


Fenchel-Lagrange versus Geometric Duality in

Convex Optimization∗

R. I. BOŢ†, S. M. GRAD‡, AND G. WANKA§

Abstract. We present a new duality theory in order to treat convex opti-
mization problems and we prove that the geometric duality used by C.H. Scott
and T.R. Jefferson in different papers during the last quarter of century is a spe-
cial case of it. Moreover, weaker sufficient conditions in order to achieve strong
duality are considered and optimality conditions are derived in each case. Next
we apply our approach to some problems considered by Scott and Jefferson deter-
mining their duals. We give some weaker sufficient conditions in order to achieve
strong duality and the corresponding optimality conditions. Finally, posynomial
geometric programming is viewed also as a particular case of the duality approach
we present.
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1. Introduction

A quarter of century after the inception of their series of papers on geometric
programming (see Ref. 1, among other papers) Scott and Jefferson have published
recently the article cited as Ref. 2 where they treat a class of optimization
problems by means of geometric duality. This fact denotes that the approach
often used by these authors enjoys a continuous attention. Our main purpose
is to introduce a duality theory for convex optimization problems which has
many advantages in competition to the classical generalized geometric duality
established by Peterson (Ref. 3) and used later in a simplified version by Scott
and Jefferson (sometimes together with S. Jorjani) in many papers (see Refs. 1-2,
4-14).

We have proved in Ref. 15 that Peterson’s geometric dual problems can be
obtained using the perturbation theory presented in Refs. 16-17. Here we show
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that the geometric dual problem used by Scott and Jefferson is actually the
Fenchel-Lagrange dual of the primal geometric problem. Moreover we provide
much weaker sufficient conditions in order to achieve strong duality than the
ones considered by them. Later we review some problems treated by means of
geometric duality by these authors and we prove that their dual problems can
be determined easier with our approach, where artificial constructions of the
implicit, explicit and cone constraints are not required. Unlike the cited authors,
that do not bother about the sufficient conditions for strong duality, mentioning
just that they come from Peterson’s work Ref. 3, we resort to weaker conditions
that the ones obtained there. Using them, we display the strong duality assertion
and the optimality conditions for each of these problems.

The Fenchel-Lagrange dual problem has been developed by Boţ and Wanka in
some papers (Refs. 15, 18-23) and it is constructed by means of the perturbation
theory in Refs. 16-17. Its name, introduced for the first time in Ref. 19 reveals
its origin, as it is a combination between the well-known dual problems due to
W. Fenchel and J.L. Lagrange. So far it has been considered for problems with
constraint functions defined over the whole space R

n, while here they are defined
over a subset of R

n.
We consider a convex optimization problem (P ), the so-called primal problem,

that consists in minimizing a function defined over the space R
n whose values are

not necessarily all finite when its variable is required to belong to a subset of R
n

and to satisfy the non-positivity of some constraint real-valued functions defined
over the same subset. To it we determine the Fenchel-Lagrange dual problem,
describing its construction in detail. Then we introduce a constraint qualification
whose fulfillment is sufficient in order to have strong duality for the two problems
mentioned above. After proving the strong duality assertion we formulate and
prove also the optimality conditions for these problems and this ends the second
part of the present work.

Further we consider a special case of the general convex optimization problem
(P ) denoted (PK) where the variable is forced to belong also to a closed convex
cone in R

n. The generalized geometric problem used by Scott and Jefferson turns
out to be a special case of this problem for a suitable choice of the functions and
sets involved. Strong duality and optimality conditions for (PK) follow and from
them are derived the ones regarding the mentioned geometric problem. The
sufficient conditions required for strong duality are weaker than the ones used
before by the cited authors, as we do not ask the functions and the sets involved
to be also closed alongside their convexity.

The fourth part of the paper deals with some problems Scott and Jefferson
have treated by means of geometric programming duality. We prove that their
artificial constructions in order to bring the problems into the form of the primal
geometric problem are not necessary, as the same duals can be obtained sim-
pler by applying our Fenchel-Lagrange duality. A large variety of problems is
presented: minmax program (Ref. 11), entropy constrained program (Ref. 14),
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facility location problem (Ref. 12), quadratic concave fractional program (Ref.
9), problem of minimizing a sum of convex ratios (Ref. 10) and quasiconcave mul-
tiplicative program (Ref. 2). Strong duality, obtained under weaker conditions
than in the original papers, and optimality conditions assertions are delivered for
each of those problems. We also show that the posynomial geometric program-
ming (Ref. 24) can be viewed as a special case of the Fenchel-Lagrange duality.

2. The Fenchel-Lagrange dual problem

Let us consider a convex subset X of R
n and a convex function f : R

n → R,
R = R ∪ {±∞} and g = (g1, , , , gk)

T : X → R
k, with gi, i = 1, ..., k, convex

functions. Using them we introduce the following convex optimization problem,
further called primal problem,

(P ) inf
x∈X,

g(x)50

f(x).

As usual, g(x) 5 0 means gi(x) ≤ 0 for all i = 1, ..., k. We denote by dom(f) =
{x ∈ R

n : f(x) < +∞} the effective domain of the function f : R
n → R.

A short observation is necessary: in the previous works of two of the authors
(Refs. 18-23) the constraint functions gi, i = 1, ..., k, are defined over the whole
space, unlike here. By defining the constraint functions over a subset of R

n

we are able to treat a larger class of convex optimization problems. In order
to determine the so-called Fenchel-Lagrange dual problem of (P ) we need to
introduce the perturbation function (cf. Refs. 18-23) Φ : R

n × R
n × R

k → R,

Φ(x, y, z) =

{
f(x + y), if x ∈ X, g(x) 5 z,
+∞, otherwise,

with the perturbation variables y and z. Following the path of the perturbation
method described in Refs. 16-17 the next step is to calculate the conjugate
function of Φ. Within this paper two types of conjugate functions are used. For
a function defined over the whole space, f : R

n → R, the conjugate function is

f ∗ : R
n → R, f ∗(x∗) = sup

x∈Rn

{
〈x∗, x〉 − f(x)

}
.

When a function is defined over a subset of X of R
n, let it be k : X → R, we

define for it the so-called conjugate relative to the set X

k∗
X : R

n → R, k∗
X(x∗) = sup

x∈X

{
〈x∗, x〉 − k(x)

}
.

For a function k : X → R let us consider its extension to the whole space

h : R
n → R, h(x) =

{
k(x), if x ∈ X,
+∞, otherwise.
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One may notice that the conjugate of k relative to the set X is identical to the
conjugate of the function h.

Let us proceed with the definition for Φ∗ : R
n × R

n × R
k → R,

Φ∗(x∗, p, q) = sup
x,y∈R

n,
z∈Rk

{
〈x∗, x〉 + 〈p, y〉 + 〈q, z〉 − Φ(x, y, z)

}

= sup
x∈X,y∈R

n,
g(x)5z

{
〈x∗, x〉 + 〈p, y〉 + 〈q, z〉 − f(x + y)

}

We have used the denotations 〈x∗, x〉 := x∗T x, 〈p, y〉 := pT y and 〈q, z〉 := qT z
for the Euclidean scalar products in the corresponding spaces R

n and R
k, respec-

tively. In order to calculate Φ∗ let us introduce new variables r instead of y and
s instead of z by

r := x + y, s := z − g(x).

