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Abstract. We present some Farkas-type results for inequality systems
involving finitely many DC functions. Therefore we use the so-called Fenchel-
Lagrange duality approach applied to an optimization problem with DC
objective function and DC inequality constraints. Some recently obtained
Farkas-type results are rediscovered as special cases of our main result.
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1 Introduction

Since optimization techniques became more and more used in various fields of
applications, an increasing number of problems that cannot be solved using
the methods of linear or convex programming arised. Many of these prob-
lems are DC' optimization problems, i.e. problems whose objective and/or
constraint functions are functions which can be written as differences of con-
vexr functions. More and more papers treating DC programming problems
have appeared recently, as many authors have enriched the existing litera-
ture regarding this type of optimization problems (see (2], [5], [6], [7], [9],
(10], [13], [15], [16]). Although many papers present techniques of solving
such kinds of problems (see [7], [13], [15], [16]), the study of dual conditions
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characterizing global optimality has not been neglected (see [2], [11], [12]).

The problem treated within this paper consists in minimizing an extended
real-valued DC function defined over the space R™ when its variable runs
over a convex subset of R” such that finitely many extended real-valued DC
constraint functions defined also over R are non-positive. To this problem
we determine its Fenchel-Lagrange-type dual problem, whose construction
is described here in detail. The Fenchel-Lagrange dual problem is a ”com-
bination” of the well-known Fenchel and Lagrange duals. We introduce a
constraint qualification such that strong duality holds between our primal
problem and its dual. This type of dual problem has been introduced by
Bot and Wanka (see [1], [2], [3], [4], [19]). It is not hard to remark that we
use here a decomposition of the feasible set of the problem based on a result
presented by Martinez-Legaz and Volle in [12].

Recently Bot and Wanka have presented in [3] and [4] some Farkas-type
results for problems involving finitely many convex constraints using an ap-
proach based on the theory of conjugate duality for convex problems. The
aim of the present paper is to extend these results to the problem we treat
using the duality theory developed here. Moreover, it is shown that some
results which can be found in the existing literature (see [3], [8], [9]) arise as
special cases of the problem we treat.

The paper is organized as follows. In section 2 we present some definitions
and results that are used later in the paper. In section 3 we give the dual
problem for the DC problem we work with. Section 4 contains the main result
of the paper; using the duality acquired in section 3 we give a Farkas-type
theorem. In the last section some Farkas-type results for problems derived
from the initial one are presented.

2 Notations and preliminaries

In order to obtain the desired results, we use some well-known concepts which
are briefly recalled here. Also the notations we use throughout the paper and
some preliminary results are presented. We consider all vectors as column
vectors. Any column vector can be transposed to a row vector by an upper



index 7. By 27y = Yo, x;y; will be denoted the usual inner product of two
vectors « = (z1,...,7,)7 and y = (y1, ..., ¥,)7 in the real space R".

Consider now an arbitrary set X C R™. By ri(X), co(X) and cl(X)
we will denote the relative interior, the convezr hull and the closure of the
set X, respectively. Furthermore, the cone and the conver cone gener-
ated by the set X are denoted by cone(X) = |J,5,AX and, respectively,
coneco(X) = (59 Aco(X). For an optimization problem (P) we denote by
v(P) its optimal objective value.

For the set X we consider the following two functions, the indicator func-
tion
0, z € X,
+00, otherwise,

ox : R* - R =R U {£o0}, 6x(z) ={

and the support function

ox:R" - R=RU{+o0}, ox(u) =supu’z,
reX
respectively.

For a given function f : R® — R, we denote by dom(f) = {z e R :
f(x) < 400} its effective domain, by epi(f) = {(z,r) : z € dom(f),r €
R, f(z) < r} its epigraph and by cl(f) its closure, i.e., the function whose
epigraph is the closure of epi(f), respectively. We say that f is proper if its
effective domain is a nonempty set and f(x) > —oo for all z € R™.

