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Abstract

We address the partial realization problem for linear descriptor systems. A general
solution to this problem using the Markov parameters of the system defined via its Laurent
series is provided. For proper descriptor systems, we also discuss a numerically feasible
algorithm for computing a partial minimal realization based on the unsymmetric Lanczos
process. Applications to model reduction for two examples from computational fluid
dynamics and mechanical systems with holonomic constraints are also given.
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1 Introduction

In recent years there has been a lot of interest in model reduction methods based on Krylov
subspace methods, see, e.g., [Ant05, ASG01, Bai02, Fre00, Fre03]. One of the reasons here
is that many large-scale models are described by linear differential equations with sparse
coefficient matrices. Such systems arise, for example, from semidiscretization of partial differ-
ential equations by the finite-element or finite-difference methods or represent RCL circuits.
Krylov subspace methods can often handle such problems very efficiently. The model re-
duction methods based on Krylov subspaces can be considered as methods of approximation
at certain frequencies. If the frequencies of interest are finite the approximation problem is
called moment-matching problem. In case of approximation at infinity one speaks of partial

realization. The term partial realization originates from identifying linear systems from given
input-output data, see, e.g., [GL83, Kal79] for the standard theory and [FH00, HMH01] for
extensions involving descriptor systems. For model reduction purposes, partial realization is
usually used in a somewhat different (though mathematically related) context.

∗Supported by Deutsche Forschungsgemeinschaft, Research Grants BU 687/12-1,2.
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In order to formulate the partial realization problem considered here more precisely, con-
sider a descriptor system

E ẋ(t) = Ax(t) + B u(t),
y(t) = C x(t),

(1)

where x(t) ∈ R
n represents the descriptor variables, u(t) ∈ R

m, y(t) ∈ R
p denote inputs

and outputs, respectively, of the system, and E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n. We

assume that the pencil sE − A is regular, i.e., det(sE − A) 6≡ 0. Here, we will focus on
the single-input, single-output case, i.e., m = p = 1. The system (1) describes the map
u 7→ y between input and output in time-domain. In frequency-domain this map is given
by y(s) = C(sE − A)−1Bu(s), where u, y are the Laplace transforms of the input and the
output, respectively. The rational function H(s) = C(sE−A)−1B is called a transfer function
of the system (1). The Laurent series of H at infinity is given by

H(s) = hνsν + · · · + h1s + h0 + h−1s
−1 + h−2s

−2 + . . . ,

see [Dai89]. The coefficients hν , . . . , h0, h−1, h−2, . . . are called Markov parameters of the
system (1). If ν = 0, then H is called proper. The minimal partial realization problem can
be stated as follows: For a given system (1) find a system

Er ẋr(t) = Ar xr(t) + Br u(t),
yr(t) = Cr xr(t),

(2)

of order r < n that matches the first q = q(r) Markov parameters of the original system
(1). Here q(r) should be as large as possible. In Section 2 we show that it actually equals
q(r) = 2r + ν + 1.

The partial realization problem for standard systems with E = In is treated in depth in
the seminal paper [GL83]. For descriptor systems, it has been solved only for the very special
case of descriptor systems with nonsingular matrix E, see [ASG01, Fre00, Gri97]. The case
of a singular matrix E is considered to be an open problem [MS05]. Here, we will present a
theoretical solution for the partial realization problem and we will also provide a numerical
algorithm for computing a partial realization of a given proper descriptor system.

The rest of this paper is organized as follows. In the next section we prove the main result
on partial realization for descriptor systems of arbitrary index. We also provide a numerically
feasible method based on the unsymmetric Lanczos process to compute partial realizations
for proper descriptor systems. In Section 3 we apply this algorithm to two examples and show
how it can be used for model reduction.

2 Main result

In case of a descriptor system with a nonsingular matrix E a partial realization can be
obtained as

ẋr(t) = W⊤
r AVr xr(t) + W⊤

r B u(t),
yr(t) = CVr xr(t),

(3)

where the columns of Vr,Wr ∈ R
n×r represent biorthogonal (that is, W⊤

r Vr = Ir) bases of
the two Krylov subspaces

Vr = span{E−1B,E−1AE−1B, . . . , (E−1A)r−1E−1B }
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and
Wr = span{C⊤, A⊤E−⊤C⊤, . . . , (A⊤E−⊤)r−1C⊤ }.

It is well-known (see [Fre00, Gri97, JK97]) that the reduced-order model (3) is a partial
realization of the system (1), matching the first 2r Markov parameters.

