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Abstract

In this paper, we show the restricted influence of non-compact multiplication
operators mapping in L2(0, 1) occurring in linear ill-posed operator equations and
in the linearization of nonlinear ill-posed operator equations with compact forward
operators. We give examples of nonlinear inverse problems in natural science and
stochastic finance that can be written as nonlinear operator equations for which
the forward operator is a composition of a simple linear integration operator and a
nonlinear Nemytskii operator. Hence, the Fréchet derivative of such a forward op-
erator is a composition of integration and multiplication operators. It is shown for
power type functions and conjectured for a wider class of multiplier (weight) func-
tions with essential zeros that the unbounded inverse of the injective multiplication
operator does not influence the (local) degree of ill-posedness of inverse problems
under consideration.

In a more general Hilbert space setting, we investigate the role of approximate
source conditions in the method of Tikhonov regularization for linear and nonlin-
ear ill-posed operator equations. We introduce a distance function measuring the
violation of canonical source conditions and derive convergence rates for regularized
solutions in the linear case based on that functions. In this context, we formu-
late cross-connections to convergence rates in Tikhonov regularization with general
source conditions as frequently used in the recent literature. By considering the
structure of source conditions in Tikhonov regularization it could be expected for
the multiplication operators in L2(0, 1) that different decay rates of multiplier func-
tions near a zero, for example the decay as a power or as an exponential function,
would lead to completely different ill-posedness situations. Also based on the studies
concerning approximate source conditions we indicate that only integrals of multi-
plier functions and not the specific character of the decay of multiplier functions in a
neighborhood of a zero determine the convergence behavior of regularized solutions.
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1 Introduction

In this paper, we deal with errors and convergence rates of classical Tikhonov regular-
ization applied to ill-posed linear and nonlinear inverse problems written as operator
equations in Hilbert spaces, where approximate source conditions are under considera-
tion. In particular, we focus on the potential for ill-posedness of multiplication operators
in L2(0, 1) when the associated multiplier (weight) function occurring in the forward op-
erator of the linear inverse problem or in the Fréchet derivative of the forward operator
in the nonlinear problem has essential zeros of power type or exponential type.

Let X and Y be infinite dimensional Hilbert spaces over the field of real numbers and
let ‖ · ‖ denote the generic norm in both spaces. On the one hand we consider inverse
problems that can be written as unconstrained linear operator equations

A x = y (x ∈ X, y ∈ Y ) , (1)

where the injective bounded linear forward operators A ∈ L(X, Y ) are assumed to have
a non-closed range, i.e. R(A) �= R(A), implying an unbounded inverse A−1 : R(A) → X
and leading to ill-posed equations (1).

In particular, for X = Y = L2(0, 1), we consider the class of compact composite linear
integral operators B = M ◦ J, defined as

[B x] (s) = m(s)

s∫
0

x(t) dt (0 ≤ s ≤ 1). (2)

Because of the compactness of B we always have R(B) �= R(B) and every operator
equation (1) with A = B is ill-posed. By definition the operator B is a composition of
the injective simple linear integration operator J defined as

[J x] (s) =

s∫
0

x(t) dt (0 ≤ s ≤ 1) (3)

and the multiplication operator M defined as

[M x] (t) = m(t) x(t) (0 ≤ t ≤ 1). (4)

We only focus on multiplier functions m satisfying

m ∈ L1(0, 1) , |m(t)| > 0 a.e. on [0, 1] , (5)

such that B = M◦J is a compact operator in L2(0, 1). Note that (5) implies die injectivity
of the operators M and B.

It is well-known that J is a compact linear operator in L2(0, 1). Moreover, M is a
bounded linear operator and hence B a compact linear operator in L2(0, 1) if m ∈ L∞(0, 1).
For the multiplier functions m we preferably focus on two families both satisfying the
condition (5). First we deal with the family of power type functions

m(t) = t r (0 < t ≤ 1, r > −1) (6)
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which have a zero at t = 0 for r > 0 and belong to L∞(0, 1) for r ≥ 0. Consequently, for
r ≥ 0 the composite operator B is compact. On the other hand, for −1 < r < 0 we have
m ∈ L1(0, 1) and a weak pole at t = 0, but nevertheless B is compact in L2(0, 1) ([60]).
As a second family we consider the exponential type functions

m(t) = exp

(
− 1

t ρ

)
(0 < t ≤ 1) (7)

with exponent ρ > 0 which can be extended continuously to [0, 1] by setting m(0) = 0.
All such functions m belong to L∞(0, 1) and therefore B is also a compact operator in
L2(0, 1).

One the other hand we consider nonlinear ill-posed problems (see [8, Chapter 10] and
[54]) written as an operator equation

F (x) = y (x ∈ D(F ) ⊆ X, y ∈ Y ), (8)

where the nonlinear forward operator F : D(F ) ⊆ X → Y with closed, convex domain 1

D(F ) is assumed to be continuous. If F is smoothing enough, in particular if F is compact
and weakly (sequentially) closed, then local ill-posedness of equations (8) at the solution
point x0 ∈ D(F ) in the sense of [25, definition 2] (see also [48, definition 7.1.1]) arises,
i.e., the solutions x do not stably depend on the data y in a neighborhood of x0.

We especially consider, for X = Y = L2(0, 1), the class of nonlinear equations (8) with
composite nonlinear operators

F = N ◦ J : D(F ) ⊂ L2(0, 1) → L2(0, 1)

defined as
[F (x)](s) = k(s, [J x](s)) (0 ≤ s ≤ 1 ; x ∈ D(F )) (9)

with J from (3) and half-space domains

D(F ) =
{
x ∈ L2(0, 1) : x(t) ≥ c0 ≥ 0 a.e. on [0, 1]

}
. (10)

Here, N defined as

[N(z)](t) = k(t, z(t)) (0 ≤ t ≤ 1 ; z ∈ D(N)) (11)

is a nonlinear Nemytskii operator (see, e.g., [3]) generated by a function k(t, v) ((t, v) ∈
[0, 1] × [0,∞)). If the generator function k is sufficiently smooth2, then

N : D(N) ⊂ L2(0, 1) → L2(0, 1)

defined by formula (11) with D(N) = {z ∈ L2(0, 1) : z(t) ≥ 0 a.e. on [0, 1]} maps
continuously. Moreover, as a consequence of the compactness of J and the continuity of

1If D(F ) is a closed and convex subset of the Hilbert space X, then D(F ) is also weakly closed.
2If |k(t, v)| ≤ c1+c2 |v| for constants c1 ≥ 0 and c2 ≥ 0 and k(t, v) is continuous on (t, v) ∈ [0, 1]×[0,∞),

then the growth condition and the Carathéodory condition are satisfied and the Nemytskii operator N
maps continuously in L2(0, 1). If moreover k is continuously differentiable with respect to the second
variable v and we have |kv(s, v)| ≤ c3 for a constant c3 ≥ 0, then N is even Gâteaux differentiable with
Gâteaux derivative [N ′(z)h](t) = kv(t, z(t))h(t) (0 ≤ t ≤ 1; z ∈ D(N)) (see, e.g., [1, pp.15]).
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N the composition F = N ◦ J is compact, continuous, weakly continuous and hence a
weakly (sequentially) closed 3 nonlinear operator 4. In view of the compactness and weak
(sequential) closedness of F the equation (8) is locally ill-posed on the whole domain (10)
(cf. the arguments in the context of [19, corollary 5.2]). Under stronger assumptions on
the smoothness5 of k the operator F from (9) is even Fréchet differentiable with a Fréchet
derivative 6

F ′(x0) = B = M ◦ J (12)

of the form (2) at the point x0 satisfying

‖F (x) − F (x0) − F ′(x0) (x − x0)‖ ≤ L

2
‖x − x0‖2 for all x ∈ D(F ) , (13)

where the corresponding multiplier function m depends on the point x0 ∈ D(F ) and
attains the form

m(t) = kv(t, [J x0](t)) (0 ≤ t ≤ 1) (14)

exploiting the partial derivative kv of the generator function k(t, v) with respect to the
second variable v. In [19, p.1331] it was shown that (12) with multiplier function (14)
is a (formal) Gâteaux derivative of the operator (9) at the point x0 ∈ D(F ). Then
F ′(x0) ∈ L(L2(0, 1)) is even a Fréchet derivative whenever an inequality (13) holds true
for some L > 0.

2 Inverse problems with multiplication operators

In this paragraph, we recall three examples of nonlinear inverse problems (8) with non-
linear operators of the form (9) and Fréchet derivatives (12) for X = Y = L2(0, 1) and
‖ · ‖ = ‖ · ‖L2(0,1) arising in natural sciences and stochastic finance. Some analysis of the
first two examples was already presented in [22] (see also [23, pp.57 and pp.123]). For
more details on the third example we refer to [19].