When X is a nonempty subset of R” we define for the function f the
conjugate relative to the set X by

[ R*"=R, fr(p) = 5161)13 {pTx - f(x)}

It is easy to see that for X = R" the conjugate relative to the set X is
actually the (Fenchel-Moreau) conjugate function of f, namely

fiR* =R, f(p) = sup {p"z - f(z)}.

For an arbitrary z € dom(f) the subdifferential of the function f at z is
the set

0f(z) = {z* e R": f(y) — f(z) > (y — x)"a*,Vy € R"}.
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The function f is said to be subdifferentiable at x € dom(f) if f(z) # 0.

For all z and z* in R™ we have f(z) + f*(z*) > 2*Tx (the Young-Fenchel
inequality) and it can be shown that

f@)+ f*(z*) = 2Tz & z* € 0f (z). (1)
Further we adopt the following conventions (cf. [2], [12])
(+00) = (400) = (—00) = (—00) = (400) + (—00) = (~00) + (+00) = +o0,
0(+00) = +o0 and 0(—o0) = 0.
It is easy to see that the last two conventions imply
0f = bdom(s)-

Definition 2.1 Let the functions fi,..., fm : R® — R be given. The
infimal convolution function of fi, ..., f, is the function

AD..Of, :R* > R, (10..0f,)(z) = inf { > filmi) iz = Zm}

=1

Theorem 2.1 (cf. [14]) Let fi, ..., fm : R* — R be proper convex func-
tions. If the set (), ri(dom(f;)) is.-nonempty, then

<§f¢)*(p) ~ (F0-07)(p) = inf gfﬂpn = fjp}

and for each p € R™ the infimum is attained.

A simple consequence of the theorem follows, closing this preliminary sec-
tion.

Corollary 2.2 Let fi,..., fm : R® — R be proper convex functions. If
the set [, ri(dom(f;)) is nonempty, then

epi << i:; fi) ) = 2:: epi(f;).



3 Duality for the DC programming problem

As we have already said, the primal problem we work with is

®) ot (e -1w)
9i(2)—hi(2) <0,

where X is a nonempty convex subset of R?, ¢,k : R* — R are two proper
convex functions and g;,h; : R®* — R, ¢ = 1, ..., m, are proper convex func-
tions such that

O ri (dom(g;)) () ri (dom(g)) (ri(X) # 0. (2)

We denote by F(P) = {z € X : gi(z) — hi(z) < 0,i =1,...,m} the feasible
set of (P) and we assume that F(P) # {). Moreover, we assume that h is

lower semicontinuous on F(P) and that h;, ¢ = 1, ..., m, are subdifferentiable
on F(P).

Lemma 3.1 It holds

F(P) = U {xeX:gi(a:)—xTy;‘+hf(y;‘)SO,izl,...,m}.
s €dom(hy), |
i=1,...,m

Proof. ”C” Let x € F(P). Thus z € N*, dom(h;) and so we can choose
y; € Ohi(z) for all i = 1,...,m. Using relation (1), we obtain g;(z) — y;7z +
hi(y}) = gi(x) — hy(x) <0 for all i = 1,...,m, and the inclusion is proved.

m
”2” For the opposite inclusion, let y* = (y5,...,y%,) € [] dom (h;‘) and
i=1

z € X such that g;(z) —y 2+ hi(yf) <Oforalli=1,..,m. Fori=1,...,m
the conventions we use ensure that h;(z) > —oo and g;(z) < +o00. Since (cf.
the Young-Fenchel inequality) g;(z) — hi(z) < gi(x) — Tz + Al (y) < 0 this
inclusion is also proved. O

m
For the sake of simplicity, by writing y* € [] dom(h}), we understand
: i=1
that y* is the following m-tuple (vf, ..., y%,) with y; € dom(h}), i =1,..., m.



