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1 Introduction

Let X be a real topological vector space, K C X be a nonempty closed
and convex set. Assume that f : K X K — R is a function satisfying
f(z,z) =0, Vz € K. The equilibrium problem is to find z € K such that

(EP)  f(z,y) 20, Vy € K.

Since (EP) includes as special cases optimization problems, complementarity
problems and variational inequalities (see [6]), some results for these prob-
lems have been extended to (EP) by several authors. In particular, the gap
function approaches for solving variational inequalities (see for instance [2]
and [16]) have been investigated for equilibrium problems in [5] and [14].

A function v : X — R = R U {00} is said to be a gap function for (EP)
[14, Defintion 2.1] if it satisfies the properties

(i) v(y) >0, Vy € K;
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(ii) y(z) =0 and r € K if and only if z is a solution for (EP).

Recently, in [1] the construction of gap functions for finite-dimensional vari-
ational inequalities has been related to the conjugate duality of an optimiza-
tion problem. On the other hand, in [7] very weak sufficient conditions for
Fenchel duality regarding convex optimization problems have been estab-
lished in infinite dimensional spaces. The combination of both results allow
us to propose new gap functions for (EP) based on Fenchel duality.

This paper is organized as follows. In section 2 we give some definitions
and introduce the weak sufficient condition for the strong duality related to
Fenchel duality. In the next section we propose some new functions by using
Fenchel duality and we show that under certain assumptions they are gap
functions for (EP). Section 4 summarizes early investigated gap functions for
(EP). At the end the proposed approach is applied to variational inequalities
in a real Banach space.

2 Mathematical preliminaries

Let X be a real locally convex space and X* be its topological dual, the set
of all continuous linear functionals over X. By (z*,z) we denote the value
of ¥ € X* at x € X. For the nonempty set C C X, the indicator function
dc : X = RU {+00} is defined by

bc(z) = {

while the support function is o¢(z*) = sup(z*, z). Considering now a function
zeC

0, ifzeC,
400, otherwise,

f X — RU{+o00}, we denote by dom f = {a: € X| f(z) < +oo} its
effective domain and by
epi f = {(CL‘,T‘) €dom f xR| f(z) < r}

its epigraph. A function f : X — RU {400} is called proper if dom f # @.
The (Fenchel-Moreau) conjugate function of f is f* : X* — R U {400}
defined by

f*(p) = sup[(p, =) — f(z)].

z€X

Definition 2.1 Let the functions f; : X — RU{+oo}, i = 1,...,m, be given.
The function f,00.--0Of,, : X - RU {£oo} defined by

AD- - Of(z) = inf{if,-(a:i)[ i_n:x - x}
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is called the infimal convolution function of f1, ..., f,. The infimal convolution
Sill---Ofy, is called to be exact at z € X if there exist some z; € X, 1=

m
1,...,m, such that > z; = z and
i=1

A0 Ofn(z) = filz) + ...+ Sm(Tm).

Furthermore, we say that f,0-.-[f,, is exact if it is exact at every z € X.

Let f: X - RU {400} and g : X — R U {+o0} be proper, convex and
lower semicontinuous functions such that dom f Ndom g # @. We consider
the following optimization problem

P it {1@) + ()}

zeX

The Fenchel dual problem to (P) is

(D) sup { — f*(-p) - g*(p)}-

pEX*

In [7] a new weaker regularity condition has been introduced in a more gen-
eral case in order to guarantee the existence of strong duality between a
convex optimization problem and its Fenchel dual, namely that the optimal
objective values of the primal and the dual are equal and the dual has an
optimal solution. This regularity condition for (P) can be written as

(FRC)  f*Og* is lower semicontinuous and

epi (/°0g7) 1 ({0} x R) = (epi(s*) +epi(s")) N ({0} x R),
or, equivalently,
(FRC)  f*Og* is a lower semicontinuous function and.exact at 0.

Under this assumption, the following theorem states the existence of strong
duality between (P) and (D).

Proposition 2.1 Let (FRC) be fulfilled. Then v(P) = v(D) and (D) has
an optimal solution.