First we consider an example mentioned in the book [16] that aims at determining the
growth rate x(t) (0 ≤ t ≤ 1) in an O.D.E. model

y′(t) = x(t) y(t), y(0) = cI ≥ c0 > 0 (15)
3Provided that N maps continuously with a closed domain D(N) and R(J) ⊆ D(N), then the weak

continuity and hence the weak closedness of the nonlinear operator F defined by formula (9) are con-
sequences of the fact that, for sequences xn ⇀ x0 from D(F ) which are weakly convergent in L2(0, 1),
we have strong convergence for compact J of the sequences J xn → J x0 and thus F (xn) → F (x0) in
L2(0, 1). The same argument provides the compactness of the nonlinear operator F if N is continuous.

4If F is continuous, compact and weakly (sequentially) closed on a convex closed domain D(F ), then
the assertions on ill-posednes and on Tikhonov regularization formulated in [10] (see also §8 below) hold
true for the nonlinear operator equation (8)

5N ′(z) is in general only a Gâteaux and not a Fréchet derivative (see [1, proposition 2.8]), but the
smoothing properties of J ensure that [F ′(x0)h](t) = kv(t, [J x0](t)) [J h](t) (0 ≤ t ≤ 1; x ∈ D(F )) defines
a Fréchet derivative of F at the point x0 satisfying an inequality (13) with a constant L > 0 whenever
the second partial derivative of k(t, v) with respect to v exists and is bounded as |kvv(t, v)| ≤ L for all
v ≥ c0 t (0 ≤ t ≤ 1), where c0 ≥ 0 is the constant arising in the domain (10) (for more details see [19,
p.1332, proof of theorem 5.4]). In such a case, L in (13) is a global constant for all x0 ∈ D(F ).

6In the sense of remark 10.30 of [8] a Fréchet derivative can also be considered if the convex domain
D(F ) has an empty interior which is the case for the domain (10) in L2(0, 1).
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from the data y(t) (0 ≤ t ≤ 1), where we have to solve equation (8) with the nonlinear
operator

[F (x)] (s) = cI exp


 s∫

0

x(t)dt


 (0 ≤ s ≤ 1) (16)

and a positive constant c0 in the domain (10). The functions y(s) (0 ≤ s ≤ 1) can
represent, for example, a concentration of a substance in a chemical reaction or the size
of a population in a biological system with initial value cI .

A second example already mentioned in [2, p.190] aims at identifying a heat conduction
parameter function x(t) (0 ≤ t ≤ 1) from D(F ) with positive constant c0 in a locally one-
dimensional P.D.E. model

∂u(κ, t)

∂t
= x(t)

∂2u(κ, t)

∂κ2
(0 < κ < 1, 0 < t ≤ 1) (17)

with the initial condition

u(κ, 0) = sin πκ (0 ≤ κ ≤ 1)

and homogeneous boundary conditions

u(0, t) = u(1, t) = 0 (0 ≤ t ≤ 1)

from time dependent temperature observations

y(t) = u

(
1

2
, t

)
(0 ≤ t ≤ 1)

at the midpoint κ = 1/2 of the interval [0, 1]. Here, we have to solve (8) with an associated
nonlinear operator

[F (x)] (s) = exp


−π2

s∫
0

x(t)dt


 (0 ≤ s ≤ 1). (18)

In both examples the operators F with domain (10) are of the form

[F (x)] (s) = cA exp (cB [J x](s)) (0 ≤ s ≤ 1, cA �= 0 , cB �= 0) (19)

and belong to the class (9) of composite operators F = N ◦ J with simple integration
operator J from (3) and an injective Nemytskii operator N with generator function

k(s, v) = cA exp (cB v) (0 ≤ s ≤ 1, v ≥ 0). (20)

In this context, we consider the linear operator B = M ◦J of the form (12) for x0 ∈ D(F )
with a continuous multiplier function

m(t) = kv(s, [J x0](t)) = cA cB exp (cB [J x0](t)) = cB [F (x0)](t) (0 ≤ t ≤ 1) (21)

5



determining the associated multiplication operator M. We easily derive lower and upper
bounds c and C such that 0 < c ≤ C < ∞ and

c = |cA| |cB| exp (−|cB| ‖x0‖) ≤ |m(t)| = |cB| |[F (x0)](t)| ≤ |cA| |cB| exp (|cB| ‖x0‖) = C
(22)

showing that the continuous multiplier function (21) has no zeros. Consequently, m ∈
L∞(0, 1) and M is an injective and bounded linear operator in L2(0, 1). Hence the com-
posite linear operator B = M ◦ J is compact in L2(0, 1). Then we have:

Theorem 2.1 Every nonlinear operator F : D(F ) ⊂ L2(0, 1) → L2(0, 1) of the class (19)
with domain (10) is injective, (locally) Lipschitz continuous,7 compact, weakly continuous
and hence weakly (sequentially) closed and possesses for all x0 ∈ D(F ) a compact Fréchet
derivative F ′(x0) = M ◦ J ∈ L(L2(0, 1)) satisfying for all r > 0 a local version

‖F (x)−F (x0)−F ′(x0) (x−x0)‖ ≤ L

2
‖x−x0‖2 for all x ∈ D(F ) with ‖x−x0‖ ≤ r

(23)
of inequality (13) for some constant L > 0 depending on r and x0, where the multiplication
operator M is determined by the multiplier function (21). As a consequence the inverse
operator F−1 : R(F ) ⊂ L2(0, 1) → D(F ) ⊂ L2(0, 1) exists, but cannot be continuous and
the corresponding operator equation (8) is locally ill-posed everywhere.

Proof: To prove this theorem we exploit the auxiliary function

Ψ(s) = cB [J (x − x0)](s) (0 ≤ s ≤ 1) with |Ψ(s)| ≤ |cB| ‖x − x0‖ (0 ≤ s ≤ 1).

Then we can write

[F (x) − F (x0)](s) = [F (x0)](s) (exp(Ψ(s)) − 1) (0 ≤ s ≤ 1)

with | exp(Ψ(s)) − 1| ≤ |Ψ(s)| exp(r|cB|). This yields

‖F (x) − F (x0)‖ ≤ C exp(r|cB|) ‖x − x0‖ for all x ∈ D(F ) with ‖x − x0‖ ≤ r

proving the (local) Lipschitz continuity of F . On the other hand, we can write

[F (x) − F (x0) − F ′(x0)(x − x0)](s) = [F (x0)](s) (exp(Ψ(s)) − 1 − Ψ(s)) (0 ≤ s ≤ 1)

for F ′(x0) = M ◦ J with multiplier function (21). From

| exp(Ψ(s)) − 1 − Ψ(s)| ≤ |Ψ(s)| | exp(Ψ(s)) − 1| for all s ∈ [0, 1]

we obtain, for x ∈ D(F ) with ‖x − x0‖ ≤ r, the estimates

|[F (x) − F (x0) − F ′(x0)(x − x0)](s)| ≤ |cB| |[F (x) − F (x0)](s)| ‖x − x0‖ (0 ≤ s ≤ 1)

7Here the generator function (20) fails to satisfy a growth condition |k(s, v)| ≤ c1 + c2|v| which would
provide the continuity of N. Moreover, neither the absolute value of the first partial derivative kv(s, v) =
cA cB exp(cB v) nor the absolute value of the second partial derivative kvv(s, v) = cA c2

B exp(cB v) are
bounded from above. So a global inequality (13) cannot be shown, but nevertheless because of the
smoothing properties of J the composite operator F = N ◦ J is continuous and at least a local version
(23) of (13) holds true.
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and
‖F (x) − F (x0) − F ′(x0)(x − x0)‖ ≤ |cB| ‖F (x) − F (x0)‖ ‖x − x0‖. (24)

Note that (24) is an η-inequality (see [8, p.279, formula (11.6)], [17] and [25]) that provides
(23) with

L = 2 C |cB| exp(r |cB|).
Using the compactness of the imbedding operator from H1(0, 1) to L2(0, 1) the nonlinear
operator F is compact, since F (x) ∈ H1(0, 1) for all x ∈ D(F ) and by formula (22) and
an analogous formula for the derivative [F (x0)]

′(t) it can be shown that ‖F (x)‖H1(0,1) is
uniformly bounded for ‖x‖ ≤ K and any constant K > 0. Now it remains to show the weak
continuity of F implying the weak (sequential) closedness of the operator. We assume, for
a bounded sequence xn ∈ D(F ), weak convergence x ⇀ x0 in L2(0, 1) exploiting the fact
that this is equivalent to

∫ s

0
(xn−x0)(t)dt → 0 and hence to Ψn(s) = cB

∫ s

0
(xn−x0)(s) → 0

for all s ∈ [0, 1] and show weak convergence F (xn) ⇀ F (x0) in L2(0, 1) by exploiting the
same fact for the sequence F (xn) which is bounded since F is compact. Namely, we can
estimate above for all s ∈ [0, 1]∣∣∣∣∣∣

s∫
0

[F (xn) − F (x0)](s)ds

∣∣∣∣∣∣ ≤
s∫

0

|[F (x0)](s)| |Ψn(s)|ds ≤ C ‖x − x0‖.