We give now a characterization of the optimal objective value of the prob-
lem (P). '

Theorem 3.2 Under the hypotheses imposed in the beginning of this
section we have

P — 3 f . f _ *T h* * . 3
v(P) 2+ edom(h), X, g9(z) =2z + h*(z )} (3)
—y; Ta+h} (y7)<0,

?l*GlU dOm(h:)gZ( ) i=1,...,m

i=1

Proof. Since h is proper, convex and lower semicontinouos on F(P) it
holds
h(z) = h**(z) = sup {a:*Tx — h*(z*)}.

z*€dom(h*)

Thus

P)= inf —h(z)) = inf  inf — 2Tz + h*(z") }.
()= ot (o)1) =t ot Lote) —a"r st
Using the decomposition of the set F(P) given by Lemma 3.1, the conclusion
is straightforward. O

Taking a careful look at relation (3), one may notice that the inner infi-
mum can be seen as a convex optimization problem. Thus it is quite natural
to consider it as a separate optimization problem in order to deal with it by
means of duality

(Pprye) inf g(x) — Te+ h*(m*)) ,
zeX,
gi(x)—y; Tz+h}(y})<0,
i=1,....,m

for some z* € dom(h*) and y* € J] dom(h}).

i=1

m

Let us consider z* € dom(h*) and y* € J] dom(h}) fixed. Our next step
i=1

is to construct a dual problem for (P,«,-) and to give sufficient conditions

such that strong duality holds, i.e. the optimal objective value of the primal
coincides with the optimal objective value of the dual and the dual has an
optimal solution. Considering the functions g : R® — R, g(z) = g(z) —

6



o'z + h*(2*) and G : R* = R, Gi(2) = gi(2) — ;"2 + W} (¥), i = 1,...,m,
the problem (P, ,») can be equivalently written as

(Per ) Inf gla).
gi(z)<0,
=1,...,m

Because of the way the function g; is defined, it is not difficult to show
that since the function g; is proper and convex, the function g; is proper and

convex, t00, and this is true for all 1 = 1, ..., m. Since g is convex and proper,
the definition of the function § implies that § is convex and proper, too.

Next we consider the Lagrange dual problem to (Pys ) with ¢ = (qi, ..
gm)T € R™ as dual variable

*)

(Dygr ) sup inf {E(x) + g q@-(x)}.

Regarding the infimum concerning z € X we have

2 {5@) + 2: %@%(x)} == (@’ + i:; q@-);(o).

Taking into consideration the convexity and the properness of the func-
tions g and g;, i = 1,...,m, and that (2) is fulfilled, it follows that the
hypotheses of Theorem 2.1 are fulfilled. Thus

(5+ gjq@);m) ~sup { ~ 1) - g@-@)} -

zeX

w {7+ (Laara) o= e fre+ (Taa) (o),

and the infimum is attained for some z € R”.



This leads to the following formulation for the dual (Dgx )

(Do) f&@,{ —g(2) - (i‘;q@);(—z)}

Using once more the definition of the conjugate and the way the functions
g and g;, i = 1,...,m, are defined, it can be easily proved that

9'(2) = " (" + 2z) — h*(z7)

and

<i:i1(h§i>;(—z) = (gqigi>;<éqiy2‘ - Z) - j;qih?(yi‘)-

Employing the last two relations and considering p := z* + 2 it follows
immediately that the dual (D,» 4») has the form

Do) s (W) + S ahit) -~

peR™,
m * m
- (Z%Qi) (w + gyl - p) }
) i=1 X i=1

q20
Theorem 3.3 Between the primal problem (P, ;) and the dual (Dy« )
weak duality is always satisfied, i.e. v(Pps y+) 2> v(Dye y+).