Remark that considering the perturbation function ® : X x X — RU {400}
defined by ®(z,z) = f(z) + g(z + z), one can obtain the Fenchel dual (D).
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Indeed, the function @ fulfills ®(z,0) = f(z) + g(z), Yz € X and choosing
(D) as being '

(D) sup { - 2(0,p)}

peEX™

(cf. [10]), this problem becomes actually the well-known Fenchel dual prob-
lem.

3 Gap functions based on Fenchel duality

In this section we consider the construction of gap functions for (EP) by
using a similar approach that has been applied to gap functions for finite-
dimensional variational inequalities (see [1]). Here, the Fenchel duality will
play an important role. We assume that X is a real locally convex space. Let
z € K be given. Then (EP) can be reduced to the optimization problem

EP, :
(P57 ) ylglf(f (z,y),

or, equivalently,

EP, :
(P*";z) ;g)f( f(z,y),

where f(,y), i (5,y) € K
~ _ z,y), if (z,y) € x K;
flz,y) = { +00, otherwise

is the extension of f on X x X. We mention that * € K is a solution of (F P)
if and only if it is a solution of (PZF;z*). Now let us reformulate (PZ%;1x)
using the indicator function dx(y) as

(PPPiz) o { Flw,y) + ox(y) }.
yeX
Then we can write the Fenchel dual to (PEF; 1) as being

(DPPz)  sup { —supl(p,y) — F(o,v)] - dx(-p) }

peX* yex

= sup { —supl(p,v) - f(@,)] ~ 6x(~p)}
peEX* yeK

= sup { - fixt@.p) = 350},

where fr(z,p) := sup[(p,y) — f(z,v)] is the partial conjugate of f with
yeK

respect to the variable y and fixed z. Further, by v(P) we denote the opti-
mal objective value of the optimization problem (P). Let us introduce the
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following function for any z € K

H (@) = ~0(D"52) = —sup { ~ f(e,0) ~ 55c(~p)}
pEX*
= plerg {f;‘,K(I,p) + UK(—p)}-

For (PP”; ), the regularity condition (FRC) can be written as follows

(FRCFF; 1) i (T, ) 0ok is a lower semicontinuous function and exact
at 0.

Theorem 3.1 Assume that Vx € K the regularity condition (FRCEF;t)
is fulfilled. Let for each x € K, y — f(z,y) be convezx and lower semicon-
tinuous. Then vg¥ is a gap function for (EP).

Proof:
(i) By weak duality it holds
v(DFF; 1) < w(PPP;z) < 0.
Namely, one has vEP(z) = —v(DFF;z) > 0, Vz € K.

(ii) If 7 is a solution of (EP), then v(PEP;Z) = 0. On the other hand,
by Proposition 2.1 the strong duality between (PF?;z) and (DFP; 1)
holds. In other words

v(DPP; z) = v(PPP;z) = 0.
That means y£”(z) = 0. Conversely, let y2P(z) = 0. Then
0 =v(D"";z) < v(PPF;z) < 0.
Therefore Z is a solution of (EP). | O

It is well known that (EP) is closely related to the so-called dual equilibrium
problem (cf. [12]), find x € K such that

or, equivalently,

(DEP) ~ f(y,z) >0, Vy € K.
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By K®” and KPPP we denote the solution sets of problems (EP) and
(DEP), respectively. In order to suggest another gap function for (EP)
we need some definitions and results.

Definition 3.1 [12, Definition 2.1}
The bifunction f: K x K — R is said to be

(i) monotone if, for each pair of points z,y € K, we have
f(z,y) + fly,z) <0;
(ii) pseudomonotone if, for each pair of points z,y € K, we have
f(z,y) > 0 implies f(y,z) < 0.

Definition 3.2 [12, Definition 2.2]
A function ¢ : K — R is said to be

(i) quasiconvex if, for each pair of points z,y € K and for all a € [0, 1],
we have

elaw + (1= a)y) < max {p(@), 0(v) };

(ii) explicitly quasiconvex if it is quasiconvex and for each pair of points
z,y € K such that ¢(z) # ¢(y) and for all a € (0, 1), we have

plaz + (1 - a)y) < max{¢(a),¢(v) }.