This estimate provides with Lebesgue’s theorem on dominated convergence the required
weak convergence F (xn) ⇀ F (x0) in L2(0, 1) taking into account that a weak convergent
sequence is always bounded. Note that the weak limit x0 assumed here belongs to D(F ),
since the domain (10) is weakly closed

As the third example, we present an inverse problem of option pricing. In particular,
at time t = 0 we have a risk-free interest rate r ≥ 0 and we consider a family of European
standard call options for varying maturities t ∈ [0, 1] and a fixed strike price S > 0
written on an asset with asset price X > 0, where y(t) (0 ≤ t ≤ 1) is the function
of option prices observed at an arbitrage-free financial market. From that function we
are going to determine the unknown volatility term-structure. We denote the squares
of the volatility at time t by x(t) (0 ≤ t ≤ 1) and neglect a possible dependence of
the volatilities from asset price. Using a generalized Black-Scholes formula (see, e.g. [34,
pp.71]) we obtain

[F (x)](t) = UBS(X, S, r, t, [J x](t)) (0 ≤ t ≤ 1) (25)

as the fair price function for the family of options, where the nonlinear operator F with
domain (10) and c0 > 0 maps in L2(0, 1) and UBS is the Black-Scholes function defined
as

UBS(X, S, r, τ, s) :=

{
XΦ(d1) − Se−rτΦ(d2) (s > 0)
max (X − Se−rτ , 0) (s = 0)

with

d1 =
ln X

S
+ rτ + s

2√
s

, d2 = d1 −
√

s

and the cumulative density function of the standard normal distribution

Φ(ζ) =
1√
2π

∫ ζ

−∞
e−

ξ2

2 dξ.
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Obviously, we have F = N ◦ J as in (9) with Nemytskii operator

[N(z)](t) = k(t, z(t)) = UBS(X, S, r, t, z(t)) (0 ≤ t ≤ 1).

If we exclude at-the money options, i.e. for

S �= X , (26)

we have a compact Fréchet derivative F ′(x0) = M ◦ J with continuous, nonnegative
multiplier function

m(0) = 0, m(t) =
∂UBS(X, S, r, t, [J x0](t))

∂s
(0 < t ≤ T ) , (27)

for which we can show the formula

m(t) =
X

2
√

2π[J x0](t)
exp

(
− (v + rt)2

2[J x0](t)
− (v + rt)

2
− [J x0](t)

8

)
> 0 (0 < t ≤ 1),

where v = ln X
S
�= 0. Note that in view of c0 > 0 we have c t ≤ [J x0](t) ≤ c t (0 ≤ t ≤ 1)

with c = c0 > 0 and c = ‖x0‖. Then we may estimate

C
exp
(
− v2

2 c t

)
4
√

t
≤ m(t) ≤ C

exp
(
− v2

2 c
√

t

)
√

t
, (0 < t ≤ 1) (28)

for some positive constants C and C. The function m ∈ L∞(0, 1) of this example has a
uniquely determined essential zero at t = 0. In the neighborhood of this zero the multiplier
function decreases to zero exponentially, i.e., faster than any power of t.

In [19] we find the proof of the following theorem:

Theorem 2.2 Under the assumption (26) the nonlinear operator F : D(F ) ⊂ L2(0, 1) →
L2(0, 1) from (25) with domain (10) and c0 > 0 is injective, continuous, compact, weakly
continuous and hence weakly (sequentially) closed and possesses for all x0 ∈ D(F ) a
compact Fréchet derivative F ′(x0) = M ◦ J ∈ L(L2(0, 1)) satisfying (13) for some L > 0
independent of x0, where the multiplication operator M is determined by the multiplier
function (27). As a consequence the inverse operator F−1 : R(F ) ⊂ L2(0, 1) → D(F ) ⊂
L2(0, 1) exists, but cannot be continuous and the corresponding operator equation (8) is
locally ill-posed everywhere.

In all three examples the local ill-posedness of the occurring nonlinear operator equa-
tions and the ill-posedness of the linearized equations require the use of a regularization
method for the stable approximate solution. In this paper we consider the method of
Tikhonov regularization for linear and nonlinear ill-posed operator equations more de-
tailed.

3 On measures of ill-posedness

In the past twenty years in the literature of linear inverse and ill-posed problems (1)
many authors considered measures for the ill-posedness and its consequences for condition
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numbers of discretized problems and appropriate regularization approaches (see, e.g., [5],
[6], [8], [29], [32], [38], [40], [41], [44], [46], [51], [52], [57], [58] and [59]). Numerous
papers used in this context Hilbert scale techniques. If only the smoothing properties of
an injective compact linear forward operator A mapping between the infinite dimensional
Hilbert spaces X and Y are considered, then the decay rate of the positive, non-increasing
sequence {σn(A)}∞n=1 of singular values of A tending to zero as n → ∞ is a frequently
used measure of ill-posedness (see, e.g., [8, p.40], [20, p.31] and [33, p.235]). It defines a
finite degree µ ∈ (0,∞) of ill-posedness if

σn(A)  n−µ (29)

is valid. 8 For small µ, e.g. µ ≤ 1, the equation (1) is called mildly ill-posed and for finite
µ moderately ill-posed. If, however, the singular values σn fall exponentially, i.e., faster
than any power of n, then (1) is called severely ill-posed.

Since a condition (29) is only valid for a specific class of compact operators A, we
defined the more general interval of ill-posedness

[µ(A), µ(A)] =

[
lim inf
n→∞

− log σn(A)

log n
, lim sup

n→∞

− log σn(A)

log n

]

in [26], where µ and µ also can also be zero and infinity. As proposed and motivated
in [14], [21] and [22] such measures are also helpful for evaluating the local behaviour of
ill-posedness for nonlinear operator equations (8) at a point x0 ∈ D(F ) by considering
a linearized version of (8) as an equation (1) with the Fréchet derivative A = F ′(x0)
which is compact whenever F is compact ([7, Theorem 4.19]). For non-compact linear
operators A, in particular multiplication operators, some ideas concerning measures of
ill-posedness for (1) were presented in [24]. Some interdependencies between an ill-posed
nonlinear equation (8) and its linearization with respect to the local degree of ill-posedness
characterized by F ′(x0) and the degree of nonlinearity of F at x0 including consequences
for regularization were formulated in [25].

Now we turn towards the composite integral operators B from (2). From the explicitly
given singular values

σn(J) =
1

π
(
n − 1

2

) ∼ 1

π n
(n = 1, 2, ...)

of the compact integration operator J ∈ L(L2(0, 1)) and for multiplier functions

0 < c ≤ |m(t)| ≤ C a.e. on [0, 1] (30)

we derive the inequalities c σn(J) ≤ σn(B) ≤ C σn(J) and the asymptotics

σn(B)  n−1 (31)
8Here the notation an  bn for sequences of positive numbers an and bn denotes the existence of positive

constants c1 and c2 such that c1 ≤ an/bn ≤ c2 for all sufficiently large n. If moreover limn→∞ an/bn = 1
we write an ∼ bn. If only an estimate an ≤ c3 bn is under consideration for a positive constant c3, then
as obvious we write an = O(bn).

9



based on the Poincaré-Fischer extremum principle

σn(B) = max
Xn⊂X

min
x∈Xn, x �=0

‖A x‖
‖x‖ , (32)

where Xn represents an arbitrary n-dimensional subspace of the Hilbert space X (cf.,
e.g., [5, Lemma 4.18] or [20, Lemma 2.44]). That means, the degree of ill-posedness is
µ = 1 for all such multiplier functions. The first two examples (see formulae (21) and
(22)) presented in the preceding paragraph were concerned with nonlinear operators (9)
leading to the situation (30). Consequently, nonlinear equations (8) with F from the class
(19) have uniformly a local degree one of ill-posedness at any point x0 ∈ D(F ).