Next we show that even if the matrix E is singular a partial realization can be computed
analogously. First, we construct transformation matrices Wr and Vr in a way that is suitable
for theoretical purposes. After that we will show that they can be computed effectively using
certain Krylov subspaces.

It is well known, see, e.g., [Dai89], that every regular pencil sE − A can be transformed
to the Weierstraß canonical form. That is, there exist nonsingular matrices P,Q ∈ R

n×n such
that

PEQ =

[

Inf
0

0 N

]

, PAQ =

[

J 0
0 In∞

]

, (4)

where N is nilpotent. Introducing a new state variable [x⊤
1 (t) x⊤

2 (t)]⊤ = Q−1x(t) we can
re-write the system (1) as

ẋ1(t) = Jx1(t) + B1u(t), (5)

Nẋ2(t) = x2(t) + B2u(t), (6)

y(t) = C1x1(t) + C2x2(t). (7)

The systems [I, J,B1, C1] and [N, I,B2, C2] are called the slow and the fast subsystems of
(1), respectively, see [Dai89]. It is clear that their orders are nf and n∞, respectively.

Remark 2.1. The transfer functions of the slow and fast subsystems of (1) are equal to

Hslow(s) = h−1s
−1 + h−2s

−2 + . . . ,

Hfast(s) = hνsν + · · · + h1s + h0,

respectively. In fact, using the Weirstraß canonical form we obtain

H(s) = C(sE − A)−1B = CQ

[

(sI − J)−1 0
0 (sN − I)−1

]

PB

= C1(sI − J)−1B1 + C2(sN − I)−1B2.

Thus
Hslow(s) = C1(sI − J)−1B1

represents the strictly proper part of H and

Hfast(s) = C2(sN − I)−1B2

is the polynomial part of it. If H is proper, the transfer function of the fast subsystem is just
a constant h0.

The main idea of construction a partial realization for descriptor systems can be shortly
expressed as follows: split the system into fast and slow subsystems and then reduce the order
of the slow subsystem.

In the sequel we will need the following representation of the matrices P and Q in accor-
dance to the partitioning in (4): P = [P⊤

f P⊤
∞ ]⊤ and Q = [Qf Q∞ ], where P⊤

f , Qf ∈ R
n×nf .
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Before we formulate the main result we have to do some preparatory work. First, let us
introduce a projection-like matrix

P = Q

[

Inf
0

0 0

]

P. (8)

Second, using P we define matrices Or ∈ R
r×n and Rr ∈ R

n×r by

Or =















C

CPA

C(PA)2

...

C(PA)r−1















and Rr =
[

PB, PAPB, . . . , (PA)r−1PB
]

.

Further, define a Hankel matrix Hr ∈ R
r×r by

Hk = OrRr =













h−1 h−2 . . . h−r

h−2 . .
.

. .
. ...

... . .
.

. .
. ...

h−r . . . . . . h−2r+1













. (9)

We assume that all the principle minors of Hr are not equal zero. This implies existence of a
factorization Hr = LU , where L and U are nonsingular lower and upper triangular matrices,
respectively.

Using the above notation we the define matrices

Wr = [(L−1OrP)⊤ P⊤

∞], Vr = [RrU
−1 Q∞].

Consider a system [Er, Ar, Br, Cr] constructed as

[Er, Ar, Br, Cr] = [W⊤

r EVr,W
⊤

r AVr,W
⊤

r B,CVr]. (10)

Theorem 2.2. The system (10) has the same 2r+ν+1 Markov parameters hν , hν−1, . . . , h−2r

as the original system (1).

Proof. The Markov parameters h−1, h−2, h−3, . . . of the system [E,A,B,C] coincide with the
Markov parameters of the standard system [I, J, Pf B,CQf ]. This follows from the fact that
the transfer functions of these two systems have the same strictly proper part, see Remark
2.1. Introduce matrices W̃r, Ṽr ∈ R

nf×r such that [I, W̃⊤
r JṼr, W̃

⊤
r PfB,CQf Ṽr] is a minimal

partial realization of [I, J, Pf B,CQf ]. These matrices can be constructed as follows, see, e.g.,
[Gug03]. Build the observability matrix Õr and the controllability matrix R̃r of the system
[I, J, Pf B,CQf ] as

Õr =















CQf

CQfJ

CQfJ2

...