A function ¢ : K — R is said to be (explicitly) quasiconcave if —¢p is (ex-
plicitly) quasiconvex.

Definition 3.3 [12, Definition 2.3]
A function ¢ : K — R is said to be u-hemicontinuous if, for all z,y € K and
a € [0, 1], the function 7(a) = p(az+(1—a)y) is upper semicontinuous at 0.

Proposition 3.1 [12, Proposition 2.1]

(i) If f is pseudomonotone, then KEF C KDPEP,

(ii) If f(-,y) is u-hemicontinuous, Vy € K and f(z,)is explicitly quasicon-
vex Vz € K, then KPEP C KFP,



By using (DEP), in the same way as before, we introduce a new gap function
for (EP). Let z € K be a solution of (DEP). This is equivalent to that z is
a solution to the optimization problem

(PPPF; 1) inf[~f(y, )],

which turns out to be

o~

DEP., .
(PPE% 1) ylg)f(f (z,y)
with the extended function

A _ _f(yam)a lf(m,y)EKXK,
f(zy) = { 00, otherwise.

The corresponding Fenchel dual problem for (PPEF; 1) is

(DP"Fi2)  sup { = supl(p,y) ~ flo,v)] - S(-p) }

peX* yeX
= sup { —sup[(p,y) + f(y, )] — 5%(—17)},
pEX* yeK
if we again rewrite (PP"”;x) using dx similar as done above for (PEF;z).

Let us define the function

W) = —u(DPa)
= —swp —sg}g[(p,ny(y,x)] —5}?(‘1’)}
= it {apllp.0) + 10,9 + ox(p) ).

Proposition 3.2 Let f : K x K — R be a monotone bifunction. Then it
holds

vREF (2) < vEP(z), Vz € K.
Proof: By the monotonicity of f, we have

or, equivalently, f(y,z) < —f(z,y), Vz,y € K. Let p € X* be fixed. Adding
{p,y) and taking the supremum in both sides over all y € K yields

5218[@’ y) + fly,z)] < 22}1;[(1), y) — f(z,y)).
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After adding ox(—p) and taking the infimum in both sides over p € X* , we
conclude that yREF (z) < vEF(z), Vz € K. O

Theorem 3.2 Let the assumptions of Theorem 3.1 and Proposition 3.1(i1)

be fulfilled. Assume that f : K x K — R is a monotone bifunction. Then

YREP is a gap function for (EP).

Proof:
(i) By weak duality it holds
~REP(1) = —v(DPFF; ) > —u(PPEP;z) > 0, Vz € K.
(ii) Let Z be a solution of (EP.) By Theorem 3.1, Z is solution of (EP) if
and only if vEP(Z) = 0. In view of (i) and Proposition 3.2, we get
0 <vp"P(z) <vp7(z) = 0.
Whence v2FF(z) = 0. Let now vRFF(z) = 0. By weak duality it holds
0 = v(DPEP; 5) < v(PPEP;z) < 0.

Consequently v(PPFF;z) = 0. That means Z € KP#F. Hence, accord-
ing to Proposition 3.1(ii), Z is a solution of (EP). O

4 Regularized gap functions

The current section purposes to summarize early investigated gap functions
for (EP) (cf. [5] and [14]) in the same way as in Section 3. Throughout this
section we assume that X is a real reflexive Banach spaceand h: K xK — R
is a bifunction such that for each z € K, y — h(z,y) is convex, differentiable
and

(a) h(z,y) >0, Vz,y € K;
(b) h(z,z) =0, Vz € K;

(c) hy(x,z) =0, Yz € K, where h;, means the derivative of h in the sense
of Gateaux (cf. Definition 4.1) with respect to the second variable.

Definition 4.1 [13] A functional g : X — R is said to be differentiable (in
the sense of Gateaux) at the point z € X if there exists ¢'(x) € X* such that

gle+th) — (@
t—0 t

=(d'(z), h)



is finite.

Proposition 4.1 [13, cf. Proposition 2.1]
Let f(z,y) be a convez, differentiable bifunction with respect to y and h(z,y)
be a function fulfilling the conditions (a) — (¢). Then T is a solution of (EP)
if and only if it is a solution of the auziliary equilibrium problem, find z € K
such that

(EPy)  f(Z,y)+h(Z,y) 20, Vy e K.