Since in the general case strong duality can fail, in order to avoid such an
unpleasant situation we introduce the following constraint qualification that
implies strong duality when fulfilled (cf. [14])

Az’ € f]l ri (dom(g;)) Mri (dom(g)) Nri(X) such that

(CQy*) ( gi(a:’) _m/Ty;_{_h;k(y:) S 0, = L,
gi(z’) — 2zyf + hi(y;) <0, i€ N,

where L := {i € {1,...,m} : g; is an affine function} and N := {1,...,m}\ L.



Regarding strong duality between (Py«,~) and (Dy« ) we have the fol-
lowing assertion. ‘

Theorem 3.4 Assume that v(Pg,+) is finite. If (CQ,-) is fulfilled, then
between (Py+,+) and (D,» 4») strong duality holds, i.e. v(Pp»y+) = v(Dgs y»)
and the dual problem has an optimal solution.

Proof. To the problem
(P ) inf g(z)

z€X,
gi(z)<0,
i=1,...,m

we associate its Lagrange dual problem

m
inf da 5 '
up fnf {g(x) + Z:; ngz(r)}
Since the condition (CQy) is fulfilled and all the involved functions are
convex, it is well-known from the literature (see Theorem 28.2 in [14]) that
the optimal objective values of (Py«,+) and its Lagrange dual are equal and,
moreover, there exists an optimal solution g = (g, ...,d,,)" € R7 such that

m m
Ppvyp) = I g 19 = inf (¢ q:9: :
(Pery) = s i {7) + > 00) | = int {30 + D7)
Further we deal with the infimum in the last term of the equality from above.
As dom(g) = dom(g) and dom(} 7", §;g;) = N{%, dom(g;) = N, dom(g;), it
holds

m

ri  dom(g)) ﬂri <dom <g@§i)) ﬂri (X)#0

=1

and this implies (cf. Theorem 2.1)

Pey) = ot {70+ 20| = —sup{ =50 - L adi(o)

- {0 (%8) -}



and there exists Z € R™ such that the last supremum is attained. Therefore

[

(P = sup{ -5 - (£ m)*<—z>} -7 - (

z€R™ X

@@i) ;( —Z)

m m m
= —g*(x* +7) + h*(x*) - ;@'Qi (;@yi‘ - 7) + ;%hi(yé‘)-

i=1

Considering p := 2* + Z, the last term of the equality is exactly

m m * m
w4 k) -0 @ - (Saa) (v -7)
i=1 i1 X Py
and so we get that v( Py« ) = v(Dy»4+) and (P,7) is an optimal solution for

(Dygx ). (]

Taking into consideration the results given by Theorem 3.2 and Theorem
3.4, it seems natural to introduce the following dual problem to (P)

@t s (@) - Y akie) -s'0)

z*edom(h*), 720,
m TR
y*€ [1 dom(h}) peR
i=1

m * m
- (Z%‘gi) (w +>ay} —p) }
i=1 X i=1

By the construction of (D) there is a weak duality statement for (P) and
(D) as follows.

Theorem 3.5 It holds v(P) > v(D).

Concerning the strong duality between (P) and (D) the considerations
done above give the following assertion.

Theorem 3.6 Let (CQ,~) be fulfilled for all y* € [] dom(h}). Then
i=1
v(P) = v(D).
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4 Farkas-type results based on DC programs

Using the statements obtained in the last section we can prove the following
Farkas-type result.

Theorem 4.1 Suppose that (CQ,~) holds for all y* € ] dom(h}). Then
i=1
the following assertions are equivalent:

(i) z€ X, gi(x) — hi(z) €0,i=1,....,m = g(z) — h(z) > 0;

(ii) V 2* € dom(h*) and V y* € [] dom(h}), there exist p € R™ and ¢ = 0
i=1
such that

+Z gih (v}) <Zngz) <fc+g Gy; —p) > 0. (4)

