for all 0 < µ0 ≤ µ < 1 and also R(G
1
2µ ) ⊂

L∞(0, 1) for all 0 < µ < µ0, since the Sobolev spaces of order r > 1/2 contain only
continuous functions. So we arrive at assumption A5 in the form

R(%(G)) ⊂ R(|A|) for %(t) = t
1
2µ and 0 < µ < 1 . (10.9)

Theorem 6.1 is applicable if 0 < µ < 1/2 and Theorem 7.1 can be used for 0 < µ ≤ 1/2.
They deliver the convergence rate O(αµ), which is not better than O(

√
α). From (3.4)

and (10.9) we obtain assumption A2 in the form

R(G) ⊂ R(ϕ(A∗A)) with ϕ(t) = tµ , (10.10)

but again only for 0 < µ ≤ 1/2. Thus, from Example 3.5 we get once more at most
the convergence rate O(

√
α). For 1/2 < µ < 1 we cannot say anything. If, however,

x† ∈ R(G) = W 1,2(0, 1), then (10.7) holds and hence we have (10.6), which is a higher
convergence rate, since 1

4κ > 1
2 . Thus, there is a gap between the optimal convergence

rate and the convergence rate obtained from our assumptions A5.
On the other hand, we remark that assumption A2 in the form (10.10) is valid if

0 < µ < 1
4κ , since if x ∈ L∞(0, 1) and 0 < 4µκ < 1, then x(t)/t2µκ ∈ L2(0, 1). So

the validity of our assumption A2 in the form (10.10) provides us with the convergence
rates O(α

1
4κ
−ε) with arbitrarily small ε > 0, which makes the gap to the optimal order

arbitrarily small.
Since constant functions are in R(G), but const/t2µκ is not a function in L2(0, 1) for

µ ≥ 1
4κ , we have

R(G) 6⊂ R(|A|2µ) for µ ≥ 1
4κ

.

Hence, for ϕ(t) = tµ with µ from the interval [ 1
4κ , 1) and the corresponding functions

%(t) = t
1
2µ assumption A5 does not imply assumption A2. This, however, would be the

case for commuting operators because of Theorem 8.2. Consequently, the operators A∗A
and G cannot commute here.

Case (b). The constant functions are in R(G
1
2µ ) for 0 < µ0 ≤ µ ≤ 1, but if κ ≥ 1/2,

then const/tκ is not a function in L2(0, 1). This implies that

R(%(G)) 6⊂ R(|A|) for %(t) = t
1
2µ and 0 < µ0 ≤ µ ≤ 1 ,
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and hence assumption A5 cannot hold for power functions % of this family. On the other
hand, in case (b) assumption A2 in the form (10.10) just holds for 0 < µ < 1

4κ < 1
2 . As

in case (a), (10.10) allows us to derive the convergence rates O(α
1
4κ
−ε). These rates are

almost optimal, since (10.6) is optimal under assumptions (10.5) and (10.7) and since we
have the converse results mentioned in Example 3.5.

Note that the relative severity of ill-posedness of (1.1) with respect to the operator
G grows in this example when κ grows. A consequence of this fact is the violation of
assumption A5 for power functions % in case (b) in contrast to case (a). If the operators
G defining the solution smoothness and A∗A defining the degree of ill-posedness of the
problem (1.1) are sufficiently different in character, then assumption A5 is rarely satisfied.
Regardless of this fact convergence rates of Tikhonov regularization may occur accidentally
if the specific x† fits the smoothing property of A as in this case. 2
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[20] Mathé, P. and Pereverzev, S. V. (2002): Moduli of continuity for operator valued
functions, Numer. Funct. Anal. Optim. 23, 623–631.
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