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Abstract. We prove the inverse closedness of certain approximation algebras based
on a quasi-Banach algebra X using two general theorems on the inverse closedness
of subspaces of quasi-Banach algebras. In the first theorem commutative algebras
are considered while the second theorem can be applied to arbitrary X and to
subspaces of X which can be obtained by a general K-method of interpolation
between X and an inversely closed subspace Y of X having certain properties. As
application we present some inversely closed subalgebras of C(T) and C[−1, 1]. In
particular, we generalize Wiener’s theorem, i.e., we show that for many subalgebras
S of l1(Z), the property {ck(f)} ∈ S (ck(f) being the Fourier coefficients of f)
implies the same property for 1/f if f ∈ C(T) vanishes nowhere on T.

1 Introduction

Let X be a quasi-normed space and let {An}∞n=0 be a sequence of subsets of
X. We say that the pair (X, {An}∞n=0) defines an approximation scheme if the
following conditions are satisfied:

{0} = A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ · · · ,

λAn ⊂ An for all scalars λ and all n ∈ N,

An +An ⊂ AK(n), where K(0) = 0 and n ≤ K(n) ≤ K(n+1) for all n ∈ N,⋃∞
n=0 An is a dense subset of X.

An approximation space based on (X, {An}∞n=0) is a set of elements f of X
for which the sequences {E(f,An)}∞n=0 of best approximation errors,

E(f,An) = En(f) := inf
fn∈An

‖f − fn‖ ,
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belong to a given sequence space S. (We use the notation f for the elements of
X, since we are mainly interested in approximation theory in function spaces.)
Particularly, for the case K(n) = 2n, the classical approximation spaces (see
[Pie]) are defined for each 0 < s < ∞ and 0 < q ≤ ∞ by

As
q(X) =

{
f ∈ X : ‖f‖As

q
=

∥∥∥{
(n + 1)s−(1/q)En(f)

}∞
n=0

∥∥∥
q

< ∞
}

,

where ‖ . ‖q denotes the lq-norm. (Sometimes we also write As
q(X, {An}), but

usually the sequence {An} is viewed as fixed so that it is not necessary to include
it in the notation.)

Remark 1.1 In the literature (e.g., in [AL1] and [Pie]) it is often not supposed
that

⋃
An is dense in X. But we do not lose a lot of generality assuming this

property, since usually the considered sequence spaces S contain only sequences
which converge to zero and this means that, in the case

⋃
An

X 6= X, the corre-
sponding approximation spaces do not change if X is replaced by

⋃
An

X
.

Classical approximation spaces are useful for the study of a classical conver-
gence order like O(n−γ) for approximation methods in which elements of An are
used as approximation elements. Another reason for the importance of classical
approximation spaces is the fact that, up to a certain upper bound for s, they are
classical interpolation spaces (obtained by the classical (θ, q)-method) between
X and another quasi-normed space Y ⊂ X if the so-called Jackson and Bernstein
inequalities of order r > 0,

En(f) ≤ c n−r‖f‖Y and ‖fn‖Y ≤ c nr‖fn‖X (f ∈ Y, fn ∈ An, n ∈ N), (1.1)

hold true ([DL, Theorem 7.9.1]). But meanwhile there appeared several appli-
cations in which more general approximation spaces are needed (see [AL1, AL2,
AL3, JL, LR, Lu2, Lu3, Lu4, Lu5]) which are non-classical interpolation spaces
between X and Y if Jackson and Bernstein inequalities hold true (see [Lu]). These
spaces are defined as follows.

Definition 1.2 Let S be a real linear space of sequences {αn}∞n=0 ⊂ R (with
element-wise defined operations), equipped with a quasi-norm ‖ · ‖S. We say that
S is admissible (with respect to the approximation scheme (X, {An})) if

• All finite sequences {αn}N
n=0 belong to S (Here, {αn}N

n=0 denotes a sequence
{α∗n}∞n=0 such that α∗n = αn for all n ≤ N and α∗n = 0 for all n > N).

• S is a solid. This means that if 0 ≤ αn ≤ βn for all n and {βn} ∈ S then also
{αn} ∈ S and ‖{αn}‖S ≤ ‖{βn}‖S.
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• The following control condition holds: If α0 ≥ α1 ≥ α2 ≥ · · · ≥ 0 and
{αK(n)}∞n=0 ∈ S then also {αn}∞n=0 ∈ S and ‖{αn}∞n=0‖ ≤ CS‖{αK(n)}∞n=0‖S,
where the constant CS > 0 only depends on S and {K(n)}∞n=0.

Given an approximation scheme (X, {An}) and an admissible sequence space S
(with respect to (X, {An})), we define the approximation space A(X, S) by

A(X, S) = {f ∈ X : {E(f,An)}∞n=0 ∈ S}

and its quasi-norm by ‖f‖A(X,S) = ‖{E(f,An)}‖S.

Let us give a list of some properties of these spaces (see [AL1, Prop.3.8,
Theo.3.12, Theo.3.17, Rem.3.18, Cor.4.14]). Of course, the admissibility of S is
assumed in all of the following theorems.

Theorem 1.3 A(X, S) is a quasi-normed space which is continuously embedded
in X. If X and S are normed spaces then A(X, S) is even a normed space.

Theorem 1.4 Suppose that S has the property

‖{αn}∞n=0‖S ≤ C lim
k→∞

‖{αn}k
n=0‖S for all {αn} ∈ S with α0 ≥ α1 ≥ · · · ≥ 0,

where C > 0 is a constant depending only on S. If X is complete and one of the
following conditions (a), (b) or (c) is satisfied, then A(X, S) is also complete.

(a) X is a Banach space, all An are linear subspaces, S is complete, and
‖αn‖S = ‖{|αn|}‖S for all {αn} ∈ S.

(b) A decreasing sequence {αn}∞n=0 ⊂ [0,∞) belongs to S if and only if the limit
limk→∞ ‖{αn}k

n=0‖S is finite.

(c) limk→∞ ‖{1}k
n=0‖S = ∞. Moreover, a decreasing sequence {αn}∞n=0 ⊂

[0,∞) belongs to S if and only if liml→∞ limk→∞ ‖{αn}k
n=l‖S = 0.

Theorem 1.5 Let D(S) be the set of all decreasing sequences {En} ⊂ [0,∞)
with {En} ∈ S. If

{1}∞n=0 6∈ S and lim
l→∞

||{En}∞n=l||S = 0 for all {En} ∈ D(S) , (1.2)

then
⋃

An is dense in A(X, S). If, in addition to (1.2), S and X are complete,
‖αn‖S = ‖{|αn|}‖S for all {αn} ∈ S, and limk→∞ ‖{1}k

n=0‖S = ∞, then A(X, S)
is complete.
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Theorem 1.6 Let 0 < q ≤ ∞ and B = {bn}∞n=0 ⊂ (0,∞) such that ‖B‖q = ∞
and bn+1 ≤ const ‖{bm}n

m=0‖q. Then, the quasi-Banach space

S = lq(B) :=
{
{αn}∞n=0 ⊂ R : ‖{αn}‖lq(B) = ‖{αn bn}∞n=0‖q < ∞

}
is admissible if and only if

∥∥{bm}K(n)
m=0

∥∥
q
≤ const ‖{bm}n

m=0‖q.