Note that (30) implies a continuous (non-compact) multiplication operator M ∈
L(L2(0, 1)) of the form (4) and hence the compactness of the linear operator B = M ◦ J.
Moreover, from (32) it follows that the operator B is also compact whenever we have

|m(t)| ≤ C t r a.e. on [0, 1] (33)

for a constant C > 0 and some exponent r > −1. However, we have a non-closed range of
M , i.e. R(M) �= R(M), whenever m has essential zeros and (30) cannot hold. Then a new
factor of ill-posedness occurs in the operator B in addition to the ill-posedness coming
from the compactness of J . It could be of some interest to evaluate the strength of this
new factor. In particular, it seems to be an interesting question whether the non-compact
operator M with non-closed range can destroy the degree of ill-posedness µ = 1 defined
by the integration operator J. By considering source conditions in regularization (see §4
and §7 below) there are apparently strong arguments that the ill-posedness effect of M
can be significant. However, in the next paragraph we formulate a stringent result that
multiplier functions (6) of power type do not change the degree of ill-posedness and we
have a degree of ill-posedness µ(B) = µ(J) = 1 for all exponents r > −1. We also provide
some arguments to conjecture that this assertion even remains true for the family (7) of
multiplier functions with exponential decay.

4 Specific assertions for composite linear operators

A standard method for the stable approximate solution of ill-posed equations (1) is the
Tikhonov regularization (see, e.g., [53], [4], [15] and [8, Chapter 5]), where regularized
solutions xα depending on a regularization parameter α > 0 are obtained by solving the
extremal problem

‖A x − y‖2 + α ‖x‖2 −→ min , subject to x ∈ X. (34)

As discussed more detailed in §5 below convergence rates ‖xα−x0‖ = O(
√

α) as α → 0 of
regularized solutions xα to the exact solution x0 with y = A x0 can be ensured provided
that x0 satisfies a source condition

x0 = A∗ v (v ∈ Y ). (35)

In general, a growing degree of ill-posedness of (1) corresponds to a growing strength of
the condition (35) that has to be imposed on the solution element x0 (see, e.g., [14] and
[21]).
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Now we compare the strength of condition (35) for the case A = J with the simple
integration operator J defined by formula (3) that can be written as

x0(t) = [J∗ v](t) =

1∫
t

v(s) ds (0 ≤ t ≤ 1; v ∈ L2(0, 1) , ‖v‖ ≤ R0) (36)

and for the case A = B = M ◦ J with the composite integral operator B with weights m
defined by formula (2). In this case we can write (35) as

x0(t) = [J∗M∗ v](s) = [J∗M v](t) =

1∫
t

m(s) v(s) ds (0 ≤ t ≤ 1; v ∈ L2(0, 1)). (37)

If we assume that the multiplier function m has an essential zero, say only at t = 0, then
the condition (36) that can be reformulated as

x′
0 ∈ L2(0, 1), i.e. x0 ∈ H1(0, 1) with x0(1) = 0 (38)

is obviously weaker than the condition (37) which is equivalent to

x′
0

m
∈ L2(0, 1) with x0(1) = 0, (39)

since we have 1
m

�∈ L∞(0, 1) for the new factor occurring in (39). Consequently in order
to satisfy the source condition (39), the (generalized) derivative of the function x0 has to
compensate in some sense the pole of 1

m
at t = 0. The requirement of compensation grows

when the decay rate of m(t) → 0 as t → 0 grows. Hence the strength of the requirement
(39) imposed on x0 grows for the families (6) and (7) of multiplier functions m when the
exponents r and ρ increase. Moreover, for the exponential type functions (7) the condition
(39) is stronger than for the power type functions (6). Note that exponential functions can
really arise as multiplier functions in applications as the inverse option pricing problem
(see third example in §2) shows. In that example, we have an estimate from below and
above (see formula (28)) of the form

K1 exp
(
−c1

t

)
≤ m(t) ≤ K2 exp

(
− c2√

t

)
(0 < t ≤ 1 ; c1, c2, K1, K2 > 0).

We will conjecture below that the asymptotics (31) remains true for all multiplier functions
m satisfying (5) and (33) with r > −1 and that consequently the non-compact operator
M does not destroy the degree of ill-posedness determined by the compact operator J.

In the recent paper [27] we could prove that linear ill-posed problems (1) with compos-
ite operators (2) have a constant degree of ill-posedness µ = 1 if the multiplier function
m is a power function (6). For completeness we will formulate the results and a conjec-
ture which had been presented in [27]. Moreover, we will repeat the proof of the main
theorem 4.1 in the appendix of this paper.

Theorem 4.1 For the non-increasing sequence {σn(B)}∞n=1 of singular values of the
compact linear operator B in L2(0, 1) defined by

[B x] (s) = s r

s∫
0

x(t) dt (0 < s ≤ 1) (40)

11



with exponent r > −1, we have the asymptotics

σn(B) ∼ 1

(r + 1) π n
=


 1∫

0

m(t)dt


 1

π n
as n → ∞. (41)

Corollary 4.2 For the singular values of a compact linear operator B = M ◦ J defined
by the formulae (2) ,(3) and (4) with a multiplier function m satisfying the inequalities

c t r2 ≤ |m(t)| ≤ C t r1 a.e. on [0, 1] (42)

for some constants −1 < r1 ≤ r2 and c, C > 0, we have

σn(B)  n−1. (43)

Proof: By considering theorem 4.1 and the Poincaré-Fischer extremum principle (32) the
asymptotics (43) is an immediate consequence of spectral equivalence in the sense of the
inequalities

c

√√√√√
1∫

0

s2α2 [(J x)(s)]2ds ≤ ‖B x‖ ≤ C

√√√√√
1∫

0

s2α1 [(J x)(s)]2ds for all x ∈ L2(0, 1)

that follow from (42)

Conjecture 4.3 We conjecture that for all the compact linear operators B from (2) the
asymptotic behaviour

σn(B) ∼

 1∫

0

m(t)dt


 σn(J) as n → ∞ (44)

remains true whenever the multiplier function m satisfies for some r > −1 the inequalities

0 < m(t) ≤ C t r a.e. on [0, 1]. (45)

This conjecture is based on three comprehensive numerical case studies in the diploma
thesis [13] of Melina Freitag using the numerical solution of corresponding Sturm-
Liouville problems, moreover a Galerkin approximation of B along the lines of [59] and
a Rayleigh-Ritz ansatz for B∗B solving general eigenvalue problems. She compared the
two families (6) and (7) and pointed out that the decay of singular values σn(B) was
uniformly proportional to 1/n in all three studies, where as in formula (44) the integral∫ 1

0
m(t)dt occurred as essential factor in all studies. A stringent proof of formula (44),

however, seems to be missing up to now for the family (7).

At the end of this paragraph we should mention that for the class of composite linear
compact operators Aγ = M ◦ Jγ mapping in L2(0, 1) and defined by

[Aγ x] (s) = s−β

s∫
0

(s − t)γ−1

Γ(γ)
x(t) dt (0 < s ≤ 1 ; γ > β > 0), (46)
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where Jγ are fractional integral operators of order γ > 0 with degree of ill-posedness
µ(Jγ) = γ and the multiplier functions m are power functions with a weak pole, consid-
erations on non-changing degree of ill-posedness µ(Aγ) = γ were performed by Vu Kim

Tuan and R. Gorenflo in 1994 (see [56]). Using Gegenbauer polynomials they proved
the asymptotics

σn(Aγ)  n−γ (47)

for 0 ≤ β < γ
2

and conjectured that (47) also remains true for γ
2
≤ β < γ. To our knowledge

results on the degree of ill-posedness of the class (46) seem not to be published in the
inverse problems literature for multiplier functions m with zeros (β < 0). In theorem 4.1,
corollary 4.2 and conjecture 4.3 formulated in this paragraph we have focused on the
particular case γ = 1 of operator (46).

In the following four paragraphs we are going to interpret error estimates for the
Tikhonov regularization method applied to the inverse problems (1) and (8), where y ∈ Y
denotes the exact right-hand side y = Ax0 (x0 ∈ X) and y = F (x0) (x0 ∈ D(F ) ⊂ X),
respectively, for a fixed solution element x0 under consideration. Furthermore, yδ ∈ Y
is assumed to be an approximation (noisy data) of y with ‖yδ − y‖ ≤ δ and noise level
δ > 0.

5 Measuring the violation of source conditions yields
convergence rates for Tikhonov regularization

In this and the two subsequent paragraphs we focus on the linear equation (1) and dis-
tinguish Tikhonov regularized solutions for regularization parameters α > 0

xα = (A∗A + αI)−1 A∗y (48)

in the noiseless case and
xδ

α = (A∗A + αI)−1 A∗yδ (49)

in the case of noisy data that represent the uniquely determined minimizers of the extremal
problem (34) for right-hand sides y = Ax0 and yδ with ‖yδ − y‖ ≤ δ, respectively.