Proof. " (i) = (ii)” Let us consider z* € dom(h*) and y* € [] dom(h}).
=1
The statement (i) implies v(P) > 0 and using Theorem 3.2 we acquire
V(P y+) > 0. Since the assumptions of Theorem 3.4 are achieved, strong
duality holds, i.e. v(Dgey+) = v(Ppy+) > 0 and the dual (Dgs ) has an
optimal solution. Thus there exist p € R™ and ¢ = 0 such that relatlon (4)
is true.
”(#) = (¢)” Consider z* € dom(h*) and y* € H dom(h}). Then there exist
i=1
p € R™ and ¢ 2 0 such that (4) is true and this implies

m * m
sup { +Z%h* (W) —g"(p) - (Z‘b‘gi) <w*+Zqz~y£‘—p)} > 0.
peE&g i=1 X i=1

But z* and y* were arbitrarily chosen and it is easy to see that we have v(D)
also being non-negative. Weak duality between (P) and (D) always holds
and thus we obtain v(P) > 0, i.e. (¢) is true. O

The statement can be formulated as a theorem of the alternative, too.
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Corollary 4.2 Assume the hypothesis of Theorem 4.1 fulfilled. Then
either the inequality system

(I) z€X,gi(z) —hi(z) <0,i=1,...,m,g(z) — h(z) <0

has a solution or each of the following systems

([z+y+) R*(z%) + E;qih?(yf )—g*(p) — (_Zlqigi> (x*+21qiy£‘—p> >0,
i= = X 1=
pER™q20,

where z* € dom(h*) and y; € dom(h}), i = 1,...,m, has a solution, but
never both.

As in [3] and [8], we give an equivalent assertion to the statement (i7) in
Theorem 4.1 using the epigraphs of the involved functions. It is shown later
that for some particular cases the theorem below coincide with the results
presented in the papers mentioned above.

Theorem 4.3 The statement (i7) in Theorem 4.1 is equivalent to

epi(h) S () {epi(g*) + coneco[gjl<epi(g£‘)~(yi‘,hi‘(yé‘))ﬂ

y €[] dom(h)
i=1 .
+ epi(ox)}.

m
Proof. "=" Take the fixed m-tuple y* = (vf, ...,y,) € [[ dom(h}). Our
i=1
aim is to prove that

m

epi(") € eily") + coneco | U (‘epiter) = (ut11i00) ) | + epito). 9

i=1

In order to prove the validity of (5) let us consider an arbitrary point (z*,r)
in epi(h*). Thus z* € dom(h*) and assertion (i7) implies the existence of
p € R* and ¢ 2 0 such that the relation (4) is true. Further we deal with
two cases. In the first case we suppose that ¢ = 0. Relation (4) becomes
h*(z*) — g*(p) — 0% (z* — p) > 0. Since r > h*(z*) we have r — g*(p) >
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0% (z*—p). Thus (:r*,r)v = (p,9*(p))+(z*—p,r—g*(p)) € epi(g*)+epi(ox) C
epi(g*) + coneco [UZL (epi(gf ) — (uf, by (yz‘)))} + epi(ox).

The second case is concerning ¢ # 0. The set I, = {i : ¢; # 0} is obviously
nonempty. Relation (4) becomes

o) + ) aihi(yl) — g7 (p) — <Z Qigi) (x +Y ;- p) > 0.
i€, i€l X i€l,
We can calculate
( Z Qz’gi) ($* + Z @y — p)
i€, X iely
using Theorem 2.1. We have

(Zqigi);(x“quiy? —p> = (Zqigi+5x)*(x*+zqiy§‘ —p)

i€l icl, icly icly

= inf { Z(Qigi)*(vi) +ox(z) 1 z" + ZQiy; P Zvi * z},

i€l i€l i€l
and this infimum is attained for some vectors z and v;, ¢ € I, in R™". We
notice that this calculation requires the assumption

m ri (dom(gi)) ﬂ ri(X) # 0,

i€l,

which is automatically fulfilled since (2) is true.
Substituting this representation in the above inequality results in