Example 1.7 Theorem 1.6 can be used to construct quite general examples of
approximation spaces based on an arbitrary approximation scheme (X, {An}).
To do this, let A = {an}∞n=0 be a sequence of nonnegative numbers such that
0 = a0 < 1 = a1 < a2 < a3 < · · · , limn→∞ an = ∞ and aK(n)+1 ≤ Kan , n ∈ N,
for some constant K > 1. Finally, let us set

A(q) = {an(q)}∞n=0 , where an(q) =

{ (
aq

n+1 − aq
n

)1/q if 0 < q < ∞,
an+1 if q = ∞.

Then we can apply Theorem 1.6 just taking B = A(q). The corresponding ap-
proximation space is denoted by

XA
q = A(X, lq(A(q)))

For example, if we set an = (n + 1)s (s > 0 fixed), then an(q) ∼ (n + 1)s−(1/q)

and we obtain that XA
q = As

q(X) (in the sense of equivalent quasi-norms).

Remark 1.8 One can easily show that for any admissible sequence space of the
form S = lq(B) (B as in Theorem 1.6) there exists an A as in Example 1.7
such that A(X, S) = XA

q in the sense of equivalent quasi-norms. The notation
XA

q is introduced because of the following embedding theorem which shows that A
(and not B) or, more precisely, the class of all sequences equivalent to A, is the
parameter which characterizes the space XA

q if we identify spaces XA
q and X

eA
q

(A and Ã as in Example 1.7) with equivalent quasi-norms:

If an ≤ const ãn , then X
eA

q is continuously embedded into XA
q

(see [AL1, Theorem 4.12]).

If X is an unitary algebra and GX denotes the group of its invertible elements,
then the following natural question arises: Is A(X, S) an algebra and does f ∈
GX ∩A(X, S) imply f−1 ∈ A(X, S)? (Shortly: Is A(X, S) an inversely closed
subalgebra of X?) The question whether A(X, S) is an algebra can be answered
easily (see [AL3, Theorem 1]).

4



Theorem 1.9 Let A(X, S) be an approximation space based on a quasi-normed
algebra X and suppose that AnAn ⊂ AK(n) for all n ∈ N. Then A(X, S) is
a quasi-normed algebra (a normed algebra, if X and S are normed spaces and
the sets An are linear subspaces of X for all n) with the product induced by the
product in X.

Remark 1.10 By a quasi-normed algebra X we mean an algebra endowed with
a quasi-norm having the property ‖fg‖ ≤ C‖f‖ ‖g‖, f, g ∈ X, where C > 0 is
some constant. At some places we will use the fact that ‖ . ‖∗ = C‖ . ‖ defines an
equivalent quasi-norm satisfying ‖fg‖∗ ≤ ‖f‖∗‖g‖∗. But we will not assume C =
1 in advance, since, in general, this property gets lost if we consider approximation
algebras A(X, S) based on X.

We reproduce the proof of the above theorem for the sake of completeness.
Thereby, we use the notation c for positive constants. Here and in all that follows
c may have different values at different places.

Proof of Theorem 1.9. Let f, g ∈ A(X, S). For all fn, gn ∈ An we have

EK(n)(fg) ≤ ‖fg − fngn‖X ≤ c
(
‖(f − fn)g‖X + ‖fn(g − gn)‖X

)
≤ c [ ‖f − fn‖X‖g‖X + (‖fn − f‖X + ‖f‖X)‖g − gn‖X ] .

Consequently, EK(n)(fg) can be estimated by

c
[
En(f)‖g‖X + ‖f‖XEn(g)

]
≤ c

[
En(f)‖g‖A(X,S) + ‖f‖A(X,S)En(g)

]
.

The sequence on the right hand side belongs to S and its quasi-norm is bounded
by c ‖f‖A(X,S)‖g‖A(X,S). Hence, {EK(n)(fg)} ∈ S with the same upper bound
for the quasi-norm. Using the admissibility of S we obtain {En(fg)} ∈ S and
‖{En(fg)}‖S ≤ CS‖{EK(n)(fg)}‖S ≤ c ‖f‖A(X,S)‖g‖A(X,S). 2

Remark 1.11 If there appear different numbers K1(n) and K2(n) in the re-
lations An + An ⊂ AK1(n) and AnAn ⊂ AK2(n) then we should take K(n) =
max{K1(n),K2(n)} in the assumption of the theorem above, i.e., S must be ad-
missible with respect to this function K(n). We call this property algebra admis-
sibility. Of course, this property is more restrictive than the usual admissibility
condition.

The aim of this paper is to tackle the problem of inverse closedness of A(X, S).
In the case of a commutative quasi-Banach algebra X there already exists a very
general and nice result (see [AL3, Theorem 2]), which we will present, in a more
general version, in the next section. Unfortunately, the proof given in [AL3]
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contains an error. For this reason, we also give in this paper a corrected version of
this proof. This proof is based on a general result about the inverse closedness of
subalgebras of commutative quasi-Banach algebras which is also of own interest.

In the third section of this paper we introduce a general version of the K-
method of interpolation of quasi-Banach spaces inspired by the work [BK] of
Brudnyi and Krugljak in which the idea of parameter spaces Φ is used, and we
prove that if X is a unitary quasi-Banach algebra and Y ⊂ X is an inversely
closed and dense subspace of X which satisfies certain estimation for ‖f−1‖Y ,
f ∈ Y ∩ GX, then the associated interpolation space (X, Y )Φ is an inversely
closed subspace of X.

In the fourth section we will consider the inverse closedness of approximation
spaces of the type XA

q , where X is a quasi-Banach algebra which does not have
to be commutative. To obtain a corresponding theorem, we will use a result
by Luther [Lu] (see Lemma 4.1 of this paper) which shows that, under certain
conditions, XA

q is an interpolation space to which the results of Section 3 can be
applied.

As application we will present scales of inversely closed subalgebras of C(T)
(T = {z ∈ C : |z| = 1}) and C[−1, 1]. One of these scales contains the well-known
Wiener algebra of all f ∈ C(T) the Fourier coefficients of which belong to l1(Z).

Other applications, in particular the study of the inverse closedness of ap-
proximation subalgebras of C(K) based on nonlinear subsets An (like in the case
of n-term approximation) will be given in a forthcoming paper.

The inverse closedness problem, in the context of approximation and interpo-
lation theories, has an interesting interpretation. It is well known that both ap-
proximation spaces and interpolation spaces, when defined over function spaces,
produce scales of function spaces of a certain prescribed degree of smoothness.
Thus, when we ask if A(X, S) or (X, Y )Φ are inversely closed subspaces of X
what we are asking is: Assuming that f ∈ GX, do f and f−1 have the same de-
gree of smoothness? And our answer is: yes, at least for a wide class of definitions
of smoothness.