In the sequel we call the noiseless error function

f(α) := ‖xα − x0‖ = ‖α (A∗A + αI)−1 x0‖ (α > 0) (50)

profile function for fixed A and x0. In combination with the noise level δ this function
determines the total regularization error of Tikhonov regularization

e(α) := ‖xδ
α −x0‖ ≤ ‖xα −x0‖+ ‖xδ

α −xα‖ = f(α)+ ‖ (A∗A + αI)−1 A∗(yδ − y)‖ (51)

with the estimate
e(α) ≤ f(α) +

δ

2
√

α
. (52)
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The inequality (52) is a consequence of the spectral inequality ‖ (A∗A + αI)−1 A∗‖ ≤ 1
2
√

α

following from
√

λ
λ+α

≤ 1
2
√

α
for all λ ≥ 0 and α > 0 in the sense of [8, p.45, formula (2.48)].

Note that lim
α→0

f(α) = 0 for all x0 ∈ X as proven by using spectral theory for general
linear regularization schemes in [8, p.72, theorem 4.1] (see also [55, p.45, theorem 5.2]),
but the decay rate of f(α) → 0 as α → 0 depends on x0 and can be arbitrarily slow
(see [50] and [8, Prop. 3.11]). However, the analysis of profile functions f(α) expressing
the relative smoothness of x0 with respect to the operator A yields convergence rates of
regularized solutions. In this paragraph we first recall the standard approach for analyzing
f exploiting source conditions imposed on x0 and secondly we present an alternative
theoretical approach using functions d measuring how far the element x0 is away from the
source condition

x0 = A∗ v (v ∈ Y, ‖v‖ ≤ R0) (53)

is the element x0. Note that (53) would imply

f(α) = ‖α (A∗A + αI)−1 A∗v‖ ≤
√

α

2
‖v‖ ≤

√
α

2
R0

and with (52) for the a priori parameter choice α(δ) ∼ δ the convergence rate

‖xδ
α(δ) − x0‖ = O

(√
δ
)

as δ → 0. (54)

The source condition (53) and resulting convergence rate (54) are considered as canonical
in the sequel, since the compliance of a condition (53) seems to be a caesura in the variety
of possible relative smoothness properties of x0 with respect to A and modifications (see
formula (89) in §8 below) play also an important role in the regularization theory of
nonlinear ill-posed problems (see [10], [8, Chapter 10]), where the convergence rate (54)
can be obtained if A∗ is replaced by the adjoint F ′(x0)

∗ of the Fréchet derivative of the
forward operator F at the point x0. Moreover, note that on the one hand the rate (54)
can also be proven in [35] if a semi-norm generated by a closed linear operator forms the
stabilizing term in Tikhonov regularization and that on the other hand weaker source
conditions introduced in [11] also may yield the rate (54) for nonlinear inverse problems
in a P.D.E context.

There are different reasons for an element x0 not to satisfy a source condition (53).
In the literature frequently the case is mentioned, where A is infinitely smoothing and x0

has to be very smooth (e.g. analytic) to satisfy (53). But also for finitely smoothing A
and/or smooth x0 (53) can be injured if x0 does not satisfy corresponding (e.g. boundary)
conditions required for all elements that belong to the range R(A∗) of A∗. It is rather
natural for an element x0 ∈ X not to fulfill the canonical source condition (53). To obtain
convergence rates, nevertheless, in the recent years general source conditions

x0 = ϕ(A∗A) w (w ∈ X) (55)

were used sometimes in combination with variable Hilbert scales (see, e.g., [18], [29], [39],
[40], [41], [42], [43], [47], [51] and [52]).

Following [40] we call a function

ϕ(t) (0 < t ≤ t) with t ≥ ‖A‖2

14



index function in the context of (55) if ϕ is a positive, continuous and increasing function
with lim

t→0
ϕ(t) = 0.

Lemma 5.1 Provided that the index function ϕ(t) is concave for 0 < t ≤ t̂ with some
positive constant t̂ ≤ t, then the profile function (50) satisfies an estimate from above of
the form

f(α) = ‖α (A∗A + αI)−1 ϕ(A∗A) w‖ ≤ K ϕ(α) ‖w‖ (0 < α ≤ α) (56)

for some constants α > 0 and K ≥ 1. For t̂ ≥ ‖A‖2 we even have K = 1.

Proof: We set α = t̂, K = ϕ(t)

ϕ(t̂)
≥ 1 and will show that

α ϕ(λ)

λ + α
≤ K ϕ(α) (0 < λ ≤ t, 0 < α ≤ α = t̂ ).

Taking into account that ‖A‖2 ≤ t we therefore have from spectral theory ([8, p.45,
formula (2.47)]) the estimate (56) to be proven. In the first case 0 < λ ≤ α ≤ α due to
the monotonicity of ϕ we have

α ϕ(λ)

λ + α
≤ ϕ(λ) ≤ ϕ(α) ≤ K ϕ(α).

In the second case 0 < α < λ ≤ t̂ we have ϕ(λ)
λ

≤ ϕ(α)
α

, since ϕ is concave for all α and λ

under consideration in this case. This also implies α ϕ(λ)
λ+α

≤ ϕ(α) ≤ K ϕ(α). In the third
case 0 < α < λ with t̂ < λ ≤ t , however, we really need the constant K > 1. Namely,
here we have

α ϕ(λ)

λ + α
≤ α ϕ(λ)

λ
≤ α ϕ(λ)

t̂
≤ α ϕ(t)

t̂
≤ α K ϕ(t̂)

t̂
≤ K ϕ(α),

since ϕ(t̂)

t̂
≤ ϕ(α)

α
. If we have t̂ ≥ ‖A‖2, then we can reset t̂ = t = ‖A‖2 and obtain K = 1.

This proves the lemma

Under the assumption of lemma 5.1 concerning the concavity of the index function ϕ
we can discuss convergence rates for the Tikhonov regularization based on general source
conditions (55). For any index function the auxiliary function Θ(t) :=

√
t ϕ(t) (0 < t ≤ t)

is positive and strictly increasing. Moreover, we have lim
t→0

Θ(t) = 0 and for sufficiently

small δ > 0 the a priori choice of the regularization parameter α = α(δ) (0 < δ ≤ δ)
based on the equation

Θ(α) =




δ
‖w‖ if ‖w‖ > 0 is available

C δ with a constant C > 0 otherwise
(57)

is well-defined and yields with (52) a convergence rate

‖xδ
α(δ) − x0‖ = O (ϕ (Θ−1(δ)

))
as δ → 0 (58)
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(cf. theorem 2, remark 5 and proposition 3 in [40] and example 2 in [41]). For t̂ ≥ ‖A‖2

in lemma 5.1 we even obtain the result of corollary 5 in [40],

‖xδ
α(δ) − x0‖ ≤ 3

2
‖w‖ϕ

(
Θ−1

(
δ

‖w‖
))

(0 < δ ≤ δ) , (59)

whenever ‖w‖ > 0 is available.

Proposition 5.2 The rate (58) obtained for Tikhonov regularization under the assump-
tion of lemma 5.1 is an order optimal convergence rate provided that ϕ(t) is twice differ-
entiable and ln(ϕ(t)) is convave for 0 < t ≤ ‖A‖2.

Proof: Under our assumptions we obtain the concavity of the function ϕ2((Θ2)−1(t)) for
0 < t ≤ ‖A‖2 from proposition 1 in [40]. This concavity condition implies that (58) is
an order optimal convergence rate (see [40, §3]). Note that this condition is equivalent to
the convexity of the function Θ2 ◦ ϕ−2 on the corresponding domain as required in [51]

Special case 1 (Hölder convergence rates) For all parameters r with 0 < r ≤ 1 the
index functions

ϕ(t) = tr (0 < t < ∞) (60)

are concave, where Θ(t) = tr+
1
2 , and with the a priori parameter choice α(δ) ∼ δ

2
2r+1

according to (57) from (58) we have the order optimal convergence rate

‖xδ
α(δ) − x0‖ = O

(
δ

2r
2r+1

)
as δ → 0 . (61)

Due to the equation R(A∗) = R((A∗A)
1
2 ) ([8, p.48, proposition 2.18]) for r = 1

2
a condition

(55) always implies a condition (53) and vice versa. Hence, in this case the general source
condition and the canonical source condition coincide. Higher convergence rates that
are not of interest in this paper are obtained for 1

2
< r ≤ 1, but as a consequence of

the qualification one of Tikhonov regularization method only rates up to a saturation
level O

(
δ

2
3

)
can be reached. On the other hand, weaker assumptions compared to (53)

correspond with the parameter interval 0 < r < 1
2

yielding in a natural manner also slower
convergence rates compared to (54).