Proof: Since in [13] has been used the alternative formulation, namely the
variables were exchanged in (EP), let us show how the proof looks at our
case. Indeed, it is clear that Z is a solution of (£ P), then it is also a solution of
(EP,). Let Z be a solution of (EP). Then Z is a solution of the optimization
problem

inf [f(Z,y) + h(Z, y)]. (4.1)

yeK

Since K is convex, Z is a solution of (4.1) if and only if
(fy(2,2) + h(2,2),y — 2) 20, VY € K,
or, equivalently,
<f;(3_7,i'),y - j) 2 0, vy € K.
In view of the convexity of f(Z,-) we obtain
f(i'ay) - f(fai') 2> <f;(jaj)ay - f) > 0) Vy € K.
That means f(z,y) >0, Vy € K. O
Corollary 4.1 Let f(z,y) be a concave, differentiable bifunction with re-

spect to x. Then T is a solution of (DEP) if and only if it is a solution of
the dual auxiliary equilibrium problem, find T € K such that

(DEP,) ~ f(y,7) + h(Z,y) > 0, Yy € K.

Proof: Since —f(z,y) is convex and differentiable with respect to z, choos-
ing — f(y, z) instead of f(x,y), we can apply Proposition 4.1. O

In [5], the authors proposed the following gap function for (EP)

WE(x) == 325[_f (z,y) — Mz, y)],

while instead of (c¢) was taken the condition
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(@) h(z, (1= Na +Xy) = o(A), A€ [0,1].

Gap functions of such type have been investigated also for finite-dimensional
variational inequalities (see, for instance [2],[8] and [16]), whose important
property under certain assumptions is the differentiability. Recently, in a
finite-dimensional space, the differentiability of such type of a gap function
for (EP) has been considered in [14].

Theorem 4.1 Let the assumptions of Proposition 4.1 be fulfilled. Then vFF
is a gap function for (EP).

Proof:

(1) ’YEP(‘T) = 22}8[_]((337y) - h(:l?,y)] 2> —f(:L‘,ZL') - h(.’E,SL’) = 0.

(ii) If T is a solution of (EP), then by (a) we have
f(@,y) +hZ,y) 20, Vy € K.
Whence vZF(z) = sup[—f(Z,y) — h(Z,y)] < 0. Therefore, by (), we

yeK
obtain vZF(z) = 0. Let now v£¥(z) = 0. Consequently

f(@,y) +Mz,y) 20, Yy € K.
By Proposition 4.1, this is true if and only if f(z,y) >0, Vy € K. O

On the other hand, vEF is closely related to another function vP¥% : K —
R U {+o00} defined by (see [5])

WEP (z) = ngg[f(y,w) — h(z,y)].

Proposition 4.2 Let f : K x K — R be a monotone bifunction. Then it
holds

wE(x) < wF(z), Ve e K. (4.2)
Proof: By the monotonicity of f, we have
f(z,y) + fly,2) <0, Vz,y € K,

or, equivalently,
fly,z) < —f(z,y), Vz,y € K.

After adding —h(z,y) and taking the infimum in both sides over y € K, we
conclude that vPEP(z) < AP (z), Vz € K. O
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Theorem 4.2 Let f : K x K — R, (z,y) — f(z,y) be concave with re-
spect to x and conver with respect to y. Assume that f is a monotone dif-
ferentiable bifunction and the assumptions of Proposition 3.1(ii) are fulfilled.

Then vPEF is a gap function for (EP).
Proof:
(i) " (z) = sup[f(y,2) — h(z,9)] > f(z,z) — h(z,z) = 0.

yeK

(ii) By Theorem 4.1 Z is a solution of (EP) if and only if 4F¥(z) = 0.
According to (4.2) it holds

0 < yWPP(z) <wF(z)=0.

In other words vPEF(z) = 0. Let now yPEP(z) = 0. Then

—f(y,%) + h(Z,y) >0, Vy € K.