2 Inverse closedness of commutative approximation
algebras

In this section we give a very general result about inverse closedness for commu-
tative quasi-Banach algebras and we use it to study the corresponding problem
for approximation algebras.
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Theorem 2.1 Let B be a commutative quasi-Banach algebra with unit e 6= 0 and
let A be a dense subalgebra of B with e ∈ A. Moreover, let A be equipped with
a quasi-norm which turns A into a quasi-Banach algebra which is continuously
embedded into B. If there exists a dense linear subspace A0 ⊃ {e} of A such that
f ∈ A0 is invertible in A if and only if it is invertible in B, then A is an inversely
closed subalgebra of B.

Before proving this result we present two properties of commutative quasi-Banach
algebras (A, ‖ . ‖) which are well known if ‖ . ‖ is a norm, but less known if ‖ . ‖ is
only a quasi-norm.

Lemma 2.2 The following properties hold true for every commutative quasi-
Banach algebra (A, ‖ . ‖) over K = R or K = C with unit e 6= 0:

i) The unit e belongs to the interior of GA.

ii) M ⊂ A is a maximal ideal of A if and only if M = ker(ϕ) for some
ϕ ∈M(A), ϕ 6= 0, where

M(A) := {τ : A → C : τ is K-linear, continuous and τ(xy) = τ(x)τ(y)}.

Proof. Without loss of generality we assume that ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A
(see Remark 1.10).

Let us prove claim i). From the theory of quasi-normed spaces it is well known
that there exists some p ∈ (0, 1] and an equivalent quasi-norm ‖ · ‖∗ such that

‖x + y‖p
∗ ≤ ‖x‖p

∗ + ‖y‖p
∗

for all x, y ∈ A (this is the so-called Aoki-Rolewicz theorem; see [KP, Theo.1.3]).
Let x ∈ A such that ‖x‖ < 1. Then∥∥∥∥∥

M∑
k=N

xk

∥∥∥∥∥
p

≤ 1
Cp

∥∥∥∥∥
M∑

k=N

xk

∥∥∥∥∥
p

∗

≤ 1
Cp

M∑
k=N

‖xk‖p
∗ ≤

Dp

Cp

M∑
k=N

‖xk‖p ≤ Dp

Cp

M∑
k=N

‖x‖kp,

where we have obviously used that C‖ · ‖ ≤ ‖ · ‖∗ ≤ D‖ · ‖ and that ‖xy‖ ≤
‖x‖‖y‖. Hence the series

∑∞
k=0 xk converges in the quasi-norm ‖ · ‖. Moreover,

(e− x)
∑N

k=0 xk = e− xN+1, so that∥∥∥∥∥e− (e− x)
N∑

k=0

xk

∥∥∥∥∥ = ‖xN+1‖ ≤ ‖x‖N+1 → 0 for N →∞.

Consequently, e− x is invertible
(
with (e− x)−1 =

∑∞
k=0 xk

)
and i) is proved.
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Let us now prove ii). To start, let us assume that ϕ ∈ M(A) and ϕ 6= 0.
Obviously, im ϕ = R or im ϕ = C, so that A/ ker ϕ is a field and M = ker ϕ
is maximal. Now we prove that all maximal ideals of A are of this form. If
I 6= A is a closed ideal of A (i.e., it is an ideal which is also a closed subset of A)
then it is well known from the theory of quasi-normed spaces that the algebra
A/I is a quasi-Banach space with ‖x + I‖A/I := infy∈I ‖x + y‖. Obviously,
‖(x + I)(y + I)‖A/I ≤ ‖x + I‖A/I‖y + I‖A/I , i.e., A/I is a quasi-Banach algebra.

Let M be a maximal ideal of A. Then M is closed, since M ⊂ M
A 6= A (note that,

by i), M
A 6= A since M ⊂ A \ {e}, and that M

A is an ideal, since x = limn→∞ xn

with {xn} ⊂ M and y ∈ A implies that {xny} ⊂ M and xy = limn→∞ xny ∈ M
A).

Hence A/M is a quasi-Banach field and M = ker ϕ where ϕ : A → A/M is the
natural projection ϕ(x) = x + M . It follows from the Gelfand-Mazur-Zelazko
theorem [KP, Theorem 7.2] that A/M is isomorphic to C if A is a complex
quasi-Banach algebra and A/M is isomorphic either to R or to C if A is a real
quasi-Banach algebra. [The idea to prove this theorem is as follows: Firstly, by
using the Aoky-Rolewicz theorem, one proves that in any quasi-normed algebra
A the spectral radius ρ(x) := limn→∞‖xn‖

1
n is a seminorm. Secondly, note that

I = {x ∈ A : ρ(x) = 0} is an ideal of A, since ρ(xy) ≤ ρ(x)ρ(y). Hence, if A
is a field, then I = {0}, ρ defines a norm on A and one can use the classical
Gelfand-Mazur Theorem]. This proves ii). 2

Remark 2.3 Note that if (A, ‖ · ‖) is a complex commutative quasi-Banach al-
gebra with unit e 6= 0 then it follows from ii) of the Lemma above that there
are non-zero continuous linear functionals defined over A, a fact that does not
hold for arbitrary quasi-Banach vector spaces. Moreover, we remark that every
multiplicative linear functional defined on a unitary quasi-Banach algebra A is
continuous. This fact can be proved in the same way as in the well known case
of a Banach algebra A (using assertion i) of Lemma 2.2 and the proof of this
assertion, which also works in the non-commutative case.)

Proof of Theorem 2.1. Let M be a maximal ideal of A and suppose, without
loss of generality, that ‖xy‖B ≤ ‖x‖B‖y‖B for all x, y ∈ B (see Remark 1.10).
Then, by ii) of Lemma 2.2, there exists ϕ ∈M(A) such that M = kerϕ.

Step 1. M
B is an ideal of B.

Let x ∈ M
B and y ∈ B. Then there exists {xn} ⊂ M such that ‖x−xn‖B → 0

and {yn} ⊂ A such that ‖y − yn‖B → 0, since A is a dense subset of B. Thus,
xy = B–limn→∞ xnyn ∈ M

B, since xnyn ∈ M .

Step 2. M
B 6= B.
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Assume that M
B = B. Then e ∈ M

B and there exists {mk} ⊂ M such that
‖mk−e‖B → 0. It follows from the density of A0 in A that there exists {ak} ⊂ A0

such that ‖ak −mk‖A → 0. Now, M = kerϕ and the continuity of ϕ

ϕ(ak) = ϕ(ak −mk) → 0

Now we show that, without loss of generality, it can be assumed that ϕ(ak) ∈ K
for all k. Indeed, if K = R and ϕ(A0) 6⊂ R, then there exists an a ∈ A0 with
ϕ(a) = i. Hence, ϕ(ak) = αk + βk i → 0 implies that ãk = ak − βk a ∈ A0 satisfies

ϕ
(
ãk

)
= αk → 0 and

∥∥ãk −mk

∥∥
A ≤ c

(
‖ak −mk‖A + βk‖a‖A

)
→ 0 .