Special case 2 (Logarithmic convergence rates) For all parameters p > 0 the index
functions

ϕ(t) =
1(

ln
(

1
t

))p (0 < t ≤ t = 1/e) (62)

are concave on the subinterval 0 < t ≤ t̂ = e−p−1 (see example 1 in [40]). Moreover,
straightforward calculations show that ln(ϕ(t)) is even concave on the whole domain
0 < t ≤ 1

e
. If the operator A is scaled such that ‖A‖2 ≤ 1

e
, then proposition 5.2 applies.

Using the a priori parameter choice

α(δ) = c0 δκ (0 < κ < 2) (63)
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we obtain for sufficiently small δ > 0

‖xδ
α(δ) − x0‖ ≤ K ‖w‖

(κ ln (1/δ) − ln c0)
p +

δ1−κ
2

2
√

c0

as a consequence of the estimates (52) and (56) and hence

‖xδ
α(δ) − x0‖ = O

(
1(

ln
(

1
δ

))p
)

as δ → 0 . (64)

Note that the simply structured parameter choice (63) asymptotically for δ → 0 overesti-
mates the values α(δ) selected by solving the equation (57). Nevertheless, the convergence
rate (64) implies the optimal rate (58) (see, e.g., [39] and [29]). Hence, in this special
case the convergence is not very sensitive with respect to overestimation of regularization
parameters.

We remark that for given x0 ∈ X and A the index function ϕ satisfying a condition
(55) is not uniquely determined. Therefore, we now present another approach that works
with a distance function d. This function, however, measuring the violation of canonical
source condition is uniquely determined for given x0 and A and hence expresses the relative
smoothness of x0 with respect to A in a unique manner. This approach is based on the
following lemma formulated and proved in Baumeister’s book [5, Theorem 6.8]:

Lemma 5.3 If we introduce the distance function

d(R) := inf {‖x0 − A∗ v‖ : v ∈ Y, ‖v‖ ≤ R}, (65)

then we have

f(α) = ‖xα − x0‖ ≤
√

(d(R))2 + αR2 ≤ d(R) +
√

α R (66)

for all α > 0 and R > 0 as an estimate for the profile function of regularized solutions in
Tikhonov regularization.

For the distance function d(R) defined by formula (65) we have:

Lemma 5.4 For given x0 ∈ X and injective linear operator A, the nonnegative function
d(R) (0 < R < ∞) is well-defined and non-increasing with

lim
R→∞

d(R) = 0. (67)

Proof: By definition (65) the function d(R) cannot increase and as an immediate conse-
quence of the injectivity of A we have R(A∗) = X and hence (67)

As the extreme case, where the canonical source condition (53) implying
f(α) = O(

√
α) as α → 0 is satisfied, we have a situation such that d(R) = 0 for

R ≥ R0 > 0. Otherwise, we have d(R) > 0 for all R > 0 and a condition (53) cannot
hold. Then the decay rate of d(R) → 0 as R → ∞ characterizes the relative smoothness
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of x0 with respect to A and determines the decay rate of f(α) → 0 as α → 0 which is
responsible for the associated convergence rate of Tikhonov regularization in the case of
noisy data. We are going to analyze three typical situations for the decay of the distance
function d in the following:

Situation 1 (logarithmic type decay) If d(R) decreases to zero very slowly as R → ∞,
the resulting rate for f(α) → 0 as α → 0 is also very slow. Here, we consider the family
of distance functions

d(R) ≤ K

(lnR)p
(R ≤ R < ∞) (68)

for some constants R > 0, K > 0 and for parameters p > 0. By setting

R =
1

ακ
(0 < κ <

1

2
)

and taking into account that α = O (1/(ln(1/α)p) as α → 0 we have from (66)

f(α) ≤ K

κp
(
ln 1

α

)p + α
1
2
−κ = O

(
1(

ln 1
α

)p
)

as α → 0.

Then by using the a priori parameter choice (63) we obtain the same convergence rate
(64) as derived for general source conditions with index function (62) in special case 2.

Situation 2 (power type decay) Here we assume that d(R) behaves as a power of R,
i.e.,

d(R) ≤ K

R
γ

1−γ

(R ≤ R < ∞) (69)

with parameters 0 < γ < 1 and constants K > 0. Note that the exponent γ
1−γ

attains all
positive values when γ covers the open interval (0, 1). Then by setting

R =
1

α
1−γ
2

we have from (66)

f(α) ≤ (K + 1) α
γ
2 = O

(
α

γ
2

)
as α → 0.

If the a priori parameter choice α ∼ δ
2

1+γ is used, we find from (52)

‖xδ
α(δ) − x0‖ = O

(
δ

γ
1+γ

)
as δ → 0 (70)

including all Hölder convergence rates that are slower than the canonical rate O(
√

δ).
This situation of power type decay rates for d(R) as R → ∞ covers the subcase 0 < r < 1

2

of special case 1 based on source conditions x0 = (A∗A)r w.

Situation 3 (exponential type decay) Even if d(R) falls to zero exponentially, i.e.,

d(R) ≤ K exp (−c Rq) (R ≤ R < ∞) (71)
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for parameters q > 0 and constants K > 0 and c ≥ 1
2
, the canonical convergence rate

O(
√

δ) cannot be obtained on the basis of lemma 5.3. From (66) we have with

R =

(
ln

1

α

)1/q

f(α) ≤ K αc +

(
ln

1

α

)1/q √
α = O

((
ln

1

α

)1/q √
α

)
as α → 0.

Hence with α ∼ δ we derive a convergence rate

‖xδ
α(δ) − x0‖ = O

((
ln

1

δ

)1/q √
δ

)
as δ → 0 (72)

which is only a little slower than O(
√

δ).

In the forthcoming paper [28], for compact linear operators A sufficient conditions
for the situations 1 and 2 will be given formulated as range inclusions with respect to
R(A∗) using variable Hilbert scales. On the other hand, the following paragraph presents
examples for the situations 2 and 3 in the context of non-compact multiplication operator.

6 A first case study on pure multiplication operators

In this paragraph, let us consider in the spaces X = Y = L2(0, 1) the Tikhonov regulariza-
tion method for non-compact multiplication operators A = M with multiplier functions
m defined by formula (4). Regularized solutions xα and xδ

α are calculated according to
the formulae (48) and (49). We focus on the case where m ∈ L∞(0, 1) with 0 ≤ m(t) ≤ 1
a.e. on [0, 1] and essinf t∈[0,1]m(t) = 0 implying R(M) �= R(M) and the ill-posedness of
the linear operator equation (1). As has been proved in [24] (even for the more general
case of increasing rearrangements, cf. also [9]) a single essential zero of m at t = 0 with
limited decay rate for m(t) → 0 as t → 0 of the form

m(t) ≥ C tκ a.e. on [0, 1] (κ >
1

4
) (73)

with a constant C > 0 provides an estimate of the profile function

f(α) = O
(
α

1
4κ

)
as α → 0 (74)

whenever x0 ∈ L∞(0, 1). The obtained rate (74) cannot be improved.

By two examples we try to make clear the cross-connections to lemma 5.3 by verifying
the distance function d(R) for the pure multiplication operator (4) explicitly. Namely, for
computing the distance function d(R) we solve the optimization problem

‖x0 − M∗v‖ → min, subject to ‖v‖ ≤ R (75)
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using the Lagrange multiplier method with the Lagrangian functional

L(v, λ) =

∫ 1

0

[x0(t) − m(t)v(t)]2dt + λ

[∫ 1

0

v2(t)dt − R2

]
.

If and only if the constraint in (75) is not active, i.e., the quotient function x0(t)
m(t)

is in
L2(0, 1) and has a norm not greater than R, then with A∗ = M the source condition (53)
is satisfied. Otherwise the functions

vλ(t) =
m(t) x0(t)

m2(t) + λ
(λ > 0)

obtained by setting the partial derivative of L(v, λ) with respect to v to zero yield unique
solutions to (75), where λ > 0 is to be determined as the unique solution of equation

R2 =

∫ 1

0

m2(t)

(m2(t) + λ)2
x2

0(t)dt. (76)

Moreover, we have for that λ

(d(R))2 =

∫ 1

0

[x0 − m2(t) x0(t)

m2(t) + λ
]2dt =

∫ 1

0

λ2

(m2(t) + λ)2
x2

0(t)dt. (77)

For simplicity, let us assume

x0(t) = 1 (0 ≤ t ≤ 1) (78)

in the following two examples.