CQfJr−1















and R̃r =
[

PfB, JPfB, . . . , Jr−1PfB
]

.
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Their product H̃r = ÕrR̃r equals Hr = OrRr because [I, J, Pf B,CQf ] is just the slow
subsystem of [E,A,B,C]. Hence H̃r admits an LU -factorization H̃r = LU with the same
factors L and U as for Hr. Thus the matrices Ṽr and W̃r are given by Ṽr = R̃rU

−1 and
W̃⊤

r = L−1Õr. There are the following relations between the pairs Õr, R̃r and Or,Rr:

Rr = Q

[

R̃r

0

]

, OrQ = [Õr ∗],

where ∗ stands for some matrix of appropriate size. These relations are straightforward to
verify. Now, consider the system [Er, Ar, Br, Cr]. For the matrix

Er = W⊤

r EVr =

[

E11 E12

E21 E22

]

we have

E11 = L−1OrPERrU
−1 = L−1OrQ

[

Inf
0

0 0

]

PEQ

[

R̃r

0

]

U−1

= L−1OrQ

[

R̃r

0

]

U−1 = L−1ÕrR̃rU
−1 = I,

and E22 = P∞EQ∞ = N . The matrices E12 and E21 are zero matrices of appropriate sizes,
as can be readily verified. Analogously for the matrix

Ar = W⊤

r AVr =

[

A11 A12

A21 A22

]

we obtain

A11 = L−1OrPARrU
−1 = L−1OrQ

[

Inf
0

0 0

]

PAQ

[

R̃r

0

]

U−1

= L−1OrQ

[

JR̃r

0

]

U−1 = L−1ÕrJR̃rU
−1 = W̃⊤

r JṼr,

and A22 = P∞AQ∞ = I. The matrices A12 and A21 are also zero matrices of appro-
priate sizes. Thus the slow subsystem of [Er, Ar, Br, Cr] coincides with the system real-
ized by [I, W̃⊤

r AṼr, W̃
⊤
r PfB,CQf Ṽr]. But this system has the same 2r Markov parameters

h−1, h−2, . . . , h−2r as [E,A,B,C]. The fast subsystem of [Er, Ar, Br, Cr] is by construction
exactly the fast subsystem of the original system. The later guarantees the matching of the
first ν + 1 Markov parameters hν , . . . , h1, h0.

Remark 2.3. From now on we shall consider only proper systems. We make this assumption
because otherwise the minimal partial realization problem is numerically ill-posed. In fact,
suppose that the system (1) is improper. This implies that the Laurent series of its transfer
function has a nonconstant polynomial part

H(s) = hνsν + · · · + h1s + h0 + h−1s
−1 + h−2s

−2 + . . . ,

for some ν ≥ 1. Due to inevitable round-off errors it is impossible to match the first Markov
parameters perfectly. I.e., the transfer function of a reduced system would have the form

Hr(s) = (hν + δν)sν + · · · + (h1 + δ1)s + (h0 + δ0) + (h−1 + δ−1)s
−1 + . . . ,
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for small δν , δν−1, . . . , δ−q. Hence

Hr(s) − H(s) = δνs
ν + · · · + δ1s + δ0 + δ−1s

−1 + . . .

is of order O(sν) that is large for s ≫ 1 which makes a reasonable numerical approximation
of the transfer function at infinity impossible.

If the system (1) is proper, then the transfer function of its fast subsystem is just a constant
Hfast(s) ≡ h0. This allows us to construct the minimal partial realization of [E,A,B,C] as

ẋr(t) = W⊤
r AVr xr(t) + W⊤

r B u(t),
yr(t) = CVr xr(t) + h0u(t),

(11)

where W⊤
r = L−1OrP and Vr = RrU

−1. As for the first Markov parameter h0 it can be
computed as

h0 = C(sE − A)−1B − C(sI − PA)−1PB

= (h0 + h−1s
−1 + h−2s

−2 + . . . ) − (h−1s
−1 + h−2s

−2 + . . . ),

for an arbitrary s. The method for constructing the transformation matrices Vr and Wr

described above is not suitable for implementation. There are some reasons for that. One of
them is the necessity to compute the Markov parameters h−i = C(PA)i−1PB explicitly. If
PA has a dominating eigenvalue, then information corresponding to the rest of the spectrum
can be lost during such computation, see [Gri97]. Another reason is that the Hankel matrix
(9) is usually ill-conditioned. This implies loss of accuracy in its LU -factorization and hence
in the transformation matrices Vr,Wr, see [Gri97]. Fortunately these transformation matrices
can be constructed in a stable manner as biorthogonal bases of the Krylov subspaces