Since ϕ
(
ãk

)
∈ R, we may suppose ϕ(ak) ∈ K without loss of generality. Set

fk = ak − ϕ(ak)e. Obviously, fk ∈ M since ϕ(fk) = 0. Moreover,

fk = mk + (ak −mk)− ϕ(ak)e → e in B ,

since mk → e in B, ak−mk → 0 in B (here we used that the embedding A ⊂ B is
continuous) and ϕ(ak) → 0. It follows from i) of Lemma 2.2 that fk is invertible
in B for all sufficiently large k. On the other hand, fk ∈ A0 for all k. Hence,
for all k ≥ k0, f−1

k ∈ A and, consequently, e = fkf
−1
k ∈ M (since f−1

k ∈ A and
fk ∈ M). This is nonsense, since M is a proper ideal of A.

Step 3. M = M∗ ∩ A for a certain maximal ideal M∗ of B.

It follows from Steps 1,2 and Zorn’s lemma that M
B is contained in a certain

maximal ideal M∗ of B. M is a subset of M∗ ∩ A and M∗ ∩ A is a proper ideal
of A (since e 6∈ M∗). Thus, M = M∗ ∩ A because of the maximality of M .

Step 4. A is an inversely closed subalgebra of B.

If x ∈ A ∩GB, then x 6∈ M∗ for all maximal ideals M∗ of B. By Step 3 this
implies x 6∈ M = M∗ ∩ A for all maximal ideals M of A, i.e., x ∈ GA. 2

As a consequence of the result above we can prove the following theorem
about approximation algebras.

Theorem 2.4 Let A(X, S) be an approximation space based on a commutative
quasi-Banach algebra X over K (K = R or K = C) with unit e 6= 0 and suppose
that AnAn ⊂ AK(n) for all n ∈ N (compare Theorem 1.9 and Remark 1.11).
Moreover, assume that e ∈ A(X, S), that S satisfies (1.2), and that

A0 :=
{
λe : λ ∈ K

}
+

⋃
An satisfies A0 ∩GX ⊂ GA(X, S) . (2.1)
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If A(X, S) is complete (cf. Theorems 1.4,1.5; for example, this is satisfied if S is
complete, limk→∞ ‖{1}k

n=0‖S = ∞, and ‖{αn}‖S = ‖{|αn|}‖S for all {αn} ∈ S),
then A(X, S) is an inversely closed subalgebra of X.

Proof. Just take B = X, A = A(X, S), A0 = {λe : λ ∈ K} +
⋃

An and
use Theorem 2.1. In view of Theorem 1.9 and the assumed density of

⋃
An in

X, A = A(X, S) is a quasi-Banach algebra which is continuously and densely
imbedded into X. Moreover, by Theorem 1.5 and assumption (2.1), A0 is dense
in A and f ∈ A0 is invertible in A if and only if it is invertible in X. Thus, all
assumptions of Theorem 2.1 are satisfied. 2

Corollary 2.5 Let XA
q be the approximation space from Example 1.7, based on

an approximation scheme (X, {An}) satisfying all assumptions of Theorem 2.4.
If e ∈ XA

q and q < ∞ then XA
q is an inversely closed subalgebra of X.

Proof. S = lq(A(q)) satisfies (1.2) and limk→∞ ‖{1}k
n=0‖S = ∞, since q < ∞

and ‖{1}k
n=0‖S = ak+1. Consequently, XA

q is complete (see Theorem 1.5). Thus,
all assumptions of Theorem 2.4 are satisfied. 2

The case q = ∞ is not considered in Corollary 2.5, since (1.2) is not satisfied
for S = l∞(A(∞)). But if we restrict on the subspace

l∞0 (A(∞)) =
{
{αn} : lim

n→∞
anαn = 0

}
(note that an is equivalent to an+1 = an(∞)) and the corresponding approxima-
tion space XA

∞,0, then Theorem 2.4 is applicable and we obtain

lim
n→∞

anEn(f−1) = 0 for all f ∈ XA
∞,0 ∩GX (2.2)

if e ∈ XA
∞,0 and if the approximation scheme (X, {An}) satisfies the assumptions

of Theorem 2.4. Now we prove that, since A can be chosen more or less arbitrary,
it even follows that Corollary 2.5 remains true in the case q = ∞:

Corollary 2.6 If we have e ∈ XA
∞,0 in the case q = ∞, then the restriction

q < ∞ can be omitted in Corollary 2.5.

Proof. Let f ∈ XA
∞∩GX. For any decreasing sequence {εn} with limn→∞ εn = 0

and
1 = ε1a1 < ε2a2 < ε3a3 < . . . , lim

n→∞
εnan = ∞ , (2.3)

(2.2) can be applied to f and to B = {εnan} instead of A. Hence,

lim
n→∞

εnanEn(f−1) = 0 . (2.4)
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Let us assume that anEn(f−1) 6= O(1). Then,

ε̃n =
[

max
1≤k≤n

akEk(f−1)
]−1

is a decreasing sequence with limit zero. Moreover, it is clear that

ε̃n =
[
anEn(f−1)

]−1 for all n ∈ N′ , (2.5)

where N′ = {nj}∞j=1 is some subsequence of N with n1 = 1. Thus,

{ε̃nan}n∈N′ =
{[

En(f−1)
]−1

}
n∈N′

is increasing and converges to infinity, since En(f−1) → 0 (because of (2.4) with
εn = (an)−1/2). Without loss of generality we may assume that {ε̃nan}n∈N′ is
strictly increasing. Now we define {εn}∞n=1 by

εn = E1(f−1) ε̃nj for nj ≤ n < nj+1 (j = 1, 2, . . . ) .

This sequence is decreasing, converges to zero, and satisfies (2.3). In view of (2.5),
εnanEn(f−1) = E1(f−1) for all n ∈ N′, which is in contradiction with (2.4). 2

3 Inverse closedness of certain interpolation spaces

Let X and Y be two compatible quasi-normed spaces (i.e., they are continuously
embedded in a certain Hausdorff topological vector space) and let f ∈ X + Y .
The so-called K-functional K(f, ·) : (0,∞) → [0,∞) is given by

K(f, t) = KX,Y (f, t) := inf
f=x+y

(‖x‖X + t‖y‖Y ),

where the infimum is taken over all decompositions f = x + y with x ∈ X and
y ∈ Y .

Definition 3.1 Let µ be a non-trivial positive measure on the Borel subsets of
(0,∞) and let F be the quotient space F = V/ ∼, where V denotes the real vector
space of all functions K : (0,∞) → R and ∼ is the equivalence relation given by

K1 ∼ K2 if and only if ∃A ⊂ (0,∞): µ(A) = 0, {t : K1(t) 6= K2(t)} ⊂ A

In all that follows we identify a function K ∈ V with its equivalence class [K] ∈ F .
We say that the quasi-normed vector subspace Φ ⊂ F is a parameter space (with
respect to the measure µ) if it satisfies the following two conditions:
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• If K1,K2 : (0,∞) → R are increasing functions with K2 ∈ Φ and 0 ≤
K1(t) ≤ K2(t) for all t ∈ (0,∞) then K1 ∈ Φ and ‖K1‖Φ ≤ CΦ‖K2‖Φ for
a certain constant CΦ depending only on Φ.