As the supremum above is computed with respect to three independent variables,
x, r and s, it can be separated into a sum of three suprema

Φ∗(x∗, p, q) = sup
s∈R

k
+

〈q, s〉 + sup
r∈Rn

{
〈p, r〉 − f(r)

}

+ sup
x∈X

{
〈x∗ − p, x〉 + 〈q, g(x)〉

}

=

{
f ∗(p) − inf

x∈X

{
〈p − x∗, x〉 − 〈q, g(x)〉

}
, if q ∈ −R

k
+,

+∞, otherwise,

where R
k
+ = {z : z ∈ R

k, 0 5 z}.
According to Ref. 16 the dual problem to the problem (P ) is

(D) sup
p∈R

n,
q∈R

k

{
− Φ∗(0, p, q)

}
,

that becomes in our case after changing the sign of the variable q

(D) sup
p∈R

n,
q∈R

k
+

{
− f ∗(p) + inf

x∈X
[〈p, x〉 + 〈q, g(x)〉]

}
.

It is obvious from the construction of the dual that the weak duality assertion
between (P ) and (D), i. e. the value of the primal objective function at any
primal feasible point is greater than or equal to the value of the dual objective
function at any dual feasible point, always stands. We will not mention further
for each pair of dual problems we treat that the weak duality is true, as it is
valid in the most general case without any supplementary assumption. By strong
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duality we understand the situation in which the optimal objective values of the
primal and dual are equal and the dual has an optimal solution. Unlike weak
duality, strong duality can fail in the general case. To avoid any undesired event
of this kind, we introduce a constraint qualification that guarantees the validity
of strong duality in case it is fulfilled. First let us divide the index set {1, ..., k}
into two subsets,

L :=

{
i ∈ {1, ..., k}

∣∣∣∣
gi : X → R is the restriction to X of an
affine function g̃i : R

n → R

}
,

and N := {1, ..., k}\L. The constraint qualification follows

(CQ) ∃x′ ∈ ri(X) ∩ ri(dom(f)) :

{
gi(x

′) ≤ 0, i ∈ L,
gi(x

′) < 0, i ∈ N,

where ri(X) denotes the relative interior of the set X. We are ready now to
formulate the strong duality assertion. Before that let us denote by inf(P ) and
sup(D) the optimal objective values of the primal and dual problem, respectively.

Theorem 2.1. Provided that the constraint qualification (CQ) is fulfilled,
there is strong duality between problems (P ) and (D), i. e. their optimal objec-
tive values are equal and the dual problem has an optimal solution.

Proof. We can write the problem (P ) equivalently

(P ) inf
x∈X∩dom(f),

g(x)50

f(x).

By Theorem 6.5 in Ref. 17, (CQ) yields

x′ ∈ ri
(
X ∩ dom(f)

)
= ri(X) ∩ ri

(
dom(f)

)
.

Theorem 5.7 in Ref. 25 states under the present hypotheses the existence of a
q̄ = 0 such that

inf(P ) = max
q=0

inf
x∈X∩dom(f)

[f(x) + 〈q, g(x)〉] = inf
x∈X∩dom(f)

[f(x) + 〈q̄, g(x)〉].

Defining

h : R
n → R, h(x) =

{
〈q̄, g(x)〉, if x ∈ X,
+∞, if x /∈ X,

we can rewrite the right-hand side term by

inf(P ) = inf
x∈Rn

[
f(x) + h(x)

]
.
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Because ri(dom(f)) ∩ ri(dom(h)) = ri(dom(f)) ∩ ri(X) 6= ∅, by Theorem 31.1
(Fenchel’s Duality Theorem) in Ref. 17, there exists a p̄ ∈ R

n such that this
infimum is equal to

inf(P ) = max
p∈Rn

[
− f ∗(p) − h∗(−p)

]
= −f ∗(p̄) − h∗(−p̄)

= −f ∗(p̄) − sup
x∈Rn

{〈−p̄, x〉 − h(x)}

= −f ∗(p̄) − sup
x∈X

{〈−p̄, x〉 − 〈q̄, g(x)〉}

= −f ∗(p̄) + inf
x∈X

{〈p̄, x〉 + 〈q̄, g(x)〉}. (1)

In the right-hand term of (1) one may recognize the objective function of the
dual problem (D) at (p̄, q̄). From weak duality it follows that the supremum of
(D) is attained, becoming maximum, at (p̄, q̄), which turns out to be an optimal
solution of the dual problem. �

Remark 2.1. Let us notice that in the proof above we have first proved that
under the fulfillment of (CQ) there holds strong duality between the primal prob-
lem and its Lagrange dual problem. Then we proved strong duality between the
Lagrange dual and its Fenchel dual problem, the last one proving to be exactly
the Fenchel-Lagrange dual problem we introduced earlier.

Next we derive necessary and sufficient optimality conditions regarding the
problems (P ) and (D).

Theorem 2.2.

(a) If the constraint qualification (CQ) is fulfilled and the primal problem (P )
has an optimal solution x̄, then the dual problem has an optimal solution
(p̄, q̄) and the following optimality conditions are satisfied

(i) f(x̄) + f ∗(p̄) = 〈p̄, x̄〉,

(ii) inf
x∈X

[
〈p̄, x〉 + 〈q̄, g(x)〉

]
= 〈p̄, x̄〉,

(iii) 〈q̄, g(x̄)〉 = 0.

(b) If x̄ is a feasible point to the primal problem (P ) and (p̄, q̄) is feasible to the
dual problem (D) fulfilling the optimality conditions (i)-(iii), then there is
strong duality between (P ) and (D) and the mentioned feasible points turn
out to be optimal solutions.

Proof.
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(a) Theorem 2.1 guarantees strong duality between (P ) and (D). So the dual
problem has an optimal solution. Let us denote it by (p̄, q̄). The equality
of the optimal objective values of (P ) and (D) implies

f(x̄) + f ∗(p̄) − inf
x∈X

[
〈p̄, x〉 + 〈q̄, g(x)〉

]
= 0. (2)

It is obvious that

inf
x∈X

[
〈p̄, x〉 + 〈q̄, g(x)〉

]
≤ 〈p̄, x̄〉 + 〈q̄, g(x̄)〉,

while Young’s inequality states

f(x̄) + f ∗(p̄) ≥ 〈p̄, x̄〉.

Combining (2) with these relations leads to

0 ≥ 〈p̄, x̄〉 − 〈p̄, x̄〉 − 〈q̄, g(x̄)〉 = −〈q̄, g(x̄)〉,

but 〈q̄, g(x̄)〉 ≤ 0 because of the feasibility of x̄ to (P ) and q̄ to (D), re-
spectively. Therefore (iii) is true. Adding and subtracting 〈p̄, x̄〉 to (2)
yields

[
f(x̄) + f ∗(p̄) − 〈p̄, x̄〉

]
+
[
〈p̄, x̄〉 − inf

x∈X
[〈p̄, x〉 + 〈q̄, g(x)〉]

]
= 0.

This gives immediately (i) and (ii).

(b) All the calculations presented above can be carried out in reverse order, so
the assertion holds. �

Remark 2.2. We need to mention that (b) applies without any convexity
assumption as well as constraint qualification. So the sufficiency of the optimality
conditions (i)-(iii) is true in the most general case.