Vr = span{PB,PAPB, (PA)2PB, . . . , (PA)r−1PB },

Wr = span{C⊤, A⊤P⊤C⊤, . . . , (A⊤P⊤)r−1C⊤ },

using the biorthogonal Lanczos method. To prove this recall that the system [I,PA,PB,C]
has the same Markov parameters h−1, h−2, h−3, . . . as the original system [E,A,B,C]. More-
over, due to properties of the biorthogonal Lanczos process the first 2r Markov parameters of
[I,PA,PB,C] and [I,W⊤

r PAVr,W
⊤
r PB,CVr] coincide, see, e.g., [Fre00]. This implies that

the minimal partial realization (11) of [E,A,B,C] can be obtained alternatively as

ẋr(t) = W⊤
r PAVr xr(t) + W⊤

r PB u(t),
yr(t) = CVr xr(t) + h0u(t).

(12)

An algorithmic description of the procedure is provided in Algorithm 1.
An implementation of the biorthogonal Lanczos process becomes efficient as soon as we

have a possibility to compute the matrix-vector product PAx fast. In general this is not
possible, even if the matrix A is sparse. But for some classes of descriptor systems such a
product can be computed efficiently. Some examples of such systems are presented in the
next section.
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Algorithm 1 Computation of a minimal partial realization for descriptor system

Input: A descriptor system [E,A,B,C]; the desired order r of the reduced-order system.
Output: A minimal partial realization [I,Ar, Br, Cr,Dr] of [E,A,B,C].
1: Compute the matrix Ar using the unsymmetric Lanczos process applied to the matrix

PA and the starting vectors PB, C.
2: Set Br = C⊤PBe1 and Cr = e⊤1 , where e1 = [1, 0, . . . , 0] ∈ R

r.
3: Set Dr = C(sE − A)−1B − C(sI − PA)−1PB, for some s ∈ R.

3 Examples

The representation of the projection-like matrix (8) is not suitable for computing the matrix-
vector product PAx due to the following reason. Even if it were possible to compute the
matrices Q and P accurately, P would be dense, making the Lanczos procedure inefficient.
Instead we will use the following representation:

P = Pr(EPr + A(I − Pr))
−1, (13)

where

Pr = Q

[

Inf
0

0 0

]

Q−1

is the spectral projection onto the right deflating subspace of the pencil sE−A corresponding
to finite eigenvalues, see [Sty02]. The represention (13) can be easily verified by substitution.
Here we consider two different models: a semidescretized Stokes equation and a constrained
mass-spring system. Both examples have been taken from [MS05].

3.1 Semidiscretized Stokes Equation

Consider the instationary Stokes equation describing the flow of incompressible fluid

∂v

∂t
= ∆v −∇ρ + f, (ξ, t) ∈ Ω × (0, te),

0 = div v, (ξ, t) ∈ Ω × (0, te)
(14)

with appropriate initial and boundary conditions. Here v(ξ, t) ∈ R
d is the velocity vector

(d = 2 or 3 is the dimension of the spatial domain), ρ(ξ, t) ∈ R is the pressure, f(ξ, t) ∈ R
d is

the vector of external forces, Ω ⊂ R
d is a bounded open domain and te > 0 is the endpoint of

the time interval. The spatial discretization of the Stokes equation (14) by the finite difference
method on a uniform staggered grid leads to a descriptor system

v̇h(t) = A11vh(t) + A12ρh(t) + B1u(t),
0 = A⊤

12vh(t) + B2u(t),
y(t) = C1vh(t) + C2ρh(t),

(15)

where vh(t) ∈ R
nv and ρh(t) ∈ R

nρ are the semidiscretized vectors of velocities and pressures,
respectively, see [Ber90]. The matrix A11 ∈ R

nv×nv is the discrete Laplace operator, while
−A12 ∈ R

nv×nρ and −A⊤
12 ∈ R

nρ×nv are, respectively, the discrete gradient and divergence
operators. The matrices B1 ∈ R

nv , B2 ∈ R
nρ and the control input u(t) ∈ R are designed

here for experimental purposes and may result either from boundary conditions or external
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forces or both, y(t) is an appropriately chosen output of the system. The order n = nv +nρ of
system (15) depends on the level of refinement of the discretization and is usually very large.
Note that the matrix coefficients in (15) given by