• The function min{1, t} belongs to Φ.

Given a parameter space Φ and a compatible couple of quasi-normed spaces
(X, Y ), the space

(X, Y )Φ = {f ∈ X + Y : K(f, ·) ∈ Φ} , ‖f‖(X,Y )Φ = ‖K(f, ·)‖Φ

is called interpolation space associated to the parameter space Φ. (This name
is justified since it is possible to prove (see [Lu, Theorem 3.3], [BK, Proposition
3.3.1]) that the map (X, Y ) → (X, Y )Φ defines an interpolation method.) For
interpolation theory, the parameter spaces Φ play a role quite similar to the role
of the admissible sequence spaces S in the context of approximation spaces.

Lemma 3.2 Let X be a quasi-Banach algebra with unit e and let Y be a quasi-
normed space which is densely and continuously embedded into X and which
contains e. Moreover, suppose that Y is inversely closed in X and that there is
a constant C = C(X, Y ) such that

‖f−1‖Y ≤ C ‖f‖Y for all f ∈ Y ∩GX with ‖f−1‖X ≤ 1 . (3.1)

Then there is a constant c = c(X, Y ) such that the K-functional with respect to
X and Y satisfies

K(f−1, t) ≤ c ‖f−1‖2XK(f, t) for all f ∈ GX and all t ∈ (0, t0(f)] ,

where t0(f) is some positive constant depending on f .

Proof. Since Y is inversely closed in X, we have

K(f−1, t) ≤ inf
g∈Y ∩GX

(
‖f−1 − g−1‖X + t ‖g−1‖Y

)
, t > 0 . (3.2)

From assumption (3.1) (applied to ‖g−1‖X g instead of f) it follows that

‖g−1‖Y ≤ C ‖g−1‖2X ‖g‖Y for all g ∈ Y ∩GX . (3.3)

Moreover,

‖f−1 − g−1‖X = ‖f−1(g − f)g−1‖X ≤ c ‖f−1‖X‖g − f‖X‖g−1‖X . (3.4)

12



If we fix some arbitrary constant D > 0, then (3.2) obviously implies

K(f−1, t) ≤ inf
g∈Y ∩GX, ‖g−1‖X≤D‖f−1‖X

(
‖f−1 − g−1‖X + t ‖g−1‖Y

)
and together with the estimates (3.3) and (3.4) we obtain

K(f−1, t) ≤ c ‖f−1‖2X inf
g∈Y ∩GX, ‖g−1‖X≤D‖f−1‖X

(‖f − g‖X + t ‖g‖Y ) , t > 0 .

It remains to prove that, at least for a sufficiently large constant D independ of
f , the last infimum equals K(f, t) for t ≤ t0(f). For this aim we remark that

lim
t→0

K(f, t) = 0 . (3.5)

Indeed, choose gm ∈ Y with gm → f in X and t1 > t2 > . . . > 0 with tm → 0
and ‖gm‖Y ≤ (tm)−1/2. Then, K(f, tm) ≤ ‖f − gm‖X + tm ‖gm‖Y converges to
zero, which implies (3.5), since K(f, t) is increasing in t. Now it is clear that, for
sufficiently small t ≤ t0(f) and for all g ∈ Y which play a role in the infimum

inf
g∈Y

(‖f − g‖X + t ‖g‖Y ) = K(f, t) ,

the distance ‖f−g‖X is small enough such that g ∈ GX and ‖g−1‖X ≤ D‖f−1‖X

if D is chosen large enough (because of f ∈ GX, g = f(e− f−1(f − g)) and the
proof of assertion i) of Lemma 2.2 which remains true in the non-commutative
case). 2

Theorem 3.3 Let Φ be a parameter space and let X, Y satisfy the assumptions
of Lemma 3.2. Then (X, Y )Φ is inversely closed in X.

Proof. Let f ∈ (X, Y )Φ ∩GX. Then, in view of Lemma 3.2,

K(f−1, t) ≤ c ‖f−1‖2XK(f, t) for 0 < t ≤ t0(f)

and, since min{1, t} ‖f−1‖X ≤ c (‖f−1− g‖X + t‖g‖X) ≤ c (‖f−1− g‖X + t‖g‖Y )
for all g ∈ Y ,

K(f−1, t) ≤ ‖f−1‖X ≤ c min{1, t0(f)}−1K(f−1, t0(f))

≤ c min{1, t0(f)}−1‖f−1‖2XK(f, t) for t > t0(f) .

Thus, K(f−1, . ) ∈ Φ, since K(f, . ) ∈ Φ. 2
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4 Noncommutative approximation algebras

Until now, to study the inverse closedness of approximation spaces A(X, S) we as-
sumed that X is a commutative quasi-Banach algebra. In this section we treat the
analogous problem for approximation algebras based on arbitrary quasi-Banach
algebras X which do not have to be commutative. Gaining such a generality,
we will loose in the possible choice of the sequence space S. Indeed, what we
do is to use the fact that many approximation spaces can be identified with an
interpolation space of the type just described in the preceding section.

In [Lu], the author proved the following nice result (even under more gen-
eral assumptions; here we consider the special case bn = an(q), vm = 1 of [Lu,
Theorem 4.3]):

Lemma 4.1 Let XA
q be an approximation space as in Example 1.7 and let Y

be a quasi-normed space which is continuously embedded into X and which sat-
isfies

⋃∞
n=0 An ⊂ Y . Further, suppose that the so-called Jackson and Bernstein

inequalities

(J) En(f) ≤ c hn‖f‖Y , f ∈ Y, n ∈ N,

(B) ‖fn‖Y ≤ c h−1
n ‖fn‖X , fn ∈ An, n ∈ N

are satisfied with certain constants c > 0 and h1 > h2 > h3 > . . . > 0. If there is
an α ∈ (0, 1) such that hα

nan is equivalent to some decreasing sequence, then

Φ =
{

K : {hn}∞n=1 → R : ‖K‖Φ =
∥∥{an(q)K(hn)}∞n=1

∥∥
q

< ∞
}

is a parameter space (with respect to the measure µ(A) = #(A ∩ {hn}∞n=1)) and

XA
q = (X, Y )Φ

in the sense of equivalent quasi-norms.

Remark 4.2 We would like to recall that two sequences {αn}∞n=1 and {βn}∞n=1 of
nonnegative numbers are said to be equivalent if there are constants C,D > 0 such
that Cαn ≤ βn ≤ Dαn for all n. Moreover, a sequence {αn}∞n=1 ⊂ [0,∞) is named
almost decreasing if it is equivalent to some decreasing sequence. Obviously, this
is the case if and only if αm ≤ const αn for all n ≤ m.