Bt + 3 ahi @) 2 g 0) + 3 (@) (0) + ox(2)

i€, iely
and
* %
x+§ qiyi—p=§ v; + 2.
icly icly

Since g; > 0, ¢ € I, we have

(9:9:)" (vi) = qig} (qlvi).

i
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Considering the vectors v; € R", v] = %vi, i € I,, the relations obtained

above imply
t=p+ Z gi (v

i€ly
and
r2 ) 2w+ Do) - K0 ) +oxe)
icly
Because of
(00,65 0) ~ 1:60) ) U (‘eiton) - a1, i )i €t
=1
we have
<Z%( yz ZQZ gz i h’* yz))) zqu< yz?-gz( ) h*(yz))
icl, iel, iel,

 coneo [j (evitan) - Geuni) )|

and therefore

m

(2*7) € epilg") + coneco | ( enia) — (o7 () )| + it

i=1

"« Let us consider z* € dom(h*) and y* € [] dom(h}). As
i=1

(z*,h*(z*)) € epi(h*) C

epiy) + coneco | U (‘eitar) = (7, Ai(4) )| + epiCrn),

=1

there exist (p,r) € epi(g*), (v,s) € coneco [U (epl(gz) (y;‘,hf(’y?)))}

and (z,t) € epi(ox) such that
(z*, h*(z%)) = (p,7) + (v, 8) + (2, 1) (6)
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Moreover, there exist A > 0, p; > 0 and (v;, 8;) € epi(g}) — (v7, hi(y})),
i=1,...,m, such that >_;", y; = 1 and

(v,5) = /\Zui(vi,si). (7)

For alli € {1,...,m} we have (v;+y}, s;+h}(y})) € epi(g}) and it follows
immediately that
gi (vi +47) — hi(y7) < si. (8)
If A =0 we have (v,s) = (0,0) and relation (6) becomes
(z*, h*(z*)) = (p,7) + (2,1).
Since r > ¢g*(u) and t > ox(z) = §%(z), the equality from above implies

rr=p+z

and
h*(z*) > g*(u) + 0% (2).

Considering ¢ = (0, ...,0) € R™ it holds

h*(z*) = g"(p) + (Z gigi + 5x) (m +> i — p) ,
i=1 ’ i=1

and, using the definition of the conjugate relative to a set, the conclusion is
straightforward in this case.

If A > 0, let us consider the vector ¢ = (A1, ..., Atm) € R™. Since it holds
Yoiv, i =1, the set I, is obviously nonempty and relation (7) becomes

(v,8) = Z q; (vi, 8;)-

icly

Taking into consideration relation (8) we obtain

V= Z%‘Ui

i€l

15



and

8 =YZQiSi > Z(h‘(gf(“i + ;) — h:(y:))

i€ly i€lq

Combining these two results with relation (6) and with the inequalities
g*(p) < r and &% (2) = ox(2) <t we obtain

*=p+ Y vtz

icly

and
We@t) > g* (o) + > ai(gl (v + y7) — hi (W) + 0k (2).

icly
Using again the properties of the conjugate of the sum of a family of
functions and the definition of the conjugate relative to a set we obtain

Z aig; (vi + ;) +0x(2) = Z (qi9:)" (givi + qiy7) + 0% (2)

iclq icly

> <Z(h’gi + 5x) (Zqiyf +) g + Z)
i€l iclq iclq

= (Z%’gi) (Zqiyi‘ +a —p>
icly X Nely

. m * m

= (Z Qigi) (x + ) gyl - p)-

i=1 X i=1
The desired conclusion arises easily. O

5 Special cases

In this section we give Farkas-type results for some problems which turn out
to be special cases of the problem (P).
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5.1 The case h=10

The problem we work with becomes an optimization problem with a convex
objective function and finitely many DC constraint functions. It is not hard
to remark that in this special case our problem becomes similar to the one
studied in [3].