E =

[

I 0
0 0

]

and A =

[

A11 A12

A⊤
12 0

]

are sparse and have a special block structure. Using this structure, the projection Pr onto
the right deflating subspace of the pencil sE − A can be computed as

Pr =

[

Π 0
−(A⊤

12A12)
−1A⊤

12A11Π 0

]

,

where Π = I −A12(A
⊤
12A12)

−1A⊤
12 is the orthogonal projection onto Ker (A⊤

12) along Im (A12),
see [Sty05]. The product PA in this case is given by

PA =

[

ΠA11Π 0
−(A⊤

12A12)
−1A⊤

12A11ΠA11Π 0

]

. (16)

This representation has been obtained from (13) and the fact that the solution of

(EPr + A(I − Pr)) x = Ab, or

[

A11 + Π − ΠA11Π A12

A⊤
12 0

] [

x1

x2

]

= A

[

b1

b2

]

is given by
[

x1

x2

]

=

[

Π(A11 − I)Πb1 + b1

−(A⊤
12A12)

−1A⊤
12A11Π(A11 − I)Πb1 + b2

]

.

The latter identity can be verified by substitution. The spatial discretization of the Stokes
equation (14) on the square domain Ω = [0, 1] × [0, 1] by the finite difference method on
a uniform staggered 30 × 30 grid leads to a problem of order n = 2820. In our experiments
B = [BT

1 , BT
2 ]T ∈ R

n is chosen at random and we are interested in the first velocity
component, i.e., C = [ 1, 0, . . . , 0 ] ∈ R

n. We approximate the semidiscretized Stokes system
(14) by a model of order 10. The approximation error is shown in Figure 1. The figure shows
that the approximation quality is very good for a wide range of frequencies although we only
aim at matching Markov parameters, i.e., coefficients of the transfer function’s Laurent series.

3.2 Constrained damped mass-spring system

Consider the holonomically constrained damped mass-spring system illustrated in Figure 2.
The ith mass mi is connected to the (i+1)st mass by a spring and a damper with constants

ki and di, respectively, and also to the ground by a spring and a damper with constants κi

and δi, respectively. Additionally, the first mass is connected to the last one by a rigid
bar and it is influenced by the control u(t). The vibration of this system is described by
a descriptor system

ṗ(t) = v(t),
M v̇(t) = −Qp(t) − Rv(t) + GT λ(t) + B2u(t),

0 = G p(t),
y(t) = C1p(t),

(17)
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Figure 1: Absolute error plots for the semidiscretized Stokes equation.

k1 ki ki+1 kg−1

d1 di di+1 dg−1

m1 mi mg

κ1 κi κg

δ1 δi δg

u

Figure 2: A damped mass-spring system with a holonomic constraint.

where p(t) ∈ R
g is the position vector, v(t) ∈ R

g is the velocity vector, λ(t) ∈ R is the
Lagrange multiplier, M = diag(m1, . . . ,mg) is the mass matrix, D and K are the tridiagonal
damping and stiffness matrices. The projection-like matrix P is given by

P =





I − V ⊤F 0 M−1WRV ⊤

M−1WRV ⊤F M−1W M−1W (Q − RM−1WR)V ⊤

V Q(I − V ⊤F ) V RM−1W V Q(M−1WRV ⊤ + M−1W (Q − RM−1WR)V ⊤)



 ,

where V = (FM−1F⊤)−1FM and W = I − F⊤V . This representation has been obtained
from (8) using the explicit representation of the transformation matrices P and Q provided
in [Sch95].

In our experiments we take m1 = . . . = mg = 100 and

k1 = . . . = kg−1 = κ2 = . . . = κg−1 = 2, κ1 = κg = 4,
d1 = . . . = dg−1 = δ2 = . . . = δg−1 = 5, δ1 = δg = 10.

For g = 100, we obtain a descriptor system of order n = 201 with m = 1 input and p = 1
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Figure 3: Absolute error plot and error bound for the damped mass-spring system.

output. We approximate this system by a system of order 10. The approximation result is
presented in Figure 3.

Again we observe a very good match of the transfer function of the original system and
the reduced-order system.

4 Conclusion

In this paper we have presented a solution of the partial realization problem for state-space
systems in descriptor form. For a particular case of proper descriptor systems a numerical
algorithm based on the unsymmetric Lanczos method has been proposed. This algorithm
has been succesfully tested on examples from computational fluid dynamics and multibody
mechanical systems. Future work will focus on extending these results to the multi-input,
multi-output case.
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