Theorem 3.3 and Lemma 4.1 yield the following main result of this section.
We mention that we do not have to suppose the density of Y ⊃

⋃
An in X, since

we have already assumed that
⋃

An is dense in X.
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Theorem 4.3 Let XA
q be an approximation space as in Example 1.7, based on

a quasi-Banach algebra X with unit e. Further, let Y ⊃ {e} ∪
⋃

An be a quasi-
normed space which is continuously and inversely closed embedded into X and
which satisfies

‖f−1‖Y ≤ C ‖f‖Y for all f ∈ Y ∩GX with ‖f−1‖X ≤ 1 , (4.1)

where C = C(X, Y ) is some constant. If (J) and (B) (see Lemma 4.1) hold true
with certain numbers h1 > h2 > h3 > . . . > 0 for which, with some α ∈ (0, 1),
{hα

nan} is almost decreasing, then XA
q is inversely closed in X.

Remark 4.4 Note that we have not assumed the inclusions AnAn ⊂ AK(n) to
hold. Thus, the above theorem is also applicable to approximation spaces which
are no algebras.

We should mention that the condition (4.1) is very restrictive. In many ap-
plications in which several spaces Y satisfying (J) and (B) (with different hn) are
known, (4.1) means that Y cannot be chosen too small, which implies that only
sufficiently large spaces XA

q ⊃ Y , i.e., sufficiently slow increasing sequences A
can be considered. For example, if X = C[a, b] and Y = C(r)[a, b] (r ∈ N), then
(4.1) is only satisfied for r = 1 and, consequently, only spaces XA

q bigger than
C(1)[a, b] can be considered in Theorem 4.3. However, the following trick is often
useful to come from slowly increasing sequences A = {an} to faster increasing
sequences {nran}:

Let X be a quasi-normed algebra with unit e, Y ⊃ {e} a quasi-normed space
continuously embedded into X, and suppose that there is a quasi-Banach algebra
X0 between Y and X (with continuous embeddings) such that

i) (X0, {An}) is an approximation scheme with K(n) = Kn (K ∈ N some
constant),

ii) all assumptions of Theorem 4.3 are satisfied with X replaced by X0,

iii) X0 is inversely closed in X,

iv) there exists some r > 0 such that (1.1) is satisfied with Y replaced by X0,

v) an ≤ constn−r
∥∥{mram(q)}n

m=1

∥∥
q

for all n ∈ N and
{
nεa−1

n

}
is almost

decreasing for some ε > 0. (Later (see (5.3)) we will see that the second
of these two conditions implies the first one, at least if an is replaced by
a certain equivalent sequence which has no influence on the considered
approximation spaces because of Remark 1.8.)
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Then Ar
p(X) ⊂ X0 ⊂ Ar

∞(X) for some p ∈ (0, 1] (see [AL1, Theorem 4.9]) and,
consequently, (Ar

p(X))Aq ⊂ (X0)Aq ⊂ (Ar
∞(X))Aq . Moreover, (X0)Aq is inversely

closed in X0 and, hence, inversely closed in X. But (Ar
p(X))Aq = (Ar

∞(X))Aq =

X
{nran}
q ([Lu, Cor.6.4]) and we conclude that X

{nran}
q is inversely closed in X.

For example, let X = C[0, 2π] ∩ {f : f(0) = f(2π)}, X0 = C(1)[0, 2π] ∩ X,
Y = C(2)[0, 2π] ∩ X, an = ns with s ∈ (1, 2), and let An be the set of all
trigonometric polynomials of degree less than n. Then (4.1) is satisfied with
X0 instead of Y , but X0 6⊂ XA

q . On the other hand Y ⊂ XA
q , but (4.1) is

not satisfied for Y . Thus, Theorem 4.3 cannot be applied directly to obtain the
inverse closedness of XA

q = As
q(X). But with the above trick this is possible,

since all assumptions i)–v) are satisfied with Ã = {ns−1} instead of A, hn = n−1,
and r = 1.

5 Applications

We restrict on results of the following type: ”If f is a non-vanishing function with
certain properties, then 1/f has the same properties”. More precisely, we will
consider the inverse closedness of certain spaces of the type XA

q (see Example
1.7), where X is an algebra of continuous functions. Although the multiplication
of functions is commutative, we will also need results from Section 4 to interpret
f ∈ XA

q as a smoothness property of f .

5.1 Smoothness of 1/f

In the present subsection we study the inverse closedness of generalized Hölder-
Zygmund spaces based on

X = C2π := {f ∈ C(R) : f = f( . + 2π)} , ‖f‖ = max{|f(x)| : x ∈ R} .

These spaces are defined with the help of the classical modulus of smoothness

ωr(f, t) = sup
0<h≤t

‖∆r
hf‖ , (∆r

hf)(x) =
r∑

k=0

(−1)k

(
r
k

)
f

(
x +

(r

2
− k

)
h
)

as follows:
HA,q

2π =
{

f ∈ C2π :
{
ωr(f, n−1)

}∞
n=1

∈ lq
(
A(q)

)}
,

where the norm in HA,q
2π is given by

‖f‖A,q = ‖f‖+
∥∥{

an(q) ωr(f, n−1)
}∞

n=1

∥∥
q
.
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Here A = {an} is a sequence as in Example 1.7 (where K(n) = n) such that

n−can is almost decreasing for some constant c > 0

and r ∈ N is chosen sufficiently large such that, for some ε > 0,

nε−ran is almost decreasing. (5.1)

The following proposition shows that HA,q
2π is an approximation space which is

independent of the choice of r (in the sense of equivalent quasi-norms) and that
the classical Hölder-Zygmund space

Hs
2π =

{
f ∈ C2π : ω1+[ν]

(
f (k), t

)
= O(tν) (t ↓ 0)

}
, s = k + ν, 0 < ν ≤ 1

corresponds to the case an = ns, q = ∞.

Proposition 5.1 Take A and A(q) as in Example 1.7 (where K(n) = n) and
let (5.1) be satisfied. Then, in the sense of equivalent quasi-norms,

HA,q
2π = (C2π)Aq ({Tn}) , where Tn = span

{
ei k .

}n−1

k=−n+1
. (5.2)

Moreover, for every fixed k ∈ N0 (k < r) for which, with some constant ε > 0,

n−k−εan is almost increasing ,

the assertions
f ∈ HA,q

2π and f (k) ∈ H
{n−k}A,q
2π

are equivalent, where {bn} = {n−k}A is any strictly increasing sequence with

b1 = 1 and bn ∼ n−kan

(”∼” means equivalent; in view of (5.2) and Remark 1.8, H
{n−k}A,q
2π does not

depend on the choice of bn) and ‖f‖A,q ∼ ‖f‖+ ‖f (k)‖{n−k}A,q.

Proof. It is well known (see [DL, Sect. 3.4,7.2]) that, for X = C2π, An = Tn, and

Y = C
(r)
2π := C2π ∩ C(r)(R) , ‖f‖Y = ‖f‖+ ‖f (r)‖

the assumptions (J) and (B) of Lemma 4.1 are satisfied with hn = n−r. Thus,

(C2π)Aq ({Tn}) =
{

f ∈ C2π :
∥∥{an(q)K(f, n−r)}∞n=1

∥∥
q

< ∞
}
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in the sense of equivalent quasi-norms, where

K(f, t) = inf
g∈C

(r)
2π

(
‖f − g‖+ t

(
‖g‖+

∥∥g(r)
∥∥))

.