Taking into account Corollary 4.1 and Proposition 3.1(ii) we conclude
that f(Z,y) >0, Vy € K. O

5 Applications to variational inequalities

In this section we apply the approach proposed in Section 3 to variational
inequalities in a real Banach space. Let us notice that the approach based
on the conjugate duality including Fenchel one, has been first considered for
finite-dimensional variational inequalities (cf. [1]). We assume that X is a
real Banach space. Taking f(z,y) := (F(z),y — z), (EP) reduces to the
variational inequality problem of finding z € K such that

V1)  (F(z),y—z) =20, VY K,

where F' : K — X™ is a given mapping and K C X is a closed and convex
set. For z € K, (VI) can be rewritten as the optimization problem

(P"2)  inf {(Fl@),y—2)+ k)],

in the sense that z is a solution of (VI) if and only if it is a solution of
(PVIL; z). In view of vEF, we introduce the function based on Fenchel duality
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for (VI) by

i(z) = 0, 3161)13[(19, y) — (F(z),y — )] + aK(—p)}
=g {supto = F@),0) + o)} + (F(2), )

From
{ 0, if p= F(x),

sup(p — F(m)a?ﬁ = +00, otherwise,

yeX
follows that

v (z) = inf sup(-p,y) + (F(z),z) = sup(F(z),z — y),
p=F(x) yeK yeK

which turns out to be the so-called Auslender’s gap function (see [1] and [3]).

The problem (VI) can be associated to the following variational inequal-
ity introduced by Minty, find z € K such that

(MVI) (F(y)y—=) >0, Vy e K.

Recall that setting f(y,x) := (F(y),z —y) in (DEP) we can obtain (MVI).
As done in section 3, before we introduce another gap function for (VI), let
us consider some definitions and assertions.

Definition 5.1 [11, 15] A mapping F : K — X* is said to be
(i) monotone if, for each pair of points z,y € K, we have

(F(y) = F(z),y —z) > 0;

(ii) pseudo-monotone if, for each pair of points z,y € K, we have

(F(z),y —z) > 0 implies (F(y),y — ) > 0;

(iii) continuous on finite-dimensional subspaces if for any finite-dimensional
subspace M of X with K N M # & the restricted mapping F : K N
M — X* is continuous from the norm topology of K N M to the weak*
topology of X*.

Proposition 5.1 [15, Lemma 3.1] Let F : K — X* be a pseudo-monotone
mapping which is continuous on finite-dimensional subspaces. Then xz € K
is a solution of (VI) if and only if it is a solution of (MVI).
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As mentioned before, for given z € K, (MVI) is equivalent to the opti-
mization problem

MVI. . 7
(P ,.’L') ;g)f(fF(x’y)a
where

7 [ (F(y),y—1=), if (z,y) € K x K;
Je(@y) = { +00, otherwise.

Setting f(y,z) := (F(y),z — y) in vyRF?, we have

V(@) = inf { supl(p,9) — (P),y =) + o(p) .

We remark that the monotonicity (pseudo-monotonicity) of F in the sense of
Definition 5.1 implies that monotonicity (pseudo-monotonicity) of f(z,y) =
(F(x),y — ) in the sense of Definition 3.1. Then by Proposition 3.2 we get
the following assertion.

Proposition 5.2 Let F' : K — X* be a monotone mapping. Then it holds

7V (=) < v5i(z), VT € K.

Theorem 5.1 Let F' : K — X* be a monotone mapping which is contin-

uous on finite-dimensional subspaces. Then YMVT is a gap function for (VI).

Proof:

(i) YREF(z) > 0 implies that Y¥VI(x) > 0, Vz € K, as this is a special
case.

(ii) By definition of a gap function, Z € K is a solution of (V1) if and only
if v%!(z) = 0. Taking into account (i) and Proposition 5.2, one has

0 <"(z) < p'(2) = 0.
In other words, yMV!(z) = 0. Let now v¥V!(Z) = 0. Then by weak
duality, we can easily see that Z € K is a solution of (MVI). This
follows using an analogous argumentation as in the proof of Theorem
3.2. Whence, according to Proposition 5.1, Z solves (VI). 0
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