3. A particular case: the geometric programming duality

Our main stimulus in writing this paper was to prove that the simplified
generalized geometric duality is nothing but a particular case of Fenchel-Lagrange
duality. So far we have presented the basic facts and results regarding the Fenchel-
Lagrange duality, but in order to reach our goal we consider first a special case
of the primal problem (P ) which is still more general than the geometric primal
problem. So we consider the problem

(PK) inf
x∈X,g(x)50,

x∈K

f(x),
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where K is a closed convex cone in R
n. Its Fenchel-Lagrange dual problem is

(DK) sup
p∈R

n,
q∈R

k
+

{
− f ∗(p) + inf

x∈X∩K
[〈p, x〉 + 〈q, g(x)〉]

}
.

The constraint qualification that is sufficient for the existence of strong duality
in this case is, with the notations introduced before,

(CQK) ∃x′ ∈ ri(X) ∩ ri(dom(f)) :





gi(x
′) ≤ 0, i ∈ L,

gi(x
′) < 0, i ∈ N,

x′ ∈ ri(K).

Consequently we have the strong duality assertion regarding the problem (PK)
and an equivalent form of its dual problem.

Theorem 3.1. When the constraint qualification (CQK) is satisfied, there is
strong duality between the primal problem (PK) and the equivalent formulation
of its dual,

(D′
K) sup

p∈R
n,q∈R

k
+,

t∈K∗

{
− f ∗(p) + inf

x∈X
[〈p − t, x〉 + 〈q, g(x)〉]

}
.

Proof. (PK) being a special case of the problem (P ), like (DK) of its dual
(D) and because ri(X ∩K) = ri(X)∩ ri(K), strong duality is valid for (PK) and
(DK). But the presence of the cone K in the formula of (DK) is not so desired,
so we need to find an alternative formulation to this dual problem. Let us rewrite
the infimum contained in its formulation in the following way

inf
x∈X∩K

[〈p, x〉 + 〈q, g(x)〉] = inf
x∈Rn

[〈p, x〉 + h(x) + δK(x)],

where the function h is defined like in the proof of Theorem 2.1 and we use also

the indicator function δK : R
n → R, δK(x) =

{
0, if x ∈ K,
+∞, if x /∈ K.

By the definition of the conjugate function, the right-hand side of the relation

above is equal to −
(
〈p, ·〉 + h + δK

)∗
(0), which, applying Theorem 20.1 in Ref.

17, can be written as

− inf
t∈Rn

[
(〈p, ·〉 + h)∗(t) + δ∗K(−t)

]

= − inf
t∈K∗

sup
x∈X

{
〈t, x〉 − 〈p, x〉 − 〈q, g(x)〉

}

= sup
t∈K∗

inf
x∈X

{
〈p − t, x〉 + 〈q, g(x)〉

}
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and the existence of a t̄ ∈ K∗ where this supremum is attained is granted. Here
K∗ =

{
y ∈ R

n : 〈y, x〉 ≥ 0,∀x ∈ K
}

denotes the dual cone of K.
It is obvious that the dual problem (DK) is equivalent now to (D′

K) and strong
duality between (PK) and (D′

K) is certain. �

Remark 3.1. One can obtain the dual problem (D′
K) also by perturbations,

in a similar way we obtained (D) in the previous section by including the cone
constraint in the constraint function (cf. Refs. 18-21). We refer further to (D ′

K)
as the dual problem of (PK).

The necessary and sufficient optimality conditions are derived from the ones
obtained in the general case.

Theorem 3.2.

(a) If the constraint qualification (CQK) is fulfilled and the primal problem
(PK) has an optimal solution x̄, then the dual problem (D′

K) has an optimal
solution (p̄, q̄, t̄) and the following optimality conditions are satisfied

(i) f(x̄) + f ∗(p̄) = 〈p̄, x̄〉,

(ii) inf
x∈X

[
〈p̄ − t̄, x〉 + 〈q̄, g(x)〉

]
= 〈p̄, x̄〉,

(iii) 〈q̄, g(x̄)〉 = 0,

(iv) 〈t̄, x̄〉 = 0.

(b) If x̄ is a feasible point to the primal problem (PK) and (p̄, q̄, t̄) is feasible
to the dual problem (D′

K) fulfilling the optimality conditions (i)-(iv), then
there is strong duality between (PK) and (D′

K) and the mentioned feasible
points turn out to be optimal solutions.

With a suitable choice of the functions and the sets involved in the prob-
lem (PK) one obtains a convex optimization problem equivalent to the primal
geometric problem used by Scott and Jefferson in many papers (Refs. 1-2, 4-14),

(Pg) inf
x=(x0,x1,...,xk)∈C0×C1×...×Ck,

gi(xi)≤0,i=1,...,k,
x∈K

g0(x0),

where Ci ⊆ R
li , i = 0, ..., k,

k∑
i=0

li = n, are convex sets, gi : Ci → R, i = 0, ..., k,

convex functions and K ⊆ R
n is a closed convex cone.
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The proper selection of the mentioned elements follows





X = R
l0 × C1 × ... × Ck,

f : R
n → R, gi : X → R, i = 1, ..., k,

f(x) =

{
g0(x0), x ∈ C0 × R

n−l0 ,
+∞, otherwise,

gi(x) = gi(xi), i = 1, ..., k, x = (x0, x1, ..., xk) ∈ X.

Now we can write the Fenchel-Lagrange dual problem to (Pg) (cf. (D′
K))

(Dg) sup
p∈R

n,q∈R
k
+,

t∈K∗

{
− f ∗(p) + inf

x∈Rl0×C1×...×Ck

[
〈p − t, x〉 +

k∑

i=1

qig
i(xi)

]}
.

The conjugate of f at p = (p0, p1, ..., pk) ∈ R
l0 × R

l1 × ... × R
lk is

f ∗(p) = sup
x∈Rn

{
〈p, x〉 − f(x)

}

= sup
x=(x0,x1,...,xk)∈C0×Rl1×...×R

lk

{ k∑

i=0

〈pi, xi〉 − g0(x0)

}

=

{
g0∗

C0
(p0), if pi = 0, i = 1, ..., k,

+∞, otherwise.

As the infimum that appears is separable into a sum of infima, the dual becomes

(Dg) sup
p0∈R

l0 ,
q∈R

k
+,

t∈K∗

{
− g0∗

C0
(p0) + inf

x0∈Rl0

〈p0 − t0, x0〉 +
k∑

i=1

inf
xi∈Ci

[〈−ti, xi〉 + qig
i(xi)]

}
,

if we consider t = (t0, t1, ..., tk) ∈ R
l0 × R

l1 × ... × R
lk . As

inf
x0∈Rl0

〈p0 − t0, x0〉 =

{
0, if p0 = t0,
−∞, otherwise,

the dual problem to (Pg) turns into

(Dg) sup
q∈R

k
+,

t∈K∗

{
− g0∗

C0
(t0) −

k∑

i=1

sup
xi∈Ci

[
〈ti, xi〉 − qig

i(xi)
]}

.

This is exactly the geometric dual problem encountered in all cited papers by
Scott and Jefferson, written without resorting to the homogenous extension of
the conjugate functions that can replace the suprema in (Dg).
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The constraint qualification sufficient to guarantee the validity of strong du-
ality for this pair of problems is derived from (CQK),

(CQg) ∃x′ ∈ ri(K) :





gi(x′) ≤ 0, i ∈ L,
gi(x′) < 0, i ∈ N,
x′i ∈ ri(Ci), i = 0, ..., k.