From the estimate t‖f‖ ≤ t(‖f − g‖+ ‖g‖) ≤ ‖f − g‖+ t‖g‖ ≤ 2‖g − f‖+ t‖f‖,
t ∈ (0, 1], and a well known result on the equivalence of K-functionals and moduli
of smoothness (see [DL, Theorem 6.2.4]) it follows

K(f, t) ∼ inf
g∈C

(r)
2π

(
‖f − g‖+ t

∥∥g(r)
∥∥)

+ t‖f‖ ∼ ωr(f, t1/r) + t‖f‖ , t ∈ (0, 1] .

Taking into account that the space Φ from Lemma 4.1 is a parameter space, i.e.,
‖{n−ran(q)}‖q < ∞, we conclude (5.2).

To prove the second assertion we choose the sequence bn in such a way that

bn = nεcn for all n ∈ N ,

where cn is an increasing sequence equivalent to n−k−εan. In this case we have

nkbn(q) ∼ (nkbn)(q) , n ∈ N . (5.3)

Indeed, nkbn(q) ≤ c (nkbn)(q) is obvious. For q = ∞, also the reverse inequality
is clear. If q < ∞ then we use the mean value theorem ln B/A = ξ−1(B − A)
(0 < A < ξ < B) and the monotonicity of nεb−1

n = c−1
n to obtain

(n + 1)kqbq
n+1 − nkqbq

n ≤ (n + 1)kqbq
n+1 ln

(n + 1)kqbq
n+1

nkqbq
n

≤ (n + 1)kqbq
n+1

(
1 +

k

ε

)
ln

bq
n+1

bq
n

≤ c nkq
(
bq
n+1 − bq

n

)
.

Together with the known equivalence∥∥{nkbn(q)En(f)}∞n=1

∥∥
q
∼

∥∥{bn(q)En(f (k))}∞n=1

∥∥
q
,

which is proved in [Lu2, Corollary 1] for the case q ≥ 1 and which can be proved in
almost the same way as in [Lu2] for the case 0 < q < 1, (5.3) yields f (k) ∈ (C2π)Bq
if and only if f ∈ (C2π){n

kbn}
q = (C2π)Aq (see Remark 1.8), where ‖f‖(C2π)Aq

∼
‖f‖+ ‖f (k)‖(C2π)Bq

. 2

18



From the above proposition and Corollaries 2.5 and 2.6 we conclude the fol-
lowing result. Here we take into account that the condition a2n ≤ c an (which is
needed because of TnTn ⊂ TK(n) for K(n) = 2n− 1) is automatically satisfied if
(5.1) holds true.

Theorem 5.2 Take A as in Proposition 5.1. Then, HA,q
2π is an inversely closed

subalgebra of C2π, i.e., f ∈ HA,q
2π and f(x) 6= 0 for all x imply 1/f ∈ HA,q

2π .

Proof. It remains to show that 1/f ∈ HA,q
2π for every f ∈

⋃
Tn with f(x) 6= 0 for

all x. This is very easy if we recall that HA,q
2π is an interpolation space between

the spaces Y and X from the proof of Proposition 5.1. In particular, Y ⊂ HA,q
2π .

Clearly, 1/f ∈ Y . 2

Remark 5.3 If we consider the case q = ∞ and if we choose some increasing
function G : (0, 1] → (0,∞) such that

an =
1

G(1/n)
for all n ∈ N ,

then the assertion of Theorem 5.2 can be rewritten as follows:

If ωr(f, t) = O(G(t)) (t ↓ 0) and f(x) 6= 0 for all x, then
ωr(1/f, t) = O(G(t)) (t ↓ 0).

(5.4)

Results of this type are surely known, since they can be proved directly with-
out using approximation spaces. For example, if r = 1, then one can use that
∆1

h(1/f)(x) = −[f(x + (h/2))f(x− (h/2))]−1∆1
hf(x) and, consequently,

ω1(1/f, t) ≤ ‖1/f‖2ω1(f, t) .

If r = 2, then ∆2
h(1/f) = ∆1

h(∆1
h(1/f)) and the above formula for ∆1

h(1/f) can
be used to show that

ω2(1/f, t) ≤ ‖1/f‖2ω2(f, t) + 2‖1/f‖3ω1(f, t)2 .

Together with the Marchaud inequality ω1(f, t) ≤ c t
∫∞
t s−2ω2(f, s) ds ([DL, The-

orem 2.8.1]) this leads to (5.4) for certain functions G(t). For bigger values of r
the direct proof of (5.4) is involved. So it is more elegant to use the approach via
approximation spaces.
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5.2 Weighted smoothness of 1/f

Now we study the inverse closedness of weighted Hölder-Zygmund type spaces
based on

X = C[−1, 1] , ‖f‖ = max{|f(x)| : x ∈ [−1, 1]} .

These spaces are defined with the help of the modulus with step-weight function
ϕ(x) =

√
1− x2 (see [DT])

ωr
ϕ(f, t) = sup

0<h≤t
‖∆r

hϕf‖ , (∆r
hϕf)(x) =

{
(∆r

hϕ(x)f)(x) , x± rh
2 ϕ(x) ∈ (−1, 1)

0 , otherwise

as follows:

HA,q
ϕ =

{
f ∈ C[−1, 1] :

{
ωr

ϕ(f, n−1)
}∞

n=1
∈ lq

(
A(q)

)}
,

where the norm in HA,q
ϕ is given by

‖f‖A,q = ‖f‖+
∥∥{

an(q) ωr
ϕ(f, n−1)

}∞
n=1

∥∥
q
.

HereA = {an} and r ∈ N have to satisfy the same assumptions as in the preceding
section.

In the proof of (5.2) we have used Lemma 4.1 together with the Jackson
and Bernstein inequalities (J) and (B) for trigonometric polynomials and the
equivalence of unweighted K-functionals and unweighted moduli of smoothness.
To obtain the analogous result for HA,q

ϕ , we need (J),(B) for algebraic polynomials
and equivalences between weighted K-functionals and moduli of smoothness.

Lemma 5.4 ([DT], Theorems 7.2.1, 6.1.1, 8.4.7) Let Πn = span{xk}n−1
k=0

and let K(f, t) be the K–functional with respect to X = C[−1, 1] and the space

Y =
{
f ∈ C[−1, 1] : ϕrf (r) ∈ L∞(−1, 1)

}
with seminorm |f |Y = ‖ϕrf (r)‖L∞ ,

i.e., K(f, t) = infg∈Y

(
‖f − g‖+ t |g|Y

)
. Then, the following assertions hold true:

(i) infpn∈Πn ‖g − pn‖ ≤ const n−r|g|Y for all g ∈ Y and all n ∈ N,

(ii) |pn|Y ≤ const nr‖pn‖ for all pn ∈ Πn and all n ∈ N,

(iii) K(f, tr) ∼ ωr
ϕ(f, t) for all f ∈ C[−1, 1] and all t ∈ (0, 1].