Since in this case dom(h*) = {0} and epi(h*) = {0} x [0, +00), the fol-
lowing theorems can be easily obtained using Theorem 4.1 and Theorem 4.3,
respectively.

m
Theorem 5.1 Suppose that (CQy+) holds for all y* € [] dom(h}). Then
i=1
the following assertions are equivalent:

(i) z€ X, gi(z) —hi(z) <0,i=1,...,m = g(z) > 0;

(ii) V y* € [] dom(h}), there exist p € R™ and ¢ = 0 such that

i=1
Z(b‘hf(yf) —-9°(p) - <Z qigi) (Z %y; — P) > 0.
i=1 i=1 X N i=1

Theorem 5.2 The statement (i¢) in Theorem 5.1 is equivalent to
oe N {enite) + concoo | U (eniten) - (im0 )]

m i=1
y*€ [[ dom(h})
i=1

) + epi(ax)}. 9)

Proof. Theorem 4.3 ensures the equivalence between the statement (i)
in Theorem 5.1 and the relation

O x40 € A {epilg") +comeco U (critar) - (o1 )

m =1
y*€ [[ dom(h})
i=1

+epi(ax)}.

Using the definition of the epigraph of a function, it can be easily proved
that this inclusion is further equivalent to (9). O
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5.2 Thecase h;=0,:=1,....m

The problem becomes an optimization problem with a DC objective func-
tion and finitely many convex constraint functions.
It is obvious that for all ¢ = 1,...,m we have

*[, * +00, : 0?
hi(yi):{O, szio_

Thus we have J] dom(h}) = {(0,...,0)} and the constraint qualification
i=1
(CQ,~) for y* € [] dom(h;) turns out to be

=1

o fa@) <0, ieL
| ri (dOm(gz)) { gi(x') <0, 1€ N.

Theorem 5.3 Suppose that (CQg) holds. Then the following assertions
are equivalent:
(i) z€ X, gi(z) <0,i=1,...,m = g(z) — h(z) > 0;

(CQo) 3z’ € ri(X) Nri(dom(g))

13

(ii) V z* € dom(h*), there exist p € R” and ¢ 2 0 such that
h*(z*) — g*(p) — <Z%’gi) (z*—p) > 0.
i=1 X
Theorem 5.4 The statement (4¢) in Theorem 5.2 is equivalent to

epitsD)]| + epito).

epi(h*) C epi(g*) + coneco {
i=1

Both Theorem 5.3 and 5.4 are again direct consequences of Theorem
4.1 and Theorem 4.3, respectively. They express, as particular cases of our
general result in section 4, the outcomes obtained by Bot and Wanka in 3]
and by Jeyakumar in [9].

53 Thecase h=0and h; =0,72=1,....m

In this case our initial problem turns out to be a standard convex opti-
mization problem with a convex objective function and finitely many convex
constraint functions. The constraint qualification becomes also (CQy).
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This special case has been treated also by Bot and Wanka in [3] and by
Jeyakumar in [8]. Let us mention that our results are identical to the ones
in [3].

Theorem 5.5 Suppose that (CQy) holds. Then the following assertions
are equivalent:
(i) zreX,g(x)<0,i=1,...,m = g(z) > 0;

(ii) there exist p € R™ and g = 0 such that
9" (p) + (Z%Qi) (-») <0
i=1 X

Theorem 5.6 The statement (4¢) in Theorem 5.5 is equivalent to

0 € epi(g*) + coneco [Uepi(gf)] + epi(ox).

=1

6 Conclusions

In this paper we present a Farkas-type result for inequality systems with
finitely many DC functions. The approach we use is based on the conjugate
duality for an optimization problem with DC objective function and DC
inequality constraints. The result we present is a generalization of a Farkas-
type result presented by Bot and Wanka in [3] and Jeyakumar in [8]. Also
the connections which exist between the Farkas-type results and the theory
of the alternative and, respectively, the theory of duality are offered once
more.
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