Theorem 3.3. The satisfaction of the constraint qualification (CQg) is suf-
ficient to guarantee strong duality regarding (Pg) and (Dg).

Remark 3.2. The cited papers of the mentioned authors do not assert tren-
chantly any strong duality allegation, containing just the optimality conditions,
while for the background of their achievement the reader is referred to Ref. 3.
There all the functions and the sets involved are postulated as being closed,
alongside their convexity assumptions that proved to be sufficient in our proofs
when the constraint qualification is fulfilled. Moreover, the possibility to impose
a milder constraint qualification regarding the affine functions whose restrictions
to the considered set are among the constraint functions is not taken into con-
sideration at all.

The optimality conditions concerning (Pg) and (Dg) spring directly from The-
orem 3.2.

Theorem 3.4.

(a) If the constraint qualification (CQg) is fulfilled and the primal problem
(Pg) has an optimal solution x̄ =

(
x̄0, x̄1, ..., x̄k

)
, then the dual problem

(Dg) has an optimal solution (q̄, t̄) and the following optimality conditions
are satisfied

(i) g0(x̄0) + g0∗
C0

(t̄0) = 〈t̄0, x̄0〉,

(ii)
(
q̄igi

)∗
Ci

(t̄i) = 〈t̄i, x̄i〉, i = 1, ..., k,

(iii) q̄ig
i(x̄i) = 0, i = 0, ..., k,

(iv) 〈t̄, x̄〉 = 0.

(b) If x̄ is a feasible point to the primal problem (Pg) and (q̄, t̄) is feasible to the
dual problem (Dg) fulfilling the optimality conditions (i)-(iv), then there
is strong duality between (Pg) and (Dg) and the mentioned feasible points
turn out to be optimal solutions.
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Remark 3.3. The optimality conditions we derived are equivalent to the
ones displayed by Scott and Jefferson in the cited papers, but have a different
form.

4. An overview of some special cases

This last section reviews some of the problems treated during the last quarter
of century by Scott and Jefferson, sometimes together with Jorjani, by means of
simplified generalized geometric programming. All the problems were artificially
transformed into the framework required by geometric programming by intro-
ducing new variables in order to separate implicit and explicit constraints and
building some cone where the new vector-variable is forced to lie. Then their dual
problems arose from the general theory and the optimality conditions came out
from the same place. We determine the Fenchel-Lagrange dual problem for each
problem, then we specialize the adequate constraint qualification and state the
strong duality assertion followed by the optimality conditions all without proofs
as they are direct consequences of Theorems 2.1 and 2.2. One may notice that
even if the functions and the sets are considered closed in the original papers
we remove this redundant property, as we demonstrate that strong duality and
optimality conditions stand out even without its presence when the sufficient
constraint qualification is valid. We have chosen six problems that we have con-
sidered more interesting, but also the problems in Refs. 1, 4-8 or 13 may benefit
from the same treatment. The last subsection is dedicated to the well-known
posynomial geometric programming which is undertaken into our duality theory.
Other papers of Scott and Jefferson treat some problems by means of posynomial
geometric programming, so we might have included some of these problems here.
During this section, unless otherwise specified, the variables cover the whole space
R

n.

4.1. Minmax programs (Ref. 11). The first problem we deal with is the
minmax program

(P1) inf
x∈C,Ax=b,

g(x)50

max
i=1,...,I

{fi(x)},

with fi : R
n → R, dom(fi) = C, i = 1, ..., I, and g = (g1, ..., gJ)T : C → R

J

convex functions, C ⊆ R
n a convex set, A ∈ R

m×n and b ∈ R
m. In the original

paper the functions fi, i = 1, ..., I, gj, j = 1, ..., J , and the set C are required to
be also closed, but strong duality is valid in more general circumstances, i. e.
without the closedness assumptions. To treat the problem (P1) with the method
presented in the second section, it is rewritten as

(P1) inf
x∈C,s∈R,

b−Ax50,g(x)50,
fi(x)−s≤0,i=1,...,I

s.
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The Fenchel-Lagrange dual problem to (P1) is, considering the objective function
u : R

n × R → R, u(x, s) = s and qf = (qf
1 , ..., qf

I )T ,

(D1) sup
px∈R

n,ps∈R,
ql∈R

m
+ ,qf∈R

I
+,qg∈R

J
+

{
− u∗(px, ps) + inf

x∈C,
s∈R

[
〈px, x〉 + 〈ps, s〉

+
∑
i∈I

qf
i (fi(x) − s) + 〈qg, g(x)〉 + 〈ql, b − Ax〉

]}
.

Computing the conjugate of the objective function we get

u∗(px, ps) = sup
x∈R

n,
s∈R

{
〈(px, ps), (x, s)〉 − s

}
=

{
0, if ps = 1, px = 0,
+∞, otherwise.

Noticing that the infimum in (D1) is separable into a sum of two infima, one
concerning s ∈ R, the other x ∈ C, the dual problem turns into

(D1) sup
ql∈R

m
+ ,qf∈R

I
+,

qg∈R
J
+

{
inf
x∈C

[∑

i∈I

qf
i fi(x) + 〈qg, g(x)〉 − 〈AT ql, x〉

]

+ inf
s∈R

[
s − s

∑

i∈I

qf
i

]
+ 〈ql, b〉

}
.

The second infimum is equal to 0 when
∑
i∈I

qf
i = 1, otherwise having the value

−∞, while the first, transformed into a supremum, can be viewed as a conjugate
function relative to the set C. Applying Theorem 20.1 in Ref. 17 and denoting
qg = (qg

1 , ..., q
g
J)T , the dual problem becomes

(D1) sup
ql∈R

m
+ ,qg∈R

J
+,

qf∈R
I
+,

I
P

i=1
qf
i =1,

I
P

i=1
ui+

J
P

j=1
vj=AT ql

{
〈ql, b〉 −

I∑

i=1

(qf
i fi)

∗(ui) −
J∑

j=1

(qg
j gj)

∗
C(vj)

}
,

identical to the dual problem found in Ref. 11. A sufficient circumstance to be
able to formulate the strong duality assertion is the following constraint qualifi-
cation, where the sets L and N are considered as before,

(CQ1) ∃x′ ∈ ri(C) :





Ax′ = b,
gj(x

′) ≤ 0, j ∈ L,
gj(x

′) < 0, j ∈ N,

13



Theorem 4.1. If the constraint qualification (CQ1) is satisfied, then the
strong duality between (P1) and (D1) is assured.

Since the optimality conditions are not delivered in Ref. 11, here they are,
determined via our method.

Theorem 4.2.

(a) If the constraint qualification (CQ1) is fulfilled and x̄ is an optimal solution
to (P1), then strong duality between the problems (P1) and (D1) is at-
tained and the dual problem has an optimal solution (q̄l, q̄f , q̄g, ū, v̄), where
ū = (ū1, ..., ūI)

T and v̄ = (v̄1, ..., v̄J)T , satisfying the following optimality
conditions

(i) fi(x̄) − max
i=1,...,I

{fi(x̄)} = 0 if q̄f
i > 0, i = 1, ..., I,

(ii) 〈q̄l, b − Ax̄〉 = 0,

(iii) 〈q̄g, g(x̄)〉 = 0,

(iv)
(
q̄f
i fi

)∗
(ūi) + q̄f

i fi(x̄) = 〈ūi, x̄〉, i = 1, ..., I,

(v)
(
q̄g
j gj

)∗
C
(v̄j) + q̄g

j gj(x̄) = 〈v̄j, x̄〉, j = 1, ..., J .