Now it is clear that (5.2) can be proved analogously for the spaces HA,q
ϕ :
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Proposition 5.5 Take A and A(q) as in Example 1.7 (where K(n) = n) and
let (5.1) be satisfied. Then, in the sense of equivalent quasi-norms,

HA,q
ϕ = C[−1, 1]Aq ({Πn}) . (5.5)

Now one can use Corollaries 2.5 and 2.6 to prove the inverse closedness of the
spaces HA,q

ϕ in C[−1, 1]. Alternatively, the known identity

inf
P∈Πn

‖f − P‖C[−1,1] = inf
T∈Tn

‖f(cos( . ))− T‖C[0,2π] , f ∈ C[−1, 1]

(see [Na]) leads to the inverse closedness of HA,q
ϕ = C[−1, 1]Aq ({Πn}) because of

the inverse closedness of HA,q
2π = (C2π)Aq ({Tn}):

Theorem 5.6 Take A as in Proposition 5.5. Then, f ∈ HA,q
ϕ if and only

if f(cos( . )) ∈ HA,q
2π . In particular, HA,q

ϕ is an inversely closed subalgebra of
C[−1, 1] (compare Theorem 5.2), i.e., f ∈ HA,q

ϕ and f(x) 6= 0 for all x ∈ [−1, 1]
imply 1/f ∈ HA,q

ϕ .

Remark 5.7 An interpretation of the inverse closedness of the approximation
space HA,q

ϕ = A(C[−1, 1], lq(B); {Πn}) (B = A(q)) is as follows: If f ∈ C[−1, 1]
vanishes nowhere on [−1, 1] then

{E(f,Πn)}∞n=0 ∈ lq(B) ⇐⇒ {E(f,Γn)}∞n=0 ∈ lq(B) , (5.6)

where Γn := {1/p : p ∈ Πn and p(t) 6= 0 for all t ∈ [−1, 1]}, n = 0, 1, · · · . Indeed,
from the equality

pn

(
f − 1

pn

)
= f

(
pn −

1
f

)
,

1
pn
∈ Γn

it follows easily that the sequences {E(f,Γn)}∞n=n0
and {E(1/f,Πn)}∞n=n0

(n0 =
n0(f) sufficiently large) are equivalent. Thus, (5.6) is only a reformulation of the
equivalence f ∈ HA,q

ϕ ⇔ 1/f ∈ HA,q
ϕ .

5.3 Wiener type theorems

We start this section by showing that classical Wiener’s inversion theorem is an
easy corollary of Theorem 2.1.

Theorem 5.8 (N. Wiener, (see [K])) Let us assume that f ∈ C(T) is a con-
tinuous function defined on the unit circle T which vanishes nowhere on T.
If the Fourier coefficients of f satisfy {ck(f)} ∈ l1(Z) then 1/f also satisfies
{ck(1/f)} ∈ l1(Z) .
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Proof. We apply Theorem 2.1 to

B = C(T) , ‖f‖B = max
z∈T

|f(z)| , and

A = {f ∈ C(T) : {ck(f)} ∈ l1(Z)} , ‖f‖A = ‖{ck(f)}‖l1(Z) .

Clearly, A is isometrically isomorphic to the Banach algebra l1(Z), where the
product in l1(Z) is the convolution of sequences. The subalgebra

A0 = span{zk : k ∈ Z}

of A corresponds to the dense subalgebra {{ck} : ck 6= 0 only for finitely many k}
of l1(Z). Hence, A0 is dense in A. It is well known that A0 is also dense in B.
Thus, A is a dense subalgebra of B. Clearly, the embedding A ⊂ B is continuous.
It remains to show that 1/f ∈ A for every f ∈ A0 without zeros on T. For
this end, we recall that g(t) := 1/f(e it) belongs to all spaces HA,q

2π considered in
Section 5.1 (see the proof of Theorem 5.2). In particular, E(g, Tn) = O(n−s) for
every fixed s > 0. If we take into account that

ck(1/f) =
1
2π

∫ 2π

0
e−ikt g(t) dt =

1
2π

∫ 2π

0
e−ikt [g(t)− gk(t)] dt

for all gk ∈ T|k|, then we obtain |ck(1/f)| = O(|k|−s) (|k| → ∞) for every fixed
s > 0, which implies {ck(1/f)} ∈ l1(Z). 2

The above proof can be written down word by word with l1(Z) replaced by a
general sequence space S satisfying certain assumptions. In this way we obtain
the following main result of this section.

Theorem 5.9 Let S be a subalgebra of l1(Z) (where the multiplication in l1(Z)
is the convolution of sequences) and assume that {ck}k∈Z ∈ S for all {ck} which
satisfy, for every fixed s > 0, |ck| = O(|k|−s) (|k| → ∞). Further, suppose
that there is a quasi-norm on S such that S is a quasi-Banach algebra which
is continuously embedded into l1(Z) and in which the set of all finite sequences
(i.e. sequences having only finitely many non-zero entries) is dense. If f ∈ C(T)
vanishes nowhere on T and {ck(f)} ∈ S, then {ck(1/f)} ∈ S.

Remark 5.10 Theorem 5.9 says that the subalgebra

W(S) = {f ∈ C(T) : {ck(f)} ∈ S}
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of C(T) is inversely closed. We mention that, if S has the property {ck} ∈ S ⇔
{|ck|} ∈ S, W(S) is an approximation space based on the Wiener algebra

W = W(l1(Z)) , ‖f‖W = ‖{ck(f)}‖l1(Z) .

Indeed, the absolute values of the Fourier coefficients of f ∈ W can be obtained
from the errors EW

m (f) of best approximation in the norm of W by elements
of Am, where A1 = span{1} , A2 = span{1, z} , A3 = span{z−1, 1, z, } , A4 =
span{z−1, 1, z, z2} , . . . , as follows:

|c−n(f)| = EW
2n (f)− EW

2n+1(f) , n ∈ N0 , |cn(f)| = EW
2n−1(f)− EW

2n (f) , n ∈ N.

If we use these equations to define a corresponding linear operator ∆ mapping
sequences with index set N0 into sequences with index set Z, then we obtain
W(S) = A(W,S), where S = {{αn}∞n=0 : ∆{αn} ∈ S}. Consequently, for
certain spaces S also Theorem 2.4 can be used to prove the inverse closedness of
W(S) in C(T) (using the inverse closedness of W in C(T)). But, clearly, the
direct application of Theorem 2.1 is more elegant.

We finish this section with giving a concrete class of sequence spaces S for
which the assumptions of Theorem 5.9 are satisfied.

Example 5.11 Let {bk}k∈Z be a sequence of positive numbers satisfying bk+l ≤
const bkbl for all k, l ∈ Z and 0 < const ≤ bk = O(|k|α) (|k| → ∞) for a certain
constant α > 0. Then it is easy to prove that

S =

{
{ck}k∈Z : ‖{ck}‖S =

∞∑
k=−∞

|ck| bk < ∞

}

satisfies the assumptions of Theorem 5.9.
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