Example 1 Consider (78) and let

m(t) = t (0 ≤ t ≤ 1). (79)

This corresponds with the case κ = 1 in condition (73) yielding f(α) = O( 4
√

α).

Theorem 6.1 For x0 from (78) and multiplier function (79) we have with some constant
R > 0 an estimate of the form

d(R) ≤
√

2

R
(R ≤ R < ∞) (80)

for the distance function d of the pure multiplication operator M.

Proof: For the multiplier function (79) we obtain from (76) by using a well-known
integration formula (see, e.g, [61, p.157, formula (56)])

R2 =

1∫
0

t2

(t2 + λ)2
dt = − 1

2(1 + λ)
+

1

2
√

λ
arctan

(
1√
λ

)
. (81)
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The last sum in (81) is a decreasing function for λ ∈ (0,∞) and tends to infinity as
λ → 0. Then, for sufficiently large R ≥ R > 0, there is a uniquely determined λ = λR > 0
satisfying the equation (81). Based on [61, p.157, formula (48)] we find for equation (77)

(d(R))2 = λ2
R

1∫
0

1

(t2 + λR)2
dt =

λR

2(1 + λR)
+

√
λR

2
arctan

(
1√
λR

)
. (82)

If R is large enough and hence λR is small enough, then we have λR

1+λR
≤ √

λR arctan
(

1√
λR

)
and can estimate

(d(R))2 ≤
√

λR arctan

(
1√
λR

)
.

Evidently, λR ≤ λ̂R holds and (d(R))2 ≤
√

λ̂R arctan

(
1√
λ̂R

)
if λ = λ̂R is the uniquely

determined solution of the equation

R2 =
1

2
√

λ
arctan

(
1√
λ

)
.

Then we derive
√

λ̂R

2
arctan

(
1√
λ̂R

)
= λ̂R R2 and

(d(R))2 ≤ 2 λ̂R R2.

Now we use the inequality

1√
λ

arctan

(
1√
λ

)
≤ π

2

1√
λ

≤ 2√
λ

(λ > 0)

and obtain for the uniquely determined solution λ = λ̃ of equation 1√
λ

= R2 the estimates
λ̂R ≤ λ̃R and

(d(R))2 ≤ 2 λ̃R R2 =
2

R4
R2 =

1

R2

and hence (80)

Theorem 6.1 shows that the situation 2 of power type decay rate (69) for d(R) → 0 as
R → ∞ with γ = 1

2
yielding f(α) = O( 4

√
α) occurs in this example. Lemma 1 provides

here the optimal convergence rate. This is not the case in the next example.

Example 2 Consider (78) and let

m(t) =
√

t (0 ≤ t ≤ 1). (83)

This corresponds with κ = 1
2

in condition (73) yielding f(α) = O(
√

α).

Theorem 6.2 For x0 from (78) and multiplier function (83) we have with some constant
R > 0 an estimate

d(R) ≤ exp

(
−1

2
R2

)
(R ≤ R < ∞) (84)

for the distance function d of the pure multiplication operator M .

21



Proof: Here, we have for (76)

R2 =

1∫
0

t

(t + λ)2
dt = ln

(
1 +

1

λ

)
− 1

1 + λ
. (85)

Again for sufficiently large R ≥ R > 0, there is a uniquely determined λ = λR > 0 solving
the equation (85) and we obtain for (77)

(d(R))2 =

1∫
0

λ2
R

(t + λR)2
dt =

λR

1 + λR
≤ λR.

In the same manner as in the proof of theorem 6.1 we can estimate

d(R) ≤
√

λR ≤
√

λ̃R

for sufficiently large R, where λ = λ̃R solves the equation ln 1
λ

= R2. Then we have√
λ̃R = exp

(
−R2

2

)
and hence (84)

Theorem 6.2 indicates for that example the situation 3 of exponential type decay rate
(71) for d(R) → 0 as R → ∞ with c = 1

2
and q = 2 yielding f(α) = O

(√(
ln 1

α

)
α
)

. In
this example, the rate result provided by lemma 5.3 is only almost optimal. We should
note that (83) represents with κ = 1

2
a limit case in the family of functions m(t) = tκ,

since for smaller κ and (78) the canonical source condition (53) is satisfied which attains
the form 1

m
∈ L2(0, 1) here.

Certainly, only in some exceptional cases (see examples 1 and 2) majorants for distance
functions d(R) can be found in practice. From practical point of view it is in like manner
difficult to verify or estimate the relative smoothness of an admissible solution x0 ∈ X
with respect to A by finding appropriate index functions ϕ and by finding upper bounds of
the function d indicating the violation level of canonical source condition for that element
x0.

7 A second case study on composite linear operators

Taking into account the considerations in the first part of §4 we consider in this para-
graph again the Tikhonov regularization for the linear operator equation (1) with X =
Y = L2(0, 1) and A = B, where the injective composite linear operator B = M ◦ J is
defined by formula (2). We are going to study once more the influence of an injective
multiplication operator M with varying multiplier functions m having an essential zero
on the error and convergence of regularized solutions. In a first step we assume that the
canonical source condition (36) is satisfied for the simple integration operator J defined
by formula (3), but we do not assume the stronger condition (37). Under the assumption
(36) lemma 5.3 applies and helps to evaluate the profile function f(α) = ‖xα − x0‖ with
xα = (B∗B + αI)−1B∗y and y = Bx0. Namely, we have for

d(R) = inf {‖x0 − B∗ w‖ : w ∈ L2(0, 1), ‖w‖ ≤ R}
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the estimate

d(R0) ≤ ‖J∗v − B∗v‖ = ‖J∗(v − Mv)‖ with ‖v‖ ≤ R0

and hence

(d(R))2 ≤
1∫

0


 1∫

s

(1 − m(t))v(t)dt




2

ds ≤

 1∫

0

(1 − m(t))2dt


 ‖v‖2

and from (66) the profile function estimate

f(α) ≤ R0

√
α +

(d(R0))2

R2
0

≤ R0

√√√√√α +

1∫
0

(1 − m(t))2dt. (86)

If we compare the upper bound of the profile function in (86) with the function R0

√
α

that would occcur as a bound whenever (37) holds, we see that the former function is

obtained by the latter by applying a shift to the left with value
1∫
0

(1 − m(t))2dt ≥ 0. A

positive shift destroys the convergence rate. However if for noisy data the shift is small
and δ not too small, then the regularization error is nearly the same as in the case (37).

If, for example, values of the continuous non-decreasing multiplier function m as plot-
ted in figure 1 deviate from one only on a small interval [0, ε), i.e.,

m(t) = 1 (ε ≤ t ≤ 1),

m(t) → 0 as t → 0,

we have

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

m
(t

)

ε 

Figure 1: Function m(t) deviating from 1 only on a small interval 0 ≤ t ≤ ε.

f(α) ≤ R0

√
α + ε (87)

and the influence of the multiplier function disappears as ε tends to zero. As the consid-
eration above and formula (87) show, the decay rate of m(t) → 0 as t → 0 as a power
(cf. (6)) or exponentially (cf. (7)) in a neighbourhood of of t = 0 is in that case without

23



meaning for the regularization error. Only the integrals
∫ 1

0
(1−m(t))2dt play an important

role. This is analogous to the character of the integral
∫ 1

0
m(t)dt which is as an essential

factor for the singular values of B (see theorem 4.1, corollary 4.2 and conjecture 4.3 in
§4).

8 On approximate source conditions for nonlinear
Tikhonov regularization

Finally, we are going to treat the nonlinear inverse problem (8) immediately by using
Tikhonov regularization along the lines of the seminal paper [10] of Engl, Kunisch

and Neubauer (see also [8]). Regularized solutions xδ
α ∈ D(F ) are stable approximate

solutions of (8) based on noisy data yδ ∈ Y, where y = F (x0) with x0 ∈ D(F ) represents
the exact right-hand side and δ > 0 with ‖y − yδ‖ ≤ δ is the noise level. In this context,
the elements xδ

α are minimzers of the extremal problem

‖F (x) − yδ‖2 + α ‖x − x∗‖2 → min, subject to x ∈ D(F ), (88)

where x∗ ∈ X is an initial guess for the solution x0 to be determined. If F is continuous
and weakly closed, then for all α > 0 regularized solutions xδ

α exist (not necessarily
unique) and depend stably on the data yδ. Moreover, the theory of [10] on convergence
and convergence rates applies. We focus again on a source condition which is considered
as canonical, here

x0 − x∗ = F ′(x0)
∗ v (v ∈ Y ), (89)

but we assume that (89) is satisfied only in an approximate manner and the canonical
convergence rate (54) proven in [10] cannot be expected. We present a proposition, which
is a version of theorem 4.1 in [37] proven by Lukaschewitsch in his PhD thesis [36,
theorem 2.2.3]:

Proposition 8.1 Let F : D(F ) ⊂ X → Y be a continuous nonlinear operator mapping
between the between Hilbert spaces X and Y and let the following assumptions hold:

(i) The domain D(F ) is convex.