(b) Having a feasible solution x̄ to the primal problem and one (q̄l, q̄f , q̄g, ū, v̄)
to the dual satisfying the optimality conditions (i)-(v), then the mentioned
feasible solutions turn out to be optimal solutions to the corresponding
problems and strong duality stands.

4.2. Entropy constrained programs (Ref. 14). A minute exposition of
the way how the Fenchel-Lagrange duality is applicable to the problem treated
in Ref. 14 is available in Ref. 15. Let us summarize it here.

The problem
(P2) inf

Ax=b,

−
n

P

i=1
xi ln xi≥H,

n
P

i=1
xi=1,x=0

〈c, x〉,

where x = (x1, ..., xn)T ∈ R
n, c = (c1, ..., cn)T ∈ R

n, A ∈ R
m×n, b ∈ R

m, prompts
the following Fenchel-Lagrange dual problem

(D2) sup
p∈R

n,qx∈R,
ql∈R

m
+ ,qH∈R+

{
−〈c, ·〉∗(p) + inf

x=0

[
〈p, x〉 + 〈ql, b − Ax〉

+ qH
(
H +

n∑

i=1

xi ln xi

)
+ qx

( n∑

i=1

xi − 1
)]}

.
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It is known that 〈c, ·〉∗(p) = 0 if p = c, otherwise being equal to +∞. In Ref. 15
we prove that in the constraints of the problem (D2) one can consider qH > 0
instead of qH ∈ R+. Also, the infimum over x = 0 is separable into a sum of infima
concerning xi ≥ 0, i = 1, ..., n. Denoting also by aji, j = 1, ...,m, i = 1, ..., n, the
entries of the matrix A and ql = (ql

1, ..., q
l
m)T , the dual problem turns into

(D2) sup
qx∈R,ql∈R

m
+ ,

qH>0

{
qHH + 〈ql, b〉 − qx

+
n∑

i=1

inf
xi≥0

[
cixi + qHxi ln xi +

(
qx −

m∑

j=1

ql
jaji

)
xi

]}
.

The infima can easily be computed (cf. Ref. 15) and the dual becomes

(D2) sup
qx∈R,ql∈R

m
+ ,

qH>0

{
qHH + 〈ql, b〉 − qx

− qH

n∑

i=1

exp

(( m∑

j=1

ql
jaji − ci + qx − qH

)
/qH

)}
.

The supremum over qx ∈ R is also computable using elementary knowledge re-
garding the extreme points of functions, so the dual problem turns into its final
version

(D2) sup
ql∈R

m
+ ,

qH>0

{
〈b, ql〉 − qH ln

n∑

i=1

exp
(
(AT ql − c)i/q

H
)

+ qHH

}
,

almost identical to the dual problem found in Ref. 14. The difference is that
the interval variable qH lies in R+\{0} instead of R+. This does not affect the
optimal objective value of the dual problem. We have denoted the i-th entry of
the vector AT ql − c by (AT ql − c)i. With the help of the constraint qualification

(CQ2) ∃x′ ∈ int(Rn
+) :





H +
n∑

i=1

x′
i ln x′

i < 0,

b − Ax′ 5 0,
n∑

i=1

x′
i = 1,

the strong duality affirmation is ready to be formulated, followed by the optimal-
ity conditions, equivalent to the ones in the original paper.

Theorem 4.3. If the constraint qualification (CQ2) is satisfied, then the
strong duality between (P2) and (D2) is assured.

Theorem 4.4.
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(a) If the constraint qualification (CQ2) is fulfilled and x̄ is an optimal solu-
tion to (P2), then strong duality between the problems (P2) and (D2) is
attained and the dual problem has an optimal solution (q̄l, q̄H) satisfying
the following optimality conditions

(i) 〈q̄l, Ax̄ − b〉 = 0,

(ii) q̄H

(
H +

n∑
i=1

x̄i ln x̄i

)
= 0,

(iii) q̄H

(
n∑

i=1

x̄i ln x̄i + ln
n∑

i=1

exp
(
(AT q̄l − c)i/q̄

H
))

= 〈x̄, AT q̄l − c〉.

(b) Having a feasible solution x̄ to the primal problem and one to the dual
(q̄l, q̄H) satisfying the optimality conditions (i)-(iii), then the mentioned
feasible solutions turn out to be optimal solutions to the corresponding
problems and strong duality stands.

4.3. Facility location problem (Ref. 12). In the original paper the
authors calculate the geometric duals for some problems involving norms. We
have chosen one of them to be presented here, namely

(P3) inf
‖x−aj‖≤dj ,

j=1,...,m

{ m∑

j=1

wj ‖ x − aj ‖

}
,

where aj ∈ R
n, wj > 0, dj > 0, for j = 1, ...,m. The raw version of its Fenchel-

Lagrange dual problem is

(D3) sup
p∈R

n,
q∈R

m
+

{
−

(
m∑

j=1

wj ‖ · − aj ‖

)∗

(p)

+ inf
x∈Rn

[
〈p, x〉 +

m∑
j=1

qj

(
‖ x − aj ‖ −dj

)
]}

.

By Theorem 20.1 in Ref. 17 it turns into

(D3) sup
pj∈R

n,
m
P

j=1
pj=p,

q∈R
m
+

{
−

m∑
j=1

(
wj ‖ · − aj ‖

)∗
(pj)

+ inf
x∈Rn

[
〈p, x〉 +

m∑
j=1

qj

(
‖ x − aj ‖ −dj

)
]}

.
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Knowing that, for j = 1, ...,m,

(
wj ‖ · − aj ‖

)∗
(pj) =

{
〈aj, p

j〉, if ‖ pj ‖≤ wj,
+∞, otherwise,

and turning the infimum into supremum, we get applying again Theorem 20.1 in
Ref. 17 the following equivalent formulation of the dual problem, encountered
also in Ref. 12,

(D3) sup
pj∈R

n,rj∈R
n,

‖pj‖≤wj ,‖rj‖≤qj ,
j=1,...,m,

m
P

j=1

(
pj+rj

)
=0,q∈R

m
+

{
− 〈q, d〉 −

m∑

j=1

〈aj, p
j〉 −

m∑

j=1

〈aj, r
j〉

}
,

rewritable as

(D3) sup
pj∈R

n,rj∈R
n,

‖pj‖≤wj ,‖rj‖≤qj ,
j=1,...,m,

m
P

j=1

(
pj+rj

)
=0,q∈R

m
+

{
− 〈q, d〉 −

m∑

j=1

〈aj, p
j + rj〉

}
.

Of course, we have set here d = (d1, ..., dm)T ∈ R
m and q = (q1, ..., qm)T ∈ R

m.
A sufficient background for the existence of strong duality is in this case

(CQ3) ∃x′ ∈ R
n : ‖ x′ − aj ‖< dj, j = 1, ...,m.

Theorem 4.5. If the constraint qualification (CQ3) is satisfied, then the
strong duality between (P3) and (D3) is assured.

Although there is no mention of the optimality conditions in Ref. 12 for this
pair of dual problems we have derived the following result.

Theorem 4.6.

(a) If the constraint qualification (CQ3) is fulfilled and x̄ is an optimal solution
to (P3), then strong duality between the problems (P3) and (D3) is attained
and the dual problem has an optimal solution (p̄1, ..., p̄m, r̄1, ..., r̄m, q̄1, ..., q̄m)
satisfying the following optimality conditions

(i) wj ‖ x̄ − aj ‖= 〈p̄j, x̄ − aj〉 and ‖ p̄j ‖= wj when x̄ 6= aj, j = 1, ...,m.

(ii) q̄j ‖ x̄ − aj ‖= 〈r̄j, x̄ − aj〉, q̄j ≥ 0, j = 1, ...,m, and if q̄j > 0 so is
‖ r̄j ‖= q̄j. For q̄j = 0 there is also r̄j = 0. If in particular x̄ = aj for
any j ∈ {1, ...,m}, then q̄j = 0 and r̄j = 0.
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(iii) ‖ x̄ − aj ‖= dj, for j ∈ {1, ...,m} such that q̄j > 0.

(iv)
m∑

j=1

(
p̄j + r̄j

)
= 0.

(b) Having a feasible solution x̄ to the primal problem and one to the dual
(p̄1, ..., p̄m, r̄1, ..., r̄m, q̄1, ..., q̄m) satisfying the optimality conditions (i)-(iv),
then the mentioned feasible solutions turn out to be optimal solutions to
the corresponding problems and strong duality holds.

4.4. Quadratic concave fractional programs (Ref. 9). Another prob-
lem artificially pressed into the selective framework of geometric programming
is

(P4) inf
Cx5b

(
Q(x)/f(x)

)
,

where Q(x) = (1/2)xT Ax, x ∈ R
n, A ∈ R

n×n is a symmetric positive definite
matrix, C ∈ R

m×n, b ∈ R
m and f : R

n → R a concave function, strictly positive
over the feasible set of the problem. Because no analytic representation of the
conjugate of the objective function is available, the problem is rewritten

(P4) inf
sQ
(
(1/s)x

)
−f(x)≤0,

Cx5b,s∈R+\{0}

s.

To compute the Fenchel-Lagrange dual problem, we need first the conjugate of
the objective function u : R

n × R → R, u(x, s) = s. Using the result presented
for the same objective function in section 4.1, the dual problem becomes

(D4) sup
qx∈R

m
+ ,

qs∈R+

{
inf

x∈R
n,

s>0

[
s + qs

(
sQ
(
(1/s)x

)
− f(x)

)
+ 〈qx, Cx − b〉

]}
.

The infimum over (x, s), transformed into a supremum, can be viewed as a con-
jugate function that is determined after some standard calculations. The formula
that results for the dual problem is identical to the geometric dual obtained by
the cited authors,

(D4) sup
qx∈R

m
+ ,qs∈R+,

(1/2)uT A−1u≤qs,

u+v=−CT qx

{
− bT qx − (−qsf)∗(v)

}
,

moreover simplifiable even to

(D4) sup
qx∈R

m
+ ,qs∈R+,

(1/2)(−v−CT qx)T A−1(−v−CT qx)≤qs

{
− bT qx − (−qsf)∗(v)

}
.
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Of course we have removed the assumption of closedness that has been imposed
on the function f before. Because of the linearity of the constraints of (P4) no
constraint qualification is required in this case.

Theorem 4.7. Provided that the primal problem has at least a feasible point,
strong duality between problems (P4) and (D4) is assured.

The optimality conditions, equivalent to the ones given in Ref. 9, are pre-
sented in the following statement.

Theorem 4.8.

(a) If the problem (P4) has an optimal solution x̄ then strong duality between
the problems (P4) and (D4) is attained and the dual problem has an optimal
solution (v̄, q̄x, q̄s) satisfying the following optimality conditions

(i) (−q̄sf)∗(v̄) − q̄sf(x̄) = 〈v̄, x̄〉,

(ii) (1/2)(−v̄ − C̄T qx)T A−1(−v̄ − C̄T qx) + (1/2)x̄T Ax̄ = 〈−v̄ − C̄T qx, x̄〉,

(iii) 〈q̄x, b − Cx̄〉 = 0,

(iv) (1/2)
(
− v̄ − C̄T qx

)T
A−1

(
− v̄ − C̄T qx

)
= q̄s.

(b) Having a feasible solution x̄ to the primal problem and one to the dual
(v̄, q̄x, q̄s) satisfying the optimality conditions (i)-(iv) the mentioned feasi-
ble solutions turn out to be optimal solutions to the corresponding problems
and strong duality stands.

4.5. Sum of convex ratios (Ref. 10). An extension to vector optimization
of the problem treated here can be found in Ref. 22. Here we consider as primal
problem

(P5) min
Cx5b

{
h(x) +

N∑

i=1

(
f 2

i (x)/gi(x)
)
}

,

where fi, h : R
n → R are convex functions, gi : R

n → R concave, fi(x) ≥ 0,
gi(x) > 0, i = 1, ..., N , for all x feasible to (P5), b ∈ R

m, C ∈ R
m×n, that is

equivalent to

(P5) min
fi(x)≤si,si∈R+,

gi(x)≥ti,ti∈R+\{0},
i=1,...,N,Cx5b

{
h(x) +

N∑

i=1

(
s2

i /ti
)
}

.

The Fenchel-Lagrange dual problem arises naturally from its basic formula, where
we denote the objective function by u(x, s, t), s = (s1, ..., sN )T , t = (t1, ..., tN )T
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and also the functions f = (f1, ..., fN )T and g = (g1, ..., gN )T ,

(D5) sup
px∈R

n,ps,pt∈R
N ,

qx∈R
m
+ ,qs,qt∈R

N
+

{
− u∗(px, ps, pt) + inf

x∈R
n,s∈R

N
+ ,

t∈int(RN
+ )

[
〈px, x〉 + 〈ps, s〉

+〈pt, t〉 + 〈qs, f(x) − s〉 + 〈qt, t − g(x)〉 + 〈qx, Cx − b〉
]}

.

For the conjugate function one has (consult Ref. 22 for computational details),
denoting ps = (ps

1, ..., p
s
N )T and pt = (pt

1, ...p
t
N )T ,

u∗(px, ps, pt) =

{
h∗(px), (ps

i )
2 + 4pt

i ≤ 0, i = 1, ..., N,
+∞, otherwise,

while the infimum over (x, s, t) is separable into a sum of three infima each of
them concerning a variable. The dual problem becomes

(D5) sup
px∈R

n,ps,pt∈R
N ,

(ps
i )

2+4pt
i≤0,i=1,...,N,

qx∈R
m
+ ,qs,qt∈R

N
+

{
− h∗(px) + inf

s∈R
N
+

[
〈ps, s〉 − 〈qs, s〉

]
− 〈qx, b〉+

inf
x∈Rn

[
〈px + CT qx, x〉 + 〈qs, f(x)〉 − 〈qt, g(x)〉

]
+ inf

t∈R
N
+ \{0}

[
〈pt, t〉 + 〈qt, t〉

]}
.