(ii) The operator F is weakly (sequentially) closed.

(iii) The element x0 ∈ D(F ) an x∗-minimum-norm solution, i.e.,

‖x0 − x∗‖ = min{ ‖x − x∗‖ : F (x) = y, x ∈ D(F )}.

(iv) For some radius ρ > 0 there is a ball Bρ(x0) with centre x0 such that the Fréchet
derivative F ′(x) of F exists for all x ∈ D(F ) ∩ Bρ(x0) and an estimate

‖F (x) − F (x0) − F ′(x0)(x − x0)‖ ≤ L

2
‖x − x0‖2 (90)

is satisfied for some constant L > 0 and all x ∈ D(F ) ∩ Bρ(x0).
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(v) Let exist a number θ ≥ 0 such that there is an element w ∈ Y with

c = L‖w‖ < 1 (91)

and
‖x0 − x∗ − F ′(x0)

∗w‖ ≤ θ. (92)

Then, for an a priori choice α = Kδ with some constant K > 0 and 0 < δ ≤ δ0 and if
ρ > 2‖x0 − x∗‖ +

√
δ0
K

, we have the estimate

‖xδ
α − x0‖ ≤ 1√

1 − c

((
1√
K

+

√
Kc

L

) √
δ +
√

2ρ
√

θ

)
. (93)

Now we consider the specific class (9) of nonlinear problems and apply proposition 8.1,
where we assume that the generator function k is smooth enough such that the nonlinear
operator F is continuous, weakly (sequentially) closed and F ′(x0) from (12) defines a
bounded linear operator in L2(0, 1) which is a Lipschitz continuous Fréchet derivative of
F satisfying the inequality (90) for some L > 0. An example for estimating θ already
formulated in [13, Chapter 7] can be given if we assume a weaker source condition

(x0 − x∗)(t) =

∫ 1

t

w(s)ds (0 ≤ t ≤ 1)

for some w ∈ L2(0, 1) and c = L‖w‖ < 1 instead of (89). Then we have with F ′(x0)
∗ =

J∗ ◦ M∗ = J∗ ◦ M

‖x0 − x∗ − F ′(x0)
∗w‖ = ‖J∗w − J∗Mw‖ ≤ θ =



√√√√√

1∫
0

(1 − m(t))2 dt


 ‖w‖.

For a non-decreasing multiplier function m(t) with zero at t = 0 as shown in figure 1
deviating from one only on an interval 0 ≤ t ≤ ε we get

‖xδ
α − x0‖ ≤ 1√

1 − c

((
1√
K

+

√
Kc

L

)√
δ +

√
2ρ

L
4
√

ε

)

and therefore a small influence on the convergence rate for small ε > 0. Again only
an integral

∫ 1

0
(1 − m(t))2ds and not the decay rate of m(t) → 0 as t → 0 influences the

regularization properties. This is the same qualitative result as observed for the Tikhonov
regularization applied to the linearized problem in §7.

In the nonlinear case, unfortunately, a construction of convergence rates based on
proposition 8.1 on the one hand and on the decay rate of the distance function

d(R) := inf {‖x0 − x∗ − F ′(x0)
∗w‖ : w ∈ Y, ‖w‖ ≤ R}
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to zero as R → ∞ on the other hand as presented above for the linear case seems to fail
completely, since the smallness condition (91) will be injured for large R. We conjecture
that such an approach could be successful under stronger assumptions on the nonlinear
operator F in a neighbourhood of x0 (see [49]) if an estimate

‖xδ
α − x0‖ ≤ ‖xα − x0‖ + K

δ√
α

similar to (52) in the linear case holds and smallness requirements of the form (91) could
be omitted.

Appendix

Proof of theorem 4.1: Let σ = σ(B) > 0 be a singular value of the compact lin-
ear operator B defined by (40). Then λ = 1

σ2 > 0 satisfies the eigenvalue equation
u−λ B∗Bu = 0 for some non-trivial function u ∈ L2(0, 1). Taking into account the explic-

itly given structures of [B∗ y](t) =
1∫
t

m(s)y(s)ds and [B∗B x](t) =
1∫
t

m2(s)

(
s∫
0

x(τ)dτ

)
ds ,

for m(t) = tr (r > −1) the eigenvalue equation can be rewritten as

u(t) − λ

1∫
t

s2r


 s∫

0

u(τ)dτ


 ds = 0 (0 < t < 1) (94)

implying the first boundary condition

u(1) = 0. (95)

Differentiation of (94) leads to the equation u′(t) + λ t2r
t∫

0

u(τ)dτ = 0 which can be

rewritten as
u′(t)
t2r

+ λ

t∫
0

u(τ)dτ = 0 (0 < t < 1) (96)

and hence to the second boundary condition

lim
t→0

u′(t)
t2r

= 0. (97)

Finally, differentiating (96) and multiplying by the factor t2r+2 yields the second order
O.D.E.

t2 u′′(t) − 2r t u′(t) + λ t2r+2 u(t) = 0 (0 < t < 1). (98)

Conversely, from the differential equation (98) and the boundary conditions (95) and (97)
the integral equation (94) follows such that the boundary value problem for equation
(98) determines the singular values σ = 1√

λ
> 0 under consideration with associated

eigenfunctions u.
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For all r > −1, the differential equation (98) possesses the explicit solution (see, e.g.,
formula (1a) on p. 440 in [31])

u(t) = tr+
1
2 Zν

(
tr+1

(r + 1) σ

)
, ν =

2r + 1

2r + 2
,

exploiting the general Bessel function Zν of order ν ∈ (−∞, 1). Then the general solution
of (98) is of the form

u(t) = C1 u1(t) + C2 u2(t) (99)

where
u1(t) = tr+

1
2 J−ν

(
tr+1

(r + 1) σ

)
for all r > −1, i.e. for all ν ∈ (−∞, 1), with Bessel function of the first kind Jν (cf. [12,
§7.2]) and

u2(t) = tr+
1
2 Jν

(
tr+1

(r + 1) σ

)
(ν ∈ (−∞, 1), ν �= 0,−1,−2, ...),

respectively,

u2(t) = tr+
1
2 Yν

(
tr+1

(r + 1) σ

)
(ν = 0,−1,−2, ...)

with Bessel function of the second kind Yν . The constants C1 and C2 are to be selected
such that the boundary conditions (95) and (97) are satisfied.

To fit the boundary condition (97) at t = 0 we consider

u′
1(t)

t2r
=

t
1
2

σ
J ′

−ν

(
tr+1

(r + 1) σ

)
+

(
r +

1

2

)
t−r− 1

2 J−ν

(
tr+1

(r + 1) σ

)
.

Taking into account the well-known asymptotics (cf. [12, §7.2]) of the Bessel functions of
the first kind and their derivatives for t → 0,

J−ν(t) ∼ 1

Γ(1 − ν)

{(
t

2

)−ν

− 1

1 − ν

(
t

2

)2−ν
}

and

J ′
−ν(t) ∼

1

2 Γ(−ν)

{(
t

2

)−ν−1

− 1

1 − ν

(
t

2

)1−ν
}

,

we obtain after some algebra

u′
1(t)

t2r
= O(t) as t → 0.

Hence u1 satisfies (97). Analogously, one can show that u2 does not fulfill (97). This
implies C2 = 0 in formula (99) as a consequence of the boundary condition (97). Without
loss of generality we set C1 = 1 and find from the boundary condition (95) the eigenvalue
equation

J−ν

(
1

(r + 1) σ

)
= 0 (r > −1) (100)
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for determining the eigenvalues σ > 0 to which u = u1 are the corresponding eigenfunc-
tions. The well-known asymptotic behaviour of the n-th zero of Bessel functions J−ν

(cf. [30, VIII (Zeros 1., p.146)]) provides

1

(r + 1) σn

∼
(

n − 1

2

)
π − ν π

2
+

π

4
as n → ∞

and hence the asymptotics of the sequence {σn}∞n=1 of solutions to (100) tending to zero
as n → ∞ expressed by

σn ∼ [(r + 1) π n]−1 as n → ∞.

This yields the relation (41) and proves the theorem

Main part of this proof is basically due to ideas of L. von Wolfersdorf.
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