The infimum regarding s ∈ R
N
+ has a negative infinite value unless ps − qs = 0,

when it nullifies itself, while the one regarding t ∈ R
N
+\{0} is zero when pt+qt = 0,

otherwise being equal to −∞. The infimum regarding x ∈ R
n can be turned into

a supremum and computed as a conjugate of a sum of functions at −(px +CT qx).
Applying Theorem 20.1 in Ref. 17 to this conjugate, the dual develops denoting
qs = (qs

1, ..., q
s
N )T and qt = (qt

1, ..., q
t
N )T into

(D5) sup
qx∈R

m
+ ,qs,qt∈R

N
+ ,

ps,pt∈R
N ,ps=qs,pt=−qt,

pt
i≤−
(

ps
i /2
)2

,i=1,...,N,

ai,di,p
x∈R

n,i=1,...,N,
N
P

i=1
(ai+di)=−px−CT qx

{
− h∗(px) −

N∑
i=1

(qs
i fi)

∗(ai)

−
N∑

i=1

(−qt
igi)

∗(di) − 〈qx, b〉

}
,

20



that can be simplified, renouncing the variables ps and pt, to

(D5) sup
qx∈R

m
+ ,qs,qt∈R

N
+ ,

qt
i≥
(

qs
i /2
)2

,i=1,...,N,

ai,di,p
x∈R

n,i=1,...,N,
N
P

i=1
(ai+di)=−px−CT qx

{
− h∗(px) −

N∑
i=1

(qs
i fi)

∗(ai)

−
N∑

i=1

(−qt
igi)

∗(di) − 〈qx, b〉

}
.

Writing the homogenous extensions of the conjugate functions one gets the dual
problem obtained in the original paper. Let us stress that we have ignored the
hypotheses of closedness associated to the functions f , g and h in Ref. 10, as
strong duality is valid even in their absence.

Theorem 4.9. Provided that the primal problem (P5) has a finite optimal
objective value, strong duality between problems (P5) and (D5) is assured.

The optimality conditions we determined in this case are richer than the ones
presented in Ref. 10.

Theorem 4.10.

(a) If the problem (P5) has an optimal solution x̄ where its objective func-
tion is finite, then strong duality between the problems (P5) and (D5) is
attained and the dual problem has an optimal solution (p̄x, q̄x, q̄s, q̄t, ā, d̄)
with ā = (ā1, ..., āN )T and d̄ = (d̄1, ..., d̄N )T satisfying the following opti-
mality conditions

(i)
(
q̄s
i fi

)∗
(āi) + q̄s

i fi(x̄) = 〈āi, x̄〉, i = 1, ..., N ,

(ii)
(
− q̄t

igi

)∗
(d̄i) − q̄t

igi(x̄) = 〈d̄i, x̄〉, i = 1, ..., N ,

(iii) h∗(p̄x) + h(x̄) = 〈p̄x, x̄〉,

(iv) q̄s
i = 2

(
fi(x̄)/gi(x̄)

)
, i = 1, ..., N ,

(v) q̄t
i = f 2

i (x̄)/g2
i (x̄), i = 1, ..., N ,

(vi) 〈q̄x, b − CT x̄〉 = 0.

(b) Having a feasible solution x̄ to the primal problem and one to the dual
(p̄x, q̄x, q̄s, q̄t, ā, d̄) satisfying the optimality conditions (i)-(vi), the men-
tioned feasible solutions turn out to be optimal solutions to the correspond-
ing problems and strong duality holds.
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4.6. Quasiconcave multiplicative programs (Ref. 2). Despite its in-
tricateness, geometric programming seems to be still very popular, as its direct
applications still get published. The latest we could find is on a class of quasi-
concave multiplicative programs that originally look like

(P6) sup
Ax5b

{
k∏

i=1

[fi(x)]ai

}
,

with fi : R
n → R concave functions, positive over the feasible set of the problem,

ai > 0, i = 1, ..., k, A ∈ R
m×n, b ∈ R

m. The problem is brought into another
layout in order to be properly treated,

(P̃6) inf
fi(x)≥si,i=1,...,k,

Ax5b,s∈int(Rk
+)

{
−

k∑

i=1

ai ln si

}
.

Denoting f = (f1, ..., fk)
T , s = (s1, ..., s

k)T and u : R
n × R

k → R,

u(x, s) =





−
k∑

i=1

ai ln si, if (x, s) ∈ R
n × int(Rk

+),

+∞, otherwise,

the raw formula of the Fenchel-Lagrange dual to (P̃6) is

(D̃6) sup
px∈R

n,ps∈R
k,

ql∈R
m
+ ,qf∈R

k
+

{
−u∗(px, ps) + inf

x∈R
n,

s∈int(Rk
+)

[
〈px, x〉 + 〈ps, s〉

+ 〈ql, Ax − b〉 + 〈qf , s − f(x)〉
]}

.

Regarding the conjugate of the objective function the following result is available
for ps = (ps

1, ..., p
s
k)

T

u∗(px, ps) =





−
k∑

i=1

ai

(
1 − ln

(
ai/(−ps

i )
))

, if px = 0, ps < 0,

+∞, otherwise.

The infimum in the dual problem can also be separated into a sum of two infima,
one concerning s ∈ int(Rk

+), the other x ∈ R
n. Let us write again the dual using

the last observations and denoting −ps
i by ps

i , i = 1, ..., k,

(D̃6) sup
ps∈int(Rk

+),

ql∈R
m
+ ,qf∈R

k
+

{
k∑

i=1

ai

(
1 − ln

(
ai/p

s
i

))
+ inf

s∈int(Rk
+)
〈qf − ps, s〉

+ inf
x∈Rn

[
〈ql, Ax〉 − 〈qf , f(x)〉

]
− 〈ql, b〉

}
.
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The infimum regarding s is equal to 0 when qf − ps = 0, otherwise being −∞,
while the one over x ∈ R

n can be rewritten as a supremum and viewed as a
conjugate of a sum of functions. The dual problem yields

(D̃6) sup
ps∈int(Rk

+),qf =ps,

ql∈R
m
+ ,

k
P

i=1
vi=−AT ql

{
k∑

i=1

(
ai − ai ln

(
ai/p

s
i

))

−
k∑

i=1

qf
i (−fi)

∗
((

1/qf
i

)
vi

)
− 〈b, ql〉

}
,

where qf = (qf
1 , ..., qf

k )T , and as the supremum regarding the variable ps can be
easily computed, being attained for ps = −qf , we get the following final version
of the dual, equivalent to the one found in Ref. 2,

(D̃6) sup
ql∈R

m
+ ,qf∈int(Rk

+),
k

P

i=1
vi=−AT ql

{
k∑

i=1

(
ai − ai ln

(
ai/q

f
i

))

−
k∑

i=1

qf
i (−fi)

∗
(
(1/qf

i )vi

)
− 〈b, ql〉

}
.

For strong duality a constraint qualification would normally be required because
within the constraints of (P̃6) there are affine as well as non-affine functions. But
when the problem (P6) has a non-empty feasible set, the existence of a feasible
point x′ so that fi(x

′) > 0, i = 1, ..., k, is assured and there is also an s′ > 0
so that fi(x

′) > s′ > 0, i = 1, ..., k. So the constraint qualification that comes

from the general case is automatically fulfilled for (P̃6). Without any additional
assumption, such as closedness, required for the functions fi, i = 1, ..., k, in the
cited paper, one may formulate the strong duality statement.

Theorem 4.11. Provided that the primal problem has a feasible point, strong
duality between problems (P̃6) and (D̃6) is assured.

No surprises appear when we derive the optimality conditions concerning the
pair of dual problems in discussion.

Theorem 4.12.

(a) If the problem (P̃6) has an optimal solution x̄, then strong duality between

the problems (P̃6) and (D̃6) is attained and the dual problem has an optimal
solution (v̄1, ..., v̄k, q̄

l, q̄f ) satisfying the following optimality conditions
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(i) (−fi)
∗
((

1/q̄f
i

)
v̄i

)
− fi(x̄) =

〈(
1/q̄f

i

)
v̄i, x̄

〉
, i = 1, ..., k,

(ii) 〈AT x̄ − b, q̄l〉 = 0,

(iii)
k∑

i=1

v̄i = −ĀT ql,

(iv) ln(fi(x̄)) +
(
q̄f
i /ai

)
fi(x̄) = ln

(
ai/q̄

f
i

)
− 1, i = 1, ..., k.

(b) Having a feasible solution x̄ to the primal problem and one to the dual
(v̄1, ..., v̄k, q̄

l, q̄f ) satisfying the optimality conditions (i)-(iv), the mentioned
feasible solutions turn out to be optimal solutions to the corresponding
problems and strong duality holds.

4.7. Posynomial geometric programming (Ref. 24). We are going to
prove now that also the posynomial geometric programming duality can be viewed
as a special case of the Fenchel-Lagrange duality. As it has been already proved
(cf. Ref. 1) that the generalized geometric programming includes the posynomial
instance as special case, our result is not so surprising within the framework of
this paper. The primal-dual pair of posynomial geometric problems is composed
by

(P7) inf
t∈R+,

gj(t)≤1,
j=1,...,s

g0(t),

where

gk(t) =
∑

i∈J [k]

ci

m∏

j=1

taij , k = 0, ..., s,

aij ∈ R, j = 1, ...,m, ci > 0, i = 1, ..., n,

J [k] = {mk,mk + 1, ..., nk}, k = 0, ..., s,

m0 = 1,m1 = n0 + 1, ...,mk = nk−1 + 1, ..., ns = n,

and

(D7) sup
δ∈R+,

P

i∈J[0]

δi=1,

n
P

i=1
δiaij=0,

j=1,...,m

[
n∏

i=1

(ci/δi)
δi

]
s∏

k=1

λk(δ)
λk(δ),

where
λk(δ) =

∑

i∈J [k]

δi, k = 1, ..., s.
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The primal posynomial problem is equivalent to (cf. Refs. 1 and 24)

(P̃7) inf

ln

(
P

i∈J[k]

ci exp(xi)

)
≤0,

k=1,...,s,x∈A

{
ln

(
∑

i∈J [0]

ci exp(xi)

)}
,

where A denotes the linear subspace generated by the columns of the exponent
matrix (aij). Let us name also the primal objective function u(x). We determine

the Fenchel-Lagrange dual problem to (P̃7) from the formula of (D′
K), with A⊥

indicating the orthogonal subspace of A, for q = (q1, ..., qs)
T and t = (t1, ..., tn)T

(D̃7) sup
p∈R

n,t∈A⊥,
q∈R

s
+

{
− u∗(p) + inf

x∈A

[
〈p − t, x〉 +

s∑

k=1

qk ln

( ∑

i∈J [k]

ci exp(xi)

)]}
.

For the conjugate of the objective function we have

u∗(p) =





∑
i∈J [0]

pi ln(pi/ci), if pj = 0, j ∈ J [k], k = 1, ..., s,

∑
i∈J [0]

pi = 1, p = (p1, ..., pn)T ∈ R
n
+,

+∞, otherwise

and similar results can be derived if we write the infimum within the dual as
a sum of suprema over (xi)i∈J [k], k = 1, ..., s, just with the changed constraints∑
i∈J [k]

ti = qk. Also there follows pi = ti, i ∈ J [0]. Like in entropy optimization we

consider 0 ln(0/ci) = 0, ci > 0, i = 1, ..., n. After these, the dual problem becomes

(D̃7) sup
t∈A⊥,q∈R

s
+,

t=0,
P

i∈J[0]

ti=1,

P

i∈J[k]

ti=qk,k=1,...,s

{ n∑

i=1

ti ln(ci/ti) +
s∑

k=1

qk ln qk

}

that is equivalent to the problem (D7), namely they have the same optimal solu-
tion and the objective function of (D7) is the exponential of the objective function

of (D̃7).
Finally, the condition that guarantees strong duality, derived from the con-

straint qualification (CQ), is actually the so-called superconsistency introduced
in Ref. 24, i. e.

(CQ7) ∃t′ > 0 : gk(t
′) < 1, k = 1, ..., s.

Theorem 4.13. If the constraint qualification (CQ7) is satisfied, then the
strong duality between (P7) and (D7) is assured.
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Consequently we present also the optimality conditions concerning this pair
of problems.

Theorem 4.14.

(a) If the constraint qualification (CQ7) is fulfilled and x̄ is an optimal solution
to (P7), then strong duality between the problems (P7) and (D7) is attained
and the dual problem has an optimal solution (t̄, q̄) satisfying the following
optimality conditions

(i) ln

{ ∑
i∈J [0]

ci exp(x̄i)

}
+
∑

i∈J [0]

t̄i ln(t̄i/ci) = 〈t̄J [0], x̄J [0]〉,

(ii) q̄k ln

{ ∑
i∈J [k]

ci exp(x̄i)

}
+
∑

i∈J [k]

t̄i ln(t̄i/ci) − q̄k ln q̄k = 〈t̄J [k], x̄J [k]〉, k =

1, ..., s,

(iii)
∑

i∈J [k]

ci exp(x̄i) = 1 when q̄k > 0, k = 1, ..., s,

(iv) 〈x̄, t̄〉 = 0,

where xJ [k] = (xmk
, ..., xnk

)T and tJ [k] = (tmk
, ..., tnk

)T , k = 0, ..., s.

(b) Having a feasible solution x̄ to the primal problem and one to the dual (t̄, q̄)
satisfying the optimality conditions (i)-(iv), then the mentioned feasible
solutions turn out to be optimal solutions to the corresponding problems
and strong duality holds.

5. Conclusions

Let us sum up now the main results in this paper. First we have introduced
a new duality approach, named Fenchel-Lagrange duality because of the way
it is established and of the properties it has. Strong duality and optimality
conditions for a general convex optimization primal problem and its Fenchel-
Lagrange dual are presented, provided that a constraint qualification is valid.
Then we prove that the geometric duality used by Scott and Jefferson in many
of their papers turns out to be a special case of our Fenchel-Lagrange duality. In
all the invoked papers the mentioned authors present the geometric dual problem
to the primal and give the necessary and sufficient optimality conditions that are
true under assumptions of convexity and closedness concerning the functions and
the sets involved there, together with a constraint qualification. We established
the same dual problem to the primal exploiting the Fenchel-Lagrange duality
we presented earlier. Strong duality and optimality conditions are revealed to
stand in much weaker circumstances, i. e. the closedness can be cancelled from
the initial assumptions, while the constraint qualification can be generalized and
weakened, respectively. We review some convex optimization problems treated
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by the cited authors by means of geometric programming duality, showing how
their duals can be obtained easier and more directly via Fenchel-Lagrange duality.
Of course strong duality is accomplished under weaker sufficient conditions than
in the original papers, namely the closedness assumptions for the functions and
sets involved can be removed. Necessary and sufficient optimality conditions are
derived for each problem.
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